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A Framework for the Stabilization of General
Nonholonomic Systems With an Application
to the Plate-Ball Mechanism
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Abstract—We present a framework for the stabilization of non-
holonomic systems that do not possess special properties such as
flatness or exact nilpotentizability. Our approach makes use of two
tools: an iterative control scheme and a nilpotent approximation of
the system dynamics. The latter is used to compute an approximate
steering control which, repeatedly applied to the system, guaran-
tees asymptotic stability with exponential convergence to any de-
sired set point, under appropriate conditions. For illustration, we
apply the proposed strategy to design a stabilizing controller for
the plate-ball manipulation system, a canonical example of non-
flat nonholonomic mechanism. The theoretical performance and
robustness of the controller are confirmed by simulations, both in
the nominal case and in the presence of a perturbation on the ball
radius.

Index Terms—TIterative steering (IS), nilpotent approximations
(NAs), nonholonomic systems, plate-ball mechanism, stabilization.

1. INTRODUCTION

HE PROBLEMS of planning and controlling motions of

nonholonomic systems have been the subject of very in-
tensive research over the last two decades. This burst of activity,
first motivated by the theoretical challenges posed by these sys-
tems (the most notable being the impossibility of achieving sta-
bilization by smooth feedback [4]), was supported by the prac-
tical relevance of nonholonomic behavior, which arises, and
must be dealt with, in many advanced robotic systems, such
as wheeled mobile robots, dextrous manipulation mechanisms,
and space robots.

In many cases, nonholonomic robots are adequately repre-
sented by their kinematic model (i.e., assuming pseudoveloci-
ties as control inputs), so that a driftless dynamic system can be
considered for control synthesis. For example, this is the case
of wheeled mobile robots. In the following literature review, as
well as in all our developments, we shall, therefore, refer to non-
holonomic systems without drift.

For nonholonomic systems that can be made nilpotent by a
feedback transformation, the problem of generating a feasible
path (and the associated steering control) connecting two arbi-
trary configurations has been solved by differential geometric
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arguments in [15]. Other cases of special interest are chained-
form transformable [32] systems (a particular case of nilpoten-
tizability) and flat [9] systems; for these two classes, which co-
incide in the two-input case, many efficient steering techniques
exist (see [8] for a review).

The problem of stabilizing a given configuration has been
solved for chained forms using time-varying and/or discontin-
uous feedback laws, respectively pioneered in [38] and [41].
While many other techniques have been subsequently proposed
to improve the performance of these basic approaches (see
[24] for an excellent review), systematic and effective design
procedures are only available for special classes of driftless
dynamics. In addition to flat and chained-form transformable
systems, these include low-dimensional systems [14], and the
case in which the Lie algebra has a particular growth structure
[36].

However, there exist nonholonomic robots, referred to as
general in this paper, whose kinematic model does not fall into
any of the aforementioned classes. For example, mobile robots
with more than one trailer cannot be transformed in chained
form, unless each trailer is hinged to the midpoint of the
previous wheel axle—a particular arrangement, very unusual
in real trailer vehicles, known as “on-hooking.” Another such
example are robotic systems that perform object manipulation
by rolling contacts [31]: even the simplest mechanism in this
category, the so-called plate-ball system, does not admit a
chained-form transformation. More in general, for two-input
systems, as soon as the dimension of the state space reaches
five, exact nilpotentizability becomes the exception rather than
the rule (whereas all systems up to dimension four possess this
property [29]).

With reference to path planning, techniques for steering
nonnilpotentizable systems include an iterative version of the
method in [15], the continuation method of [43], and the generic
loop method of [40]. The problem of generating an open-loop
control steering a driftless system along a generic path has been
solved in [17] through a sequence of highly oscillatory controls
that converge to the desired input.

Coming to the stabilization problem for general driftless dy-
namics, Coron [6] has shown that controllability implies stabi-
lizability by continuous time-varying feedback, a path-breaking
result which, however, does not explicitly provide a construc-
tive design procedure; a preliminary result of the same flavor
was given in [13]. In [24], a technique is presented that allows
transforming a given smooth stabilizing law into a nonsmooth
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controller which achieves exponential convergence. Stabilizing
controllers making use of Liu’s steering inputs [17] were pre-
sented in [26] and [27]; the latter approach, which is applicable
to sufficiently regular driftless systems, relies on an iteration
mechanism for achieving robustness to unmodeled dynamics.
Another technique based on iteration is averaging. In [45], it
is shown how to obtain exponential stability of the averaged
system for driftless dynamics.

The objective of this paper is to present a new framework for
the stabilization of general nonholonomic systems. Our basic
idea is to apply the iterative steering (IS) paradigm of [19],
which shows that asymptotic stabilization of nonlinear systems
can be achieved by the repeated feedback application of approx-
imate steering controls that possess certain properties. To design
such controls, we rely on nilpotent approximations (NAs) [10],
[2], high-order local approximations of control systems that are
useful when tangent linearization does not retain controllability,
as in nonholonomic systems. NAs have already been implicitly
used in some of the aforementioned papers, e.g., see [15] and
[17]. Here, we use them explicitly, in the sense that our steering
controllers are, in fact, designed and computed on the NA of
the original system. This is made easy by the fact that NAs are
polynomial and triangular. It is then possible to integrate their
equations in closed form under parameterized inputs.

The combination of the above two tools results in a strategy
which is applicable to any driftless controllable system. In par-
ticular, a general control algorithm is obtained, which guaran-
tees asymptotic stability with exponential convergence rate. In
addition, the adoption of the iterative steering approach provides
desirable robustness properties with respect to unmodeled dy-
namics, i.e., rejection of small nonpersistent perturbations and
ultimate boundedness of the error in the presence of persistent
perturbations.

As an illustrative case study, we consider the plate-ball ma-
nipulation system. Following the proposed design procedure, an
explicit control algorithm is constructed that asymptotically sta-
bilizes the ball at any desired configuration, with the expected
exponential convergence. Simulation results are presented both
in nominal conditions, to confirm the theoretical performance,
and in perturbed conditions (i.e., when the radius of the ball is
not known) to highlight the robustness gained by our feedback
scheme.

The paper is organized as follows. After stating the consid-
ered problem in Section II, we offer in Section III a short review
of our basic tools, i.e., iterative steering and nilpotent approxi-
mations. Such a review provides the essential context for the de-
velopments in the paper, but at the same time, directs the reader
to the relevant literature in the area. Our stabilization strategy is
described in Section IV. In particular, we present an algorithm
for designing appropriate steering laws via NA, the control al-
gorithm based on the iteration of such steering laws, and the
associated stability proof; at this point, we also provide a com-
parative discussion of our method with respect to related tech-
niques. In Section V, the proposed stabilization framework is
applied to the plate-ball system, providing an explicit control
algorithm whose effectiveness is theoretically proven and con-
firmed by simulations. Further areas of research are mentioned
in the concluding section.

II. PROBLEM FORMULATION

We consider general driftless nonholonomic systems in the
form

&= gilw)u ¢))
=1

where g1, ...,g,, are smooth vector fields on IR", z € IR"
is the state vector, and u = (uy, ..., u,) € R™ is the control
vector. General means that no special property is assumed, other
than controllability, i.e., the fact that the Lie algebra associated
to the vector fields g; is of rank n (Lie algebra rank condition).
In particular, we shall not require system (1) to be flat or exactly
nilpotentizable.

The class of general nonholonomic systems includes some
interesting robotic systems, such as multifingered hands for ma-
nipulation and off-hooked trailer systems. It is exactly at these
challenging mechanisms that our investigation is aimed.! Our
objective is to build a controller that asymptotically stabilizes
the origin of the state space, assumed without loss of generality
to be the desired equilibrium.

III. BAsic TooLs

The objective of this section is to present some background
material on the two basic tools of our stabilization method, i.e.,
the IS technique and the NA procedure.

A. Iterative Steering

The IS technique can be used to achieve stabilization of non-
linear systems (with or without drift) through the repeated ap-
plication of a suitable steering control. In view of our interest
in kinematic nonholonomic mechanisms, we summarize below
the basic features of this technique, as applied to the driftless
system (1), referring the reader to [19] for details.

Consider a generic initial condition zy € B, an open ball
around the origin of the state space of system (1). Assume that
a finite-time steering control u(¢) = «a(xz(t),zo,t),t € [0,T]
satisfying the following condition is available.

Condition 1: The steering control « is such that:

a) «fz,0,t) =0 forany (z,t) € R" x [0,T7];

b) «islocally Lipschitzian in z, piecewise-continuous in ¢,

for ¢t € [0, T, and Holder-continuous of order p in x at
the origin, i.e.,

|Oé(07$07t)| < .u'|$0|p7 le [O/T]/ w>0, p>0 2
c) contraction is guaranteed
lz(1)| < Blzol, B <1, Vo€ B. (3)

Here, the symbol | - | denotes the Euclidean norm.

In principle, one may specify « either in feedforward (i.e.,
as a function of zg and ¢ only) or in feedback. In the first case,
the steering control oz may be the output of a path planner. The
second includes the situation in which a preliminary feedback
transformation is used to put the system in a canonical form

IThe stabilization strategy used in this paper clearly works for nilpotentizable
systems as well, with the further simplification coming from the fact that the use
of NAs is obviously no longer necessary; see [19] for an application to chained
forms.
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convenient for planning (e.g., a chained form), but also in the
case of a true, error-based feedback steering law.

Consider now the sequence of time instants {¢t, = kT'},
with £ = 0,1,2, ..., and the associated time intervals I 1 =
[tk,tr+1], hereafter called iferatrions. In each iteration, define
the control input as

u(t) = a(z(t), xp,t —tr), t€ Ixt1 4)

i.e., update the above steering control « on the basis of zj, =
x(tr), the initial state of the iteration. For ¢ € [0, c0), (4) defines
a feedback law which depends on the measured state, at least at
sampled time instants.

The result below, proven in [19], characterizes the stability
properties of the origin of system (1) under IS.

Theorem 1: 1If the steering control « satisfies Condition 1, its
iterative application (4) renders the origin of system (1) asymp-
totically stable, with an exponential convergence rate that is pro-
portional to | log /3]. The asymptotic stability is global, provided
that B = IR" in (3).

Note the following points.

* In the above result, asymptotic stability is to be intended
in the sense of Lyapunov: z(t) can be arbitrarily bounded
for all ¢ € [0,00) by bounding xg, and converges to the
origin as t — oo.

* If Condition 1 is modified by requiring simple continuity
(in place of Holder-continuity) of « in x¢, uniform asymp-
totic stability is preserved, but the convergence rate may
not be exponential.

e If p > 1, then the origin is exponentially stable in the
standard sense. Otherwise, it is p-exponentially stable, ac-
cording to the definition of [14].

Another benefit of the IS stabilization technique is that it
provides a degree of robustness against additive perturbations.
Small nonpersistent perturbations are rejected, while ultimate
boundedness of the error is guaranteed under persistent pertur-
bations. In this paper, we shall not address the robustness issue
from a theoretical viewpoint; we refer the reader to [19, Th. 2]
for a precise characterization of the relevant conditions.

To apply the IS paradigm to a specific control system, one
must be able to compute a steering control «(z, xg,t) that sat-
isfies Condition 1. As we are dealing with general nonholo-
nomic systems, powerful properties such as flatness or nilpo-
tency cannot be exploited. On the other hand, an exact planner
is not required. Equation (3) indicates that we may settle for
an approximate planner, as long as its performance is provably
good. These two circumstances call for a new approach, and this
is exactly where NAs come into play.

B. Nilpotent Approximations

A nilpotent approximation of the control system (1) may be
thought of as a generalization of the linear approximation. With
respect to the latter, NAs are higher order approximations with
an increased degree of adherence to the original dynamics, in
the sense that they preserve the structural properties (including
controllability) of the original system. Various researchers have
developed techniques for computing NAs (e.g., [2] and [10]). In
the following, we recall some basic material following closely
the approach in [2].
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Fix a point Z € R" and let L*(Z) be the vector space gener-
ated by the values at z of the Lie brackets of g1, . . ., g.,, of length
1,2, ... (input vector fields are brackets of length
one). Controllability of system (1) guarantees that there exists
a smallest integer r = r(Z) such that dim L"(Z) = n. This
integer is called the degree of nonholonomy at T. Let ng(Z) =
dim L*(z),s = 1,...,r, and define the growth vector at T as
(n1(Z),...,n.(T)).

In association with system (1), consider now a smooth real-
valued function f. Call first-order nonholonomic partial deriva-
tives of f the Lie derivatives g; f of f along g;,2 = 1,...,m.
Call g;(g;f),4,5 = 1,...,m, the second-order nonholonomic
partial derivatives of f, and so on.

Definition 1: A function f is said to be of order > s at a
point 7 if all its nonholonomic partial derivatives having order
< s—1 vanish at Z. If f is of order > s and not of order > s+ 1
at x, it is said to be of order s at z.

Definition 2: A vector field h is said to be of order > q at ©
if, for every s and every function f of order s at z, function h f
has order > ¢q + s at . If h is of order > g butnot > ¢ + 1, it
is said to be of order q at x.

From the definitions above, it follows that input vector fields
gi,t = 1,...,m, have order > —1.

Definition 3: A system

i=1

is a nilpotent approximation? of system (1) at 7 if:

< 5,8 =

* the vector fields g; — g; are of order > 0 at z;
» its Lie algebra is nilpotent of step s > r(Z), i.e., all Lie
brackets of length greater than s vanish.

Note that the first property implies the preservation of growth
vector and controllability.

Algorithms for computing NAs are based on the existence at
each point of a set of locally defined privileged coordinates.

Definition 4: Let the integer wj, j = 1,...,n be defined by
settingw; = sifn,_1 < j < ng, withng = ny(Z) and ng = 0.
Local coordinates 21, ..., 2, centered at  form a system of
privileged coordinates if the order of z; at ¥ equals w;, for j =
1,...,n. In this case, w; is called the weight of coordinate z;.

A procedure for constructing a set of privileged coordinates is
given in [2]; for an explicit formula, see [47]. While we do not
give details of such a procedure, there are some structural prop-
erties of privileged coordinates that we shall need in the paper.

Denote by A the inverse of a matrix whose columns are a
basis at Z of L"(Z) = R", and let y = A(z — T). Privileged
coordinates at Z are always obtained by a polynomial change of
coordinates of the form

Z1=U
zo = Y2 + poly(y1)
z3 = y3 + pols(y1,y2)

Zn = Yn + PO, (Y1, -+, Yn—1) ©)

2This definition is equivalent to that given in [2] and [11].



ORIOLO AND VENDITTELLI: A FRAMEWORK FOR THE STABILIZATION OF GENERAL NONHOLONOMIC SYSTEMS 165

where pol;(-),j = 2,...,n denotes a polynomial function of

Y1,---,¥;—1 that includes only terms of degree > 2 and < wy;.
In compact form, we may write

z = ¢z(z) =y + pol(y) = A(z — Z) + pol(A(z — T)). (6)

From the triangular structure of (5), it is immediate to see that
the inverse change of coordinates from z to y has exactly the
same form of (6)

y =z +pol'(z).

In particular, pol’(-) and pol(-) only differ for the value of the
coefficients. Hence, the inverse mapping from z to x is obtained
as

z=¢;'(2) =7+ A7 (2 + pol'(2)). @)
As before, the jth component pol’;(-) of pol’(-) is a polynomial
function of z1, ..., z;_; that includes only terms of degree > 2
and < wj.

The order of functions and vector fields expressed in privi-
leged coordinates can be computed in an algebraic way.

* The order of the monomial 27" ...z is equal to its
weighted degree w(vy) = w1y + - -+ + WnYn-

* The order of a function f(z) at z = 0 (the image of Z) is
the least-weighted degree of the monomials actually ap-
pearing in the Taylor expansion of f at zero.

* The order of a vector field h(2) = > 7_; h;(2)0.; at z =

0 is the least-weighted degree of the monomials actually
appearing in the Taylor expansion of A at zero

h(z) ~ Z ayjz]" o 20,

.3

considering the term a, jz/* ...z"d., as a monomial
and assigning to J., the weight —w;.
Once a set of privileged coordinates z has been built, an NA
can be obtained as follows.
1) Express the dynamics of the original system in privileged
coordinates
i=Y gi(2)ui ®)
i=1
2) Expand vector fields g;(z) in Taylor series at zero, ex-
press them in terms of vector fields homogeneous with
respect to the weighted degree

9(2) =9 @) + 9@ + 9 () + -

and let g;(z) = gf_l)(z). By construction, the jth com-

ponent g;; of g; depends only on zy,...,2;_1.
3) Define the approximate system as

where the §;;’s are the components of g;.

System (9) is an NA of the original dynamics (1). We empha-
size its properties that are essential for our purposes.

* The g;;’s are homogeneous polynomials of weighted de-
gree w; — 1.

¢ The remainder terms 7;;(2) = gi;(2) — §ij (21, ..., 2j—1)
(i=1,...,m,j5 =1,...,n) of the Taylor series expan-
sion of g;;(z) are functions of order w; at zero.

* System (9) is strictly triangular.

IV. THE STABILIZATION STRATEGY

As already mentioned, our basic idea is to achieve asymp-
totic stabilization of general nonholonomic systems through the
IS paradigm, using NAs to derive steering controls that satisfy
Condition 1. We formalize this idea in this section, first clari-
fying the steps of the design procedure, and then providing a
control algorithm whose correctness is proved.

A. Design of a Steering Controller

To obtain a stabilization strategy based on the IS approach, we
need an appropriate steering controller. To this end, we propose
the following Design Algorithm.

Step D1) Build an NA of system (1) at a generic point
following the procedure briefly recalled in Sec-
tion III-B. One obtains a nilpotent system Wz of
the form (9), where the z are privileged coordinates
centered at 7 (i.e., the image of Z is zero), and ob-
tained from x through a polynomial change of co-
ordinates z = ¢z ().

Step D2) For a generic z/ € IR™ (a target point for ¥3), de-
vise an open-loop steering controller a(z7,t),t €
[0, T] that satisfies the following condition.

Condition 2: The steering control « is such that:

a) «0,t) =0, foranyt € [0,T];

b) « is piecewise-continuous in ¢, for ¢ € [0,7], and

Holder-continuous of order p in 27 at the origin, i.e.,
la(zF, )| < pldP te[0,1] >0 p>0  (10)

c) the state of U3 is steered from zero (the image of Z) to

2! intime T, ie., 2(T) = 2/.

To perform Step D2, one may use, in general, the systematic
method for steering nilpotent systems proposed in [15]. The
basic idea of this technique is to build an extended system by
augmenting the original dynamics with an appropriate set of Lie
brackets of the input vector fields, in such a way that computing
a steering control for this system is straightforward. The solution
is then mapped back to the original system through Lie algebraic
arguments. We mention that the practical use of such a method
might be computationally intensive, as it requires the numerical
solution of a nonlinear system. In our case, however, the nilpo-
tent system (9) to be steered is also strictly triangular. Hence,
for a specific NA, a steering control satisfying the conditions of
Step D2 (including Holder-continuity in z¥) can be often found
by exploiting the possibility of integrating in closed form the
system equations under finite-time parameterized steering con-
trols (e.g., sinusoidal, piecewise-constant, polynomial). For this
reason, we shall not discuss further the computation of steering
controls in the general case, referring the reader to the case study
of Section V for details.
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B. Control Algorithm

Assume that a steering controller has been built following the
Design Algorithm. A Control Algorithm that leads system (1)
from z to the origin in feedback is the following.

Step CO) Set & = 0. The initial time and state are, respec-
tively, to and z(tg) = zo.

Step C1) Having chosen 7 € (0, 1], compute a:f: = (1—-n)xg
(the subgoal for the current iteration) and z,{ =
[ (mi ) (the image of x{ in privileged coordinates
centered at the current point ).

Step C2) Let tg41 = tx + T and Ix41 = [tg,trs1]- For
t € Ij41, apply the steering control a(z,’:,t — tr).

Step C3) Measure z(tg+1) and let 211 = 2(tg41)-

Step C4) Set k = k + 1 and go to Step 1.

Some remarks are in order at this point.

* Due to the use of an NA, at the end of iteration [ there
is an error between the actual state =1 of system (1)
and the state Zp41 = x£ of the nilpotent system, i.e., the
inverse image of 21 = z/: .

* In Step C2, the nilpotent system is simply steered closer
to the origin (the destination becomes exactly the origin
if = 1). The rationale for this apparently conservative
choice is that, by limiting the required reconfiguration, one
can also reduce at will the steering error between the orig-
inal and the nilpotent system, so as to satisfy the conditions
of the IS framework (see the proof of Theorem 2 below).

* The real-time computational load of the above Control Al-
gorithm is very limited, and consists of the computation of
z,{ , the image in privileged coordinates of the current sub-
goal, through the change of coordinates ¢, ; the latter is
simply the evaluation at zj, of the symbolic expression ¢z
obtained during Step D1. Note, in particular, that the NA
at xy, is not computed. We directly use the steering con-
troller that has been identified during the design phase.

* In Step C1, the subgoal is chosen along the line joining xj,
to the origin. In some cases, however, it may be easier to
obtain error contraction along a different direction; to this
end, Step C1 can be made more general by setting x{ =
Exyp, with E = diag{1 —n;},n; € (0,1],i =1,...,n.

C. Stability Result

The effectiveness of the above Control Algorithm is guaran-
teed by the following result, which also gives a stricter lower
bound on p in Step D2.

Theorem 2: The Control Algorithm makes the origin of
system (1) globally asymptotically stable, with an exponential
convergence rate, provided that:

1) n is sufficiently small;

2) p> 1/(w; + 1), where w; is the weight associated with
the privileged coordinate z;, and [ is the smallest integer
such that z(T) # 2/(T) = zlf under the application of
the steering control a(z7,1).

Proof: The thesis will be proven by showing that the
steering control designed as in Steps D1-D2, and used as in
Steps C1-C2, satisfies the requirements of the IS method, that
is, Condition 1 of Section III-A.
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First of all, it is clear that Condition 2a) yields Condition la).
As for Condition 1b), one must show that Holder-continuity of
order p > 0in 2/ implies Holder-continuity of the same order in
the initial condition, i.e., during the generic (k+1)th iteration, in
xr. This is a consequence of the polynomial mapping between
z and x expressed by (6), which results in

z,{ = ¢u, (x{) = —nAzy + pol(—nAzy).

Since pol(-) only includes terms of degree > 2, z,’: is Holder-
continuous of order 1 in z, at the origin, i.e.,

|2f] < nulwr] (11)

with v a positive number including the local Lipschitz constant
of pol(+) and | A, the norm of A induced by the Euclidean norm.
This immediately implies that Condition 1b) is satisfied.

The final step is to show that Condition Ic) (contraction) can
be guaranteed for the original system, in spite of the fact that
the steering controller has been designed for the NA [Condition
2c)]. That is, we must prove that, for sufficiently small 7, there
exists a 3 < 1 such that |xg41]| < Bz

Let ex41 = Tk41 — Tk+1, SO that we have

[Teg1] < |Zpgr| + lewsa] = (L= n)lzw] + lera|  (12)
having used Condition 2c). Using (7), the relationship between
the errors in the z and z coordinates is obtained as

lensa] = [A7 i | + 147 (ol (zk41) — POl (Z41)))]

so that
ler+1] < (1+ )\)|A_1||ei+1|

where ) is the local Lipschitz constant for pol’(+). We now in-
voke Lemma 1 (see the Appendix), and, in particular, the esti-
mate (23) for the error after 1" seconds, so as to obtain

lert] < (14 A) [ A7 (Umax) ™+ (13)

By hypothesis [in particular, Condition 2b)], the steering control
u(t) = a(z,{ ,t) during the k + 1th iteration is a Hélder-contin-
uous vector function of z,’: , so that the same is true for %y ax,
the maximum value of its components over [ty, tx+1]. Equation
(10) yields then

Umax < /L|Z£|p.
Plugging this inequality into (13), and using (11), we get
eican] < (14 Ay A7 [+ P+,
Under the hypothesis p > 1/(w; + 1), we may write
lens1] < f(n)lwkl

where f(n) is a function of order p(w; + 1) > 1 at zero.
The proof is completed by noting that the above estimate for
|ek+1], together with (12), implies

[whta| < (L= n+ f(m)lzk| = Blal.
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Since the order of f(n) is at least two, (3 is certainly smaller than
one for sufficiently small n; hence, contraction is achieved also
for the original system.

Having shown that our steering controller satisfies Condition
1, we invoke Theorem I to establish global asymptotic stability
of the origin, with exponential convergence rate that is loga-
rithmic in [. [ |

The following remarks are in order with respect to the two
hypotheses of Theorem 2.

* The first hypothesis is that a sufficiently small 7 (the con-
traction rate for the NA) is used in Step C1 of our Con-
trol Algorithm. As shown in the proof, this is required to
guarantee contraction (and hence, asymptotic stability) for
the original system. However, the upper bound for 7 that
can be derived from the last step of the proof (namely,
f(n) < n) will almost certainly be overly conservative.
This is due to the fact that, in order to establish an existence
result valid for the whole class of systems described by
(1), we had to make use of general arguments pertaining to
the differential geometric structure of NAs. Often, a much
more significant bound on 7 can be effectively computed
from the equations of the specific mechanism under con-
sideration. As a last resort, a feasible 1 may be identified
through a preliminary simulation study, in which one pro-
ceeds by bisection on 7 until contraction is found to be
preserved for the original system.

* The second hypothesis involves [, i.e., the index of the
first component of z whose final value deviates from the
desired value due to the approximation error. Clearly, the
higher [ is, the higher w; is, and the easier it is to obtain
p > 1/(w; + 1). It is, therefore, convenient to perform
system manipulations that can increase [ before designing
the steering controller. In particular, if system (1) can be
put?® in the following form:

.i?l = U1
T = Um
m
Tyl = E Im+1,5 (L1, -+ T )Uj
i=1
m
Lo = E Im+2.5(T1, ..., Tm1) U
=1
m
Ty = E Gnj(T1,. .., Tn—1)U;j
i=1

thenitis | = m+1, because the first 7 dynamic equations
(and the associated state variables z; = z;,7 = 1,...,m)
will be exactly represented in the NA—an obvious fact
whose proof we leave to the reader. Even in the most gen-
eral case, however, one can always obtain [ = 2 by feed-
back linearization of a single equation.

3Conditions for achieving this structure (a special case of strictly triangular
form) by feedback transformations are given, e.g., in [21].

D. Discussion

Theorem 2 shows that the proposed stabilization technique is
effective for driftless nonholonomic systems whose NA can be
steered from 0 to z/ by a control law that is Holder-continuous
of order p > 1/(w; + 1) in 2¢. After the previous discussion on
what can be done to increase wy, the reader may now wonder if
there exists a structural upper bound on p that must be kept in
account. Although a rigorous study of this issue is outside the
scope of this paper, we conjecture* that such an upper bound
is 1/r, where r is the degree of nonholonomy of the system.
As a consequence, our stabilization method provides a solution
whenever w; > r — 1 can be obtained.

Altogether, the stabilizing controller resulting from our
strategy belongs to the class of non-Lipschitz, Holder-contin-
uous time-varying feedback, and achieves asymptotic stability
with exponential convergence rate; in particular, the origin
is p-exponentially stable in the sense of [14]. These features
are obviously in accordance with the theoretical results in the
literature, and, in particular, the theorem by Brockett [4], which
implies that continuous, time-invariant stabilization of driftless
nonholonomic systems is impossible, and the analysis in [33],
which shows how the necessity of nondifferentiable feedback
extends to the time-varying case whenever exponential conver-
gence is desired.

Concerning the robustness of the proposed stabilization tech-
nique, [19, Th. 2] indicates that the controllers based on the IS
paradigm produce ultimately bounded errors under small persis-
tent additive perturbations, while small nonpersistent perturba-
tions are rejected, provided that they satisfy an additional con-
dition. Due to space limitations, this issue will not be further an-
alyzed in this paper. However, we shall illustrate the controller
performance in perturbed conditions for the case study of the
next section.

Before proceeding with the case study, we are now in the posi-
tion to provide a more detailed comparison between our frame-
work and the related techniques available in the literature for
the stabilization of general nonholonomic systems. Apart from
the methods in [36], which needs a special condition on the
growth vector which would rule out, e.g., the plate-ball system,
and [24], that requires a smooth stabilizing control to be known
beforehand, papers [26] and [27] appear to be the closest to our
approach. While the first stabilizing controller is not robust with
respect to unmodeled dynamics, robustness is achieved in the
second controller essentially by adopting an iteration mecha-
nism similar to the one in this paper. In both cases, however, the
steering controls are those of [17], which may be unnecessarily
complicated, and cause practical problems due to their highly
oscillatory nature.

In comparison, our stabilization scheme can use very simple
steering controls, because they are required to move the NA of
the system to a given point (z/: in the Control Algorithm), as

4The idea behind the proof of this result is, however, clear. If a system has
degree of nonholonomy r, a basis for the associated Lie algebra will include
at least a Lie bracket of order r. Hence, a steering controller for such a system
must necessarily generate motion in the direction of this bracket. In particular,
a well-known computation based on the method of iterated integrals [42] shows
that, roughly speaking, the amount of motion obtained is a function of order r
in the control energy. By inverting this relationship, one should be able to show
that a steering controller cannot have a Holder-continuity order larger than 1/r.
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Fig. 1. Plate-ball system. The upper plate is not shown in the figure for the
sake of clarity.

opposed to driving the original system along a given trajectory
as in [17]. In particular, the controls do not need to be oscillatory
in our case. Although in the case study, we shall use sinusoidal
controls, many other choices were available, e.g., polynomial or
piecewise-constant. In this sense, our strategy is more similar to
the iteration of steering controls of [15], which, however, is not
developed into a stabilization scheme, and of [3], where robust
stabilization is achieved for the special class of chained-form
systems.

Another difference between the two approaches lies in the
regularity requirements imposed on the dynamics. While [27]
relies on the use of a homogeneous NA of the system, hence
preventing the stabilization at points where the growth vector
changes, our technique can be modified for this case by using
nonhomogeneous NAs [47]; see the concluding section for ad-
ditional details.

V. CASE STUDY: THE PLATE-BALL SYSTEM

In the last decade, rolling manipulation has attracted the in-
terest of robotic researchers as a convenient way to obtain dex-
terity with a relatively simple mechanical design (see [22], [31],
and the references therein). Controllability of the manipulation
system (hand+manipulated object) with a low number of actu-
ators is achieved thanks to the nonholonomic nature of rolling
contacts between rigid bodies. This approach to manipulation
can be considered as another example of the minimalistic trend
in robotics, aimed at performing complex tasks through devices
of reduced complexity.

The archetypal example of rolling manipulation is the plate-
ball system, shown in Fig. 1 and consisting of a spherical ball of
radius p rolling between two horizontal plates: the lower plate
is fixed, while the upper is actuated and can translate horizon-
tally. This mechanism is controllable, i.e., the ball (the manipu-
lated object) can be brought to any contact configuration by ma-
neuvering the upper plate (the first finger). However, it is well
known that such a system is not flat; it is, in other words, an in-
stance of a general nonholonomic system.

To this date, we know how to steer the system between given
configurations using, e.g., the numerical algorithm of [22], the
symbolic algorithm of [16], or the optimal paths of [12]. As for
any planner based on open-loop control, however, the successful
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execution of maneuvers is not preserved in the presence of per-
turbations; some sort of feedback is necessary to induce a de-
gree of robustness. In [34], we attacked the stabilization problem
using the IS paradigm, laying the foundations of this work. In
this section, we further develop the controller therein proposed,
rigorously proving that feedback stabilization of the plate-ball
mechanism can be achieved through the general strategy out-
lined in the previous section.

Recently, feedback control of the plate-ball manipulation
system was also independently addressed in [7] and [28]. In
these works, however, only local convergence, not asymptotic
stability in the sense of Lyapunov, is shown. From our view-
point, it is, however, interesting that some sort of IS mechanism
was used in both cases.

A. Kinematic Model

Denote by u and v the coordinates (latitude and longitude,
respectively) of the contact point on the ball, by z, y the Carte-
sian coordinates of the contact point on the lower plane, and by
1 the angle between the = axis and the plane of the meridian
through the contact point (see Fig. 1). The configuration of the
plate-ball system is, therefore, completely described by ¢ =
(u,v,7,2,y). There is a representation singularity when v =
+m/2, where v and 1) are undefined. We assume —7/2 < u <
/2 and —7 < v < m, so that the contact point belongs always
to the same coordinate patch for the ball.

Under the perfect rolling assumption, the manipulation
system is completely described by the kinematics of contact
between the ball and the lower plate. Following the machinery
due to Montana [25], one obtains

cos sin
= Wy — ——Wy
P
) sin 1) cos
v =— Wy — Wy
pCosu pCoSu
. tanwusiny tan u cos
P = Wy Wy
p P
T = Wy
Y =wy (14

where w,, and w, are the Cartesian components of the transla-
tional velocity of the ball, which we may assume to be directly
controlled.> Note that the above kinematic model is not valid
when u = +m/2.

Denote by g1 and go the input vector fields of system (14).
Controllability is readily established by noting that the vector
space

L*(q) = span {g1(q), 92(q), [91, 92](q),
(91, [91, 92]1(q), [92 [91, 92]1(q) }

has constant dimension five outside the representation singu-
larity. Therefore, the plate-ball system has growth vector (2, 3,
5) and degree of nonholonomy r = 3.

Applying the necessary and sufficient conditions of [30], it is
verified that system (14) cannot be transformed in chained form,

SConsider that the translational velocity of the ball is half the translational
velocity of the upper plane.



ORIOLO AND VENDITTELLI: A FRAMEWORK FOR THE STABILIZATION OF GENERAL NONHOLONOMIC SYSTEMS 169

essentially due to the “double jump” in the growth vector.6 As
this is a two-input driftless system, this also rules out flatness;
alternatively, one may directly show that the necessary and suf-
ficient conditions [37] for flatness are violated.

Our objective is to design a feedback stabilization scheme for
the plate-ball system based on the IS paradigm. In principle,
since exact planners are available for this mechanism, the NA
step could be avoided. To build a steering controller that satis-
fies Condition 1 of Section III-A, one could choose a planner
from [16] or [22] and modify it so as to guarantee Holder-con-
tinuity with respect to the desired reconfiguration. We shall not
pursue this approach for two reasons. First, such a modification
is not trivial’ and may even prove impossible for some plan-
ners. Second, we wish to explore the potential of the stabiliza-
tion strategy presented in Section IV. Therefore, an NA of the
system will be derived for computing a steering controller.

To simplify the design of the stabilizing controller, it is, how-
ever, convenient to perform a preliminary feedback transforma-
tion, defined by the following change of coordinates:

X1 =—v
X2 = sinu
X3 =1
X4=T
X5 =Y

and input transformation
cos
cos u

(wz) (sinq/Jcosu ) <w1>
- sin Y .
Wy COSYPCosU  — o wa

Note that the above input transformation is always defined, ex-
cept for u = £7/2, which is, however, outside our coordinate
patch.

The transformed system is strictly triangular

X1 =wi/p
X2 = w2/p
X3 = X2w1/p
. . . COS X3
X4 = sin x3 cos(arcsin xo)w; + —————
cos(arcsin x2)
sin x3

X5 = cos 3 cos(arcsin x2)w; — wa. (15)

cos(arcsin x2)
In particular, note that the first three equations are in chained
form.

In the following, we assume p = 1 without loss of generality.
This simply means that the radius of the ball defines the unitary
length.

B. Control Design

Assume that we wish to transfer the plate-ball system from
q" to q?, respectively, the initial and desired contact config-
uration. To be consistent with our formulation, we assume

6System (14) represents an example of E. Cartan’s famous problem of three
constraints and five variables [5].

7A first step in this direction is presented in [35].

q® = (0,0,0,0,0); this can always be achieved by properly

defining the reference frames on the ball and the lower plane.
The transformed system (15) must then be transferred from
X' = (x4,...,xt) (the image of ¢') to the origin (the image of
7.

In view of the particular structure of system (15), the general
stabilization framework of Section IV suggests a two-phase con-
trol strategy.

I) Drive the first three variables 1, x2, and x3 to zero in
finite time. Denote by x! = (0,0,0, x}, x}) the system
configuration at the end of this phase.

II) Apply the iterative Control Algorithm of Section IV-B to
obtain exponential convergence of x4, x5 to zero while
cycling over x1, X2, X3-

Below, we describe in detail the structure of each phase.

1) Phase I Controller: To steer x1, x2, and x3 from their
initial values to zero (which amounts to steering the ball to the
desired contact configuration u = v = 1) = 0 regardless of x
and y, i.e., of the Cartesian position of the contact point), one can
exploit the fact that the first three equations of system (15) are
in chained form. Many steering controllers have been proposed
for chained-form systems; below, we introduce a new controller,
inspired by [44] but modified so as to guarantee the Holder-
continuity property which will be essential in the following.

For ¢t € [0,T1], let

(16)
7)

wy = a}) + ai coswt
wy = by + b} sinwt

with af,al,b,b} € R, and w = 27/T;. Choose the control
parameters as follows

ay = —x4 /T
by = —x5/T
) fﬂ?ﬂﬁ%+ﬂ%%
Lo _ .

2 1
Tiay

It is easy to verify that forward integration of system (15) under
this control gives x1(71) = x2(11) = x3(11) = 0, regardless
of the choice of al.

In particular, choosing

/8 550 §'>1

aj = o|x'| (18)
we obtain a steering controller that is Holder-continuous of
order min(1/6%, 1 — 1/6"). The maximum degree of continuity
1/2 is attained by letting 6T = 2.

2) Phase Il Controller: The iterative feedback controller of
Phase II is obtained by following the general framework of Sec-
tion IV. Hence, we first apply the Design Algorithm of Sec-
tion I'V-A to identify a steering controller, and then we provide
an explicit algorithm for Phase II following the Control Algo-
rithm of Section IV-B.

Nilpotent Approximation: Considering that Phase II starts
at x' = (0,0,0,x%, x%), and cycles over the first three coordi-
nates, it is sufficient to compute the NA of the system at points
of the form (0, 0,0, x4, X5). Following the procedure of [2],
privileged coordinates for system (15) are obtained by a linear
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change of variables [compare with the general polynomial ex-
pression (6)]

Z1 = X1
Z2 = X2
Z3 = X3

24 = X2 — (X4 — Xa)

z5 = —x1+ (x5 — X5)- (19)

This transformation is globally valid, a consequence of the fact
that the degree of nonholonomy is three everywhere.

The NA, whose state vector is denoted by Z, is then computed
by following the algorithm of Section III-B

21 = W1
22 = W2
23 = Zow
: . 1.5
Z4 = —23W1 — Z2ZW2
2
: 1.9 .
Z5 = —522101 — Z3ws. 20)

As entailed by the general form (9), the approximation is in-
deed polynomial and strictly triangular; note that the dynamics
of z1, 2o, z3 coincides with that of Z, 2, 23. Hence, the index
of the first component of z affected by an approximation error
is [ = 4. The corresponding weight, computed as in Definition
4 of Section III-B, is w; = 3.

Another NA for the plate-ball system is given in [1].

Steering Control: We now design an open-loop control to

transfer in a finite time 75 the NA (20) from z = 0 to 2/ =
(0,0,0, 2], 2!) (we may take this particular form for z/ in view
of the cyclicity of Phase II). To guarantee the applicability of
the iterative Control Algorithm of Section IV-B, such open-loop
control must satisfy Condition 2 of Section IV-A.

Define the control inputs as

21
(22)

wy = all cos wt + all cos 4wt
wy = bl cos 2wt

with a!l oIl b € IR and w = 27 /T5. Choosing the parameters
as

where k; = 15 /3272 and ko = —T'5 /12872, forward integra-
tion of system (20) gives 2(Ty) = zf (i.e., the desired steering)
for any value of b1!, provided that al! is a real number. Similar
to Section V-B.1, we exploit this degree of freedom by letting

f
bl = —sign (zf:) . (Z‘jlc)
Z5
thus making the steering controller Holder-continuous of order

min(1/6™", 1 —2/6%, (61 —1)/26™). The maximum degree of
continuity 1/3 is attained by letting 6™ = 3.

1/6"
s> 2
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Iterative Controller: Phase II is realized by iterative ap-
plication of the steering law (21)—(22), as prescribed by the fol-
lowing Control Algorithm.

Step II-0)  Set k£ = 0. The initial time and state are, respec-
tiVClY7 to =11 and xo = XI = (07 0,0, ng X\I'))

Step II-1)  Chosen 7y € (0, 1], compute X£ = (1—mn)xx and
z,’: = ¢y, (Xi) [the image of X£ in privileged
coordinates at ) computed via (19)].

Step II-2)  Settgy1 =t + T and I y1 = [tg,tr+1]. Com-
pute the parameters al', !, bif with 2/ in place
of zf and 6" = 3, and apply the steering control
21)~(22) for t € Tp1.

Step II-3)  Measure x(tx+1) and let xgx+1 = X(tp+1)-

Step II-4)  Set k = k + 1 and go to Step II-1.

C. Correctness

The correctness of the stabilization strategy so far presented
can be formally proven.

Theorem 3: The above Phase I-Phase II Control Algorithm
makes the origin of the plate-ball system (15) globally asymp-
totically stable, with exponential convergence rate, provided
that 7 is sufficiently small.

Proof: First, we invoke Theorem 2 to characterize the
behavior of the plate-ball system during Phase II. Since the
steering control (21)—(22) has Holder-continuity order p = 1/3,
while the weight of the first approximated component of z is
w; = 3, the second hypothesis of the theorem is satisfied.
Hence, for sufficiently small 7, the system in Phase II expo-
nentially converges from y! to the origin. Moreover, Lyapunov
stability guarantees that the state evolution can be arbitrarily
bounded by appropriately bounding the initial condition of this
phase, i.e., x!. In turn, ! may be arbitrarily bounded by taking
X' sufficiently close to the origin; this is a consequence of the
Holder-continuity of the steering control (16)—(17) and of the
smoothness of system (15) outside the singularity v = +7/2
[which can always be avoided by a proper choice of ¢ in (18)].

Wrapping up, the plate-ball state y exponentially converges
from x! to 0, and can be bounded at all times by appropriately
bounding the initial condition x?; the thesis is then proven. M

D. Simulation Results

Two simulations are now presented to show the effective-
ness of the proposed stabilization strategy. In the first, perfect
knowledge of the system is assumed (nominal case), while in
the second, we have included a perturbation on the ball radius p
(perturbed case).

Nominal Case: In the first simulation, the ball radius

p = 1 m is exactly known. The initial and desired config-
urations are given as ¢' = (m/4,7/2,7/12,1,-0.5) and
¢ = (0,0,0,0,0), respectively (rad,rad,rad,m,m). Stabi-

lization is obtained by applying the Control Algorithm of
Section V-B. The control parameters are chosen as follows:
o = 1 and §' = 2 for the Phase I controller (16)—(17), whose
duration is T3 = 1 s; 8 = 3 for the Phase II steering control
(21)—(22), each iteration of which lasts 75 = 1 s. The subgoal



ORIOLO AND VENDITTELLI: A FRAMEWORK FOR THE STABILIZATION OF GENERAL NONHOLONOMIC SYSTEMS 171

evolution of u,v,y
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Fig. 2. Nominal case: Evolution of u (solid), v (dashed), and ¢ (dotted).

evolution of x,y
5 T T T T

Fig. 3. Nominal case: Evolution of x (solid) and y (dotted).

for each iteration is computed according to Step II-1 with
n = 0.6.

Figs. 2 and 3 illustrate the exponential convergence of the
state variables along the iterations; in particular, u,v, and
are brought to zero during Phase I, while along the iterations
of Phase II, they cycle around the origin on progressively con-
tracting trajectories. The complete Cartesian path of the contact
point on the plane is shown in Fig. 4; note how the paths during
the iterations of Phase II become increasingly alike, although
“shrinking” with time. The contraction of the positioning error
is more visible in Fig. 5, which reports the path of the contact
point during iterations 2, 5, 8, and 11.

Perturbed Case: In the presence of a perturbation on the
ball radius, the Control Algorithm of Section V-B is not robust,
essentially because Phase I is performed with the open-loop
control (16)—(17), which is exact only for the nominal value of p,
i.e., 1. However, it is possible to modify the Control Algorithm

path of the contact point

“1F J

-15F 9

2 L L L L L L L L L L

Fig. 4. Nominal case: Cartesian path of the contact point (the small circle
indicates ¢°, the asterisk indicates g¢').

2nd iteration 5th iteration
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0.2
0.1
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Fig. 5. Nominal case: Cartesian paths of the contact point during the second,

fifth, eighth, and eleventh iterations (the small circle indicates the starting point
of each iteration). Notice the different scale in the plots.

in such a way that robustness is achieved; it is sufficient to it-
erate Phase I, as well. Therefore, a single iteration prescribes the
application of a two-phase steering control, whose expression is
given by (16)—(17) during the first 7} seconds, and by (21)-(22)
during the last 75 seconds. Note that the modified algorithm re-
duces to the original stabilizer of Section V-B when no pertur-
bation is present. Robustness can be established on the basis of
the nominal system stability, since the requisites of [19, Th. 2]
for disturbance rejection are met. In particular, it is easy to verify
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evolution of u,v, y
2 T T T T

sec

Fig. 6. Perturbed case: Evolution of u (solid), v (dashed), and ¢ (dotted).

evolution of x,y
5 T T T T

sec

Fig. 7. Perturbed case: Evolution of = (solid) and y (dotted).

that the uncertainty on the ball radius can be modeled as an ad-
ditive perturbation.

The second simulation confirms the robustness achieved by
the modified algorithm. Here, ¢', ¢, as well as the control pa-
rameters, are the same as the previous simulation, but a 10% per-
turbation on the value of the ball radius has been introduced; the
nominal unit value is used for computing the control laws, while
in simulation, we have set p = 1.1 m. Figs. 6 and 7 confirm that
exponential convergence is preserved despite the perturbation.
Note that each iteration is now composed of two phases and
lasts, in principle, 177 + 15 = 2 s. However, in practice, the first
phase is not executed when the error on u, v, 1) is below a given
tolerance; in the present simulation, this happens starting with
the seventh iteration (i.e., from ¢ = 12%). The complete Carte-
sian path of the contact point on the plane is shown in Fig. 8,
while Fig. 9 shows the paths during iterations 2, 5, 8, and 11.
Consider that iterations 2 and 5 contain now a repetition of Phase
I, as well.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 2, APRIL 2005
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Fig. 8. Perturbed case: Cartesian path of the contact point (the small circle
indicates ¢*).
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Fig. 9. Perturbed case: Cartesian paths of the contact point during the second,
fifth, eighth, and eleventh iterations (the small circle indicates the starting point
of each iteration). Notice the different scale in the plots.

VI. CONCLUSION

We have presented a framework for stabilization of general
nonholonomic systems, i.e., driftless controllable systems that
do not possess special properties, such as exact nilpotentiz-
ability or flatness. Our strategy makes use of two tools: an
iterative control scheme and a nilpotent approximation of the
system dynamics. The latter is used to compute an approxi-
mate steering control which, applied repeatedly to the system,
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guarantees asymptotic stability with exponential convergence
to any desired set point under the conditions of Theorem 2.

As a case study, we have applied the proposed strategy to
design a stabilizing controller for the plate-ball manipulation
system, a canonical example of general nonholonomic mecha-
nism. The theoretical performance (including exponential con-
vergence) of the algorithm has been confirmed by simulations,
both in the nominal case and in the presence of a perturbation on
the ball radius. Another application of the same general frame-
work can be found in [46], where we have designed a stabi-
lizing controller for a system composed by a car towing two
off-hooked trailers.

We conclude the paper by mentioning some issues that will
be the subject of future work.

* The proposed strategy is based on the design of a suitable
approximate steering control. Essentially, Holder-conti-
nuity of an appropriate order is required w.r.t. the desired
reconfiguration (see Theorem 2). Such order is related to
the differential-geometric structure of the system, and, in
particular, to the weight of the first approximated com-
ponent in privileged coordinates. A characterization of
the maximum order of continuity attainable for a system
having a certain degree of nonholonomy would be useful;
a starting point is sketched in Footnote 4.

An additional difficulty arises when the considered non-
holonomic system has singular points, i.e., points around
which the system growth vector is not constant. For ex-
ample, this is the case of the car towing two off-hooked
trailers, which is singular when the trailers align with the
car. Around singularities, the vector fields of the NA do not
vary continuously with the approximation point. As a con-
sequence, different steering controls must be used, and the
estimate of the approximation error is not uniform, making
the proposed stabilization scheme inherently local. One
way to circumvent this problem is to make use of non-
homogeneous NAs [47], which possess the required con-
tinuity and uniformity properties.

Since we have considered only driftless dynamics, the
method proposed in this paper can be successfully ap-
plied to nonholonomic mechanisms whose control can
be effectively designed on the basis of the kinematic
model; a perfectly reasonable assumption in many cases,
e.g., wheeled mobile robots and manipulation systems
based on rolling contact. The extension to systems with
drift, which would allow the application to underactu-
ated robots (i.e., mechanisms with passive degrees of
freedom), appears to be possible given that: 1) the IS
paradigm does not require the system to be driftless [19];
and 2) NAs can be computed for systems with drift. For
example, in [18], we have used the same approach to sta-
bilize a 2R planar robot with a second passive joint at a
given configuration. Clearly, much more study is needed
in order to devise a method of general validity; to this
end, it will also be advisable to explore the relationship
between ideas used here and other concepts, such as the
forced recurrence of [20].

e An advantage of the proposed technique, which can be
useful for performing manipulation in the presence of ob-
stacles, is the possibility of shaping the system trajec-
tory during the generic iteration through the choice of the
steering control.

e Apart from their use for stabilization, the steering con-
trols designed in this paper can also be of interest when
nonholonomic motion planning among obstacles is per-
formed, following the two-phase approach of [39]. This
technique requires first planning a collision-free path
using a holonomic planner, and then interpolating points
along the path by means of a “local planner”—i.e., a
steering control. Completeness is guaranteed, provided
that the local planner has the so-called fopological prop-
erty, which is a geometric counterpart of the Holder-con-
tinuity property considered in this paper. Another similar
concept is the local-local property of planners, defined by
[23].

APPENDIX

We present here a technical lemma that gives an estimate of
the error (in privileged coordinates) between the original system
and its NA. This estimate is used in the proof of Theorem 2.

Lemma 1: Assume that the control system (1) is steered by
a bounded finite-time control law u(t),t € [0, 77, and let

|ui(#)].

Umax = . 1NAX
1=1,....m

te[0,T7]

Let 2(7') and 2(7T) be the state of the original and nilpotent
system, respectively, in privileged coordinates centered at z(0).
Then, there exists a positive constant v such that the following
estimate holds:

|e*(T)| = |2(T) = 2(T)| < ¥(tmax) ™"+ (23)

where w; is the weight associated with the coordinate z;, and [
is the smallest integer such that z; (1) # (1) = zlf under the
application of the steering control u(t).

Proof: We give the essential arguments of this proof,
which closely follows, for a large part, the proof of [2, Prop.
7.29].

The expression (8) of the original system in privileged coor-
dinates can be expanded as

Z; = qujj(zl, . ,zj_l)ui + Zr,,;j(z)ui, 1=1,....n
i1=1 1=1

where (see the end of Section III-B) the g;;’s are homogeneous
polynomials of weighted degree w; — 1, and the remainder terms
r;;(z) are functions of order w; at 0. This gives the following
differential inequality:

2] < Umaxcsllz]|™ 7, j=1,...n (24)
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where ¢; is a suitable constant, and || z|| denotes the pseudonorm
of z, defined as

n
20l = 1]
j=1

The pseudonorm has the property of being homogeneous of de-
gree one w.r.t. the one-parameter group of dilations associated
to wi,...,wn [2].

To integrate inequality (24), it is convenient to introduce the
equivalent pseudonorm

1/N
n

N
2l = | 2

i=1

where the integer V has been chosen in such a way that N/w is
an even integer Vj. By computing the time derivative of |||z|||,
and using the properties |z;|'/"“s < |||z||], ||z]] < nll|z]||, we
obtain

n
. Cs

|||Z||| S UmaxT E j' = CUmax
=1

with the appropriate expression of c. Hence, it is

|||Z||| S Curnaxt te [OT] (25)

having used the fact that z(0) = 0. Subtracting the nilpotent
dynamics (9) from the original dynamics (8), we get

. m
Zj— 2= Z“i(fhj(zl’ <o Zj-1)
i=1

= Gij(21,- -, Zj—1) + 1i(2))
= Zui Z (21 — 21)Qijr(2, 2) + 7i;(2)
1=1 k| w,<w;

(26)

where the ;1 are polynomials having weighted degree w; —
wy — 1 w.r.t. 2z and Z, or are zero.
For j = 1, (26) and (25) promptly give

|21 — 21| < tmaxdy ||2|| < € n dyu?, t

where d; is a suitable constant. Applying recursively the same
derivation, and exploiting the strictly triangular structure of the
nilpotent dynamics, one obtains an inequality for |Z; —Z ;| which
can be integrated to

|ZJ(T) - QJ(T)| S Jj(umax)wj+1, J = 1, B 1 (27)

with the appropriate expression of ;.
Since the first | — 1 components of z(7T") and 2(T') coincide,
we have
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with v > 0, having used (27) and the Lipschitzianity of mono-
mial functions. The thesis immediately follows. |
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