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Control and Simulation of Motion of

Constrained Multibody Systems Based on

Projection Matrix Formulation

Farhad Aghili∗

Abstract

This paper presents a unified approach for inverse and direct dynamics of constrained
multibody systems that can serve as a basis for analysis, simulation, and control. The
main advantage of the dynamics formulation is that it does not require the constraint
equations be linearly independent. Thus, a simulation may proceed even in the presence of
redundant constraints or singular configurations and a controller does not need to change
its structure whenever the mechanical system changes its topology or number of degrees
of freedom. A motion control scheme is proposed based on a projected inverse-dynamics

scheme which proves to be stable and minimizes the weighted Euclidean norm of the
actuation force. The projection-based control scheme is further developed for constrained
systems, e.g. parallel manipulators, which have some joints with no actuators (passive
joints). This is complemented by the development of constraint force control. A condition
on the inertia matrix resulting in a decoupled mechanical system is analytically derived
that simplifies the implementation of the force control.

1 Introduction

Many robotic systems are formulated as multibody systems with closed-loop topologies, such
as manipulators with end-effector constraints [1–11], cooperative manipulators [12–16], robotic
hands for grasping objects [17–20], parallel manipulators [21–24], impact in robotics [25], hu-
manoid robot and walking robots [26–28], and VR/Haptic applications [29, 30]. Simulation
and control of such systems call for corresponding direct dynamics and inverse-dynamics mod-
els, respectively. Mathematically, constrained mechanical systems are modeled by a set of n
differential equations coupled with a set of m algebraic equations, i.e. Differential Algebraic
Equations (DAE). Although computing the dynamics model is of interest for both simulation
and control, the research done in these two areas are rather divided. Surveys of the existing
techniques for solving DAE may be found in [29, 31–35], while model-based control of con-
strained manipulators can be found in [2, 4, 5, 36–43].

The classical method to deal with DAE is to express the constraint condition at the ac-
celeration level. This allows replacement of the original DAE system with an ODE system by

∗email: faghili@encs.concordia.ca

1

http://arxiv.org/abs/2210.17053v1


augmenting the inertia matrix with the second derivative of the constraint equation. However,
this method performs poorly in the vicinity of singularities [44–46], because the augmented
inertia matrix is invertible only with a full rank Jacobian matrix.

Other methods are based on coordinate partitioning [47–49] by using the fact that the n
coordinates are not independent because of the m constraint equations. The motion of the
system can be described by the independent coordinates which can be separated using an
annihilator operator. Although this method may significantly reduce the number of equations,
finding the annihilator operator is a complex task [29]. Moreover; the sets of independent and
dependent coordinates should be determined first. But a fixed set of independent coordinates
occasionally leads to ill-conditioned matrices [31,50] when the system changes its topology or the
number of degrees of freedom. The concept of coordinate separation is used in [9]for controlling
manipulator robots with constrained end-effectors. The augmented Lagrangian formulation
proposed in [51–53] can handle redundant constraints and singular situations. However, this
formulation solves the equations of motion through an iterative process. Nakamura et al. [54]
developed a general algorithm that provides a way to partition the coordinates into independent
and dependent ones even around the singular configuration, which is suitable for simulation
of mechanical systems with structure-varying kinematic chains. This is a special case of the
projection method proposed herein that allows generic constraints which cannot be handled by
coordinate partitioning.

There are also efficient algorithms for solving direct dynamics of constrained systems that are
suitable for parallel processing. Feathersone’s work in [55, 56] presents a recursive algorithm,
which is called Divide-and-Conquer (DAC), for calculating the forward dynamics of general
rigid-body system on a parallel computer. The central formula for these DAC algorithm takes the
equations of motions of two independent subassembly (rigid-body) and also a description of how
they are to be connected, and the output is the equation of motion of the assembly, i.e., those
of two articulated-body. Since the equation of acceleration of the assembly is written in terms
of two independent equation of motions, the formulation is suitable for parallel processing and
one can apply the formula recursively to construct the articulated-body equations of motions
of an entire rigid-body assembly from those of its constituent parts. The author claims that
the DAC algorithm is computationally effective if a large number of processors, more than 100,
is available.

Another group of researchers [46, 52, 57–60] focused on other techniques to deal with the
problem of accurately maintaining the constraint condition. Blajer [58,59] proposed an elegant
geometric interpretation of constrained mechanical systems. Then the analysis was extended
and modified in [61] for control application. The augmented Lagrangian formulation proposed
in [51–53] can handle redundant constraints and singular situations. However, this formulation
solves the equations of motion through an iterative process.

In the realm of control of constrained multibody system, the vast majority of the literature
is devoted to control of manipulators with constrained end-effectors. The hybrid position/force
control concept was originally introduced in [4], and then the manipulator dynamic model
was explicitly included in the control law in [2]. The constrained task formulation with inverse-
dynamics controller is developed in [5,7] by assuming that the Cartesian constraints are linearly
independent. Hybrid motion/force control proposed in [62–64] achieves a complete decoupling
between channels of acceleration and force. In these approaches all joints are assumed to have
an actuator and no redundancy was considered in the kinematic constraint.
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In this work, we propose a new formulation for the direct and the inverse-dynamics of
constrained mechanical systems based on the notion of a projection operator [1, 6]. First,
constraint reaction forces are eliminated by projecting the initial dynamic equations into the
tangent space with respect to the constraint manifold. Subsequently, the direct dynamics, or
the equations of motion, is derived in a compact form that relates explicitly the generalized
force to the acceleration by introducing a constraint inertia matrix, which turns out to be always
invertible. The constraint reactions can then be retrieved from the dynamics projection in the
normal space [1]. Unlike in the other formulations, the projection matrix is a square matrix
of order equal to the number of dependent coordinates. Since the formulation of the projector
operators is based on pseudo-inverting the constraint Jacobian (the process not conditioned
upon the maximal rank of the Jacobian), the present approach is valid also for mechanical
systems with redundant constraints and/or singular configurations, which is unattainable with
many other classical methods. A projected inverse-dynamics control scheme is developed based
on the dynamics formulation. The motion control proves to be stable while minimizing the
weighted Euclidean norm of actuation force. The notion of the projected inverse-dynamics is
further developed for control of constrained mechanical systems which have passive joints, i.e.,
joints with no actuator. This result is particulary important for control of parallel manipulators.
Finally, a hybrid force/motion control scheme based on the proposed formulation is presented.
Also some useful insights are gained from the dynamics formulation. For instance, the condition
on the inertia matrix for achieving a complete decoupling between force and motion equations
is rigorously derived.

This paper is organized as follows: We begin with the notion of linear operator equations
in Section 2 by reviewing some basic definitions and elementary concepts which will be used
in the rest of the paper. Using the projection operator, we derive models of inverse and direct
dynamics in sections 4 and 5 which are used as a basis for developing strategies for simulation
and control of constrained mechanical systems in sections 6 and 7. Section 7.2 presents change
of coordinate if there is inhomogeneity in the spaces of the force and velocity. In section 7.4, the
inverse-dynamics control scheme is extended for constrained systems which have some joints
with no actuator (passive joints).

2 Linear Operator Equations

For any linear operator transformation A : Rn → R
m, range space and null space are defined

as R(A) = {y ∈ R
m : ∃x ∈ R

n ∋ y = Ax} and N (A) = {x ∈ R
n : Ax = 0}, respectively. The

linear transformation maps vector space X into vector space Y . Assume that the Euclidean
inner-product is defined in X , that is elements of vectors, such as x1 and x2, of X have ho-
mogeneous units. Then, by definition the vectors are orthogonal iff their inner-product is zero,
i.e.

< x1, x2 >= xT1 x2 = xT2 x1 = 0 (1)

where the superscript T denotes transpose. It follows that the orthogonal complement of any
set S, denoted by S⊥, is the set of vectors each of which is orthogonal to every vector in S.

Theorem 1 [65,66] The fundamental relationships between the range space and the null space
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associated with a linear operator and its transpose are

R(AT )⊥ = N (A), (2)

R(A) = N (AT )⊥. (3)

See Appendix A for a proof.
As will be seen in the following sections, it is desirable to be able to project any vector in

R
n to the null space of A by a projector operator. Let P ∈ R

n×n be the orthogonal projection
onto the null space, i.e., R(P ) = N (A). Note that every orthogonal projection operator has
these properties: P 2 = P and P T = P [66].

The projection operator can be calculated by the singular value decomposition (SVD)
method [66–68]. Assuming

r = rank(A),

then there exist unitary matrices U = [U1 U2] and V = [V1 V2] (i.e. U
TU = I and V TV = I)

so that

A =
[

U1 U2

]

[

Σ 0
0 0

] [

V T
1

V T
2

]

where Σ = diag(σ1, · · · , σr), and σ1 ≥ · · · ≥ σr ≥ 0 are the singular values. The proof of this
statement is straightforward and can be found, for example, in [66,67]. Since N (A) = span(V2)
[66, 67], the projection operator can be calculated by

P = V2V
T
2 (4)

2.1 Orthogonal Decomposition and Norm

From the definition, one can show that projector operator (I −P ) projects onto the null space
orthogonal N (A)⊥. Let’s assume that the elements of a vector x ∈ R

n have homogeneous
measure units, then the vector has a unique orthogonal decomposition

x = x‖ ⊕ x⊥,

where x‖ ∈ N (A) and x⊥ ∈ N (A)⊥. The components of the decomposition can be obtained
uniquely by using the projection operator as

x‖ := Px and x⊥ := (I − P )x. (5)

The Euclidean norm is defined as

‖x‖ :=< x, x >1/2= (xTx)1/2 (6)

Remark 1 From orthogonality of the subspaces, i.e. < x‖, x⊥ >= 0, we can say

‖x‖2 = ‖x‖‖2 + ‖x⊥‖2 (7)

Equation (7) forms the basis for finding an optimal solution.
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2.1.1 Metric tensor

The Euclidean inner product and hence the Euclidean norm defined in (6) are non-invariant
quantities, if there is inhomogeneity in the units of the elements of vector x. With the same to-
ken, the projection matrix (5) and the decomposition are not invariant and hence the minimum-
norm solution may depend on the measure units chosen. This is because components with
different units are added together in (5).

To circumvent the quandary of the measure units, we consider the following transformation

xW := W 1/2x, (8)

and assume that the vector xW has components with the same physical units. Then, a physically
consistent Euclidean inner product and Euclidean norm exists on the new space [63], i.e.

‖xW‖ =< xW , xW >1/2=< x,Wx >1/2 (9)

The symmetric, positive definite matrix W is called a metric tensor of the n-space. Note
that the Euclidean norm of the new coordinate is tantamount to the weighted-norm, that is
‖x‖W = ‖xW‖, where

‖x‖W = (xTWx)1/2. (10)

Furthermore, denoting AW := AW 1/2, one can say AWxW = 0. Let PW be the projection
operator onto the null space of AW . Then, mapping PW is dimensionless and invariant.

3 Decomposition of the Acceleration

The kinematics of a constrained mechanical system can be represented by a set of m nonlinear
equations Φ(q) = [φ1(q), · · · , φm(q)]

T = 0, where q ∈ R
n is the vector of generalized coordinate,

and m ≤ n. Without loss of generality, we consider time-invariant (scleronomic) constraint
conditions, but the methodology can be readily extended to a time varying case (rheonomic).
By differentiating the constraint equation with respect to time, we have

Aq̇ = 0 (11)

where A = ∂Φ/∂q is the Jacobian of the constraint equation with respect to the generalized
coordinate. For brevity of notation, in the following, we assume that the elements of the force
and velocity vectors have homogeneous units. This assumption will be relaxed in Section 7.2
by changing of the coordinates similar to (8).

Equation (11) is expressed in form of the linear operation equation. This matrix equation
specifies that any admissible velocity must belong to the null space of the Jacobian matrix,
that is, q̇ ∈ N (A). Thus, the constraint equation (11) can be expressed by the notion of the
projection operator, i.e.,

q̇⊥ ≡ (I − P )q̇ = 0, (12)

Time differentiation of the above equation yields

q̈⊥ ≡ (I − P )q̈ = Cq̇, (13)
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where C := d
dt
P which, in turn, can be obtained from (4) by

C = S + ST where S = V̇2V
T
2 (14)

It is apparent from equation (13) and (12) that, unlike the case of velocity, the null space
orthogonal component of the acceleration is not always zero – a physical interpretation of
(13) is given in Section 5.4. Equation (13) expresses the component of acceleration produced
exclusively by the constraint and not by dynamics. As will be seen in Section 5, this equation
can compliment the dynamics equation in order to provide sufficient independent equations for
solving the acceleration.

3.1 Calculating P based on Pseudo-Inversion

Many mature algorithms and numerical techniques are available for computing the pseudo-
inverse [66, 67, 69]. There are also computer programs that can solve SVD and pseudo-inverse
in real-time and non real-time, for instance DSP Blockset of Matlab [70]. Therefore, it may be
useful to calculate the matrices P and C based on pseudo-inversion.

Let A+ denote the pseudo-inverse of A. Then, the projection operator can be calculated by

P = I − A+A. (15)

Also, one can obtain matrix C through the pseudo-inversion as follows. Differentiation of (11)
with respect to time leads to

Aq̈ = −Ȧq̇
The theory of linear systems of equations [66, 69, 71] establishes that the particular solution,
i.e., the N⊥ component of the acceleration, can be obtained from the above equation as q̈⊥ =
−A+Ȧq̇. Hence

Cq̇ = −A+Ȧq̇ (16)

Assuming the elements of generalized coordinate have identical units, then matrices P and
C have homogeneous units, i.e. P is dimensionless and the dimension of C is s−1. Therefore,
P and C are invariant under unit changes.

Note that the inconsistency problem which may arise in computing the pseudo-inverse be-
cause of existence of the components of different units can be solved by including the metric of
the n-space in computing the pseudo-inverse [58, 72].

4 Projected Inverse-Dynamics

Consider a constrained mechanical system with Lagrangian L = T − V, where T = 1
2
q̇TMq̇

and V(q) are the kinetic and the potential energy functions, and M ∈ R
n×n is the inertia

matrix. The fundamental equation of differential variational principles of a mechanical system
containing constraint can be written as [32]

δqTftot = 0, (17)
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where ftot = ϕ− (f−F), ϕ = d
dt

(

∂L
∂q̇

)

− ∂L
∂q
, f ∈ R

n is the vector of generalized input force, and

F ∈ R
n is the generalized constraint force, which is related to the Lagrange multipliers λ ∈ R

m

by
F = ATλ ∈ R(AT ). (18)

Then, the equations describing the system dynamics can be obtained as

Mq̈ + h(q, q̇) = f − F (19)

Φ(q) = 0, (20)

where vector h(q, q̇) ∈ R
n contains the Coriolis, centrifugal, gravitational terms. In solving the

DAE equations (19)-(20), it is typically assumed that: (i) the inertia matrix is positive definite
and hence invertible (ii) the constraint equations are independent, i.e. the Jacobian matrix
is not rank-deficient [29, 31–35]. In this work, we solve the equations without relying on the
second assumption.

From (18) and by virtue of Theorem 1, one can immediately conclude that F ∈ N (A)⊥. In
other words, the projection operator P is an annihilator for the constraint force, i.e. PF = 0.
Therefore, the constraint force can be readily eliminated from equation (19) if the equation is
projected on P , i.e.

PMq̈ = P (f − h). (21)

Equation (21) is called projected inverse-dynamics of a constrained multibody system that is
expressed in the so-called descriptive form. This is because matrix PM is singular and hence
the acceleration cannot be computed from the equation through matrix inversion.

5 Direct Dynamics

As mentioned earlier, the acceleration cannot be determined uniquely from equation (21),
because there are fewer independent equations than unknowns. Nevertheless; equations (13)
and (21) are in orthogonal spaces and thus cannot cancel out each other. Therefore, a unique
solution can be obtained by solving these two equations together. To this end, we simply
multiply equation (13) by M and then add both sides of the equation to those of (21). After
factorization, the resultant equation can be written concisely in the following form;

Mcq̈ = P (f − h) + Ccq̇ (22)

where Cc := MC, and Mc ∈ R
n×n is called constraint inertia matrix which is related to the

unconstrained inertia matrix M—assuming a symmetric inertia matrix—by

Mc :=M + M̃, (23)

and
M̃ := PM − (PM)T . (24)

Equation (22) constitutes the so-called direct dynamics of a constrained multibody system from
which the acceleration can be solved. It is worth mentioning that if M commutes with P , then
M̃ = 0 and hence Mc =M . To compute the acceleration from (22) requires that the constraint
inertia matrix be invertible.
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Theorem 2 If the unconstrained inertia matrix M is positive-definite (p.d.), then the con-
straint inertia matrix Mc is p.d. too.

Proof: It is evident from (24) that M̃ is a skew-symmetric matrix, i.e. M̃T = −M̃ . Con-
sequently, adding M̃ to the inertia matrix in equation (23) preserves the positive definiteness
property of the inertia matrix. This is because, for any vector z ∈ R

n we can say

zTM̃z = 0.

Therefore, one can conclude that zTMz = zTMcz, or

M is p.d. ⇐⇒ Mc is p.d..

� .
Theorem 2 is pivotal in showing the usefulness of the dynamics equation (22); it signifies

that the constraint inertia matrix is always invertible regardless of the constraint condition.
Therefore, the acceleration can be always obtained from (22).

Remark 2 Equation (22) signifies that only the null space component of the generalized input
force contributes to the motion of a constrained mechanical system, as the projector in the right-
hand-side (RHS) of the equation filters out all forces lying in the null space orthogonal. This
fact is exploited in Section 7.1 for an optimal control scheme.

It can be envisaged from Remark 2 that it is useful to decompose the generalized input force
into two orthogonal components

f = f‖ ⊕ f⊥,

where f‖ ∈ N and f⊥ ∈ N⊥ are called acting input force (potent) and passive input force
(impotent), respectively. The decomposition of the generalized input force can be carried out
by the projection operator according to (5). Now, the equation of motion can be written as

q̈ =M−1
c (f‖ − h‖ + Ccq̇) (25)

where the nonlinear vector is decomposed in the same way as the generalized force, i.e., h =
h‖ + h⊥. Equation (25) is the so-called equation of motion of a constrained mechanical system
in a compact form. It is worth mentioning that only one matrix inversion operation is required
in (25) which is one less than in the standard Lagrangian method (see Appendix B).

Remark 3 Since M̃ does not produce any kinetic energy, the total kinetic energy associated
with the constrained system is T = 1

2
q̇TMcq̇ =

1
2
q̇TMq̇.

5.1 Constraint Inertia Matrix

The constraint inertia matrix doesn’t have a unique definition because there are many ways
that equations (21) and (13) can be combined together. Although all dynamics formulations
thus obtained are equivalent, each one may have a ceratin computational advantage over the
others.
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5.1.1 Symmetric Inertia Matrix

Mc is a p.d. matrix but not a symmetric one. In the following, we present an alternative
dynamics formulation in which the inertia matrix appears both p.d. and symmetric. Equation
(13) together with the decomposition of the acceleration imply that q̈ = P q̈ + Cq̇, which can
be substituted in (21) to give

PMP q̈ = P (f − h)− PCcq̇. (26)

Now premultiply equation (13) by (I − P )M and then add both sides of the equation thus
obtained with those of (26) yields

M ′
cq̈ = P (f − h) + C ′

cq̇, (27)

where
M ′

c := PMP + (I − P )M(I − P ), (28)

and
C ′

c := (I − 2P )Cc.

It is worth mentioning that I − 2P represents a reflection operator.

Proposition 1 If matrix M is symmetric and p.d., then M ′
c is symmetric and p.d. too.

Proof: It is apparent from (28) thatM ′
c is a symmetric matrix . Moreover, positive definiteness

of matrix M ′
c can be shown by an argument similar to the previous case. Again for any vector

z 6= 0 ∈ R
n and from definition (28), we can say zTM ′

cz = zT‖ Mz‖ + zT⊥Mz⊥, where z‖ ∈ N
and z⊥ ∈ N⊥, and zT‖Mz‖ ≥ 0 and zT⊥Mz⊥ ≥ 0. Both decomposed components of the non-zero
vector z cannot be zero, i.e., z‖ = 0 ⇒ z⊥ 6= 0 and vice versa. Therefore, only one of the
quadratic functions can be zero and that implies their summation is non-zero and positive.
Thus M ′

c is a p.d. matrix �.

5.1.2 Parameterized Inertia matrix

Alternatively, the constraint inertia matrix can be parameterized in terms of an arbitrary scalar.
To this end, let’s first premultiply equation (13) by a scalar γ and then add both sides of the
resultant equation with those of (21). That gives the standard dynamics formulation similar
to (27) with the following parameters

M ′′
c := PM + γ(I − P ), (29)

and
C ′′

c := γC.

Proposition 2 If M is an invertible matrix, then M ′′
c is always invertible too.

Proof: In a proof by contradiction we show that M ′′
c should be a full-rank matrix. If matrix

M ′′
c is not of full-rank, then there must exist at least one non-zero vector ξ 6= 0 lying in the

matrix null space, that is M ′′
c ξ = 0, or

PMξ + γ(I − P )ξ = 0 (30)
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The two terms of the above equation are in two orthogonal subspaces and cannot cancel out
each other. Hence, in order to satisfy the equation, both terms must be identically zero, i.e.
PMξ = 0 and γ(I − P )ξ = 0. The former and the latter equations imply that y = Mξ ∈ N⊥

and ξ ∈ N , respectively. Therefore, one can conclude that y is perpendicular to vector ξ, i.e.
ξTy = 0, or that

ξTMξ = 0, (31)

which is a contradiction because M is a positive-definite matrix. Therefore, the null set of M ′′
c

is empty and the matrix is always invertible, and this completes the proof �.
Since P is dimensionless, the scalar γ has the dimensions of mass. Therefore, the value of

γ should be comparable to that of M to avoid any numerical pitfall in the matrix inversion —
a logical choice is γ = ‖M‖; yet, certain γ may lead to the minimum condition number of Mc,
which is desired for matrix inversion.

5.1.3 A Comparison of different Constraint Inertia Matrices

Theoretically, all the inverse-dynamics formulations presented here are equivalent, and they
should yield the same result. However, from a numerical point of view, each has a certain
advantage over the others that can lead to simplification of simulation or control. In summary,

• Mc is a p.d. matrix but not a symmetric one. If P commutes with M , then Mc =M .

• M ′
c is a symmetric and p.d. matrix; hence it physically exhibits the characteristic of an

inertia matrix. However, computing M ′
c involves three additional matrix multiplication

operations compared to Mc.

• M ′′
c is an invertible matrix, but it is neither p.d. nor symmetric. Nevertheless, computing

of M ′′
c requires less computation effort compared to the others.

5.2 Constraint Force and Lagrange Multipliers

Equation (25) expresses the generalized acceleration of a constrained multibody system in a
compact from without any need for computing the Lagrange multipliers. Yet, in the following
we will retrieve the constraint force by projecting equation (19) onto I − P , that gives

F = (f⊥ − h⊥)− (I − P )Mq̈.

Now, substituting the acceleration from (25) into the above equation gives

F = (f⊥ − h⊥)− µ(f‖ − h‖)− µCcq̇, (32)

where µ = (I − P )α, and α =MM−1
c is the ratio of the two inertia matrices.

Equation (32) implies that the constraint force can always be obtained uniquely, but this
may not be true for the Lagrange multipliers. Having calculated the constraint force from (32),
one may obtain the Lagrange multipliers from equation (18) through pseudo-inversion, i.e.,
λ = A+TF + λn where λn ∈ N (AT ) is the homogeneous solution. By virtue of Theorem 1, we
can also say that λn ∈ R(A)⊥. This, in turn, implies that λn is a non-zero vector only if the
Jacobian matrix is rank deficient, i.e. r < m—recall that r = rank(A).
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Remark 4 The vector of Lagrange multipliers can be determined uniquely iff the Jacobian ma-
trix is full-rank. In that case, there is a one-to-one correspondence between F and λ. Otherwise,
the R(A)⊥ component of the Lagrange multiplies is indeterminate.

5.3 Decoupling

Fig.1 illustrates the input/output realization of a constrained mechanical system based on (25)
and (32). The input channels f‖ and f⊥ are the potent and the impotent components of the
generalized input force, while the output channels are the acceleration and the constraint force,
q̈ and F , respectively. It is apparent form the figure that the acceleration is only affected by
f‖ and not by f⊥ whatsoever. However, the constraint force output, in general, can be affected
by two inputs: by f⊥ directly, and by f‖ through the cross-coupling channel µ. The cross-
coupling channel is disabled if the inertia matrix satisfies a certain condition which is stated in
Proposition 3.

f −h

.

f

.
q

C

C

C

−h

..
q

−1
cM

q

C

F

+
−

µ

+
+

−+

µ

Figure 1: The input/output realization of a constrained mechanical system based on decompo-
sition of the generalized input force.

Proposition 3 The equations of the constraint force and the acceleration are completely decou-
pled, i.e. the cross coupling µ vanishes if the null space of the constraint Jacobian is invariant
under M . That is, the inertia matrix should have this property: {∀x ∈ N (A) : Mx ∈ N (A)}.

The proof is given in Appendix D.
Mechanical systems satisfying the condition in Proposition 3 are called decoupled constrained

mechanical systems. The equation of constraint force of such a system is reduced to

F = (f⊥ − h⊥)− µCcq̇.

In that case, the constraint force is determined exclusively by the passive input force that leads
to a simple force control scheme, as will be seen in Section 7.3.

11



q1

q2 f

ε

ε
normal
direction

tangential
direction

(q)=0Φ

f

f

ρ m

θ
o

Figure 2: An illustrative example.

5.4 Illustrative Example and Geometrical Interpretation

A particle of mass m moves on a circle of radius ρ; see Fig.2. Assume q = [q1 q2]
T to be the

generalized coordinate. The constraint equation is

Φ(q) = (q21 + q22)
1/2 − ρ = 0

which yields the Jacobian and its time-derivative as A = [q1/ρ q2/ρ] and Ȧ = [q̇1/ρ q̇2/ρ], and
the pseudo-inverse is A+ = [q1/ρ q2/ρ]

T . Then, from (15) we have

P =
1

ρ2

[

q22 −q1q2
−q1q2 q21

]

=

[

sin2 θ − sin θ cos θ
− sin θ cos θ cos2 θ

]

(33)

Let unit vectors ǫ‖ = [− sin θ cos θ]T and ǫ⊥ = [cos θ sin θ]T represent the tangential and
normal directions as shown in Fig.2. Then, from (33) we have

P = ǫ‖ǫ
T
‖ , I − P = ǫ⊥ǫ

T
⊥.

The above equations represent the geometrical interpretation of the projection operators. Note
that the normal component of the acceleration, q̈⊥ = Cq̇, which can be interpreted as the
Centripetal acceleration, is given by

Cq̇ = − 1

ρ2

[

q1(q̇
2
1 + q̇22)

q2(q̇
2
1 + q̇22)

]

(34)

= −‖q̇‖2
ρ

ǫ⊥ = −ρθ̇2ǫ⊥ (35)

Let f denote the external force applied on the particle. Observe that the decomposition of the
force is aligned with the tangential and the normal directions to the circular trajectory shown
in Fig.2. Finally, we arrive at the following set of dynamics equations:

mq̈ = f‖

F = f⊥ +m
‖q̇‖2
ρ

ǫ⊥
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6 Simulation of Constrained Multibody Systems

To simulate the dynamics of a constrained multibody system, one can make use of the accel-
eration model in (25). Having computed the generalized acceleration from the equation, one
may proceed a simulation by integrating the acceleration to obtain the generalized coordinates.
However, the integration inevitably leads to drift that eventually results in a large constraint
error. Baumgarte’s stabilization term [35] is introduced to ensure exponential convergence of
the constraint error to zero. However, this creates a very fast dynamics which tends to slow
down the simulation. In this section, we use the pseudo-inverse for correcting the generalized
coordinate in order to maintain the constraint condition precisely. It should be noted that
using the pseudo-inverse here does not impose any extra computation burden, because the
pseudo-inverse has to be obtained to compute the acceleration anyway.

Having obtained the velocity through integrating the acceleration, one may obtain the
generalized coordinate by integration

{q}t = {q}t−∆T +

∫ t

t−∆T

q̇dτ, (36)

where ∆T depicts integration time step. However, the constraint condition may be violated
slightly because of integration drift. Let q0 denote the coordinate after a few integration steps
and Φ(q0) 6= 0. Now, we seek a small compensation in the generalized coordinate δq∗ = q∗ − q0
such that the constraint condition is satisfied: that is, a set of nonlinear equations Φ(q∗) = 0
must be solved in terms of q∗. The Newton-Raphson method solves a set of nonlinear equations
iteratively based on linearized equations.

The constraint equation can be written by the first order approximation as

Φ(q0 + δq) = Φ(q0) + Aδq +O(δq2) = 0

Neglecting the O(δq2) term, one can obtain the solution of the linear system using any gen-
eralized inverse of the Jacobian. The pseudo-inverse yields the minimum-norm solution, i.e.,
minAδq=−Φ(q0) ‖δq‖. Therefore, the following loop

qk+1 = qk −A+Φ(qk) (37)

may be worked out iteratively until the error in the constraint falls into an acceptable tolerance,
e.g. ‖Φ‖ ≤ ǫ.

The condition for local convergence of multi-dimensional Newton-Raphson (NR) iteration
can found, e.g., in [31,73,74]. Although it is known that NR iteration will not always converge
to a solution, the convergence is guaranteed if the initial approximation is close enough to a
solution [73, 74].

Theorem 3 [73] Assume that Φ is differentiable in an open set Ω ⊂ R
n, i.e., the Jacobian

matrix A exists, and that A is Lipschitz continuous. Also assume that a solution q∗ ∈ Ω
exists, and that A(q∗) is nonsingular. Then under these assumptions, if the initial start point
is sufficiently close to the solution, the convergence is quadratic, that is ∃K > 0 such that
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‖Φ(qk+1)‖ ≤ K‖Φ(qk)‖2.
One can expect that the drift, and hence the inial constraint error, can be reduced by

decreasing the integration time step. It should be pointed out that the iteration loop (37)
corrects the error in constraint coordinate caused by the integration process. Since the drifting
error within a single integration time step ∆T is quite small, the initial estimate given by (36)
cannot be far from the exact solution. Therefore, as shown by experiments, a fast convergence
is achieved even though the iteration loop (37) is called once every few time steps.

Finally, the simulation of a constrained mechanical system based on the projection method
can be proceeded in the following steps:

i. compute the acceleration from equation (25).

ii. obtain the states {q, q̇} as a result of numerical integration of the acceleration.

iii. in the case constraint error exceeds the tolerance, carry out iteration (37), upon conver-
gence or counting the maximum number of iterations go to step(1).

7 Control of Constrained Multibody Systems.

In this section we discuss the position and/or force control of constrained multibody systems
based on the proposed dynamics formulation. The I/O realization of a constrained mechanical
system is depicted in Fig.1, which will be used subsequently as a basis for development of
control algorithm. In fact, the topology of a control system can be inferred from the figure
by considering the decomposed components of the generalized input force, f‖ and f⊥, as the
corresponding control inputs for position and force feedback loops.

Due to the decoupled nature of the acceleration channel, an independent position feedback
loop can be applied. The input channel f⊥ is directly transmitted to the constraint force, f‖,
and the velocity enters as a disturbance and hence must be compensated for in a feedforward
loop. Note that in the case of decoupled mechanical systems, where the cross-coupling channel
vanishes, f⊥ exclusively determines the constraint force.

7.1 Motion Control Using Projected Inverse-Dynamics Control

Due to presence of only r independent constraints, the actual number of degrees of freedom
of the system is reduced to k ≤ n − r. Thus, in principle, there must be k independent
coordinates θ ∈ R

k from which the generalized coordinates can be derived, i.e., q = ψ(θ). Now,
differentiation of the given function with respect to time gives

q̇ = Λθ̇, (38)

q̈ = Λθ̈ + Λ̇θ̇, (39)

where Λ = ∂ψ/∂θ ∈ R
n×k. Since θ(q) = [θ1(q), · · · , θk(q)]T constitutes a set of independent

functions, the Jacobian matrix Λ must be of full rank. (The proof is in Appendix E.). It is also
important to note that any admissible function ψ(·) must satisfy the constraint condition, i.e.,

Φ(ψ(θ)) = 0 ∀θ ∈ R
k.

14



Using the chain-rule, one can obtain the time-derivative of the above equation

∂Φ

∂q

∂ψ

∂θ
θ̇ = AΛθ̇ = 0 ∀θ̇ ∈ R

k. (40)

Since Λ is a full-rank matrix, the only possibility for (40) to happen is that

R(Λ) = N (A) (41)

Substituting the acceleration from (39) into the inverse-dynamics equation (21) gives the
dynamics in terms of the reduced-dimensional coordinate

PM(Λθ̈ + Λ̇θ̇) = f‖ − h‖ (42)

Let {θd(t), θ̇d(t), θ̈d(t)} denote the desired trajectory of the new coordinates. Now, we propose
the projected inverse-dynamics control (PIDC) law as follow

f c
‖ = h‖ + PMup, (43)

where up is an auxiliary control input as

up = Λ̇θ̇ + Λ(θ̈d +GDėp +GP ep), (44)

ep = θd − θ is the position tracking error, and GP > 0 and GD > 0 are the PD feedback gains.
In the following, superscript c is used to denote control input.

Theorem 4 While demanding minimum-norm control input, the projected inverse-dynamics
control law (43)-(44) stabilizes the position tracking error, i.e. θ(t) → θd(t) as t→ ∞.

Proof: Firstly, we prove exponential stability of the position error. From equations (42) –
(44), one can conclude that the proposed control law leads to the following equation for the
tracking error

PMΛ [ëp +GDėp +GP ep] = 0. (45)

To show that the expression within the bracket is zero, we need to show that the matrix PMΛ
is full-rank. In the following we will show that the matrix cannot have any null space and
hence is full rank. If the matrix has a null space, then ∃x 6= 0 ∋ PMΛx = 0. Let us define
ξ = Λx. Recall that Λ is a full-rank matrix and that R(Λ) = N (A)—see (38). Hence, ξ 6= 0
and ξ ∈ N . On other hand, PMξ = 0 implies thatMξ ∈ N (A)⊥, and hence it is perpendicular
to ξ, i.e. ξTMξ = 0. But, this is a contradiction because M is a p.d. matrix. Consequently,
N (PMΛ) = ∅, and it follows from (45) that

ëp +GDėp +GPep = 0.

Hence, the error dynamics can be stabilized by selecting adequate gains, that is θ → θd as t→
∞. Moreover, due to orthogonality of the decomposed generalized input force, we can say

‖f c‖2 = ‖f c
‖‖2 + ‖f c

⊥‖2.
From the above norm relation, it is clear that f c

‖ is the minimum norm solution, since any other
solution must have a component in f c

⊥ and this would increase the overall norm. Therefore,
setting f c

⊥ = 0 results in minimum norm of generalized input force subjected to producing the
desired motion, i.e.,

f c = f c
‖ ⇐⇒ min

θ(t)→θd(t)
‖f c‖. (46)

�
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7.2 Elements of Generalized Coordinate with Inhomogeneous Units

So far, we have assumed that the elements of the generalized velocity and the generalized input
force have homogeneous units. Otherwise the minimum-norm solution of the generalized force,
(46), makes no physical sense if the manipulator has both revolute and prismatic joints. In this
section, we assume the vector of the generalized force to have a combination of force and torque
components, and the vector of the generalized velocity with of rotational and translational
components. As mentioned in Section 2.1.1, the minimization solution is not invariant with
respect to changes in measure units if there is inhomogeneity of units in the spaces of the force
and the velocity [75,76]. To go around the quandary of inhomogeneous units, one can introduce
a p.d. weight matrix by which the coordinates of the force vector is changed to

fW =W−1/2f

Note that the corresponding change of coordinates for the velocity is q̇W = W 1/2q̇ in order to
preserve the force-velocity product (by virtue of (17)). Therefore, the metric tensors for the
force and velocity vectors are W−1 and W , respectively. The inertia matrix and the Jacobian
with respect to the new coordinates are MW = W−1/2MW−1/2 and AW = AW−1/2. Since q̇W
and fW and the corresponding projection matrix PW = I−A+

WAW , where A+
W = [AW−1/2]+, is

always dimensionless and, hence, invariant under the measure units chosen. The new force and
velocity vectors have homogeneous units if the weight matrix is properly defined. Therefore,
replacing the new parameters, which are now dimensionally consistent, in the optimal control
(43) minimizes ‖fW‖ or equivalently minimizes the weighted Euclidean norm of the generalized
input force, i.e.,

‖f‖W = (fTW−1f)1/2. (47)

A quiet direct structure for W is the diagonal one, i.e.,

W =

[

κ−2I 0
0 I

]

, (48)

where κ is a length, by which we divide the translational-velocity (or multiply the force). Using
this length is tantamount to the weighted norm as

‖f‖W = (κ2‖ff‖2 + ‖ft‖2)1/2,

where the added terms are homogeneous, and ff and ft are the force and the torque components
of f . It is worth pointing out that a characteristic length that arises naturally in the analysis
and leads to invariant results was proposed in [77, 78].

Alteratively, the weight matrix can be selected according to some engineering specifications.
For instance, assume that the maximum force and torque generated by the actuators are limited
to ffmax and ftmax. Then, choosing W 1/2 = diag{ffmax, ftmax} leads to the minimization of
this cost function

(‖ ff
ffmax

‖2 + ‖ ft
ftmax

‖2)1/2,

which, in a sense, takes the saturation of the actuators into account.
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7.3 Control of Constraint Force

The motion controller proposed in 7.1 works well for mechanical systems with bilateral con-
straint. On the other hand, since the proposed controller doesn’t guarantee that the sign of
the constraint force will not change, a unilateral constraint condition may not be physically
maintained under the control law. In this case, controlling the constraint force is a necessity.

Suppose that Fd represents desired constraint force which can be derived from the desired
Lagrange multipliers λd using

Fd = ATλd.

Then, considering f c
⊥ as a control input, we propose the following control law

f c
⊥ = h⊥ + µ(f‖ − h‖ + Cq̇) + uF , (49)

where uF is the auxiliary control input which is traditionally chosen as

uF = Fd +GF ef +GI

∫ t

0

efdτ, (50)

in which ef = Fd − F is the force error, and GF > 0 and GI > 0 are the PI feedback gains. It
should be pointed out that the integral term is not necessary, but it improves the steady-state
error. From (32), (49), and (50), one can obtain the error dynamics as

(GF + 1)ėf +GIef = 0,

which will be stable provided that the gains are positive definite, i.e., ef → 0 as t → ∞.
Define eλ = λd − λ, and ef = AT eλ. Then,

σ(A)‖eλ‖ ≤ ‖ef‖, (51)

where σ(A) is the minimum singular value of the Jacobian, i.e.,

σ(A) =

(

min
eignvalue

ATA

)1/2

.

Therefore, one can conclude tracking of the Lagrange multipliers, i.e. eλ → 0 as t → ∞, if
the Jacobian is full rank or σ(A) 6= 0.

Remark 5 The constraint force F is always controllable, while the Lagrange multipliers are
controllable only if the Jacobian matrix is of full rank.

It is worth mentioning that, unlike the traditional motion/force control schemes, which lead
to coupled dynamics of force error and position error, our formulation yields two independent
error equations. This is an advantage, because the motion control can be achieved regardless of
the force control and vice versa. To this end, a hybrid motion/force control law can be readily
obtained by combining (43) and (49),

f c = f c
‖ + f c

⊥ (52)

= h+ µCq̇ + (I + µ)PMup + uF .
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7.4 Control of Constrained Mechanical Systems with Passive Joints

Some constrained mechanical systems, e.g., parallel manipulators, have joints without any
actuators. The joints with and without actuators are called active joints and passive joints,
respectively. In this section, we use the notion of the linear projection operator to generalize
the inverse-dynamics control scheme for constrained mechanical systems with passive joints.
Assuming there are p active joints (and n− p passive joints), the generalized input force has to
have this form

f c =



















f c
1
...
f c
p

0
...
0

























active joints







passive joints

.

This implies that any admissible generalized force should satisfy

f c ∈ R(B) = B, and B =

[

Ip 0
0 0

]

, (53)

where Ip is a p× p identity matrix. Note that B is a projection onto the actuator space B, i.e.,
B2 = B and Bf c = f c.

Now, we need to modify the motion control law (43) so that the condition in (53) is fulfilled.
If N (A) ⊆ R(B), then (53) is automatically satisfied by choosing f c = f c

‖ . Otherwise, we need

to add a N⊥ component, say f c
⊥, to f

c
‖ so that f c = f c

‖ + f c
⊥ ∈ R(B). Since f c

⊥ does not affect
the system motion at all, the motion tracking performance is preserved by that enhancement—
albeit control of constraint force may no longer be achievable. Let us assume

f c
⊥ = (I − P )η, (54)

where η ∈ R
n. Then, we seek η such that

f c ∈ R(B) ⇔ (I − B)f c = 0

⇔ (I − B)(f c
‖ + (I − P )η) = 0

⇔ Qη = −(I −B)f c
‖ (55)

where Q = I − B − P + BP . Consider η as the unknown variable in (55). A solution exits if
the RHS of (55) belongs to the range of Q, i.e.,

R((I −B)P ) ⊆ R((I −B)(I − P )). (56)

Then, the particular solution can be found via pseudo-inversion, i.e.,

η = −Q+(I − B)f c
‖ . (57)

The above equation yields the minimum-norm solution, i.e., minimum ‖η‖, which eventually
minimizes the actuation force. Equations (54) and (57) give

f c
⊥ = Hf c

‖ (58)
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where
H = −(I − P )Q+(I −B). (59)

Finally, we arrive at the following control law for constrained mechanical systems with passive
joints

f c = (I +H)f c
‖ , (60)

with f c
‖ derived from (43).

7.4.1 Minimum-norm Torque

A simple argument shows that the torque-control law (60), assuming the existence of a solution,
yields a minimum-norm torque. Knowing that ‖I − P‖ = 1, we have

‖f c‖2 = ‖f c
‖‖2 + ‖(I − P )η‖2

≤ ‖f c
‖‖2 + ‖η‖2, (61)

where both norms in the RHS of (61) are minimum.

7.4.2 Controllability

Because the existence of a solution is tantamount to the controllability condition of constrained
mechanical systems under the proposed control law, it is important to find out when a solution
to (55) exists, It can be inferred from (56) that

controllability cond. ⇔ N ∩ B⊥ ⊆ N⊥ ∩ B⊥. (62)

In general, the proposed control method for systems with passive joints works only if there exist
sufficient number of active joints. Since occurrence of the singularities gives rise to the number
of dof, the system under control law may no longer be controllable if there are not enough active
joints. For instance, mechanical systems without any constraints at all cannot be controlled
unless all joints are actuated. This is because no-constraint means that N⊥ = ∅ or N ∈ R

n;
hence, according to (62), a controllable system requires that R

n ∩ B⊥ ⊆ ∅ ⇒ B⊥ = ∅, which
means there can be no passive joints.

Also, it is worth pointing out that choosing N ⊆ B trivially results in a controllable system.

8 A Slider-Crank Case Study

In this section, we describe the results obtained from applying the proposed inverse and di-
rect dynamics formulations for simulation and control of a slider-crank mechanism, Fig.3A.
Assume that the dimension of the crank and the connecting rod are the same. Then, singular
configurations occur at

q1 =
nπ

2
n = ±1,±2, · · · , (63)

see Fig.3B.
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Figure 3: A slider-crank mechanism.

8.1 Equations of Direct Dynamics

As shown in Fig.3C, the closed-loop is cut in the right hand support, i.e., at joint C. Let’s
vector q = [q1 q2]

T denote the joint angles. Then, the vertical position of the point C is

yC(q) = l(s1 + s12), (64)

where l is the length of linkage. In the sequel, ci,c12,si,s12 are shorthanded for cos qi, cos(q1+q2),
sin qi, and sin(q1+q2) according to the notation in [79]. The vertical translation motion of point
C is prohibited by imposing the following scleronomic constraint equation

Φ(q) = yC(q) = 0 (65)

Now, derivation of the direct dynamics may proceed as the following steps:

Step 1: Obtain the dynamic parameters of the open chain system Fig.3C (this is similar to
the two-link manipulator case study in [79]) as

M = ml2
[

3 + 2c2 1 + c2
1 + c2 1

]

h =

[

−ml2s2(q̇22 + 2q̇1q̇2) +mlg(c12 + 2c1)
ml2s2q̇

2
1 +mlgc12

]

(66)

where m represent the mass of the link.
Step 2: Compute the projection matrix corresponding to the constraint equation (65). The

Jacobian of the constraint is
A = l

[

c1 + c12 c12
]

. (67)
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The projection matrix can be computed numerically (e.g. using the SVD of DSP Blockset in
Matlab/Simulink [70]). Nevertheless, we obtain P in a closed form for this particular illustration
to have some insight into how the SVD handles singularities. Since q2 = 2π−2q1, the Jacobian
matrix (67) can be simplified as A = lc1[2 1] whose singular value is trivially σ(A) =

√
5l|c1|.

The SVD algorithm treats all singular values less that ǫ as zeros, i.e., A+ = 0 if |c1| < ǫ/l
√
5.

Hence

P =







[

1/5 −2/5
−2/5 4/5

]

if |c1| < ǫ
l
√
5

I otherwise
(68)

This indicates the constraint is virtually removed if the system is sufficiently closed to the
singular configurations (63).

Step 3: Now, assuming γ = ml2, one can compute the constraint inertia matrix from (29)
as

M ′′
c = ml2

[

1 (1 + c2)/5
0 (3− 2c2)/5

]

if |c1| <
ǫ

l
√
5
, (69)

and M ′
c = M at the singular positions—note that det(M ′

c) = m2l4(3 − 2c2)/5 6= 0. Also, note
that C ≡ 0 for this example. Finally, plugging P and M ′

c from (68) and (69) into (22) yields
the direct dynamics of the slider-crank mechanism.

Conclusion

A unified formulation applicable to both the direct dynamics (simulation) and inverse-dynamics
(control) of constrained mechanical systems has been presented. The approach is based on pro-
jecting the Lagrangian dynamic equations into the tangent space with respect to the constraint
manifold. This automatically eliminates the constraint forces from the equation, albeit the
constraint forces can be then retrieved separately from dynamics projection into the normal
space.

The novelty of the formulation lies in the definition of the projector operators which, unlike
in the other formulations, are square matrices of order equal to the number of dependent co-
ordinates. Therefore, the structure of the dynamics formulation doesn’t change if the system
changes its degree-of-freedom or its topology. Moreover, since the process of computing pro-
jection operator is not conditioned upon the maximal rank of the Jacobian, the direct and the
inverse-dynamics formulation are valid also for mechanical systems with redundant constraints
and/or singular configurations, which is unattainable with many other classical approaches.

A motion control system has been developed based on the projected inverse-dynamics control
which, minimizes actuation force, and also works for systems having unactuated joints (passive
joints). To this end, a hybrid motion/force controller was developed.

In summary, particular features of the proposed formulation associated with simulation and
control of constrained mechanical systems are listed below:

• A simulation may proceed even with presence of redundant constraint equations and/or
singular configurations. With the same token, the projected inverse-dynamics motion
controller can cope with changes in the system’s constraint topology or number of degrees-
of-freedom.
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• The generalized formulation requires no knowledge of the constraint topology, i.e., descrip-
tion of how subassemblies are connected, and it works for rigid-body or flexible systems
alike.

• The inverse-dynamics control scheme leads to minimum weighted Euclidean norm of con-
trol force input.

• The inverse-dynamics control scheme can be applied for constrained systems which has
some joints with no actuator.

• If the inertia matrix posses a certain property as stated in Proposition 3, the system
exhibits decoupling which leads to further simplification of the force control.

• Redundant and flexible manipulators can be dealt with.

A

Note that AT : Rm → R
n. Then ∀x ∈ R(AT )⊥ and ∀y ∈ R

m, we have

< x,ATy >= 0

⇔ xT (ATy) = yTAx = 0 ∀y ∈ R
m (70)

⇔ Ax = 0 (71)

⇔ x ∈ N (A)

where the inference (71) is concluded because (70) implies that vector Ax must be orthogonal
to every vector in R

m, and this is possible only if vector Ax is identically zero. Thus (2) is
proved. The proof of (3) can be shown by similar argument.

B

Assuming that the Lagrange multipliers is known, the acceleration can be carried out from
equation (19)

q̈ =M−1(f − h− ATλ) (72)

Substituting the acceleration from (72) into the second differentiation of the constraint equation

Aq̈ + Ȧq̇ = 0

gives the Lagrange multipliers as

λ = (AM−1AT )−1
[

AM−1(f − h) + Ȧq̇ + ċ
]

. (73)

This methods works only if the Cartesian inertia matrix M = (AM−1AT ) is not singular.
Finally, substituting (73) to (72) yields the acceleration.
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C

Lemma 1 The subspace W is invariant under an invertible transformation A if and only if
the subspace is invariant under A−1.

Proof: By definition, W is an invariant subspace under A iff AW ⊆ W. Moreover, the
invertible mappingA cannot reduce the dimension of any subspace, that is dim(AW) = dim(W)
, hence AW = W. It follows

AW = W ⇔ A−1W = W,

which completes the proof �.

D

It is apparent from Fig.1 that the decoupling is achieved iff

µP = (I − P )αP = 0, (74)

which implies the null space must be invariant under α. Since α is an invertible mapping, it
can be inferred from Lemma 1 (see Appendix C) that the null space must be invariant under
α−1 too. Thais means that (74) is equivalent to (I − P )α−1P = 0. Now, replacing Mc from
(23) into the latter equation and after factorization, one can infer the followings

decoupling ⇔ (I − P )[(M + M̃)M−1]P = 0

⇔ [(I − P )MP ][M−1P ] = 0

⇐ (I − P )MP = 0

which completes the proof.

E

Since θT = [θ1(q), · · · , θk(q)] is a set of independent functions, the corresponding Jacobian
matrix is full rank, i.e., rank(∂θ

∂q
) = k. Moreover, by using the chain-rule, we have Λ∂θ

∂q
= Ik,

where Ik is a k× k identity matrix. Now, by virtue of the property of the rank operator 1, one
can say

min[rank(Λ), k] ≤ k,

or
rank(Λ) = k.

1rank(AB) ≤ min[rank(A), rank(B)]
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