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A Closed-Form Expression for the Uncertainty
in Odometry Position Estimate

of an Autonomous Vehicle

Josep M. Mirats Tur, José Luis Gordillo, and Carlos Albores Borja

Abstract—Using internal and external sensors to provide position esti-
mates in a two-dimensional space is necessary to solve the localization and
navigation problems for a robot or an autonomous vehicle (AV). Usually,
a unique source of position information is not enough, so researchers try
to fuse data from different sensors using several methods, as, for example,
Kalman filtering. Those methods need an estimation of the uncertainty in
the position estimates obtained from the sensory system. This uncertainty
is expressed by a covariance matrix, which is usually obtained from exper-
imental data, assuming, by the nature of this matrix, general and uncon-
strained motion. We propose in this paper a closed-form expression for the
uncertainty in the odometry position estimate of a mobile vehicle, using
a covariance matrix whose form is derived from the cinematic model. We
then particularize for a nonholonomic Ackerman driving-type AV. Its cin-
ematic model relates the two measures being obtained for internal sensors:
the velocity, translated into the instantaneous displacement; and the instan-
taneous steering angle. The proposed method is validated experimentally,
and compared against Kalman filtering.

Index Terms—Localization, navigation, nonholonomic constraints, robot
positioning uncertainty.

I. INTRODUCTION

Mobile robots and autonomous vehicles (AVs) can assist or even
substitute for humans, to tackle tedious, monotonous, and dangerous
activities, such as in mining, civil engineering construction, rescue in
catastrophes, or agricultural labor. To reliably perform a task while
navigating in the real world, it is necessary to locate those vehicles to
know their position, as well as its associated uncertainty. Usually, to
accurately provide a position estimate, a unique source of position in-
formation is not enough, so researchers try to fuse data from different
sources. For instance, in [1]–[3], indoor localization is performed using
data from different sensors, [4]–[6] tackle self-localization and naviga-
tion, or for outdoor applications, [7] studies a Kalman-based sensor
data fusion algorithm for a robot campus tour guide, and [8] and [9]
use data fusion for agriculture and mining, respectively. When fusing
information, Kalman filtering is frequently used with the problem of
determining the covariance matrices associated with the position un-
certainty, since the errors of the sensory system affect the position es-
timate [10], [11]. These matrices are determined experimentally from
data, and the algorithms used are very sensitive to this parameter de-
termination. Furthermore, the computation of those matrices assumes
general and unconstrained motions, ignoring the nature of phenomena,
as when the movement is constrained by nonholonomic architecture,
leading to poor position uncertainty estimation.
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Different methods have been proposed in the literature to estimate
the position uncertainty. For example, [12] employed a min/max error-
bound approach, and [13] used a scalar as positon uncertainty measure,
without reference to the orientation error. Uncertainty expressed by a
covariance matrix is used in more recent works, such as [14]–[17]. In
[18], a method for determining this covariance matrix is given for the
special case of circular arc motion with constant radius of curvature.
In [19], the odometry error is modeled for a synchronous-drive system,
depending on parameters characterizing both systematic and nonsys-
tematic components. None of these methods give a close and general
way to compute the robot’s position uncertainty. Their main limitation
is, again, to consider general and unconstrained motion, ignoring pos-
sible motion constraints due to the architecture of the vehicle.
This paper proposes a method to compute a closed-form expression

for the uncertainty in the position estimate obtained from internal sen-
sors. The position uncertainty will be expressed using a covariance
matrix, and determined from the position-estimation equations given
by the cinematic model. So, the proposed method is general for any
platform and set of sensors, taking directly into account the physical
structure of the vehicle, which is translated into the control variables
being manipulated and sensed. The next sections are devoted to the
general description of the method and its application to a particular AV
used for mining operations. For this vehicle, a brief description of its
cinematic model and the required mathematical development to derive
the closed-form expression for the covariance matrix representing the
position estimate uncertainty are given. Finally, the proposed method
was compared against the standard extended Kalman filter (EKF) in the
computation of the uncertainty associated with the odometry position
estimate.

II. POSITION ESTIMATE UNCERTAINTY

Consider we are dealing with a mobile robot or AV for which a cin-
ematic model M(x; y; �; r; s; t) is given. Model M is generally non-
linear on x, y, � (position of the vehicle on the plane), r (physical pa-
rameters of the vehicle), vector s (internal sensor measurements), and t
(discrete time moments). We are concerned with the problem of deter-
mining the uncertainty associated with the robot’s position computed
from its internal sensors using the cinematic model.
Suppose that for time t � 1 (we are using t � 1, for t � �t, t � 2

for t � 2�t, and so on), the position of the vehicle and its associated
uncertainty P (t� 1) = [x(t� 1); y(t� 1); �(t� 1)], Cov[Pt�1] are
known. For time t, after the vehicle has performed a certain movement,
and sensors on the robot have noisily measured it, the new position can
be obtained using P (t) = P (t� 1)+�P (t). The position increment
will be computed from the cinematic model and actual sensor measure-
ments. Temporal variations on the physical parameters of the robot, and
different sensor measurements for�x,�y, and�� are allowed, so as
to maintain generality in the model (see Fig. 1). f , g, and h represent
general functions that model these increments for components x, y, and
�, respectively

�Pt=

�xt

�yt

��t

=

f(s(t); r(t); x(t� 1); y(t� 1); �(t� 1))

g(s(t); r(t); x(t� 1); y(t� 1); �(t� 1))

h(s(t); r(t); x(t� 1); y(t� 1); �(t� 1))

:

(1)

Now, the uncertainty in the robot’s position will depend onmodel in-
accuracies, noise in the sensor measurements, and additive errors from
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Fig. 1. Geometric diagram for the computation of�x,�y, and��. A vector
with an inclination of � +��=2 is used.

the previous position estimate. It can be computed from the covariance
matrix of the robot’s position

Cov[Pt] =Cov[Pt�1 +�Pt]

=Cov[Pt�1] + Cov[�Pt] + 2Cov[Pt�1; �Pt]: (2)

The term Cov[Pt�1] is recursive, and can be initialized to 03�3 if
the initial position of the robot is well known. We will consider, in a
first approach, that the influence of the previous position Pt�1 on the
increment of run path �Pt, is not meaningful. The term of interest is
Cov[�Pt]

Cov[�Pt]

=E �Pt �P
T
t � E[�Pt]E �P

T
t (3)

E �Pt �P
T
t

=

E �xt �xTt E �xt �yTt E �xt ��Tt

E �yt �xTt E �yt �yTt E �yt ��Tt

E ��t �xTt E ��t �yTt E ��t ��Tt

(4)

E[�Pt]E �P
T
t

=

E[�xt]E �xTt E[�xt]E �yTt E[�xt]E ��Tt

E[�yt]E �xTt E[�yt]E �yTt E[�yt]E ��Tt

E[��t]E �xTt E[��t]E �yTt E[��t]E ��Tt

:

(5)

Equations (3)–(5) express the uncertainty of the position determined
from internal sensors, while taking into account the physical architec-
ture of the vehicle. In order to solve (4) and (5), a distribution for the
sensors noise must be assumed, which will be determined from exper-
imental characterization.

III. ROBOT PLATFORM USED

A standard vehicle for mining operations has been used in this study.
Manufactured by Johnson Industries (Pikeville, KY), the vehicle is
electrically powered and manually driven. Direction, as well as driving
wheels, were automated, in order to perform mine material transport

Fig. 2. Cinematic model for a common car-like vehicle.

operations outside the mine. Considering the bicycle model, the cine-
matic model of the AV being used [20] appears in Fig. 2. There are two
nonholonomic constraints, one for the steer wheel, and the other for the
rear wheel

_xf sin(� + �)� _yf cos(� + �) = 0; _x sin � � _y cos � = 0

where (xf , yf ) are the coordinates for the steer wheel. These equations
establish that lateral displacement is null. Now, using the constraints
given for a rigid body, we have that

xf = x+ L cos �; yf = y + L sin �:

Substituting into the first equation and defining the radius of the
curve that the vehicle describes asR = L(tg�1�), the cinematicmodel
for a car-like vehicle is

_x

_y

_�

_�

=

cos �

sin �
1

L
tg�

0

v1 +

0

0

0

1

v2

where v1 and v2 are the velocities for the vehicle and the direction,
respectively. A more complete model should include rotation angles
for each wheel, or take into account the possible deformation of the
wheels; however, the simple proposed model has the essential elements
for the analysis, and should be enough for control purposes [21].

IV. AV’S POSITION ESTIMATE UNCERTAINTY

We propose using the position-estimation equations of the cinematic
model to obtain the covariancematrix expressing the uncertainty for the
odometry estimated position. This uncertainty estimation takes directly
into account the physical structure of the vehicle, which is translated
into the control variables being manipulated and sensed. For the case at
hand, the only inputs to the model, used to obtain the (x, y, �) variables
required to compute the position of the vehicle, are the two measures
being obtained for internal sensors: the velocity, translated into the in-
stantaneous displacement �dodt ; and the instantaneous steering angle
�t. Hence, a closed mathematical form for such a matrix will be ob-
tained. For time t, given a position estimate Pt, we have an associated
uncertainty in the estimation given by Cov[Pt].
The position estimate from odometry at time t is computed asP od

t =
Pt�1 + �P od

t , corresponding to the sum of the robot position in a
previous time t� 1, plus the increments in position measured from the
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odometry system and computed using the equations from the cinematic
model

�P
od

t =

�xodt

�yodt

��odt

=

�d̂odt cos �t�1 +
��

2

�d̂odt sin �t�1 +
��

2

�d̂

L
tg(�̂t)

:

Measures obtained from both odometers and steer-angle sensors
are not error-free. In order to compute the uncertainty in the position
given by the odometry system, Cov[P od

t ], we consider that those
errors follow a normal distribution1

�d̂
od

t = �d
od

t + "
od
; where "

od
� N 0; �2od

�̂t = �t + "
�
; where "

�
� N 0; �2� :

So the uncertainty in the position P od

t is given by

Cov P
od

t =Cov Pt�1 +�P
od

t

=Cov[Pt�1] + Cov �P
od

t + 2Cov Pt�1; �P
od

t :

In order to solve (3) for our vehicle, it is necessary to calculate each
of the elements of the involved matrices. The first element in (4) is
calculated as follows:

E �x
od

t �x
od

t

= E �d̂
od

t cos �t�1 +
��t

2
�d̂

od

t cos �t�1 +
��t

2

= E �d̂
od

t

2

cos2 �t�1 +
��t

2

=
1

2
E �d̂

od

t

2

(1 + cos(2�t�1)� sin(2�t�1)��t)

where the following equivalences have been used:

cos2(�) =
1

2
(1 + cos(2�))

cos(�� �) = cos� cos� � sin� sin�:

We considered also, in order to simplify the presented mathematical
development and without loss of generality of the given method, the
assumption that��t is small between two consecutive measures. Such
an assumption is guaranteed, because our AVmoves at low speeds, and
a high sampling frequency for sensors is used. Hence, the mathemat-
ical development presented in this paper may not be valid for vehicles
moving at high speed. Should we need to calculate the position uncer-
tainty of a high-speed vehicle, we would only need to reformulate the
given mathematical expressions without the limitation of ��t small.
Going on the calculation

E �x
od

t �x
od

t = � � �

=
1

2
E �d̂

od

t

2

+
1

2
E �d̂

od

t

2

cos(2�t�1)

�
1

2
E �d̂

od

t

2

sin(2�t�1)��t :

1In fact, to compute errors from odometers, we considered left and right
odometers separately, obtaining � , � , and computing 4� = � +

� .

Particularizing each term of the previous expression

1

2
E �d̂

od

t

2

=
1

2
E �d

od

t + "
od �d

od

t + "
od

=
1

2
�d

od

t

2

+ �
2

od

1

2
E �d̂

od

t

2

cos(2�t�1)

= �d
od

t

2

+ �
2

od cos2(�t�1)�
1

2

1

2
E �d̂

od

t

2

sin(2�t�1)��t

= sin(�t�1) cos(�t�1)E �d̂
od

t

2

��t

=
1

L
sin(�t�1) cos(�t�1)E �d̂

od

t

3

tg�̂t

=
1

L
sin(�t�1) cos(�t�1)E �d̂

od

t

3

E[tg�̂t]

= �d
od

t

3

+ 3�d
od

t �
2

od tg �t + "
�
max

where we considered independence between sensor measures, and
physical considerations on the steer angle measurement have been
taken into account in order to solve E[tg�̂t].
After computing all the expectances, a closed-form expression for

Cov(�P od

t ) is obtained, as the rest of two symmetric 3� 3 matrices,
E[�P od

t �P T
t ]�E[�P od

t ]E[�P T
t ]. We define the constants k1

and k2 as

k1 = �d
od

t

2

+ �
2

od; k2 =
1

L
�d

od

t

3

+ 3�dt + �
2

od :

Elements for the first matrix, given in (3), are

c11 = k1 cos
2(�t�1)� k2 sin(�t�1) cos(�t�1)tg �t + "

�
max

c12 = c21 =
k1

2
sin(2�t�1) +

k2

2
cos(2�t�1)tg �t + "

�
max

c13 = c31 =
k1

L
cos(�t�1)tg �t + "

�
max

�
k2

2L
sin(�t�1)tg

2
�t + "

�
max

c22 =
k1

2
(1� cos(2�t�1)) +

k2

2
sin(2�t�1)tg �t + "

�
max

c23 = c32 =
k1

L
sin(�t�1)tg �t + "

�
max

+
k2

2L
cos(�t�1)tg

2
�t + "

�
max

c33 =
k1

L2
tg
2

�t + "
�
max :

A complete development of all the elements for matrix (4) is given
in the Appendix. The second matrix, (5), is computed from the vector
product E[�P od

t ]E[�P T
t ], where

E �P
od

t =

�dodt cos(�t�1)�
k

2L
sin(�t�1)tg �t + "�max

�dodt sin(�t�1)�
k

2L
cos(�t�1)tg �t + "�max

�d

L
tg �t + "�max

:
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Fig. 3. Odometry data obtained for the run path. The proposed path starts at
the origin (0,0), advancing from left to right in the graph to complete a round
trip.

The full expression for this second matrix is not included, due
to the length of the involved expressions. It can be easily and di-
rectly derived from multiplying E[�P od

t ]E[�P T

t ]. Finally, the
closed-form expression for the uncertainty in the odometry position
estimate will be given by subtracting the two recently computed
matricesE[�P od

t �P T

t ]�E[�P od

t ]E[�P T

t ]. The mathematical
expression for the final matrix is not meaningful by itself, it being
much more practical to use a computer code that computes both
matrices separately and then subtracts them.

V. ASSESSMENT OF RESULTS

To assess the effectiveness of the proposed method to compute the
uncertainty associated with the odometry position estimate of a mobile
vehicle, an experiment was designed and run using the AV described in
Section III. A 50� 40-m rectangular path, marked on the floor of the
ITESM parking lot, was followed while manually driving the described
AV. Data from internal sensors (encoders and steer angle) were gath-
ered during the run.2 Fig. 3 shows the obtained odometry data for coor-
dinates (x; y). Then, the uncertainty of the odometry position estimates
obtained with both an EKF and the proposed method was compared.
Figs. 4 and 5 show the obtained covariance, denoting the uncertainty
of the position estimates, for the x and y axes, using the proposed for-
mulation and an EKF, respectively.
It can be seen from Figs. 4 and 5 that the obtained uncertainty for

coordinates x and y using the method presented in this paper (about
10 m) is lower than that obtained with an EKF (about 17 m). It turns
out that the real measured position error for the used platform in the
run experiment is about 10 m (which means a covariance uncertainty
of about 100, as our method states).

VI. CONCLUSIONS AND FUTURE WORK

The position of a robot or an AV in a two-dimensional space can
be represented by the three components vector (x; y; �) where x and
y represent the position coordinates of the robot on the space, and
� its orientation. Thus, the robot position at time t is denoted Pt =
(xt; yt; �t)

T . There is always an error associated with the movement
of the autonomous platform. The imprecision in the position estimate

2Maximum velocity was 8 km/h. Sampling time interval was 10 Hz.

Fig. 4. Estimated position uncertainty for coordinates x, y using the presented
formulation.

Fig. 5. Estimated position uncertainty for coordinates x, y from an EKF. Note
the linearity and dependency to the orientation in the measurement, in regard to
the axis, given by the value steps.

is due to errors in the sensory system used to determinate such estima-
tions, as well as unmodeled factors in the vehicle model. These errors
are normally estimated from data derived from experimentation and
then integrated in algorithms, as for example, Kalman filtering, which
are highly sensitive to the obtained parameters.
We have proposed in this paper a way to obtain a closed-form ex-

pression for the position uncertainty, by means of a covariance matrix,
when position estimates are being obtained using internal sensors. The
proposed method is valid for any platform or set of sensors. We then
particularize the formulation in order to obtain a closed-form expres-
sion for the covariance matrix representing the measure of position un-
certainty for a given kind of AV, consisting of a nonholonomic Ack-
erman architecture. For the platform used in this study, it is important
to note that the instantaneous control variables are �dodt and �t, the
displacement in function of time and the steering angle, respectively;
these are the sole variables that the internal system can manipulate and
sense.
Even if a lot of research and experiments are left for the near fu-

ture, the initial experimental evaluation demonstrates that the proposed
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method computes the uncertainty in position with higher accuracy than
the standard EKF method. At the same time, the obtained data suggest
that the proposed method is independent of the orientation of the ve-
hicle in regard to the axis, in contrast to the EKF method, where the
uncertainty grows in regard to the axis to which the vehicle is oriented.
The authors are actually working on the integration of such a matrix
computation into a probabilistic frame (errors in the positioning sen-
sors can be assumed to be random, and can be modeled by a parametric
probability distribution) that allows performing data fusion from dif-
ferent positioning systems; concretely, work is being done on the inte-
gration of odometry and GPS measures. We hope that the formulation
presented in this paper will help to reduce errors when estimating the
position of the vehicle using different sources of data.

APPENDIX

A complete derivation of the terms of the first matrix expressed in
(4) is given here. The first element in (4) was calculated in Section IV.
Taking into account that the matrix is symmetric, and��t is small be-
tween two consecutive measures, the rest of the elements are calculated
as follows:

c12 = c21 = E �x
od

t �y
od

t

=E �d̂
od

t cos �t�1 +
��t

2
�d̂

od

t sin �t�1 +
��t

2

=E
1

2
�d̂

od

t

2

sin(2�t�1 +��t)

=
1

2
E �d̂

od

t

2

(sin(2�t�1) cos(��t)

+ cos(2�t�1) sin(��t))

=
1

2
E �d̂

od

t

2

(sin(2�t�1) + cos(2�t�1)��t) :

In the last three equalities, the following equivalences and assump-
tions have been used:

sin(2�) = 2 sin(�) cos(�)

sin(�� �) = sin� cos� � cos� sin �:

Going on the calculation and using some of the results given in Sec-
tion IV when computing c11

E �x
od

t �y
od

t

=
1

2
E �d̂

od

t

2

sin(2�t�1)

+
1

2
E �d̂

od

t

2

cos(2�t�1)��t

= � � � =
k1

2
sin(2�t�1) +

k2

2
cos(2�t�1)tg �t + "

�
max

= c12 = c21:

c13 = c31 = E �x
od

t ��
od

t

=E �d̂
od

t cos �t�1 +
��t

2

�d̂odt

L
tg(�̂t)

=
1

L
E �d̂

od

t

2

tg(�̂t) cos(�t�1) cos
��t

2

� sin(�t�1) sin
��t

2

=
1

L
cos(�t�1)E �d̂

od

t

2

tg(�̂t)

�
1

2L
sin(�t�1)E �d̂

od

t

2

��ttg(�̂t)

=
1

L
cos(�t�1)E �d̂

od

t

2

E tg(�̂t)

�
1

2L
sin(�t�1)E �d̂

od

t

2 �d̂odt

L
E tg(�̂t)tg(�̂t)

= � � � =
k1

L
cos(�t�1)tg �t + "

�
max

�
k2

2L
sin(�t�1)tg

2
�t + "

�
max :

The following equivalences have been used:

cos(�� �) = cos� cos� � sin� sin�:

c22 =E �y
od

t �y
od

t

=E �d̂
od

t sin �t�1 +
��t

2
�d̂

od

t sin �t�1 +
��t

2

=
1

2
E �d̂

od

t

2

(1� cos(2�t�1 +��t))

=
1

2
E �d̂

od

t

2

(1� cos(2�t�1) + ��t sin(2�t�1))

=
1

2
E �d̂

od

t

2

�
1

2
cos(2�t�1)E �d̂

od

t

2

+
1

2L
sin(2�t�1)E �d̂

od

t

3

E tg(�̂t)

= � � � =
k1

2
(1� cos(2�t�1))

+
k2

2
sin(2�t�1)tg �t + "

�
max

where the following equivalences have been used:

sin2 � =
1

2
(1� cos 2�); cos(�� �) = cos� cos � � sin� sin�:

c23 = c32 = E �y
od

t ��
od

t

=E �d̂
od

t sin �t�1 +
��t

2

�d̂odt

L
tg(�̂t)

=
1

L
E �d̂

od

t

2

sin(�t�1) cos
��t

2

+ cos(�t�1) sin
��t

2
tg�̂t

=
1

L
E �d̂

od

t

2

sin(�t�1) + cos(�t�1)
��t

2
tg�̂t

=
1

L
sin(�t�1)E �d̂

od

t

2

E tg�̂t

+
1

2L2
cos(�t�1)E �d̂

od

t

3

E tg
2
�̂t

=
k1

L
sin(�t�1)tg �t + "

�
max

+
k2

2L
cos(�t�1)tg

2
�t + "

�
max :
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The following equivalences and assumptions have been used:

sin(� � �) = sin� cos� � cos� sin�:

c33 =E ��
od

t ��
od

t

=E
�d̂odt

L
tg(�̂t)

�d̂odt

L
tg(�̂t)

=
1

L2
E �d̂

od

t

2

E[tg2�̂t]

=
k1

L2
tg
2

�t + "
�
max :
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A Stabilizing Receding Horizon Regulator
for Nonholonomic Mobile Robots

Dongbing Gu and Huosheng Hu

Abstract—This paper presents a receding horizon (RH) controller used
for regulating a nonholonomic mobile robot. The RH control stability is
guaranteed by adding a terminal-state penalty to the cost function and a
terminal-state region to optimization constraints. A suboptimal solution to
the optimization problem is sufficient to achieve stability. A new terminal-
state penalty and its corresponding terminal-state constraints are found.
Implementation and simulation results are provided to verify the proposed
control strategy.

Index Terms—Model predictive control (MPC), nonholonomic mobile
robots, receding horizon (RH) control.

I. INTRODUCTION

Regulating or stabilizing nonholonomic mobile robots is to move the
robot toward a goal pose from any initial pose. The linearized models
of nonholonomic systems are not controllable, and continuous time-in-
variant feedback control does not exist in the regulation problem [6].
So far, a number of control strategies have been proposed to handle
this problem, including Lyapunov control [1], [4], [7], [13], nonlinear
geometric control [5], [20], [21], [23], [26], discontinuous control [4],
piecewise-continuous feedback control [7], smooth time-varying con-
trol [20], [26], and dynamic feedback linearization [21].
Receding horizon (RH) or model predictive control (MPC) is one of

the frequently applied advanced control techniques in industry, which
is designed to handle optimization problems (OPs) with constraints.
Due to the use of a predictive control horizon, the control stability be-
comes one of the main problems. It was shown that using an infinite
receding horizon can guarantee RH control stability for even nonlinear
systems [17], but it is computationally intractable in practice. For a fi-
nite receding horizon, it was proved that the stability can be guaranteed
by forcing the terminal state to equal zero [25]. However, the terminal
equality constraint is time consuming. Further work shows that the ter-
minal-state equality constraint can be relaxed as a terminal-state in-
equality, i.e., a terminal-state region, by adding a terminal-state penalty
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