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Abstract—This paper introduces a novel method for wheel-slip-
page detection and correction based on motor current measure-
ments. Our proposed method estimates wheel slippage from motor
current measurements, and adjusts encoder readings affected by
wheel slippage accordingly. The correction of wheel slippage based
on motor currents works only in the direction of motion, but not
laterally, and it requires some knowledge of the terrain. However,
this knowledge does not have to be provided ahead of time by
human operators. Rather, we propose three tuning techniques for
determining relevant terrain parameters automatically, in real
time, and during motion over unknown terrain. Two of the tuning
techniques require position ground truth (i.e., GPS) to be available
either continuously or sporadically. The third technique does not
require any position ground truth, but is less accurate than the
two other methods. A comprehensive set of experimental results
have been included to validate this approach.

Index Terms—Mobile robot navigation, parameter estimation,
slippage detection, terrain factors.

I. INTRODUCTION

RELATIVE positioning systems, also know as dead-reck-
oning systems, use wheel encoders and a simple method

called “odometry” to estimate linear displacement. On smooth,
flat terrain, and in the absence of wheel slippage, odometry
is reliable and reasonably accurate over short distances, since
wheel revolutions correspond to linear travel distance. On off-
road terrain, especially on soft, sandy soil, odometry is typically
not considered useful, because the wheels frequently slip and
the measured rotation of the wheels does not accurately reflect
traveled distance. Such wheel slippage is expected in planetary
rovers traveling over sandy terrain, as well as many other mo-
bile robot applications on off-road terrain. In earlier work, we
proposed an odometry method that could provide good travel
distance estimates as long as at least one wheel was gripping (
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the opposite of “slipping”) [1]. However, on soft, sandy, rolling
terrain, all of the robot’s wheels are likely to slip simultaneously.
We refer to this condition as “all-wheel slippage” (AWS).

The extent and nature of AWS depend on many factors, such
as soil characteristics, terrain inclination, load, vehicle config-
uration, kinematic incompatibility [2], and a number of other
conditions. The interaction between wheels and terrain has been
the subject of several studies. Perhaps the best known and most
widely cited work is that of Bekker [3]–[5] and Wong [6]. Some
more recent work focused on the interaction between wheels
and terrain in conjunction with mobile robots [8]. Specifically,
[9] studied terrain classification, [10] analyzed traversability,
and traction control was studied in [11] and [7].

In this paper, we introduce a system for the correction of
odometry errors on sandy terrain, such as that encountered
by planetary rovers. We developed our system specifically
for the six-wheel drive/six-wheel steer rovers developed by
the Jet Propulsion Lab (JPL) (Pasadena, CA) for planetary
exploration [12]. For the extensive testing of our system during
its development, we built a fully functional and kinematically
equivalent clone of JPL’s Fido-class rovers [13]. Our clone,
called “Fluffy” and shown in Fig. 1, is about half the size of
Fido, but it features the same six-wheel independent-drive
steering and a rocker-bogie passive suspension system.

Fluffy is equipped with an onboard inertial measurement unit
(IMU) that uses three fiber-optic gyros for estimating the spatial
orientation of the robot, two accelerometers for static tilt mea-
surements, and six independent wheel encoders for odometry.
Data from these sensors is fused by our unique Fuzzy Logic and
Expert rule-based Navigation (FLEXnav) system [14]. On low-
slippage terrain, the FLEXnav system is quite accurate, with er-
rors typically smaller than 1% of overall travel distance. How-
ever, in the presence of significant AWS, position errors may
become huge. Somewhat related work, for the case of agricul-
tural soils, was presented in [15]. In this paper, the author re-
lates torque and wheel slippage using a simplified linear model,
which is used in combination with an extended Kalman filter to
correct odometry.

In order to allow useful dead-reckoning even on high-slip-
page terrain, we developed our system for current-compensated
odometry, called “iComp.” Our proposed system comprises two
functional modules, as shown in Fig. 2.

1) All-wheel slippage detection (AWSD) module. This
module works in real time and does not require refer-
ences to external markers or beacons.

1552-3098/$20.00 © 2006 IEEE
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Fig. 1. University of Michigan-built Fluffy and a block diagram of the FLEXnav dead-reckoning system with wheel-slippage detection and correction. Note that
each wheel has its own drive motor.

Fig. 2. Our proposed wheel-slippage detection and correction system is made up of two modules, the AWSD module and the iComp module.

2) Current compensation (iComp) module. This module
corrects encoder readings so that the effect of AWS is
greatly reduced or eliminated. The iComp module is
based on our linearized slippage model, which relates
wheel slippage to motor currents. We developed three
different techniques for estimating the parameters for
this model automatically.

SectionIIpresentsadetailedanalysisofour linearizedslippage
modelanddescribesourthreetechniquesforestimatingthemodel
parameters. Section III explains and illustrates, using actual ex-
perimental data, how our linearized slippage model is used to cor-
rect encoder readings from slipping wheels. Section IV presents
experimental results, and Section V, our conclusions.

One limitation of our approach is that our odometry correc-
tion applies to slippage along the longitudinal direction of motion
only. However, in the presence of side forces, the wheels move at
an angle (slip angle) with respect to the wheel plane, resulting in
lateral slip [6]. This problem is not addressed in this paper.

II. WHEEL-SLIPPAGE DETECTION AND ESTIMATION

In this section, we present a theoretical analysis of wheel slip-
page on soft terrain, and we explain our approach to estimating
the parameters needed for our real-time wheel-slippage detec-
tion and correction method.

A. Theoretical Analysis

One widely accepted model for the prediction of wheel slip-
page on any terrain is the so-called Coulomb-Mohr soil failure
criteria [3]. According to the Coulomb-Mohr soil failure cri-
teria, total (100%) wheel slippage occurs when the shear stress
applied to a given terrain exceeds the maximum shear stress

that the terrain can bear

(1)

where
cohesion of the soil;
internal friction angle of the soil;
maximal normal component of the stress region at the
wheel-terrain interface.

In order to describe the full range of operation of the wheel-
slippage condition, the shear stress on loose sand may be de-
scribed by an exponential function (see Fig. 3) [16]

(2)

where
shear displacement;
shear deformation modulus;
normal stress.

Considering that is a constant obtained by a different
process, it should not be part of Fig. 3. The normal or radial
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Fig. 3. Wheel-soil interaction model (adapted from [5]).

stress , the wheel sinkage , and the wheel width , are related
according to the following equations [3]:

(3)

where
cohesive modulus of terrain deformation;
frictional modulus of terrain deformation;
exponent of terrain deformation.

The maximum normal stress occurs at point and can be
computed using [17]

(4)

where is the angle between vertical and leading edge of wheel
contact patch, and is the wheel slippage.

The normal pressure can be split in two regions. The front
region , located between the maximum pressure and

, and the rear region , from to . The angle is
measured between the vertical and trailing edge of the wheel; it
is normally small and can be neglected. The normal
pressure for the front and rear regions can be computed as a
function of the angle , as follows [17]:

(5)

(6)

Shear displacement is related to wheel slippage and to
angle , according to

(7)

Combining (2) and (7), the shear stress around the rim can be
calculated as

(8)

The normal stress can be resolved for the front and rear
regions using (5) and (6), respectively. The torque , with which
the soil resists the rotation of the wheel, can be computed as the

integral of the shear stress over the contact patch with respect to
[17]

(9)

Assuming that , torque can be obtained from

(10)

In order to solve (10), must be determined, and for this
purpose, we use the following equation [17]:

(11)

Equation (11) should be expanded in similar manner as shown
with (9). Equation (11) is too complex and cannot be solved
analytically; nevertheless, provided that is known, the right
side of (11) can be computed numerically for different values

until finding a value that solves the equation. For a detailed
explanation of this method, see [17]. Once the torque has been
determined, the motor current , which is known to be roughly
proportional to torques applied to the wheels, can be determined
according to

(12)

where is the torque constant scale factor.
By combining (10) and (12), motor currents and slippage can

be related, provided that all the other parameters are known.
Using soil parameters for sand [6] (see Table I) and the param-
eters of our rover Fluffy, we created Fig. 4, which shows the
relationship between current and slip . This graph was cre-
ated by simulating different amounts of slippage and solving
(4) to (12), the integrals were evaluated numerically using the
Simpson method.

On frictional soils (such as dry sand), when the wheel slips,
it also sinks. This phenomenon, called “slip-sinkage effect” [4],
is already considered in the equations used for this simulation.

The wheel slippage can be defined as

(13)
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TABLE I
SAND PARAMETERS USED FOR SIMULATIONS

Fig. 4. Wheel slippage versus motor currents relationship model with
slip-sinkage effect.

with as the linear speed of the wheel, and as the angular
rate of the wheel. Observe that the term is the measured
linear speed of the wheel or relative speed registered by wheel
encoders.

For a wheel moving at relative linear speed , we define
the parameter velocity slippage correction, , which represents
the correction value to be used for slippage compensation in
Section III, and is related to wheel slippage as follows:

(14)

In all the experiments reported in this paper, our rover Fluffy
was commanded to travel at a fixed speed of 60 mm/s , as
this is the envisaged top speed for the Mars Rover 2009 mission.
Fig. 5 shows the resulting velocity slippage correction versus
motor current graph.

The curve of Fig. 5 can be approximated by a linear equa-
tion without losing much accuracy. This approximation simpli-
fies the real-time parameter-estimation techniques presented in
the next section. The intersection of line with the -axis
is of great physical significance: it represents the onset of wheel
slippage. We denote the motor current associated with this point

, and we call the slope of the linear approximation the scale
factor for slippage correction, . The complete equation that de-
termines the slippage conditions for the robot can now be written
as follows:

otherwise
(15)

Fig. 5. Velocity slip correction vs. motor currents relationship. (Dark dots)
simulated model expressed in terms of velocity slippage correction. (Gray solid
line) linear approximation.

where is the scale factor for slippage correction, and is
the onset of wheel slippage.

The simplified model has the advantage of being entirely de-
fined by two constants, and ; it is easy to implement in
software and has low computational cost. In the remainder of
this paper, we will make extensive use of this approximation
model.

B. Real-Time Parameter Estimation

The accuracy of the velocity slippage correction versus motor
current model of the preceding section depends on the accu-
racy of many empirically found constants. For many applica-
tions (e.g., planetary exploration) that information may be in-
complete, inaccurate, time-varying, or simply not available at
all. For this reason, we explored alternative methods that help
determine the parameters and . Among the parameter-es-
timation methods we evaluated, we found three to be particu-
larly effective. Method I requires an external absolute position
reference (i.e., a position measurement that does not depend on
odometry) that is available continuously. Because of this con-
straint, this method is unlikely to be useful in a real planetary
rover application. Method II requires an external absolute posi-
tion reference that is available sporadically. Method III can be
applied if no external absolute position reference is available.

1) Method I: Parameter Estimation Based on Continuously
Available Absolute Positions: For this procedure, we require
an absolute position system reference during the parameter-es-
timation stage. This absolute reference allows us to derive the
ground-truth speed of the robot , while the robot moves under
varying slippage conditions. This was achieved by holding back
the robot manually, using strings attached to the back of the
robot. While measuring the ground-truth speed , our system
also measures the relative speed based on wheel encoders.
We recognize that holding the robot to introduce slippage is not
the same as incurring wheel slippage in regular operation. How-
ever, as the discussion in Section III will show, these two sources
of wheel slippage are effectively quite similar.
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Slippage can be estimated by redefining (13)

(16)

and slippage correction can be computed as

(17)

By measuring and computing under different slippage
conditions, while recording motor currents corresponding to
these conditions, we can sample multiple data pairs .
Using the least-squares algorithm, a straight line is fitted to the
data pairs to define the linearized function according to
(15).

C. Experimental Results

For this experiment, the robot was commanded to move
straight forward. The speed was set at 60 mm/s and the total
traveled distance was about 2 m. The hard and flat floor was
covered by a layer of about 5 cm of loose, dry sand, and the
entire experimental area was within the range of our so-called
sonar-based absolute positioning system (SAPS). The SAPS is
a position-measurement system that uses four sonar receivers
at the corners of a rectangular test area, and a star-shaped array
of sonar transmitters onboard the robot to measure the 2-D
location of the robot within the test area. Ground-truth speed

can be measured at any given sampling interval , using

(18)

where is the sampling period, and is the distance trav-
eled during sampling period .

At a speed of 60 mm/s and at the sampling rate of 20 Hz, the
robot only moves an average of 3 mm per absolute sampling
interval . Since the accuracy of the SAPS is also on the order
of 3 mm, measuring speeds with the SAPS is not very accurate,
the measurements are noisy, and only relatively large changes
in speed can be detected by the SAPS.

Using the ground-truth speed of (18), we rewrite (17) in dis-
crete form

(19)

We should explain, though, that the front wheels of Fluffy
(as well as those of JPL’s Fido) carry only a disproportional
small load. For this reason, we disregard the currents of the front
motors. Instead, the overall motor current is determined as the
average of the four current measurements on the motors of the
center and rear wheels

(20)

where is the number of motors used to estimate the
average current.

Although the drive motors used in Fluffy have a high gear-re-
duction ratio (218.4), we were able, under most conditions, to
measure torque changes in the wheels using motor current sen-
sors. The results of numerous measurements relating slippage

Fig. 6. Velocity slippage correction versus motor currents. Dark dots:
experimental determined data pairs. Gray solid line: linear approximation.

correction (19), and motor currents (20), are plotted in Fig. 6.
Although the relationship is affected by noise, it still resembles
a straight line in the slippage region, as we show in the pre-
vious theoretical analysis. A straight line that fits this data can
be obtained applying the least-squares algorithm in the slippage
region (see Fig. 6). The constants and can be obtained
directly from the linear equation, as explained in Section II-A.

1) Method II: Parameter Estimation Based on Sporadically
Available Absolute Positions: In many applications, an abso-
lute position reference may not be available continuously, as was
the requirement for the previous method. For this (more likely)
case, we developed the method described in this section. For
this method, it is sufficient if absolute position measurements
are available sporadically and at no particular time interval. As-
suming that slippage is the primary source of error for a robot
moving on homogeneous terrain, at any random sampling in-
terval when an absolute fix is available, the total accumulated
error in positioning up to that point can be expressed as the
sum of the individual errors . According to (15), the error
due to slippage is a function of the motor currents; therefore, the
total accumulated error can be approximated as

(21)

where is a random sampling interval at which an absolute
position is available.

The scale factor for slippage correction can be expressed in
terms of the other variables as follows:

(22)

When another absolute position is available at a second
random time interval , the positioning error can be
calculated. As long as the robot is moving on the same terrain,
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the scale factor for slippage correction, as well as the onset for
wheel slippage, should remain the same, hence

(23)

Equation (23) can be solved for and for any pair of abso-
lute positions collected at intervals and by identifying
a value that satisfies the following equation:

(24)

Note that in (24), appears in the third and fourth terms.
is also implicit in the first and second terms because of the

condition . For this reason, the solution is not straight-
forward, and numerical methods are necessary to solve it. To this
end, we use a gradient descendent algorithm and start with an
initial guess for . The algorithm then iteratively updates its
value so that in every step, it incrementally moves in the direc-
tion that minimizes the left side of (24). Once has been es-
timated, the scale factor can be computed directly using (22).

a) Experimental Results: For this experiment, we used
a similar experimental setup to the one in Section I, including
the SAPS. However, although the SAPS provides contin-
uous absolute position data, we disregarded the continuous
data and randomly selected five absolute positions at time
intervals . The only condition was that

. As before, the robot moved straight
ahead at 60 mm/s, therefore, the positioning error can
be computed as the difference between the position of the
robot seen by the SAPS and the relative position estimated by
odometry at time

(25)

where
absolute position of the robot;
relative position of the robot estimated by odometry;
random sampling interval at which an absolute position
is available.

After solving (24), is estimated, and with this result, (22)
is applied to compute the scale factor . Fig. 7(a) and (b) show
the parameter-estimation percentage error of and . We use
as baseline (nominal value) the parameters obtained with the
previous method as the robot moves forward.

In both cases, the accuracy of the estimation of the parameters
and improves with the traveled distance. That is because

at the beginning of the experiment, the error due to slippage is
still comparable to the resolution of the SAPS; however, as the
robot moves, the positioning error becomes much larger than
the resolution of the SAPS. For the results presented in Fig. 7,
random data points were chosen 7–12 s apart from each other.

2) Method III: Parameter Estimation Based on Induced Slip-
page in a Single Wheel: The main drawback of the two previ-
ously described methods for parameter estimation is that they
require an absolute position reference. Such a reference, how-
ever, may not be available in all applications. For this reason,
we developed a third method for parameter estimation. With this

Fig. 7. Parameter-estimation percentage error using sporadically available
absolute positions. (a) Onset current for wheel slippage. (b) Scale factor for
slippage correction. Note that the horizontal axis does not represent time, but
the index of the random sampling realization, when the absolute position was
available. The absolute intervals were chosen randomly in an interval of 7–12 s
apart from each other.

method, no absolute position reference is required at all. On the
other hand, the method is only applicable to mobile platforms
with four or more individually driven wheels.

With this method, the robot is commanded to move all six
wheels at a constant speed . Then the speed of one of the
wheels, , is gradually increased. Slippage and slippage cor-
rection can be estimated by redefining (16) and (17) as follows:

(26)

(27)

Once the slippage correction is established, it can be corre-
lated with the motor currents to define . Due to noise in the
measurements, a least-squares algorithm will have to be used to
define .

For a robot with uneven weight distribution, this procedure
should be repeated for every wheel that bears significant and
different weight. However, if the amount of weight that a wheel
supports is disproportionably small, it can be ignored, as in the
case of the front wheels of our rover.

Since different loads on the wheels will result in different
values for and for each wheel, the final result must be
computed as the average of the individual wheel contributions

(28)

(29)

where is the number of motors used to estimate the
average current, and is the motor index.

b) Experimental Results: The setup for this experiment
was similar to the setup of the two other methods, and the speed
of all six wheels was again 60 mm/s. Every 10 s, the speed of one
of the center wheels was increased by 5 mm/s [see Fig. 8(a)].
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Fig. 8. Speed and motor current for Method III (single wheel being accelerated
while all other wheels remain at constant speed). (a) Dark line: speed of the
slipping wheel; gray line: average speed of the nonslipping wheels. (b) Dark
line: motor current on slipping wheel; gray line: average current on nonslipping
wheels.

Fig. 9. Velocity slippage correction versus motor currents for Method III. Dark
gray dots: one of the center wheels, light gray dots: one of the rear wheels. Black
dashed lines: best line fit for each wheel. Black continuous line: solution found
using Method I, continuously absolute position.

During this time, the current of the motors was recorded [see
Fig. 8(b)], for subsequent use in defining the slippage-current
line . This procedure continued until the slipping wheel
reached a maximum speed of 100 mm/s, corresponding to 40%
slippage. We confirmed using the SAPS that the average speed
of the robot is determined by the majority of the wheels, and
that the single wheel needs to slip in order to reach the higher
commanded speed.

Using the velocity-slippage information and the corre-
sponding motor currents, we defined the slippage-current line

(see Fig. 9). Because of the uneven weight distribution
between the center and rear wheel pairs in our rover, we re-
peated the same procedure using one of Fluffy’s rear wheels.
The final parameters, and , were obtained as the average
of both results. The resulting single slippage-current line

coincides exactly with that line as determined by Method I. In
summary, Table II lists the advantages and disadvantages of
each of the three methods presented in this paper.

III. SLIPPAGE CORRECTION (ICOMP)

This section describes our approach to correcting wheel slip-
page-incurred odometry errors, based on the velocity slippage
correction versus motor current function . We recall from
the previous section that is a linearized function defined
by the parameters and . These parameters can be found by
any one of the three methods described in Section II.

In the practical implementation of (15), we compute the
motor current as the average of the motor currents [see (20)]
of the rear and center wheel pairs. As noted earlier, the currents
of the two front wheels are always disregarded, because those
wheels bear only a small portion of the rover weight. We
emphasize that although is computed as the average current
from four drive motors, the correction [see (30)] is applied
only when all four motor currents individually exceed .
One should note that when a wheel climbs up a rock, the motor
current may also exceed , even though the wheel is not
slipping. However, the AWS flag is only raised if the currents
of all four motors of the center and rear wheel pairs exceed
in the same sampling interval.

As a further refinement, we take into account that when the
rover climbs up a slope, less of its weight acts as a force normal
to the surface. As a result, slippage will occur at lower levels of
wheel torque. We account for this fact by lowering the current
threshold that signifies the onset of slippage, , by an empir-
ically determined factor . Therefore (15) can be rewritten as

otherwise
(30)

where is the motor index (only center and rear wheel pair
motors are being considered), and is the rover’s pitch angle
as derived by the onboard IMU.

The logical extension to these improvements would be adding
compensation for changes in the roll angle. However, we must
be careful when doing so, because changes in the roll angle may
also be accompanied by lateral slippage, which cannot be cor-
rected by our method. We should point out that for relatively
small angles, the improvement resulting from pitch compensa-
tion is very small, and may be omitted. This can be explained
by the fact that the normal weight [left side of (11)] changes as
a function of the cosine of the tilt angle, therefore, only large tilt
angles would produce a significant change in (11).

In the remainder of this section, we illustrate the slippage-cor-
rection process with the help of data and results from a typ-
ical experiment. In this experiment, we used our SAPS to mea-
sure ground-truth speed, while Fluffy was commanded to move
straight forward on sand and at a constant speed of 60 mm/s.
Slippage was intentionally induced by holding the robot back
manually during varying periods of time (see Fig. 10).

As was shown earlier in Fig. 2, our system comprises two
modules: the AWSD module and the iComp. During opera-
tion, the AWSD module monitors the four motor currents of the
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TABLE II
COMPARISON OF PARAMETER-ESTIMATION METHODS

Fig. 10. Speed of an intermittently slipping rover measured by our external
absolute position sensor (black dots), and wheel encoders (gray solid line).

center and rear wheel pairs. Motor currents for this typical ex-
periment are plotted in Fig. 11. If and only if all four motor cur-
rents exceed (shown as the dotted line), AWS is flagged.
When the AWS flag is high, then iComp applies (30) to the av-
erage motor current plotted, and computes the slippage-correc-
tion values plotted in Fig. 12. The momentary slippage-correc-
tion value is then subtracted from the linear speed measured by
the wheel encoders as

(31)

where is the final, corrected speed of the rover.
Fig. 13 shows that speed plotted over the SAPS-measured true

speed, the improvement over the uncorrected speeds shown in
Fig. 10 is obvious and significant.

Fig. 11. Solid lines: motor currents for the four relevant wheels, during the
experiment of Fig. 10. Dashed gray line: threshold for the onset of wheel
slippage, denoted I .

With the corrected speed of the robot, we can calculate the
corrected traveled distance

(32)

One should note that when a wheel climbs up a rock, the
motor current might also exceed , even though the wheel is
not slipping. However, the AWS flag is only raised if the currents
of all four motors (center and rear wheel pairs) exceed in
the same sampling interval. Thus, a false positive (i.e., flagging
wheel slippage while there actually is none) may happen only if
all four wheels climb up rocks at the same time, an event quite
unlikely in practice.
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Fig. 12. Velocity slippage compensation for the experiment of Fig. 10
computed according to the linear function S (I2) (30).

Fig. 13. After applying the slippage compensation of Fig. 12 to the encoder
readings of Fig. 10, the speed of the robot measured by our external absolute
reference (black dots), and wheel encoders after slippage compensation (gray
solid line), match very well.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results aimed at as-
sessing the overall effectiveness of the iComp method. In all
experiments described in this section, we performed some runs
on homogenously sandy terrain, and other runs on nonhomoge-
neous sandy terrain that had fist-sized rocks embedded in the
sand. We created two experimental arenas.

1) A straight-line path over sandy terrain, which had just
one single terrain feature: a sandy mound. For different
runs, we changed the height of the mound in fixed incre-
ments, in order to assess the effect of the controlled slope
on the accuracy of the iComp method.

2) A closed-loop path inside a large sandbox, in which the
robot encountered several mounds of sand, as well as 90
turns in the four corners of the rectangular path, con-
tributed to the overall errors.

In all cases, compensation was applied using (30), that is, using
the improved equation that compensates for changes in the pitch
angle. In the experiments described in Section IV, slippage was

not induced by holding the robot back manually. Rather, slip-
page was always the result of natural causes, such as driving
uphill on a sandy slope.

A. Straight-Line Experiments

We performed two sets of experiments along a 4-m straight
path on sand, which included a single sand mound of various
heights. In the first set of experiments, we created the mounds
from loose sand only. Depending on the height of the mount,
this would create more or less slippage. In the second set, we
embedded rocks in the sandy surface of the mounds. Doing
so significantly reduced the amount of slippage, even for the
higher mounds. The purpose of including the rocks was to create
conditions in which motor currents surpassed , but without
causing AWS. We recall that condition is overly con-
servative, and may be true when a wheel encounters a rock.
However, we also recall that AWS is only flagged if indeed all
wheels match the condition at the same time. The
nominal speed was 60 mm/s in all runs.

In both sets of experiments, we ran Fluffy over a single
mound, which had different heights in different runs: 10, 15,
20, and 30 cm. The nominal travel distance was m.
Because of the 3-D nature of the terrain, Fluffy employed our
FLEXnav dead-reckoning system (mentioned in Section I and
shown schematically in Fig. 1), instead of plain odometry,
to determine the end of the 4-m trip. The distance between
Fluffy’s final stopping position and the nominal target at the
4-m mark constitutes the position error of a run. Notice
that in this type of experiment, we are only concerned with the
error along the longitudinal direction. This is because a small
misalignment can cause relatively large errors in the lateral
direction, which may appear as outliers.

For each mound height, we performed runs and we com-
puted the average error as the average of absolute errors

(33)

Finally, we expressed the average error as a percentage of
travel distance, , according to

% (34)

We disregarded any errors in the lateral direction, since these
errors are mainly the result of misaligning the initial orientation
of the robot.

1) Experimental Set 1a: Pure Sand Mounds: The results of
the experiments with pure sand mounds are plotted in Fig. 14(a),
and a numeric summary is shown in Table III. The circular
markers show runs with FLEXnav, but without iComp, and the
square markers show runs using FLEXnav with iComp. As is ev-
ident from comparing the error with “FLEXnav only” with that
of “FLEXnav + iComp,” our slippage-compensation method
iComp yields a reduction in position errors of as much as one
to two orders of magnitude. Indeed, the more slippage there is
(higher sand mounds produce more slippage), the greater the
improvement achieved with our iComp method.

2) Experimental Set 1b: Sand Mounds With Rocks: The
iComp method assumes that any motor current in excess of
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Fig. 14. Final positioning error for 4-m straight-line runs across one sandy mound. The mound had different heights in different runs and consisted of (a) sand
only; (b) sand with embedded rocks.

TABLE III
SUMMARY OF POSITION ERRORS AT THE END OF EXPERIMENT 1, A 4-m STRAIGHT-LINE PATH WITH

MOUNDS OF DIFFERENT HEIGHTS, WITH AND WITHOUT EMBEDDED ROCKS

is either the result of wheel slippage or of the wheel climbing
up a rock. To distinguish between these two possibilities, the
iComp method flags AWS only if all four weight-bearing wheels
(center and rear wheel pairs) simultaneously meet the condition

. In order to verify the effectiveness of this approach, we
performed the experiments of Set 1b. In this set of experiments,
fist-sized rocks were embedded in the sand mounds of Set 1a
and at other places along the 4-m straight test path. All other
conditions were the same as in Experimental Set 1a.

The results of the experiments of Set 1b are plotted in
Fig. 14(b), and a numeric summary is given in Table III.
Comparing the errors of the “FLEXnav + iComp” columns
for Experimental Sets 1a and 1b, it is evident that the errors
in Set 1b are slightly larger. That suggests that our method for
distinguishing motor current increases due to wheel slippage
from those due to climbing up a rock is not perfect. However,
even with that imperfection, the iComp method still performed
up to one order of magnitude better than FLEXnav only.

B. Closed-Loop Experiments

In this section, we provide comprehensive experimental re-
sults obtained with different navigation features on different ter-

rains. Specifically, we created in our sandbox two different ter-
rains (Fig. 15).

1) Sand-covered terrain with two small sand mounds and
with fist-sized rocks embedded in the sand mounds, so
that the top half of each rock was sticking out of the
sloped surface. On this terrain, slippage was minimal.

2) Sand-covered terrain with two large sand mounds and no
rocks. This terrain produced much slippage.

We refer to sets of multiple runs on each of the two terrains
as one experiment. Each of the two experiments consisted of
four runs in clockwise (cw) and four runs in counterclockwise
(ccw) directions. Running in both cw and ccw directions is very
important. If a mobile robot is tuned and tested in only one di-
rection, then it is highly likely that the key parameters are tuned
in such a way that dominant systematic error sources (such as
those resulting from inaccuracies in measuring track width and
wheel diameters) compensate for each other, and great accu-
racy is seemingly achieved. However, if the robot is run in the
other direction, then those error sources no longer compensate
for each other but rather add up, resulting in potentially large
errors. A detailed analysis of this subject is given in [18]. That
paper also explains that a third significant error, the error in
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Fig. 15. Experimental setup for the closed-loop experiments. (a) Fluffy driving down a steep slope. (b) Actual 3-D trajectory of the rover during a typical single-lap
run. It shows the light-gray colored parts of the trajectory in which AWS was flagged.

TABLE IV
EXPERIMENTAL CONDITIONS AND RESULTS FOR THE THREE EXPERIMENTS DESCRIBED IN THIS SECTION. SEE FIG. 16 FOR DETAILED RESULTS. NOTE:

“cw” STANDS FOR “CLOCKWISE” AND “ccw” STANDS FOR “COUNTERCLOCKWISE”

determining the effective wheel radius, can be eliminated in a
trivial fashion prior to the cw and ccw experiments. To do so,
the robot is driven along a straight line. Then, when stopped,
the experimenter compares the actual travel distance with the
travel distance reported based on odometry. The difference be-
tween those two measurements shows the effective wheel radius
error, which can then be corrected in software.

Running closed-loop experiments allows performing long-
duration experiments in relatively small areas, such as in our
sandbox. When designing the experiments, each of the mounds
was located on adjacent sides of the almost rectangular closed
loop [Fig. 15(b)]. This configuration assures that errors occur-
ring on one side of the rectangular path were not compensated
by similar errors occurring on the opposite side. In those ex-
periments in which only little slippage occurred, the final po-
sitioning error after completing one loop was often too small
and hard to measure. In order to amplify the errors, we had
Fluffy complete three loops before measuring the final posi-
tioning error.

In each run, Fluffy traveled autonomously along a prepro-
grammed, near-rectangular path. As explained above, each run
consisted of three uninterrupted loops, resulting in a total travel
distance of m per run, and a total of 1080 degrees of
turning. The speed in all runs was 60 mm/s, and the rover did
not stop before turning.

Fluffy started each run at a marked location (0, 0) and at the
end of the run stopped at (what it “thought” was) the same posi-
tion (0, 0). The discrepancy between the actual stopping position
and the starting position, measured with a tape measure, is the
so-called “return position error.”

In each run, we collected data from all onboard sensors. Then,
in postprocessing, we computed the final positioning error. As
in the straight-line experiment, position estimation was based
on FLEXnav, not on plain odometry. The computation of return
position errors was performed in two different ways, FLEXnav
alone and FLEXnav combined with our iComp slippage detec-
tion and correction method. Table IV shows the results of the
two experiments in matrix form.

The average absolute positioning errors and were
computed as

(35)

(36)

where
return position error in X-direction;
return position error in Y-direction;
number of runs per direction and per terrain.
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Fig. 16. Return position errors for the closed-loop experiments of Fig. 15.
“cw” stands for clockwise, and “ccw” stands for counterclockwise.

The absolute error was computed as

(37)

and expressed as a percentage of total travel distance using

% (38)

Fig. 16 shows the return position error for each run in graph-
ical form.

V. CONCLUSION

In this paper, we introduced a method for detecting and cor-
recting odometry errors caused by AWS in planetary rovers and
other robots with multiple, independently driven wheels. The
method is based on the relationship between electric currents
in the drive motors and the wheel/terrain interaction. We in-
troduced a linearized function that approximates this relation-
ship, and we proposed three different methods for estimating
the two parameters of this linearized function. Each of the three
parameter-estimation methods is applicable for a different appli-
cation domain. Methods I and II are useful in applications where
ground-truth speed data is available continuously or sporadi-
cally, respectively. Method III is useful even if no ground-truth
speed data is available at all, provided the robot has at least four
independently driven wheels. The experiments described in this
paper show that the three parameter-estimation methods define
linearized slippage-current functions that match the true slip-
page-current relationship for the test vehicle driving on loose
sand quite well. In a real application, the presented parameter-
estimation methods can be applied repeatedly and in real time,
in order to account for varying terrain conditions.

The paper also shows how the linearized slippage-current
function, defined by any one of the parameter-estimation
methods, can be used to correct for odometry errors due to
slippage on the same terrain. Comprehensive experiments
demonstrated the overall effectiveness of our iComp method

for odometry error detection and correction on sandy terrain.
Our method works also on nonhomogeneous terrain with
occasional rocks embedded in the sand. While on such terrain,
our system cannot correct odometry errors incurred by wheels
slipping on rocks, it avoids applying slippage correction that is
correct for sand when wheels drive over rocks.

As the results obtained with our Mars-rover-type platform
show, odometry errors caused by wheel slippage during the tra-
verse of arbitrarily high sand mounds are effectively reduced by
our method. Errors were reduced by up to one order of mag-
nitude when compared with conventional dead-reckoning on
the same terrain. Even under conditions of extensive AWS, the
iComp method kept dead-reckoning errors to well under 1% of
the total travel distance.
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