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Abstract—In this paper we present the design of flight control
algorithms for flapping wing micromechanical flying insects
(MFIs). Inspired by the sensory feedback and neuromotor struc-
ture of biological flying insects, we propose a similar top-down
hierarchical architecture to achieve high performance despite
the MFIs’ limited computational resources. Flight stabilization
is formulated as high frequency periodic control of an under-
actuated system. In particular, we provide a methodology to
approximate the time-varying body dynamics caused by the
aerodynamic forces with time-invariant dynamics using averaging
theory and a biomimetic parametrization of wing trajectories.
This approximation leads to a simpler dynamical model that
can be identified using experimental data from the onboard
sensors and the input voltages to the wing actuators. Moreover,
the overall control law is a simple periodic proportional output
feedback. Simulations, including sensor and actuator models,
demonstrate stable flight in hovering mode.

Index Terms—flapping flight, micro
biomimetic, periodic control, averaging.

aerial vehicles,

I. INTRODUCTION

actuation is presented together with a list of references to
relevant research. Here, we focus on the control aspects of
flapping flight for MFIs. In particular, we propose a hi-
erarchical architecture for the control unit that mimics the
sensory feedback and neuromotor structure of biological flying
insects to achieve high performance while satisfying MFIs
physical and computational constraints. One of the major
contributions of this paper is to approximate the time-varying
(TV) dynamics of insect flight caused by the flapping wings
with a simpler time-invariant (TI) system whose controllers
can then be formulated using standard control design tools.
This approximation relies on two ideas that can be formalized
within the framework of high-frequency control theory. The
first key idea is that the frequency of the aerodynamic forces
acting on the insect is much larger than the bandwidth of body
dynamics, and, therefore, only the mean aerodynamic forces
and torques affect the insect dynamics. The second idea is
to parameterize the wing trajectory within a wingbeat period
using some biologically inspired wing kinematic parameters,

The recent interest in micro aerial vehicles (MAVs) [1]yvhich affect the distribution of aerodynamic forces within

largely motivated by the need for aerial reconnaissance robBt§ wingbeat, thus modulating the total forces and torques
inside buildings and confined spaces, has galvanized ffging in the insect center of mass. These parameters appear
development of inch-size flapping wing MAVs that couldS virtual inputs in the Tl approximation of flight dyn:_;\mlc_s.
mimic at least part of the extraordinary performance of inseEinally, we show how the parameters of the Tl approximation
flight. This is a challenging endeavor for several reasorf" be identified directly from sensors measurements and
First, aerodynamics for inch-size flapping robots differ greatfFtuators input voltages obtained from experiments from the
from manmade fixed or rotary-winged vehicles [2]. SeconfU€ TV system. This approach is particularly suitable for
size constraints forbid the use of rotary electric motors adi@PPing flight since it does not require the knowledge of exact
commercial inertial navigation system (INS), global positior@erodynamics models, which are particularly complex. Also, it
ing systems (GPS) and current cameras. Finally, a ﬂappi%)v!des g'model foruncertalnty caused by sensor and actuator
frequency beyondl00H: requires sensors and processingg”“nea”“es and external disturbances that can be used to
algorithms with bandwidth and sensitivity at least one order §€Sign robust controllers. _ _
magnitude higher than those usually found in today’s aircrafts. The paper is organized as follows. In Section |1, we briefly
Nonetheless, recent technological advances, together with Bg¥iéw biological literature about insect flight control mecha-
ter understanding of insect aerodynamics and biomecharfégMs, focusing on the interaction between the sensory system
have promoted projects aimed at the design of Micromecha#d the neuromotor architecture. In Section Ill the hierarchical
ical Flying Insects (MFIs) [3] [4]. architecture of flight control observed in true insects, and
The goal of this paper is to develop a general framewolRe helicopter attltL_Jde—based navigation are then used as a
to design a control unit for MFIs which would enable thenfodel for the design of an equivalent control system for
to accomplish complex autonomous tasks such as searf¥f!S: In Section IV we highlight analogies and differences
ing, surveillance and monitoring. This paper builds upon 2tween flapping flight and helicopter flight. In Section V we
companion paper [5] where comprehensive modeling of MEfOPOSe a formal approach to approximate the time-varying

aerodynamics, body dynamics, sensors, and electromecharifégffct dynamics with a time invariant dynamics based on
averaging theory and wing trajectory parametrization. Section
This work was funded by ONR MURI N00014-98-1-0671,0NR DURIFVI presents the design of the input voltage to the actuators

N00014-99-1-0720 and DARPA. . . . that is required to track a desired wing trajectory. In Section
Authors are with the Robotics and Intelligent Machines Lab in the Depar\tg | del i t d - di te fi d
ment of Electrical Engineering and Computer Sciences at the University \l we model Insect dynamics as a discrete ume dynam-

California at Berkeley ical system where the input are the kinematic parameters



defined in the previous section. Closed-loop identification i _ Inertial motor
then implemented to estimate the discrete-time system. Wing control signals
identified model is then used to design LQR-based feedb muscles et
laws for hovering. Finally, in Section VIII, conclusions an
future research directions are presented.

II. INSECTFLIGHT SENSORS ANDCONTROL
MECHANISMS

Flies have inhabited our planet for over 300 million yea
and today they account for more than 125,000 differ
species, so that, by now, roughly every tenth known spe«
is a fly [6]. This evolutionary success might spring fro
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.

o 7. - . . Ocelli
their insuperable maneuverability and agility to survive, whi Haltere
enable them, for example, to chase mates at turning veloc Compound Visual motor muscles
of more than3000°s~! with delay times of less than 30 ms. eye

The extraordinary maneuverability exhibited by flying in- control signals

sects is the result of a sophisticated neuromotor control sy&- 1. Neuromotor control physiology in flying insect.
tem combined with highly specialized sensors. These sensors
comprise of the pressure sensilla, the halteres, the ocelli, and . ] )
the compound eyes. halteres-ocelli system, the visual system is not connected
Pressure force sensillare present along the wing surfacedirectly to the wing muscles, but to the halteres muscles.
the wing base, the halteres, and other parts of the bodyierefore, this level of control indirectly affects the flight
Although their functionality in flight control is not clear, theyPehavior by biasing the motion of the halteres, thus creating
might play an important role in estimating the instantaneo@ apparent external disturbance that the lower level of control
air flow around the wing and in controlling the wing trajectorywould try to compensate for. This structure is similar to that
The halteres two oscillating club-shape appendices, are tHeetween the vestibular-ocular reflexes and active head rotation
biological equivalence of a gyroscope, and they are used%vgrtebrate_s [10]. The reason _for this h_|erarch|cal control
estimate the body angular velocity. architecture is probably an efficient solution to resolve the
The ocelli, a sensor system composed of three wide-angﬂénf"Ct between flight stability reflexes and goal-orientated
photoreceptors oriented in a tetrahedron configuration, cainoeuvres. This typical biological neuromotor control ar-
estimate insect orientation relative to the horizon by compari§itécture is shown in the left side of Fig. 2. Without some
the light intensity from different regions of the sky. appropriate inhibiting mechanism, the haltere_-medlated_eqw-
The compound eyeserve the purpose of estimating |argel_|br|um reflexes would always counter goal-oriented motions.
field optical flow, small-field object fixation, and object recog]© resolve this potential conflict, the nervous system must
nition. The large-field optical flow estimated from the comecontain the.means of attenuating equilibrium reflexes during
pound eyes can provide information about the orientatiofi'® generation of controlled maneuvers.
the angular velocity, and the linear velocity which can guar- Another sublevel, as part of the reactive control system,
antee excellent performance when combined with ocelli afdght be present and associated with the pressure sensors
halteres [7]. The large-field optical flow from the compoun¥/hich innervate the wings and the haltere. This bottom level
eyes, together with ocelli and halteres, play the role of tHBight adjust wing motion within a single wingbeat to improve
inertial navigation system (INS) in insect flight. Furthermoré€rodynamic efficiency and compensate for local turbulence
compound eyes can also perform specialized visual processfii‘a . . . ,
for object fixation and landmark recognition, which is used to 1h€ hierarchical structure of neuromotor control in true

navigate the environment and estimate proximity of obstaclE$€cts has been adopted as a guiding model for the design
and targets. of the control unit for MFIs, as described in the next section.

A more detailed description for these sensors from a flight
control perspective can be found in [7] [5] and in the refer-  Ill. HIERARCHICAL CONTROL ARCHITECTURE
ences therein. The hierarchical architecture, partially inspired by true

At present, still little is known about the flight controlflying insects and autonomous aerial robots research [12],
mechanisms and neuromotor physiology in true insects [8] [8gcomposes the original flight control problem into a set of
[6]. Experimental evidence suggests the existence of at leh&rarchical modules, each responsible for a specific task.
two levels of control, as shown in Fig. 1. At the lower leveThis way, the controllers in each module can be designed
the halteres and the ocelli control the wings muscles direcitydependently of those on higher levels, thus allowing the
in order to keep stable flight orientation. This level of contrgbossibility to incrementally build more and more articulated
seems to be reactive, since it mediates corrective reflexesctmtrol structures. Fig. 2 shows the architecture proposed for
compensate for external disturbances and to maintain a stethke MFI control unit. It is possible to identify three main levels:
flight posture. At the high level, the brain, stimulated byhe navigation plannertheflight mode stabilizeand thewing
visual and physiological stimuli, plays the role of a navigatiotrajectory controller The top level is a voluntary one since
planner, which plans a trajectory based on its ultimate goglanning is determined by MFI goal, the two lower levels are
such as foraging or chasing a mate. Differently from theore reactive since the purpose of the flight mode stabilizers



and the wing kinematic generator is to maintain the desiréijectory is mapped to the corresponding actuator voltages via
flight posture and the desired wing trajectory in the presenceafother map, as described in Section VI. The wing trajectory
external disturbances, respectively. Each of these three lev@stroller receives input information from force sensors placed
in the control unit receive specific sensory information frorat the wing's base. This sensory information can be directly

different sensors. used to estimate instantaneously the position and velocity
of the wing, thus improving wing motion control through
BIOLOGICAL
NEUROMOTOR MFI FLIGHT feedbaCk
CONTROL CONTROL
ARCHITETURE - ARCHITETURE
ADAPTIVE | & IV. INSECT VERSUSHELICOPTERFLIGHT
| CONTROL H
<LeaT‘“9) : hemical sensors Similar to aerial vehicles that are based on rotary wings,
S5, : — compoundeyes  SUCh as helicopters, flying insects control their flight by con-
"l controL |t Navigation Planner trolling their attitude and the magnitude of the vertical thrust
i Flight mode selection § [13]. Position and velocity control is achieved via attitude
- Flight Mode Stabilizer Flow sensors|  cONtrol, in fact forces acting on a plane parallel to the ground
L REACTIVE |2 | [Hover | [cruise ] [ steer Jess[climb | [ [ | can be generated by tilting and banking the body. Pitching
: Desired wing trajectory] compass|  down, for example, would result in a forward thrust, while
: W - Forcesensors | rolling sideward would result in a lateral acceleration. Altitude
. ing Trajectory Controller at wing base . . . . .
0 o control is achieved via mean lift modulation, for example,
ctuator inputs . . . .
ANIMAL : - - by increasing the vertical force would result in an upward
DYNAMICS | DYNAMICS acceleration and vice versa.
S— However, there are some peculiar differences that prevent

Fig. 2. Design architecture for the control unit of the MFI comparedne from directly applying successful flight control techniques
to the neuromotor control architecture present in most animals. developed for helicopters [14]. The spinning of the rotor blade
induces a reaction yaw torque on the helicopter body that
At the top level of the control unit there is thmavigation would make the latter rotate in the opposite direction if not
planner. Besides sensory input from the visual system, thimompensated by the tail rotor. On the other hand, the tail
unit can receive commands from a communication link arrdtor generates a lateral thrust that needs to be compensated
information from application-specific sensors such as chemidsl tilting the helicopter body sideways. This problem is
or temperature sensors. The purpose of this module isnot present in insect flight since the wings oscillate almost
choose a sequence of appropriate flight modes for the flightmmetrically on the opposite side of the insect body, therefore
mode stabilizer level, which enables the MFI to safely navigateertial forces cancel out. Another very important difference is
the environment and achieve the desired task such as territthg intrinsic time varying nature of the aerodynamics in insect
exploration, target localization and tracking. flight. As shown in Fig. 5 the aerodynamic forces and torques
The middle level is theflight mode stabilizerwhich is generated by the wings change dramatically during a wingbeat,
responsible for stabilizing different flight modes available tand cannot be assumed to be constant as in the case of the
the MFI, such as take off, hovering, cruising, steer left, stebelicopter. One additional difference is that the wing trajectory
right, climb, dive, and land. Each flight mode is achieved bgannot change dramatically from one wingbeat to the next,
a dedicated controller that uses as inputs the signals from #iece the wings need to oscillate to generate sufficient lift to
halteres, the ocelli, the large-field optical flow estimates, amstistain the insect weight. Finally, in insect flight the two wings
a magnetic compass. Based on this information, the controlt@n follow asymmetric trajectories. This peculiar characteris-
chooses the appropriate values for the desired torques #ndallows insects to generate large angular accelerations by
forces that must be applied to MFI body to compensataodulating the distribution of the aerodynamic forces within
possible disturbances and to maintain the desired flight modewingbeat, without strongly affecting the mean lift generation.
The desired torques and forces are then mapped directly ifitee dependence between wing motion and torque generation
the corresponding wing trajectory for the next wingbeat, as true insects has recently been considered in [15].
shown in Section V-C. These similarities and differences lead us to consider the
The bottom level is thewing trajectory controllerwhich following strategy when designing a robust stabilizing hover-
is responsible for generating the electrical signals for theg controller. First, we will model the insect dynamics as a
actuators in order to track the desired wing motion generatBiscrete Time Linear Time Invariant (DTLTI) system based on
by the flight mode stabilizer module. The set of possible wirlfpe average forces and torques over a wingbeat. This approach
trajectories is parameterized according to some biokinemaiidased on high frequency control theory that guarantees good
parameters, as described in Section V-C. These parametgproximation error between the original time-varying system
are chosen based on biomimetic principles, i.e. by changiagd averaged system, assuming that the wingbeat frequency is
them it is possible to replicate most of the wing trajectoriesufficiently high [16]. Moreover, the design for the controller
observed in true insects. The most important biokinemaiie based on a MFI dynamics model obtained through an
parameters are the stroke angle amplitude and offset, timiidgntification procedure that includes the approximation errors
of rotation, mean angle of attack, and upstroke-to-downstrolee to the time varying nature of the dynamics.
wing speed ratio. The active change of these parameters byecond, we parameterize the wing kinematics with four pa-
true insects have been observed to be directly correlatedrameters, such that they can be mapped uniquely into the three
specific maneuvers and flight modes [13]. Then every wingean torques (roll, pitch, yaw) and mean lift. This approach



TOP VIEW — . . . . .
3D VIEW qu be very similar to the time-invariant nonlinear dynamics of a

helicopter. On the other hand, the wingbeat period is much
smaller than the responsiveness of the insect body, therefore,
intuitively speaking, only mean forces and torques are relevant.
In fact, this approximation has been formalized by averaging
theory [16], and high-frequency periodic control has been
successfully applied to trajectory tracking and approximate
stabilization of underactuated systems [18] [19] [20]. However,
few tools are available to synthesize the control laws system-
atically and they are mainly limited to mechanical systems
with specific geometric properties [21] [22]. In patrticular,
Fig. 3. Definition of wing kinematic parametersteft) 3D view of  these tools derive a suitable time-varying input parametrization
insect body and left wing right) top view of insect stroke plane. =~ _ g(v,t) directly from the structure of the flow of the

dynamics,z = f(z,u) = fo(z) + F(x)u. In our case, we

do not directly apply these tools because of the complexity
allows a direct control of the torques and lift generation, thi the aerodynamic forces and torques, and thus of the vector
simplifying the control design for the attitude and altituddow, as function of the wing’s angles and velocity One
of the MFI. The dynamics of the insect is then linearizeBossible approach to designing the control laws is the adoption
about the hovering equilibrium point and we propose son® a linearized model of insect aerodynamics and apply the
approximations that decompose the original MIMO systefforementioned tools, however this approach is likely to give
into four SISO subsystems. Finally, the controller is basdtPor results in practice, since insect aerodynamics is a highly

on robust state feedback based on linear-quadratic regulat@plinear function of wing position and velocity. Instead, we
(LQR) design. propose to parameterize the wing motion based on biomimetic

principles to design our periodic inputs, i.e. we propase

g(v,t). Then, by applying averaging theory to approximate

. the complex time varying dynamics with the average time

A. Insect dynamics invariant dynamics, we show that there is a direct map between

As shown in [5], the insect dynamics can be written as: the proposed kinematic parameters and the mean forces and

i i i i .. torques. The kinematics parameters appear as virtual inputs
e = Iw) [Ta(t)l_ WO xIWe —IWe] in the averaged dynamics. The averaged dynamics is then
. C. 2 pyb suitable to standard controller design similarly to those found
P = - P8t me“(t) (@) in helicopter control.
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V. HIGH FREQUENCYINSECT FLIGHT CONTROL

wherer? € R? and f® € R3 are the torque and force vectors

generated by wing aerodynamics relative to the insect cenler Averaging

of mass. The vecta® = [n 0 ¢]” represents th&€Y X Euler's  Averaging theory and high frequency control encompass
angles (roll,pitch,yaw),W = W(0) is the transformation several results and they have been applied in different scientific
matrix from body angular velocityw’, to Euler's angular areas. Recently, these results have been applied specifically to
velocity, ©, i.e. © = Ww". T is the insect moment of inertia insect flight [23]. Here we report only some of the results that
relative to the body framep is the position of the insect centerwe will use for the flight controller design.

of mass relative to the fixed framg, = [0 0 — g]T is the

gravity vector,c is the linear damping coefficient, andl = Theorem 1 ([23]). Let us consider the following systems:

e*Ved?e®¢ s the rotation matrix. This notation is commonly i = flz,u,1)
found in spacecraft and helicopter dynamics textbooks such as u = g(v,t) 3
[17] and [14]. The wrench, i.e. the forces and torques, due to v = h(x) ©)
the aerodynamic forces is a nonlinear function of the position glv,t) = g(v,t+T)
and velocity of the wing stroke angle;, and the angle of 3 = f(z,v)
attack,a, of both wings, i.e. . ’ .
b e o b flao) = & [y fg(o.t)g(v,6)dt (@)
fa(t) = fa(¢r7¢l7(pr7(pla¢ra(bla(ibra(fbl) :fa(uﬂl) v = h(i.)
To(t) = TP, b1, Or Q1 bry D1y 1) = Te(u,%) (2)  wherez, 7 € R™, u € R™, v € RP, and all functions and their

partial derivatives are continuous up to second order.

If z = 0 is an exponentially stable equilibrium point for
e averaged system (4), therit) — z(¢t) = O(T) for all
ih% [0,00). Moreover the original system (3) has a unique,
X

whereu = (¢, é1, v, ©1), and the lowerscripts, [ stand for
right and left wing, respectively. The stroke angle is the ang%g
between the wing radial axis and theaxis of the stroke
plane. The rotation angle is defined as the angle between / oY ; )
vertical plane and the wing profile, which corresponds to trnem ??)Tria]!?ﬁable’ T-periodic orbitr(t) with the property
complement of the angle of attaek i.e. « = 90° — || (see T '

Fig. 3). The explicit expression of aerodynamics forces andIn our setting,T" is the wingbeat period, and the system
torques as a function of wing kinematics can be found in [5.(z, ) is given by Equations (1) and (2), where the vector
The aerodynamic forces and torque are the only time-varying= (¢., ¢1, ¢-, @) represents the right and left wing angles.
element in Equations (1), otherwise the insect dynamics woudd it will be shown in the next section, the wing trajectories



are chosen to b&-periodic functions and are parameterized 60
by a parameter vectar, i.e.u = g(t,v). The parameter vector e gw(t)
v can be interpreted as a vector of virtual inputs. Therefore, ,,| MR .. g®
as indicated by the theorem, rather than trying to analyze the , . 9. 1,9 ()
original system we will focus on its averaged dynamics given / . == SV Y

by Equations (1) where the time-varying wrengj (¢), 78 (t)) 20F R 1
given in Equations 2 is substituted with its average:

T
%/O F2(g(t,v), g(t,v))dt
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which is time-independent and depends only on the virtual-4o S L7 ]
input vectorv. We will then look for exponentially stabilizing
control feedback law = h(z) for the averaged systems. If
such a function exists, then the original time-varying system ©3 0.05T 05T 0.75T T
will have a bounded error from the desired equilibrium point Time (T units)

if the wingbeat periodT is sufficiently small. Although _ ) . . . ) . .

this approach does not guarantee asymptotic stability for %54.(8) Wing kinematic parameterizing functions given in Equa-
original system, we will show that the error bouhd is very '

small for insect flight as observed in true insects, and therefore

irrelevant from a practical point of view.

described using the stroke angieand the rotation angle.
C. Wing Kinematic Parametrization In particular, we parameterize the wing motion of each wing

. . . within a wingbeat period as follows:
Although it is currently unclear how true insects accompllsw 9 P

the control of their flight and maneuvering capabilities, recent d(t;v) = gu(t)+v1g1(t) (6)
work has found that by modulating a few kinematic parameters .
on each wing, such as wing rotation timing at the stroke wltiv) 9¢(8) + v292(1) 0
reversals and the wing blade angle of attack, the insect aahere the functiong;(t) are T-periodic function, i.eg;(t +
readily apply torques on the body and, therefore, control if3) = g;(¢), (v1,v2) are the kinematic parameters, afitd
attitude and position [2] [13]. Based on this observation, i$ the wingbeat period. These functions are chosen based
was suggested that a small set of wing kinematics might ba the considerations above. In particulag,(t) and g,(t)
sufficient to generate all possible flight modes, and the kggnerate a symmetric motion with maximum lift production,
point for designing any of these modes is the capability tn (¢) modifies only the stroke angle amplitudg(t) modifies
control the MFI's attitude [24]. the timing of rotation of the angle of attack at the end of the
In particular, the research done by Dickinson and his groajownstroke. Based on observations of true insect flight we
[2] has suggested that the following kinematic parameters melyoose the following functions:
suffice to generate any flight maneuvéming of rotation

mean angle of attaglstroke angle amplitudandstroke angle ge(t) = z cos(Q—Wt)

offset There is a strong evidence that if these parameters can 7?; 217;

be controlled independently, then it is possible to control the go(t) = 1 Sin(Tt)

torque and force generation during flapping. For example, T -

a large (small) stroke angle amplitude would generate a at) = 1*551113(?15)

large (small) lift. An advanced (delayed) timing of rotation @) = q) 8)

at the end of the downstroke results in a nose-up (nose-
down) pitch torque. A larger (smaller) angle of attack during’hich are defined on the intervale [0, 7) and extended by
the downstroke relative to the upstroke produces a backwaneriodicity so thaty;(t + T') = ¢;(¢). Fig. 4 shows a pictorial
(forward) thrust. Most true insects flap their wings along eepresentation of wing motion and corresponding aerodynamic
symmetric trajectory with a stroke angle amplitude arourfdrces for different choices of the kinematic parameteand
120° and mean angle of attack d@b° on both downstroke v.. Note how these parameters affect the distribution of forces
and upstroke [25] [6]. However, during saccades and othaiong the whole wingbeat period.
maneuvers, they modify the wing trajectory by changing the The wing parametrization given by Equations (8) is not
kinematic parameters described above [26]. uniqgue and might not be optimal either, however it gives
Based on these biologically inspired arguments, the probleise to wing trajectories that mimic some of the trajectories
to solve then is how to parameterize the wing trajectory to lmdserved in true insects. In fact, a positive (negative) value for
able to mimic the real insects hindependentlycontrolling wv; results in a large (small) stroke angle amplitude; a positive
the biokinematic parameters described above. We will thénegative) value foi3 results in a delayed (advanced) timing
show how the parameters map directly to the mean torquafyotation at the end of the downstroke. If this parametrization
and forces, thus simplifying the design of a flight stabilizeabove is replicated for both wings, the wings kinematics
More specifically, the wing trajectory during a wingbeat is = (¢, ¢1, ¢, ¢1) can be written in terms of the parameters
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Fig. 5. Pictorial sequence of the side view of wing motions and the corresponding aerodynamic forces for different choice of kinematic
parameters. Symmetric motiom; = 0,v2 = 0. Advanced rotationy; = 0,v2 = 1. Delayed rotationw; = 0,v; = —1. Large stroke
amplitude:v; = 1,v2 = 0. Small stroke amplitudes; = —1,v2 = 0.

v = (v}, vt v}, vh) as follows:

u(v,t) = g(t) + G(t)v 9)
9o g 0 0 O
_ | 9 _ | 0 g 0 0
g 9o G 0 0 g2 O
9o 0 0 0 g

where ¢g(t) and G(¢t) are aT-periodic vector and matrix,

respectively, whose entries are defined in Equations (8).

wherer, € RS, II; € R4, and§(v) is the approximation
error. Although, it is not possible to linearize analytically
Equation (11) to obtainrg andII; directly, it is possible to
randomly select different values for the parameter vector
substitute it into the parametrization given by Equation (9), and
finally compute the true mean wren¢fi, 7%) via simulations
using the exact wing aerodynamics. The approximatigg
and II; can then be found by rewriting Equation (11) as a
least square (LS) problem whefe,,II;) are the unknowns.
Simulations are performed based on the aerodynamic model

It is now possible to study the effect of the chosedescribed in [5], and on the morphological body parameter
parametrization on the mean wrench. In fact, if we substitut¢ a typical blowfly, which is the MFI target model. The

Equation (9) into Equations (5), we obtain a static niap
R* — R® from the wings parameters € R* to the mean

wrench (2, 7) € RS:
fTb
]

II(v) (20)

This is a nonlinear map and cannot be computed analytically
since the aerodynamic force and torque are complex functions

approximating affine map is found to be as follows:

0 0 0 —1.0 -1.0
0 0 0 03 -03
m 0.9 09 0 0
o= og ALe=0.1mg |\ o7 _04L —01L 0.1L
0 —02L —0.2L —0.4L —0.4L
0 0 0 —0.5L 0.5L

(12)

of wing position and velocity (see Section IV in [5]). Howeverwherem is the mass of the insedt, is the length of the wing,
one could ook for an affine approximation around the origiand the zero entries correspond to estimated values negligible

of the wings parameters:

{ ;“Z ] = mo + v+ §(v) (11)

relative to the largest entries in the matrix. This approximation
is quite accurate for kinematic parameters smaller than unity,
[lv]|e < 1. Fig. 6 shows that the estimated mean wrench,
w = 7o+ I, predicts quite accurately the true mean wrench



obtained from simulations, thus validating our approach. is not possible to control instantaneously the insect wrench,
The particular structure of this map is a consequence of ttheere exist wing motions that can control independently the
parameterization based on the biological insights describedna¢anforces along the:-axis and the torques about all three
the beginning of this section. In fact, as we expect, any compaxes. We also showed that the affine parameterization of
nent of the wrench depends additively or differentially on twaving motions given by Equations (9), based on biomimetic
parameters, depending if the wings are moving symmetricaflyinciples, gives rise to a simple affine map between the mean
or anti-symmetrically. Note that along the z-component therench and the kinematic parameters. Based on the averaging
symmetrical wing motions generate a vertical lift sufficient targuments exposed in the previous section, where the input
balance insect body weight. The magnitude of the coefficientsand the parameter vector or virtual inputas defined in
in the map are considerable. In fact, the insect can gener@teeorem 1, correspond to the wing angles: (¢,, ¢1, ¢r, 1)
forward or vertical thrust in the order ¢f, ~ 0.1-0.2mg, and and kinematic parameters = (v}, v}, v5,v5). Also, based
angular torques of ordet, = 0.1 —0.2mLg. In other words, on the fact that the three mean torque components and the
considering that the moment of inertia of a true insect alongrtical thrust can be controlled independently, it is clear that
one of its principal axis is on the order éf~ 0.1mL? [25] this is a sufficient condition to design stabilizing controllers
and that our target size wing i = 10mm, this is equivalent for insect flight. In the next section, we will show how
to saying that the insect can generate linear acceleratidosdesign stabilizing controllers for the linearized averaged
of about a;;,, = fo/m = 029 ~ 2m/s?> and angular dynamics that also stabilize the original nonlinear time-varying
accelerations of about,,, = 7,/I = g/L ~ 10°deg/s?, dynamics.
which are comparable with those observed in true insects.
Inspecting the structure of this parameters-to-wrench map,
it is apparent that the three mean torques and the vertical
thrust can be controlled almost independently by appropriately
choosing the values for the four wing parametersiowever, The previous section described how to design wing trajec-
there are small but non-negligible couplings between sometofies that can generate the desired mean forces and torque
the wrench components. For example, a positive (negativi)ring a wingbeat period. However, the wing trajectory cannot
pitch torque is always associated to a positive (negativie¢ controlled directly, and appropriate input voltages to the
forward thrust. Similarly, a positive (negative) yaw torquéhorax actuators must be devised to track the desired wing
is associate with a small positive (negative) roll torque andhjectory. As described in [5], the dynamics of the thorax-
a small negative (positive) lateral force. Although this iwing structure can be approximated as a stable 2-degree of
undesirable, it does not undermine the stabilizability of flighteedom second order system. Given a desired wing trajectory
modes, as we will show in the next section. Besides, thig.(t), »4(t)), we can calculate the corresponding steady-state
coupling is not particularly harmful. In fact, as in helicopterdnput voltages by substitution:
forward motion in MFIs is obtained by pitching down the body

orientation. Since a pitch down torque generation is associatedy, B 5o | (it ‘
with a positive forward thrust generation, the coupling actually v;jgtﬂ =To I(MO{ gjgtg } 5o {238 }JFKO [zzgt; D
(13)

improves responsiveness rather than reducing it.
where Ty, My, By, Ko € R?*? are constant matrices, and

VI. WING TRAJECTORY TRACKING AND ACTUATOR
CONTROL
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V1, Vo are the input voltages to the wing actuators. Let=
(VL v, V2, V) be the input voltages for the two wings, and
u = (¢, o1, 0, 1), then the wing-thorax dynamics for both
wings can be rewritten as follows:

Mii+ Bi+ Ku=V (14)

redicted
02/ 02 O-BZ + Eimulated where M, B, K are matrices that depend @8y, My, By, Ko,
02002 S0z 0 02 08 1 12 and the dynamics is stable. As we will show in the next
T, Y T, Section, the flight mode stabilizer is assumed to be able to
o1 o1 ) ol v select a new wing trajectory at the beginning of every wingbeat
A among those defined by the parametrization in Equations (7)
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Predicted mean wrenclv = mp + I;v (z-axis) versus
the exact mean wrenchy-{axis) obtained from simulations far00
random values of the wings parameter vectoin the unit box,
i.e. ||[v|]|lo < 1. The spreading around diagonal lines quantifies t
modeling errors.

and (8). This is equivalent to saying that given any sequence
{vn}nZo, Wherev = (vf,v{,v5,v5) is the wing kinematics
parameter vector as defined in the previous section, the wing

trajectory controller must track the trajectory:

g(t) + G(t)v(t),
t € [nT, (n+1)T)

(15)
(16)

vTL?

nwhereg(t) andG(t) are defined in Equation (9). Note that the

matrix G(t) defined in Equations (8) was specifically chosen
to have the additional property

We can summarize this section by saying that, although itG(0) = G(0) = G(0) = G(T) = G(T) = G(T) =0 (17)
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Fig. 7. Actuator voltage profile as defined in Equation (18) for 1@ g simulation of actuator control given in Equations (18) showing

random values of parameter vectowith ||v|| < 1. The solid line  55ymntotically tracking of desired trajectory for a random sequence of

corresponds ta = 0, i.e. Va(t) = h(t). Note that|[Va(t)||c <  kinematic parameter§v, }, wherev = (v1, v2), and random initial

10pN for all [[v]ee < 1. condition of actuator state vector, for one wing. From bottom to top:
actuator voltage¥, V> as given by Equation (18p6tton). Rotation
angle, ¢, (cente), and stroke angleg, (top), given by Equation

) . ) (14). The error between desired and true wing trajectory decays after
and, therefore, the trajectony,(t) € C? is continuous up to approximately 3 wingbeat periods.
its second derivative for any sequengs, }. If we substitute

Equation (15) into Equation (14) we formally obtain:

Va(t) = h(t)+H()v(t) (18) during a single wingbeat. In fact, it allows trajectory changes
o(t) = vp, t € [nT,(n+1)T) (19) only at the beginning of every wingbeat in such as way that
_ .. . this transition is smooth and there is no error between desired

h(t) = Mg.(t) + By @ +Kg(?) wing trajectory an actual wing trajectory. This is equivalent to
H(t) = MG(t)+BG(t) + KG(1) saying that there is no error between the desired and actual

where h(t) and H(t) are aT-periodic vector and matrix, Méan wrenc_h during the foIIowing wingbeat. This approach
respectively. SinceH (t) is simply a linear combination of has two main advgntages. The first adyantage is that we can
G(t) and its first and second derivatives, then it follows frorASSume to have direct control of the wing trajectory, and we
Equation (17) that (0) = H(T) = 0. This implies that the ¢an negllect thg V\{mg—thorax.dynamlcs since any perturbation
input voltage vectok/,(¢) € C° is continuous for any sequencevould die off within a few wingbeats. The second advantage
{vn}. is tha_t it naturally_ leads to a discrete time (DT) system, since
Let us consider a desired wing trajectory vectas(t) the wing kinematic parametersare updated every seconds,
defined by Equations (9) and the corresponding feasible inpi§: at the beginning of every wingbeat. We will exploit these
voltage vectot/, () defined by Equations (18). We define thdWO properties in the next Section by modelling the insect
wing trajectory tracking error to be, = u — ug4, and apply dynamics as a discrete time system where the inputs are the

input voltageV;(t), then we have: wing kinematic parameters and the state is the mean value
. ) of the body linear and angular position and velocity within the
Mé, = —Bé,— Key previous wingbeat.
éu(0) = (0) —1q(0), eu(0) =u(0) - uq(0)
where we used Equation (14) and the fagtt) = —Bug(t) — VII. FLIGHT CONTROL IN HOVER

Kuqg(t) + Vy(t) for all ¢ € [0,00). Since the system above Following the guidelines described in the previous section,

is stable, we have thdim; .. e,(t) = 0, or equivalently we can now look for a stabilizing controller for hovering by

lim; oo u(t) = wugq(t) for any initial condition. The rate designing a feedback law= h(x) such that the origin of the

of decay, 1/74eccay, iS set by the poles of the wing-thoraxaveraged system is exponentially stable.

mechanical system. The time constapt,,,, iS approximately

1 to 2 wingbeat periods for the target MFI design. This L

property guarantees that even if we cannot directly contrdt 'dentification

the wing trajectory, any initial perturbation would disappear The analysis in the previous section provides a torque

within a few wingbeats and the wing trajectory would convergigecoupling scheme together with a set of virtual control

exponentially to the steady-state solution, as shown in Fig.iBputs, i.e. the wing kinematic parameters which enters

into the averaged system in a affine fashion. Since we are

The wing trajectory tracking approach developed in this seitterested in the insect dynamics close to the hovering regime

tion is equivalent to a feed-forward control of wing trajectorwhere angular deviations and angular velocities are small,
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we linearize the averaged system dynamics near hover. Weg— ———
approximate the continuous-time nonlinear system, with a, — e
DTLTI model in the following form:

z(n+1) = Azx(n)+ Bv(n)+d(n) 20) -~
y(n) = w(n)+nn)
wherez = [, 0, V. @, @, @, Py Dy Dz Uz Uy VT w4

is the vector of average roll, pitch, and yaw angles, angulars
velocities, positions and linear velocities over one wingbeat,
respectively; 6(n) represents the unmodelled dynamics as”
well as external disturbances which appear as an extern%ﬁo
noise to the linear model. This term includes both process
noise as well as unmodeled non-linearities. The input vectoe
v = [v] v} vsvh]T are the wing kinematic parameters, which |-..
appear as virtual control inputs. The measurement vecto
y =[5 97 §° 41 U5 Us; 95 U5 U5 ys vs vs)" is the vector of
measured outputs from the ocelli, halteres, magnetic compass, =
and compound eyes, with additional measurement ngisg
As described in [5], these measurements correspond to an
estimate of the insect true state, ive—= . Fig. 9. Comparison of the exact mean angles and angular velocities
The matrice§ A, B] can be obtained analytically from MFI (thick solid Iine)_with those predicted with the I_DEM-_bas_ed DTLTI
morphological parameters such as mass, moment of inerﬂ?del @ashed ling the LS-based DTLTI modettfin solid ling) and
center of mass, etc. However, these parameters are difficuﬂse simulated using exact model 0%ér consecutive wingbeats.
to obtain in practice. Moreover, this approach cannot model
the effect of the time varying part of the aerodynamic forces. : :
Another approach would be to substitute the parameter- oBased on this least-squared-based mddgl5], a stabi-
wrench map into the original nonlinear dynamics and IineariiI Ing state feedback c_:ontrol based on pole_placement was
it. Here we adopted the system identification approaehyun eggned and wned first on the nqmlnal LTI model, then
a large number of experiments and record the pdir), v(n)] verified on the fully nonlinear continuous time dynamics

of sensor measurements and kinematic parameters, and 1 ided by VIFS. Although least-squared identification is
find the matrices[A, B] that best fit the data Mor’eover simple and straightforward, it does not exploit the structure of

further investigation into the particular structure of the inseg?e dy”am'cs present in Equation (20), nor does_ it provide a
dynamics given in Equation (20) results in the followinqstys't(_:‘m"’ltIC way to estimate process and output noise. However,
approximate linear system to be identified: does provide a stabilizing controller which can be used suc-

cessively to perform closed loop system identification through

yaw, §

20 30 20 50 0 10 20 30 40 50
time (T units) time (T units)

I3xs Tl3xsz 0O3zxz  Osxs O3x3 prediction error method (PEM) [29]. The prediction error
A— | Usxs Az2 03x3  O3xs p_| B=n method cannot be applied directly to the system (20), since the

O3x3  Osxz Isxz Tlsxs |’ O3x3 system is unstable, which is why least-square identification is

Agr O3x3 Osxs Asg By performed first. The PEM-based identified model performed

where T is the wingbeat period, the matrice, and Ay, better _than the Ieast_—sqqared—bas_ed one in p_redicting insect
dynamics as shown in Fig. 9. Besides, the estimated process

account for angular and linear damping, and the mafix d noi ) d bi b d to desian b
accounts for the linear accelerations due to tilted body orig?d NOIs€ variances and biases can be used to design better

tation. This structure is typically used in helicopter dynamicf?bUSt controllers.
identification [27] [28].

We first estimate a model in open loop where only da®. Controller design
for the first several wingbeats are recorded. Since the SeNsof, order to address the trade off between regulation perfor-
measurements provide an estimate for all the entries of trth%
state vector, the model identification problem can be recag
into a least square solution to an overdetermined set o}
linear equations a¥’z = d, wherez = [a; j,...,bn|T is
the vector of system parameters to be estimated, and
and b, ;, are the nonzero entries of the matricdsand B . P . . :
respectively. The matrif = E (5(), u(-)) andd = d (y(-)) l/iv(;s designed to minimize the following quadratic cost func
are matrices whose entries depend on the experimental data.

nce and control effort to avoid control input saturation, and
o to take into account process disturbances and measure-
nt noise in Equation (20), we employed a Linear Quadratic
Gaussian (LQG) optimal controller design.

As a first step, a state feedback LQR regulator —Kax

The least square solution which minimizes the norm of the ) N
error |le]|? = ||d — Az||? is given byz = E(ETE)~'ETd. J= lim E(Zx(")TQm(“) +u(n)" Ro(n)) (21)
The experiments were performed on the Virtual Insect Flight n=1

Simulator (VIFS), developed by the authors to provide where@ > 0 andR > 0 are the weighting matrices that define

software testbed for insect flight [5]. The experimental dathe trade-off between regulation performance and control
were generated with random inputs and initial conditions neeffort. The controller was designed with standard discrete-
the hovering equilibrium. time LQG software, and the diagonal entries in the weighting
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Fig. 10. Simulation of hovering control with sensor feedback and actuators dynamics. From top to bottom: insect true state and sensors
measurementsdw 1-3); kinematics parameters given by Equation (22 4); actuators voltage given by Equation (28)¢ 5) during the

first 25 wingbeats.

matrices are iteratively tuned to ensure a good transighe complex time-varying nonlinear insect dynamics includ-
response without saturating the control inputs. The above LQ®) nonlinear sensor measurements, actuator dynamics, and

optimal state feedback = — K« is then substituted with a process and output noise. More importantly, this gain can be
more realistic output feedback: computed off-line and easily stored on the computation unit
of the MFI.

v(n) = —Ky(n), (22)

The LQR controller was finally tested on the fully non-
where the outpuy is given by the sensors measurements. Agear time-varying model which includes the MFI dynam-
described earlier, the simplified DTLTI system (20) providegs of Equation (1), the wing-thorax dynamics of Equations
a feedback scheme to select the wing kinematic parametes), and the sensor models described in [5]. The simu-
for the next wingbeat period. The true feedback contr@dtions are based on a target MFI ®60mg and 10mm-
from sensor measurements to actuator voltages is obtained\@gspan with wingbeat frequency = 150Hz. Fig. 10
combining Equation (22) with Equation (18) to give: shows a simulation for hovering stabilization from the initial

condition » = (7790’eawawmwyawzvp:vapy)pzvv;vavyvvz) =

Va(t) = h(t)+ H(t)o(t) = h(t) + H(t)Ky(t) (25°, —25°,20°,0,0,0, 35mm, —25mm, 25mm, 0,0,0), and
= ht) + K(t)y(t) (23) wing state(u,u) = (¢, ¢, or, 01, 6, G1,9r, 21) = 0. OUr
y(t) = y(nl), t € [nT,(n+1)T) (24) proposed controller design successfully achieved stabilization

despite sensor and process noise. The initial condition corre-
where the sensors measurements are sampled at the beginsjiagnds to an offset from the desired position of about 3 body-
of each wingbeat, and<(¢) is simply a proportionalT- lengths. The steady state error during hovering:ig /10 of
periodic matrix gain. It is remarkable that a simple propothe body-length for the position and 5° for the orientation.
tional T-periodic feedback scheme is sufficient to stabiliz€he MFI requires about 50 wingbeat perigfisto reach the
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final configuration, which corresponds to ab@/8rds of a position (mm)

second for a wingbeat frequency t50H z. 40 ‘ —
20+ - - - single channel
T — full channel
X 07 —m e o w e e =

C. Single channel identification and control design

Based on the particular structure of the mean wrench map20 ‘ ‘ ‘ ‘
given in Equation (12), where it appears that the mean torque © 20 40 60 80 100
and the vertical thrust can be controlled almost independently40 ‘ ‘ ‘ ‘
by combining symmetrically or anti-symmetrically the kine- 20| 7
matic parameters = (v], v}, v5,v5), we can reformulate the Y Of e ===
flight control problem of the 6 DOF system similar to that —20—\_’/—;-—"" 8
of helicopter control, where we have decoupled the system 0 ‘ ‘ ‘ ‘
dynamics into longitudinal, lateral, heave, and yaw dynamics 4q

[14] [28]. In fact, if we redefine the kinematic parameters as .- i
follows: . OX _ e

¥ = (B, B2, T3, Ta) = (0] =01, v +0v3, v5—vh, v +01) = Fv (25)  ~20] ]

20 ) 40 §‘o 80 100
time (T units)

and we use these parameters as inputs for the system (20) and’®
repeat the identification process, then we obtain the following

matrices: Fig. 11. Comparison of single channel design vs full channel design.
0 as O Ass = diag{ai, as,as},
Ay = [—a;; 00/,
0 00 Ags = O3xs,
by 0 %0 0%x0 0 motion during the course of a full wingbeat and to combine
By = l 0by Ox|, By= lo 0 x 01 (26) it with averaging theory arguments, thus showing that the
0 0bs0 000 by insect time-varying dynamics can be well approximated by

discrete-time linear time-invariant (DTLTI) system where

where the zeros entries are entries that were much sm wing kinematic parameters appear as virtual inputs. The

than the other entries in the same row, and the astersks, second major contribution was to propose an identification-

indicate non-negligible entries; If the's are neglected, it is 1,qoq LQR controller design which does not required the
clear that each virtual parametgrcontrols independently one knowledge of an accurate model for the insect morphological

of the three angular accelerations and the vertical acceleraﬂBQrameters such as moment of inertia and mechanical part's
thu_s ustifying the smg_le channel controller de3|gn. scheme es, nor a’n accurate model of the aerodynamics. As a result,
typically done for a helicopter. The advantage of this approag vering flight mode can be stabilized with a simple affine

is that the feedback matrix gain is given by: T-periodic proportional feedback from sensor measurements
Ky = diag{Kiong, Kiat, Kneavs Kyaw} (27) to actuator voItages. This is very ir_nportant considering the
‘ ‘ limited computational resources available to MFI's. Although
where the matrices(;o,g, Kiat; Kneav; Kyaw are the smaller in this paper we focused on hovering, it has been shown that
size proportional gain matrices obtained from the decouplegher flight modes like cruising and steering can be stabilized
insect flight dynamics, thus reducing the computational burdgging a affinel-periodic proportional feedback [30].
when computing the feedback = Kjy. Fig. 11 shows a  geyeral research directions can be explored. The most
comparison betwee_n the full channel control!er de_5|gn and th§portant one is probably in regard to the wing parametriza-
single channel design. The performance using single chanigh “\which in this paper was based on the observations of
design degrades somewhat, but it is less computationglije insect wing motions. However, different wing kinematic
demanding than the full channel design, which is a cleggameters could be chosen. Therefore, a more systematic
advantage for the limited computational unit available to MF'%ethodology to optimize the wing trajectory parametrization
with respect to some metrics, such as aerodynamic power or
maximum torque production, is sought.
VIIl. CONCLUSION Another direction emerges from wing trajectory tracking.
In this paper we presented an framework for flappingne of the major assumptions in our approach was the linearity
flight control and navigation in biomimetic robotic insectsof the actuator dynamics, so that wing trajectory tracking could
We started by reviewing the neuromotor architecture preséit easily solved using a pseudo-inverse to compute the control
in true flying insects, and highlighting analogies and diffeinput to the actuators. This assumption is true only to the first
ences between insect flapping flight and helicopter flight. Igrder, as shown in [31], and nonlinearities become particularly
spired by true insect neuromotor organization of flight contrémportant when rapid wing rotations at the end of the half-
mechanisms, we proposed a three-layered hierarchical con&igpkes are necessary for aggressive flight maneuvers. Novel
structure that simplify flight control design while preservingpproaches need to be considered in this scenario.
the high maneuverability and the agile navigation capability Finally, navigation and searching algorithms in unknown
exhibited by true insects. The first major contribution oénvironments have not been explored in this paper and it is
this paper was to propose a suitable parametrization of wipgrt of our current research.
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