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Abstract: We propose a simple control law allowing a mobile robot equipped with a
low cost camera to track a line drawn on the ground. The control algorithm as well
as the image processing algorithm are very simple. We discuss the existence and
the stability of an equilibrium configuration of the robot when tracking a circular
reference line. We then give a short extrapolation to more general reference curves.
Experimental results confirm the theoretical analysis. Copyright (©2005 IFAC

1. INTRODUCTION

The problem we address is the feedback control
design allowing a mobile robot to track a line
drawn on the ground. The position of the line with
respect to the robot is detected by an embarked
video camera. There are a lot of image processing
algorithms extracting a map of the environment
from the data provided by a camera (see for
instance (A. Broggi, 1999), (Dickmanns, 1994),
(C. Thorpe, 1991), (D. Pomerleau, 1996) and
(C. J. Taylor, 1999)). But the implementation of
such sophisticated algorithms is quite complex.
Moreover, there exist several approaches to design
a control allowing to track a reference trajectory.
For instance, the differential flatness of the robot
allows to reduce the problem to a path planning
problem (see (A. Piazzi, 2002), (M. Fliess, 1999),
(P. Rouchon, 1993)). But these approaches require
a highly accurate on-line extraction of the line
shape. An other efficient method is given by
(L.P. Lapierre, 2003), whose advantage is to have
a control design that avoids singularities, but the
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restriction is that this approach needs the vision
sensor to be able to see the path everywhere
around and overall under the robot. This is a quite
strong assumption that is hardly ever verified by
vision based mobile robots.

Our purpose in this communication is to propose
a simple solution of this tracking problem which
avoids as much as possible sophisticated image
processing and control algorithms. The image pro-
cessing is reduced to the identification of a single
target point on the ground, and the control de-
sign is quite natural: a constant forward velocity
is imposed while the angular velocity is propor-
tional to the distance of the target point from
the longitudinal axis of the robot. The practical
implementation is straightforward and can easily
be achieved on line. OQur main contribution is to
provide a complete stability analysis of the control
system. Restricting ourselves, in a first step, to a
particular reference trajectory (a circle) we show
that there is an asymptotically stable equilibrium
configuration for the robot with respect to the
line, and we explicit the domain of attraction
of this equilibrium. Then, in a second step, this
result is extended to the analysis of the perfor-
mances of the closed loop system for arbitrary line
shapes.



Fig. 1. The experimental robot

We first describe the experimental device and the
robot kinematic model (Sections 2 and 3). We
then define the control law (Section 4). Section
5 is devoted to the existence and stability of an
equilibrium configuration around a circular line,
and the behavior of the system for arbitrary ref-
erence line with upper bounded curvature. We end
this part of the study with a possible improvement
(Section 6). Section 7 gives a short explanation
of the image processing and Section 8 shows an
overview of experimental results.

2. EXPERIMENTAL DEVICE

The mobile robot is of unicycle type: it is equipped
with two fixed wheels at the back and a caster
wheel at the front, which has no influence on the
kinematic properties. The length of the robot is
22 cm and the distance between the fixed wheels
is 7.4 cm. A speed control is provided for the
two fixed wheels, from a computer using Labview
which transmits the latches.

The vision device is constituted by a low cost
monochromatic camera with a resolution of 320 x
240. It is fixed on the robot, at a height of 17 cm,
at a distance of 14.2 cm from the rear axle. It leans
forward, with an angle of 45°. The lateral vision
angle is 60°, which limits significantly the vision
field. Data are transmitted to the computer serial
port by usual TV norms.

3. KINEMATIC MODEL

We suppose - as it is usually done - that the
contact between the wheel and the ground satisfies
both conditions of pure rolling and non-slipping
during the motion; moreover the robot is assumed
to be rigid.

With these assumptions we can derive the expres-
sion of the well known kinematic model:

= Vcosf
y = Vsinf (1)
= w

where (z,y) denote the coordinates of the middle
point P of the back wheels axle, 6 is the angle
that fixes the robot orientation in a specified
Galilean base frame, V is the algebraic velocity
of P (also called forward velocity) and w is the
angular velocity. V and w can be assigned by the
physical inputs of the experimental device, i.e. the
rotation speeds of the two fixed wheels.

4. LINE TRACKING CONTROL DESIGN

The strategy we use is quite natural: essentially it
consists in controlling the orientation so that the
path to track would be centered in the vision field.

On one hand, we impose the forward velocity to be
constant: V' = V4. On the other hand we define a
fixed horizontal line of pixels on pictures from the
camera, which corresponds approximatively to a
real line of the ground which is parallel to the rear
axle. We will called it the horizon. The distance
from the rear axle to the horizon is noted H. Then
we consider the intersection of the horizon with
the line to track. If the curvature of the line is not
too high, this defines a unique point P,, and even
if there are several possible choices, we suppose
that P, is the nearest point to the center of the
field of vision.

We then evaluate the distance from P, to the
main axis of the robot (O,Z}), denoted by Z.
This situation is summed up on Fig.2. Finally
we impose angular velocity to be proportional
to this distance: w = kZ, where k is a constant
coefficient.

The closed loop system is then described by the
following equations:

i = Vycosf
g Vo sin 6 (2)
0= kZ

5. STABILITY ANALYSIS

To study the stability of this control we first
examine the case where the line to track is a circle.
Afterwards we will extrapolate some results for
any curve.



A Drawn Line

Fig. 3. Circle tracking

5.1 Equilibrium trajectory for a circular line

The circle to track is centered at O the origin of
the Galilean reference frame, with radius R, as
shown on Fig.3.

We first study if there exists an equilibrium con-
figuration for the robot with respect to the circle,
and if this configuration is locally stable and at-
tractive. It can be expected that, at the equilib-
rium, the middle point P of the rear axle describes
a circle, as it will be confirmed after.

From this point of view, the state variables
(z,y,0) are not the most relevant, and it is prefer-
able to choose outputs that will converge to con-
stant values at the equilibrium. If the robot de-
scribes a circle centered at O, the coordinates of O
in a reference frame attached to the robot are con-
stant. So this leads to choose the two orthogonal
projections h and r of O on the axis (O, 7;) and
(O, 77) of the robot as outputs of the system. To
work with non dimensional variables and simplify
the equations we finally define:

h+H

(3)

I=v] iy

The geometrical constraint ensuring that there is
an intersection between the horizon and the white
line reduces to a first condition:

uf <1 (4)

A second condition has to be imposed in order
to ensure the existence of the control law. The
control is not defined if the horizon intersects the
circle at two points which are equidistant from
the main axis of the robot. This unacceptable
situation occurs when v = 0. This means that we
do not accept sign changes for v. Then, without
loss of generality, we consider that:

v>0 (5)
This simply means that the robot is moving in the
anticlockwise direction around O.

It is easy to show that the variables u and v evolve
according to the following equations:

du _ vV/1l—u? -0’4+ w
a (6)
i (u—0)(v—v1-—u?
-
where
o =
w = (7)
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The only equilibrium point of this system is given
by:

u = g
7j_\/1—02+\/1—02+4w) (8)
B 2

The value of o represents the distance OP at the
equilibrium.

The Jacobian matrix of this system is:
uv \/—
T 1—u?-2v
V1—u? )

5, u(u—o)
v—vV1—u +7m

At the equilibrium this matrix becomes:

o1 ) Vit i

2 1
V-2 +4w — V1 —-02
2

u—o

0

(10)



Its determinant is positive and its trace is negative
which implies that the eigenvalues have negative
real parts. So the subsystem is locally asymptoti-
cally stable around the equilibrium, for any values
of (0, @) €]0, 1[xR.

5.2 Domain of attraction of this trajectory

In order to characterize the domain of attraction
of this equilibrium point we consider the phase
plane detailed in Fig.4 where we have chosen
o = 0.6 and w = 0.07. The equilibrium state is
denoted by the black cross and has coordinates
(0.60,0.88).
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Fig. 4. Domain of attraction of the equilibrium

The domain of attraction is delimited by the black
solid line: it is the largest region of the plane
that satisfies the constraints (4) and (5) and for
which the field of vectors always points to the
interior of the delimited area. The computation
is achieved by MATLAB. Nevertheless, for this
system it is possible to determine analytically
an approximation of the domain of attraction
represented by the dotted line on the figure? .

It can be shown that the set of states (u,v)
corresponding to situations where P is on the
reference circle, is a circle arc in the plane phase,
with radius 1 and centered on (o, 0). It is the gray
solid curve on the figure.

So, on this example, parameters are such that P is
located inside the circle to track at the equilibrium
configuration.

There is a last aspect we have to consider: the
restriction of the field of vision. Considering the
maximal angle of vision we define a maximum
value Z,,.. for the deviation Z involved in the

feedback of equation (2). Considering z = £ and
2 The expression is presented in annex
of the following French pdf document
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Zmaz = Z’"—R‘” the expression of this variable in

function of u and v becomes:
z=v—V1—u? (11)

The region where |z| < zpq, is delimited by the
black black dashed curve on the figure.

So, to make sure that the robot will converge
to the equilibrium trajectory, we must impose
an initial state that will produce a trajectory
confined in the intersection of the black solid
and black dashed areas. The set of initial points
satisfying this condition is the largest stable area
included in the field of vision. In practice, if

0,2

< — 12
w<l (12)
this region of the phase plane is very close to the
intersection of the domain of attraction with the

vision field one.

A good stability margin estimator is the distance
from the equilibrium to the vision field boundary,
whose expression is

_ 1— \/02 + (U — 2maz)?
# o

m (13)
The division by ¢ aims at keeping this margin in
the same range independently of R. If inequality
(12) is satisfied then m essentially depends on the
value of o which must be small enough. Moreover
we then have v < 1. So, having a good stability

margin leads to o < /1 — (1 — zqz)? which can

be strengthen in:
H < \/2Zna:R (14)

In this inequality < only means that the small-
est H is, the best the margin is. In any case,
we recommend to choose at least ¢ < 0.7 to
keep equilibrium state far enough from the right
boundary of plane phase.

In the next two paragraphs we will denote D the

set of (o, w) with 0 € [0,0.7] and w = ‘;—2.

5.8 Convergence rate

In equations (7) we introduced a characteristic
time ¢, = %f; this is the unit time of equations
(6). So during this time we can give a character-
istic distance d. scanned by P, whose velocity is
Vo: d. = Vpt, = wR Then, considering that P is
moving around the center O, at an approximative
distance R from it, we find a characteristic angle

of rotation ¢, ? around O during t.:

pe=—=w (15)

3 in radians



This remarkable result is not sufficient to conclude
that the robot will approximately converge to the
stable trajectory after an angle of ¢., but will
allow us to conclude this study by numerical tests.

We call stabilization time at 0.1, the maximal non
dimensional time T for which the system has
reached a state 0.1¢ distant from equilibrium, in
plane phase units, for any initial state (u(0), v(0)),
and any couple (o,w) € D. Then we have an
approximate angle of stabilization at 0.1 ¢5 =
Tsp.. We then compute ¢4 for lots of values of
(o,7w) € D. We can see that ¢; has a maximum
value of ¢ar ~ 125° for the "longest” trajectory
in the domain of attraction. This means that,
whatever the admissible initial state, the robot is
very close to the equilibrium after one third of a
turn around the center O.

5.4 Extrapolation to any curve

A natural question is the following: ”if the line to
track is such that its curvature satisfies relation
(14) at every point, will the robot follow this
trajectory ?” A complete answer is quite hard to
give, but it is possible to study this problem by
some kinematic approximations. First, knowing
the geometrical parameter H we note ¢pq, = LH7,
the maximal curvature we accept for the drawn
line. This is to be coherent with ¢ < 0.7 in the

previous study. We also keep

(0,w) €D (16)

with the value R = L Tt is then intuitive that
the most difficult curves to track will be the ones
which are the most curved and which oscillate a
lot. Thus, we focus on a special curve which is a
succession of two circle arcs of radius R, with an
intermediate inflexion point as described on Fig.5.

Tracking a zigzag with: H=0.3 m,c =0.7,® =0.1225

0.5

Fig. 5. A difficult line to track

We suppose that the robot is initially stabilized on
the first arc equilibrium trajectory and we want

to know if it will join the equilibrium trajectory
of the second arc. We can look again at Fig.4
where the gray dashed trajectory represents this
transition. It is important to note that if the initial
state is in the vision field, the whole trajectory
also satisfies this condition.

Furthermore, if we compute again a maximal
stabilizing angle at 0.1 7,4, for this particular
trajectory, we find a value near 94°. We then can
draw the following conclusion:

if

the curvature of the line is upper bounded
parameters satisfy equation (16)

stability margin m; is acceptable

two successive inflexion points M and N are
always such that: M N > Ime

then the robot will be able to track this line.

6. IMPROVEMENTS OF THIS LAW

A simple criticism we could formulate for (o, w) €
D is that the point P is always stabilized in
the interior of the curvature, but never on the
line except if it is a straight one. In order to
achieve a more accurate control it can therefore be
interesting to change the values of the parameters:
choosing

w=1—-+v1-02 (17)

when the robot tracks a circle, stabilizes P right
on the line because v = 1. To extend this conclu-
sion we can compute the curvature of the line to
track and adapt @w and o at the same time so that
condition (17) will be satisfied for this curvature.
Then, denoting s the curvilinear coordinate and
¢ the curvature, if % is small enough we can
consider that P is stabilized on the the line. So
we have cancelled constraint (16) but it does not
matter since the robot is always near equilibrium.
We can give the following new constraint
dc 1

& 1
ds<<H2 (18)

7. A SIMPLE IMAGE PROCESSING

To keep a quick image processing we implement a
simple method to find a point of the line to track.
Let’s choose one ore more fixed horizontal lines of
pixels. As we want to track a white line we only
have to select every point appearing bright enough
(using a threshold for instance), and then take the
middle of the first one and the last one, which will
approximatively give the middle of the white line.
One could notice that this is not robust if there
are other white objects in the vision field. We can
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Fig. 6. Finding a point of the white line

improve this method by several simple ways like
checking the width of the alleged line to verify
that this is coherent with the expected width.

7.1 Enlarging the field of vision

The field of vision is obviously a limiting factor
in our problem, because we must make sure that
the white line will always be visible for the video
camera. Anyway, it is important to limit the cur-
vature of the line to track, because of mechanical
constraints, but it would be preferable that the
field of vision would be wide enough not to be a
limiting factor.

That is why it is interesting to add a rotation on
the camera to widen the angle of vision. Then, by
a test on each snapshot we can impose that the
camera focuses on the white line if this one is far
too much from the center of the picture.

8. EXPERIMENTAL RESULTS

We have tested our strategy with the our robot on
a white line (see Fig.7) with a minimum curvature

Fig. 7. The test path

radius of 40 cm (knowing the distance between the
controlled point P and the beginning of the field
of vision is about 38cm) and having also some
inflexion points.

We have tested the control with the following
modifications:

e the camera can rotate to improve the field of
vision

e the parameters are modulated so that the
robot moves faster on straight lines and more
slowly in the curves, with a better control of
the point P

The distance between P and the white line is
always smaller than 3 cm and often smaller than
1 cm. These results seem good enough compared
with the intrinsic error of the approximation we
made of the path; a video can be downloaded from
http://www.inma.ucl.ac.be/ coulaud/

9. CONCLUDING REMARKS

Lots of improvements could be added to the path
tracking strategy we propose. Nevertheless, the
advantage of this method is that it is really simple
to implement and requires few computations for a
quite good accuracy of the control compared with
the cheapness of the components.
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