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The Power Dissipation Method and Kinematic
Reducibility of Multiple-Model Robotic Systems
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Abstract—This paper develops a formal connection between the
power dissipation method (PDM) and Lagrangian mechanics, with
specific application to robotic systems. Such a connection is neces-
sary for understanding how some of the successes in motion plan-
ning and stabilization for smooth kinematic robotic systems can
be extended to systems with frictional interactions and overcon-
strained systems. We establish this connection using the idea of a
multiple-model system, and then show that multiple-model systems
arise naturally in a number of instances, including those arising in
cases traditionally addressed using the PDM. We then give neces-
sary and sufficient conditions for a dynamic multiple-model system
to be reducible to a kinematic multiple-model system. We use this
result to show that solutions to the PDM are actually kinematic
reductions of solutions to the Euler-Lagrange equations. We are
particularly motivated by mechanical systems undergoing multiple
intermittent frictional contacts, such as distributed manipulators,
overconstrained wheeled vehicles, and objects that are manipu-
lated by grasping or pushing. Examples illustrate how these re-
sults can provide insight into the analysis and control of physical
systems.

Index Terms—Contact modeling, dynamics, frictional contacts,
kinematic analysis, modeling for control.

1. INTRODUCTION

ANY mechanical systems, though intrinsically second-
M order in their governing dynamics, can be adequately de-
scribed by first-order equations of motion, that is, one can often
propose a “quasi-static” or “kinematic” version of the governing
equations of motion for the purposes of system analysis or con-
trol design. The benefits of this simplification are numerous: the
dimension of the state space drops by half; the control inputs go
from being force inputs to being velocity inputs (which are often
more easily realized in practice); and the governing equations
typically take a simpler form than the full dynamic model. Ad-
ditionally, kinematic systems, although potentially nonlinear, do
not typically involve drift terms. There is a greater quality and
quantity of nonlinear control results available for driftless sys-
tems, as compared with systems with drift. See [1]-[6] for just
a few examples.
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This paper has several interrelated goals. One of the main
technical goals of this paper is to determine the formal condi-
tions under which such reductions can be achieved for multiple-
model systems. In multiple-model systems (see Section IV), the
system’s governing equations switch between several possible
models that describe the system’s evolution. This paper presents
necessary and sufficient conditions for a multiple-model system
to be kinematically reducible; i.e., the second-order dynamical
models can be reduced to first-order kinematic models of the
form in Definition 4.1. The necessary and sufficient conditions
for kinematic reducibility of smooth dynamical systems were
first developed by Lewis [7]. One of this paper’s contributions
is the extension of kinematic reducibility theory to the mul-
tiple-model case.

While our kinematic reducibility results can be applied to
a large class of problems, we are particularly motivated by
the multiple-model systems that arise frequently in robotics
practice. The multiple-model framework has recently received
an increasing amount of attention in the control community
[8]-[11], so there are many control results available for our use.
Therefore, understanding the connection between problems in
robotics and the multiple-model framework will be productive.
Examples of multiple-model systems include robotic systems
involving intermittent mechanical contacts, such as distributed
manipulators, overconstrained wheeled vehicles, and objects
that are manipulated by grasping or pushing (see Section X).
A number of similar approaches have been proposed or used
to create “quasi-static” models of such systems. Most repre-
sentative of these is the power dissipation method (PDM) (see
Section V) introduced by Alexander and Maddocks [1] in the
context of overconstrained wheeled vehicles. Peshkin also used
similar ideas in the study of pushed objects [12]. Based on this
method, one can develop first-order (or kinematic) equations
of motion for mechanical systems that undergo intermittent
sliding contacts. We show in Section VII that solutions to the
PDM are multiple-model systems. We have used the PDM to
model distributed manipulation systems that generate motion
via frictional contacts [13]. The resulting multiple-model
descriptions are very amenable to control analysis, and the
associated nonsmooth control laws worked well in practice.

As a second goal of this paper, we address a key question:
does the PDM produce models that are consistent with a com-
plete dynamic (Lagrangian) analysis? The formalization of the
PDM and the analysis of its relationship to Lagrangian anal-
ysis are the other main contributions of this paper. Formally,
in Section IX, we show that every solution to the PDM is pre-
cisely a reduction of a solution to the Lagrangian formulation.
Moreover, this is true for all solutions, which is important, as
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solutions are not unique in either the PDM or the Lagrangian
formulation (when nonsmooth interactions, such as impacts and
friction, are taken into consideration).

The paper is organized as follows. To motivate our results,
we first examine some examples of mechanisms that naturally
involve stick/slip phenomena in Section II. Then, we briefly
review the classical Lagrangian approach in Section III before
covering the basic ideas of the multiple-model formalism
in Section IV. We then specifically address an example in
Section VI using these ideas. In Section VII, we cover charac-
teristics of the PDM, and we then move on to reduction theory
for multiple-model systems in Section VIII. Section IX relates
solutions to the PDM to solutions to the Lagrangian analysis.
We end in Section X with a detailed look at several examples
in which we have found our analysis to be practically useful.

II. EXAMPLES

To show the potential breadth of applications for our results,
here we summarize four typical robotic and physical systems
to which our theory applies (see Fig. 1): a wheeled bicycle, the
Rocky 7 prototype of the NASA Mars rover family, a distributed
manipulation system whose function is to manipulate a planar
object via roll-slide contacts, and a multifingered robotic hand.
All of these systems are characterized by complex mechanical
interactions involving contact mechanics and slip. More specif-
ically, all of these systems can be modeled and analyzed using
the multiple-model framework developed in this paper.

Consider the bicycle in Fig. 1(a). For simplicity, we assume
that the bicycle is constrained to move along a line and that both
wheels are actuated. (We will repeatedly return to this example,
as it exhibits many of the features that are relevant to our discus-
sions). If both wheels are actuated using nonbackdrivable mo-
tors, driving both wheels at exactly the same velocity is a diffi-
cult task, and thus, this bicycle would typically experience small
amounts of slipping in practice. More interestingly, this slipping
is likely to change over time due to variability in contact fric-
tion characteristics, leading to a multiple-model, or hybrid, me-
chanical system. The multiple-model methodology introduced
in this paper and companion papers is well suited to analyze
such systems.

The NASA Mars rover family members have six indepen-
dently driven wheels, as well as two wheels independently
steered. As discussed in [14] and [15] and reviewed in
Section X, this vehicle’s suspension is kinematically overcon-
strained, implying some of these wheels are always slipping.
Moreover, it can be difficult to predict which wheels slip at
any given moment. There is already extensive literature on
wheeled vehicles, establishing controllability based on a Lie
algebra rank condition (LARC) [16], [17], stability based on
center manifold theory [6] and hybrid systems theory [11],
motion planning based on Voronoi diagrams [18], and RRTs
[2]. However, all of these methods assume that the vehicle
motions are governed by smooth, kinematic equations of mo-
tion. Because of the inherent and unpredictable switches in
slipping, the governing dynamics are not smooth. Nevertheless,
the methods developed in this paper show that such vehicles
are still kinematic systems, albeit nonsmooth ones. Moreover,

)

d) By
Fig. 1. (a) Bicycle with both wheels driven. (b) Mars rover Rocky 7 Sojourner

prototype. (c) Distributed manipulation testbed developed at Caltech (see de-
scription in the text). (d) Hand capable of grasping objects.

in related work, we have made progress on extending classical
nonlinear control concepts, such as the LARC, to the domain
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of multiple-model systems [14]. We will discuss this more in
Section X-B.

Distributed manipulation has received recent attention in the
robotics community [19], [20]. Fig. 1(c) shows a distributed ma-
nipulation testbed developed by the authors, in which nine ac-
tuated wheels can be used to manipulate planar objects set upon
the manipulation surface. All of these wheels can be indepen-
dently driven and steered, giving the system 18 control inputs,
with only the position and orientation of the manipulated ob-
ject as the output. Hence, this system is massively overactuated.
The idea of many actuated devices interacting with an object to
achieve some desired manipulation goal is appealing, partially
because of its scalability and the possibility of using many inex-
pensive actuators rather than a few expensive ones. Moreover,
microelectromechanical system (MEMS) fabrication technolo-
gies potentially enable distributed manipulation to be a leading
candidate for micromanipulation. We have shown in prior work
how distributed manipulators that employ frictional contacts fall
into the multiple-model domain [13]. The multiple-model kine-
matic reducibility theory developed in this paper provides a
simple but rigorous framework for the design of stabilizing con-
trol laws that take into account the nonsmooth effects of friction.
We have used kinematic reductions both to show the potential
shortcomings of control laws based on smooth idealizations, and
to explicitly compute stabilizing control laws that work well ex-
perimentally (see [13]).

Grasping and locomotion continue to be active areas of
robotics research. Current methods often use kinematic models
[3] to represent the system dynamics, yet grasping implicitly
contains many of the previously mentioned difficulties. In
particular, although stick/slip phenomena occur in a grasping
problem, there are not very convincing ways to show that
the kinematic methods typically used for grasping are robust
with respect to the variation in stick and slip states for a given
contact. The analytical methods presented here create a method
for analyzing these difficulties without resorting to dynamic,
second-order analysis.

In Section X, we will revisit these examples in order to show
how the kinematic reduction theory of this paper can provide
simplification or insight.

III. BACKGROUND: LAGRANGIAN MODELS
WITH FRICTIONAL CONTACTS

This study has been largely motivated by the problem of
modeling and controlling mechanical systems that experience
multiple, possibly intermittent, contacts that involve friction,
particularly Coulomb friction. Clearly, the contacts place
constraints on the system’s evolving motions. Constrained
mechanical systems can be modeled using conventional
Lagrangian mechanics through the use of Lagrange multipliers.
Consider a generic mechanical system with up to x frictional
contacts between rigid body surfaces, where the contacts can
be intermittently slide or stick. Such a system admits up to 2”
possible contact states which represent all possible permuta-
tions of sliding and sticking. Let L(q, ¢) denote the system’s
Lagrangian (kinetic minus potential energy), where ¢ € @
denotes the configuration of the mechanical system, and () is
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the n-dimensional configuration manifold. If the ¢th physical
contact does not slip, the contact imposes a nonholonomic
constraint on the mechanical system’s motion. This constraint
can be expressed in the form w;(¢q)¢ = 0. If the ith contact slips,
the Coulomb friction law (which is reasonably accurate for
low-speed/low-acceleration maneuvering) states that the tan-
gential reaction force at that contactis F¥ = —(v; /||v;||) i Y,
where 1, FiN , and v; are, respectively, the Coulomb friction
coefficient, normal force to the contacting surface, and slipping
velocity of the contact at the :th contact. Hence, the mechanical
system’s overall equations of motion can described by

d (0L oL
€S J€S

where S is the slipping contact set, the {\;} are undetermined
Lagrange multipliers, and 1" are the generalized applied forces,
that is, k € S if the kth contact is slipping. If the kth contact is
not slipping, A; corresponds to the tangential reaction force that
is needed to maintain the no-slip constraint at the kth contact.
We generally assume in this paper that the contact normal forces
{F}N'} are known. If this is not the case, then solving for the re-
action forces can be difficult, involving algebraic relationships
[17]. However, additional Lagrange multipliers may often be
added to solve for these normal forces. Note that this description
involves a choice of coordinates. The equivalent, coordinate-in-
dependent representation is the formalism in which we address
these problems, and is briefly reviewed in the Appendix.

There are two primary practical problems with the
Lagrangian modeling approach. First, one must solve for
the Lagrange multipliers, a tedious task that often leads to
complex equations. Second, an additional (and often sensitive)
analysis is necessary to determine which contacts are slip-
ping at any given instant. Consequently, the practical need to
analyze such systems in a tractable way motivates the use of
quasi-static or kinematic approximations, and, in particular,
the PDM that is reviewed in Section V. A natural question
arises when using quasi-static analysis: what is the relationship
between the equations of motion predicted by quasi-static anal-
ysis and those generated by Lagrangian analysis? Moreover,
can the quasi-static equations properly predict the motions of
the true system? Section IV briefly reviews the concept of a
multiple-model system, which is the appropriate mathematical
setting for this question in the case of intermittent frictional
contacts. We describe a method for finding quasi-static equa-
tions of motion in Section V, and we answer these questions in
Section IX.

IV. BACKGROUND: MULTIPLE-MODEL SYSTEMS

We use the formalism of multiple-model systems to address
kinematic reducibility of systems involving frictional and inter-
mittent contact.

Definition 4.1: A control system X evolving on a smooth
n-dimensional manifold () with m inputs is said to be a mul-
tiple-model driftless affine (MMDA) system if it can be ex-
pressed in the form

Y ¢g= flgtur+ folg, uz + -+ frlq, Dum ()
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where ¢ € Q. For any g and ¢, the vector field f; assumes a value
in a finite set of vector fields: f; € {ga,|; € I;}, where I; is
an index set. The vector fields g,, are assumed to be analytic in
(g,t) for all v, and the controls u; € R are piecewise constant
and bounded for all 2. Moreover, letting o; denote the “switching
signals” associated with f;

oi: QxR—N
(qvt)HO‘i

the o; is measurable in (g, t).

Definition 4.1 implies that the control vector fields may
change, or switch, among a finite collection of vector fields,
each representing a single smooth model in a set of models P.
An example of such a system is a vehicle whose wheels can
potentially skid. The system’s governing dynamics will vary
when the wheels slip or do not slip. Such systems are intimately
related to multiple-model systems, such as those studied in
[11]. However, we should emphasize that the “switching” is
not like the switching phenomena found in [21]-[24], or as
typically studied in the hybrid control systems literature (e.g.,
[25] and [26]). In these studies, the switching phenomena is
part of a control strategy to be implemented in the controller.
In our case, the switching is induced by environmental factors,
such as variations in the contact state between rigid bodies.
Since the phenomena which govern the switching behavior
may not be precisely characterized, we make no assumptions
about the nature of the switching functions, except that they
are measurable (i.e., o is a Lesbesgue measurable function in
Definition 4.1). A long-term goal of our work is to develop
systematic methods for analyzing control systems with the
type of hybrid (and therefore, nonsmooth) structure seen in
Definition 4.1.

To distinguish between the overall control system and
the smooth control systems that comprise it, we define the
individual control systems to be the smooth control sys-
tems making up the multiple-model system, comprised
for gr(q,t) = ga,(q,t) for some a;. A system will be
termed a multiple-model affine system if it has the form
q = folg,;t) + filg,t)ur + fa(q,t)uz + -+ + fin(q,t)tm.,
where the vector field fy(g,t) (or “drift term”) is also selected
from a set of analytic vector fields {g,,(q,t)}.

V. OVERVIEW OF THE PDM

The idea that many systems minimize power or energy dis-
sipation during their state evolution is an old one, but, to the
best of the authors’ knowledge, was first applied in a robotics
context in [1]. This idea, called the PDM, is a powerful one be-
cause it gives an alternate method for deriving equations of mo-
tion. In fact, the equations of motion it predicts are first-order,
as we shall see. Moreover, the resulting equation of motion have
some unintuitive properties; they are discontinuous and some-
times set-valued, and do not typically have unique solutions.
Despite these technicalities, the equations of motion are very
useful for resolving overconstrained systems’ equations of mo-
tion. This section describes the principle in the form relevant to

multiple point contact. Section VI goes through a detailed ex-
ample as an illustration, and as a way of comparing the PDM
to the more traditional Lagrangian mechanics. Section VII then
discusses some basic properties of the PDM, primarily focusing
on uniqueness of solutions. Then, after developing some rele-
vant mathematical machinery in Section VIII, we show that so-
lutions to the PDM can be directly related to solutions of the
Lagrangian formulation of the equations of motion.

Now we consider the mathematical statement of the PDM.
Let ¢ € @ again denote a system configuration. This configura-
tion will potentially consist of both group variables g, (that cor-
respond to the unknowns in the state evolution) and shape vari-
ables ¢, (that correspond to the control inputs in the system).
In this case, the configuration manifold can be written as the
product of @), and @, (ie., @ = Q4 x Q). The relative mo-
tions between moving objects at a point contact can be written
in the form w(q)q. If w(q)¢ = 0, then the contact point is not
slipping, while if w(q)q # 0, then w(q)q describes the contact
point’s slipping velocity. The power dissipation function mea-
sures the object’s total frictional energy dissipation due to con-
tact slippage.

Definition 5.1: Consider a mechanical system (which con-
sists of a single rigid body or a set of rigid bodies) that main-
tains « frictional contacts, where some or all of the contacts may
be slipping. The dissipation or friction functional for x-contact
states that are governed by Coulomb friction is defined to be

D(g)(q) = > miF} lwilq)dl 3)
=1

where w;(q)q describes the relative slipping velocity, p; is the
Coulomb friction coefficient, and FL-N is the normal force at the
1th contact.

The form of this function reflects the Coulomb friction model,
but it can easily be extended to different friction models (see
[27]) by replacing the linear term y; ¥ with a more general
state-dependent function h;(q). Now, it is clear from the form
of D(q) that if w(q)g # 0, then D(q) > 0, that is, whenever
a contact slip’s energy is dissipated. Based on this observation,
Alexander and Maddocks [1] proposed the following axiomatic
statement of the PDM for an x contact system.

Power Dissipation Principle: Given a system with
configuration ¢ = (gy,¢-) € Q4 X @, = @ and g, fixed,
a system’s motion at any given instant is the one that
minimizes D(q) [see (3)] with respect to g, that is, find
qy such that

D ((¢9.9)) ((¢5,dr)) =

min

i D ((40,00) (G )

The PDM is built upon this axiom. It allows one to compute
equations of motion purely based on the dissipation functional
D(gq). Note that because the minimization occurs over ¢, €
Ty, ()4, the solution to the minimization problem is an element
of T'Q. Therefore, the equations one gets using this method are
necessarily first-order equtaions. Hence, we may get rid of some
of the complexities associated with the Lagrangian mechanics.
However, simple is not always correct, so we must understand
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the relationship between the Euler—Lagrange equations, which
are known to be equivalent to Newton’s laws, and solutions to
the PDM. In Section IX, we draw this connection by showing
that solutions to the PDM are in one-to-one correspondence to a
special subset of the solutions to the Euler—Lagrange equations.
The fact that solutions to the PDM cannot represent all pos-
sible solutions to the Lagrangian formulation can be easily seen
by considering the following example. Consider a particle con-
strained to move on a surface, with friction between the particle
and the surface. There are no controls, so () = (),. Lagrangian
analysis suggests that there are two possible contact states, one
slipping and one not slipping. Because D(q)(¢) = uF?|q| and
¢ = 0 is the unique minimizer for qg;inQ D(q)(¢) = 0, the PDM
q

predicts that the particle will not slip. Hence, it misses some of
the contact states predicted by the Lagrangian framework. How-
ever, the nonslip motion that it does predict is consistent with a
Lagrangian analysis.

For overconstrained systems with control inputs, the PDM
leads to more interesting and useful results. When a configura-
tion ¢ can be decomposed into two components ¢ = (gq, gr) €
Qg % Qr = Q, then D(q)(¢) = /‘iF;ZNW(Qg: r)(dg, Gr)| and
the PDM minimization becomes —min  D(q)(q), that is, the

dg ag<yg
PDM will predict g, given ¢,.. In most cases of interest, the vari-

able ¢, corresponds to the control inputs, while the variable ¢,
corresponds to the system motion of interest. In Section VI, we
consider this case using the simple example of a two-wheel-
drive bicycle constrained to move on a line.

VI. EXAMPLE: A TWO-WHEELED BICYCLE

Here, we consider in detail an example to illustrate the sim-
ilarities and differences between the Lagrangian and PDM for-
mulations of the equations of motion. Consider the planar bi-
cycle [see Fig. 1(a)] which is constrained to move along a line.
We will revisit this example shortly using the PDM formalism,
but for now, we treat it in the Lagrangian framework. Let ¢ =
[1,p1,p2]T, where ¢y is the front wheel angle, ¢» is the rear
wheel angle, and x denotes the bicycle’s relative translation
of its body frame B along the z-axis of the world frame W.
The downward normal force F¥ on each wheel depends upon
the bicycle’s weight distribution and, at each point of contact,
the coefficient of friction is y;. Assume that each wheel is ac-
tuated, with torques 71 and 79, and that each wheel may pos-
sibly slip. Each wheel has the same moment of inertia J =
(1/2)Myheel R?, where R is the radius of the wheel and 1.y heel
is the mass of the wheel. Finally, the bicycle’s total mass is .
Hence, the Lagrangian for this system is L = (1/2)mi? +
J$3 + J¢3. There are two nonholonomic constraints associ-
ated with this sytem, one for the nonslip constraint associated
with the front wheel and one for the back wheel. These non-
slip constraints can be written as wi(q)¢ = & — Rp1 = 0 and
wa(q)q = & — R = 0.

Using (1) and solving for the Lagrange multipliers, there are
four different governing equations of motion (see Table I), each
corresponding to a different type of contact state. The analysis
based on Lagrangian mechanics suggests that there are four pos-
sible contact states, corresponding to (A) where neither wheel
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TABLE I
LAGRANGIAN DYNAMICS OF THE PLANAR BICYCLE IN THE FOUR POSSIBLE
CONTACT STATES. J IS A WHEEL’S MOMENT OF INERTIA ABOUT ITS
ROTATIONAL AXIS, . IS TOTAL BICYCLE MASS, AND R 1S THE WHEEL RADIUS

R R T
2J+1mR§ 2J+mR2
q= 2J+InR§ T+ 2J+{nR§ T2 (A)
N R - 2J+mR2 | 2J+mRZ2 |
F} _
1 R
T RD
| TEmE 0 TH¥mR?
G= Jl + S| 1+ ? T2 ®
RF{* 0] J+mR2
_J—H%RE_ -
__1_:.‘2_5 R - -
_|=E|, [ 0. e
= 2 T T )
q TimpE Tl | : 2 ©
RF) |7
L T -
FRLFET - -
m 0 0
G= Fl){R + % T + ? T2 D)
Fy'R 0] LT
J .

slips, (B) where the front wheel slips, (C) where the rear wheel
slips, and (D) where both wheels slip.

When the ith wheel slips, the tangential reaction force at
the ith contact point is governed by the Coulomb friction law
FI' = —(& — Roi/||l& — Repil|) i N, where pi; is the Coulomb
friction coefficient and F" is the normal force bearing down
upon the 2th wheel contact. When the 7th wheel does not slip,
the tangential reaction force is given by the Lagrange multiplier
Ai. The Coulomb friction model implies that the boundary be-
tween slipping and nonslipping states occurs at some value of
the Lagrange multiplier, denoted by A"°™. When \; > A*™,
the sth contact slips. Consequently, the A space is divided into
regions corresponding to different contact slipping states. The
problem of contact state determination arises from the inher-
ently complicated dependency of A on the current state. For the
planar bicycle model, the Lagrange multipliers assume the fol-
lowing values when model (A) holds:

J(Tl — TQ) — R2m7'1
R(R*>m + 2J)
J(ro — 1) — R*mmy
R(R?>m +2J)

A=

Ay =

Under the Coulomb friction model, the critical value of A\
for this example takes the value \,om = uiFiN . However, de-
pending on the friction model, A, will take different values.
This fact implies that the boundary of these regions is both ter-
rain-dependent and sensitive to the details of the friction model.
One of the purposes of this paper is to provide a modeling foun-
dation for control strategies that are not sensitive to the friction
model, such as those we employ in [13].

Now we consider the PDM formulation of the equations of
motion for the two-wheeled bicycle. For this system, ¢, = «
and ¢, = (1, P2) because ¢ and ¢o correspond to our con-
trol inputs to the system. We are solving ; re%ian D(q)(q) =

g g
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r_ni[g |1 FNw1(q)d| + |pa By wa(q)g|, which implies that & =
€

Rq§1 or z = Rci>2. Hence, the equations of motion may be
written as

& =Re; ie{1,2} @
where ¢ can change over time. Therefore, this is a multiple-
model system as described in Definition 4.1. Note that when
w1 F IN = uoF. 2N , this minimization does not have a unique so-
lution. In fact, all values in the convex hull of quﬁl and RQ‘SQ
minimize D(q). We should add, however, that this same inde-
terminate situation occurs in the Lagrangian dynamics when
Anom = uiFiN at the sth contact. Therefore, the PDM has only
two dynamic states, while the Lagrangian dynamics have four.
We will see in Section IX that the two dynamic states coming
from the PDM correspond to (B) and (C) in Table I. Moreover,
they include (A) as a degenerate case (when ¢; = ¢o, im-
plying that w; = ws). Only (D) is not included in the PDM
representation.

In Section VII, we will turn to some of the more mathematical
properties of the PDM that generalize some of our observations
about the two-wheeled bicycle. In particular, we show that the
PDM leads to multiple-model systems, and show that, in gen-
eral, the model determination is unique, with only occassional
occurance of indeterminant solutions.

VII. CHARACTERISTICS OF THE PDM

Here, we formalize the PDM and show that the PDM generi-
cally gives rise to MMDA systems, as described in Section IV.
Specifically, the PDM generically yields unique solutions, and
when the equations of motion are not unique, they can still be
bounded.

Before proceeding, let us recall a few facts that were already
established by Alexander and Maddocks [1]. They showed that
the dissipation function of (3) is convex, so that its local minima
are also its global minima, should they exist. They also show
that, if such a minimum exists, it must exist at a point of nondif-
ferentiability of D(q) due to the piecewise continuity of D(q).

Let Q@ = {w1,...,wm} denote the constraint 1-forms. For
our purposes, these constraint 1-forms generally will represent
the nonholonomic constraints associated with point contact.
Furthermore, let @ = {¢1, da, - - -, §p} consist of the velocities
that have the property that ¢, € Q C T,Q is a kinematic
solution to a nonoverconstrained subset Q' C 2 consisting of j
constraints, i.e.,

Qg = g = 0.

Wk,

It is straightforward to show that at least one minimizer of D(q)
must ben an element of Q. See, for instance, [1] and [28]. Re-
order Q so that D(g)(d1) < D(g)(¢2) < -+ < D(q)(gp)- Al-
though Q is associated with at least one of the minima achieved
by D(q), it does not necessarily contain all of them. In fact, if
more than one element of Q is a minimum, then every element
of the convex hull of these minima are also minima. Hence, if

there is more than one solution, there are an infinite number of
solutions.
Proposition 7.1: If ¢; and ¢» both minimize the dissipation
functional found in Definition 5.1, then so does co{q1, 42 }.
Proof: Assume D(q)(¢1) = D(q)(¢2) = a and § € [0, 1].
Then

D(q) (b1 + (1 = 6)g2) = Zuz |wi (8¢1 + (1 = 6)g2)|

5Zm

(1—96) Z;LiFL-N |wi(q2)]

i=1

IN

|wz (J1)|

= Q.

Moreover, equality must hold because we know that the min-
imum is in Q. Therefore, the convex hull of ¢; and ¢ minimizes
D(q). The proof for higher numbers of ¢; having equal dissipa-
tion is by induction on this argument. [ |

This result formalizes the intuition that if the power dissipated
is equal for two velocities ¢;, then all possible trajectories whose
velocity lies in the convex hull of the ¢; will satisfy the minimum
also; that is, in the nongeneric case when D(q) does not have a
unique minimum, we can still bound the object’s motion. Let us
consider the extent to which the function D(q) having a unique
minimum over ¢, is generic. We denote the function space of
the coefficient of friction by = and the function space of normal
forces by N. The following is a rephrasing of a result in [1]
using the notation developed here.

Proposition 7.2: Assume D(q)(q): (E,N,T,Q) — R is of
the form in Definition 5.1. Then, given g,., the dissipation func-
tional D(q) almost always has a unique minimum with respect
to g4 (i.e., except on a set of measure zero! relative to the space
(2N, TQ)).

This result states that solving for equations of motion using
the PDM will almost always yield a unique solution. However,
whenever the system is transitioning from one solution to an-
other because of a change in y or F’ N the solution will become
a set instead of a singleton. This set is bounded by the elements
of Q that minimize D(q). This makes the comment made in
[1] rigorous, referring to the physical expectation of continually
switching back and forth between the dominance of one wheel
or another, rather than staying in an indeterminate state. Propo-
sition 7.2 additionally establishes a relationship between solu-
tions that minimize D(q) and MMDA systems. Moreover, we
will see that the contact states predicted by the PDM are (U, U)
reductions of a class of mechanical control systems on 7'Q).

ntuitively, sets of measure zero can be as sparse as disjoint points in () or
as replete as a submanifold of (). For example, consider a vehicle moving on
smooth terrain. In its ambient Euclidean space, a vehicle is always constrained
to a set of measure zero, yet that set is precisely where the interesting dynamics
occur. On the other hand, sets of measure zero can represent arbitrary alge-
braic relationships between parameters and the state space. Unless there is some
reason to believe that these relationships are necessarily satisfied, we can feel
physically motivated in asserting they will not occur in practice. This is the case
that we are considering, and therefore, we feel that the ensuing results do imply
the genericity we assert. Nevertheless, whether or not these sets are important in
the analysis is a physical assumption, not a mathematical result. For a reference
on measure theory, see [29].
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Proposition 7.2 also implies that multiple-model systems are
a natural result of frictional interactions. Consequently, mul-
tiple-model modeling and control techniques should be devel-
oped for systems involving frictional contact. In Section IX, we
will explore more formally the relationship between solutions to
the PDM and solutions to the Lagrangian dynamics. However,
before we can do that, we must explore in detail the notion of
kinematic reducibility for mechanical systems and how it can
be extended to multiple-model systems.

VIII. KINEMATIC REDUCIBILITY FOR
MULTIPLE-MODEL SYSTEMS

Here, we introduce the formal tools and results required
to relate solutions arising from the PDM to solutions arising
from the full Lagrangian analysis. A rigorous understanding of
the PDM’s properties and its relationship to conventional La-
grangian mechanical analysis has heretofore been missing. We
structure our analysis of this issue in two steps. In the previous
section, we developed a more formal mathematical framework
for the PDM. In particular, we showed that the PDM leads
generically to multiple-model systems. This section introduces
kinematic reducibility theory for multiple-model systems. We
then use our multimodel reduction theory to formally study the
relationship between the properties of the PDM solutions and
those of the associated Lagrangian models (in Section IX-B).

A. Review of Kinematic Reducibility for Smooth Systems

We briefly review the relevant notions of kinematic reduction
here, without going into detail on the underlying formalism. For
some of these details, refer to the Appendix and to [7]. The no-
tion of (U,U)-reducibility formalizes what is meant by kine-
matic reducibility. For mechanical systems, we consider inputs
u: [0, T] — R™ that are essentially bounded and Lebesgue inte-
grable. In [7], it was assumed that inputs are absolutely contin-
uous functions, since piecewise continuity implies that instanta-
neous changes in system velocity are possible. In the presence
of inertial effects, such changes can only occur when infinite
forces are allowed. We keep this assumption on the inputs. How-
ever, here state transitions are being approximated with piece-
wise continuous signals. This is a common approximation in
many areas of physical modeling [30], such as impacting bodies.
Therefore, we only require that absolute continuity hold locally
rather than globally.

Definition 8.1: f: [a,b] — R™ is absolutely continuous, if
for each ¢ > 0 3 6 > 0 such that for every finite collection
{(t;,t})}1<i<n of nonoverlapping intervals in [a,b] with the
property that

N N
o1t~ il <8, wehave S [17(#) — F(t)] < .
1=1 =1

This definition implies that D f exists almost everywhere.

Like [7], we restrict our attention to systems that can be
modeled as simple mechanical systems in a piecewise sense.
In simple mechanical systems, the Lagrangian takes the form
L = K.E.— V. Assume that ) is an n-dimensional configu-
ration manifold, and G is a Riemannian metric on () defining
the kinetic energy. Since many of the applications of interest
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are systems with no potential energy, let us simplify to the case
where £ = K.FE. (i.e., V = 0). Denote by v, elements in the
tangent space of ) at g, T;Q. With zero potential energy, the
system Lagrangian takes the form £ = (1/2)G(vq, vq).

Given a metric G on the manifold @), constraints modeled as
1-forms in 7@, and inputs u?, it is possible to show that the
Euler-Lagrange dynamical equations can be written in the form

GVC/(t)c'(t) = u®(t)Y, (c(t)) 4)

where ¢ — ¢(t) is a path on Q and ¢/(t) = (d/dt)c(t), and 'V
is the constrained affine connection associated with the metric G
(see the Appendix). Note that (5) is a second-order differential
equation evolving on the manifold ). On the other hand, given
input velocities u®, kinematic equations can be written in the
form

4(t) = (1) Xa (¢(2)) - ©)

Our goal is to formally reduce (5) to (6). Moreover, if {X;}
are kinematic vector fields and {Y}} are dynamic vector fields,
we let the distributions Dy;, and Dgyy, be defined by Dy, =
span {X;} and Dgy, = span {Y;}. Relating these two sets of
vector fields will be of primary importance to us. Now, we say
what we mean by a solution to a control system.

Definition 8.2: Let X, be a smooth control system
G = f(q,u) on a smooth manifold M, and letuw € U C R™. A
(U, T) solution to 3 is a pair (¢, u), where u: [0, 7] — U and
c: [0, T] — M satisfy ¢/(t) = f(c(t), u(t)).

Note that Definition 8.2 only makes sense for first-order equa-
tions evolving on M, and (5) is a second-order differential equa-
tion evolving on (). Hence, we must rewrite (5) as a first-order
equation evolving on T'Q). To do this, we must introduce the ver-
tical lift, defined by

) d
verlift(X)(vy) = pn lt=0vq + tX(q)

(where X is a vector field on Q) and the geodesic spray, defined
in coordinates by

5]
Ovt

7=yl

_ i Y% i gk
—vaqi v’

where F;’.k are the Christoffel symbols associated with G (see
the Appendix). Let ¢

TQ:TQ—>Q

Vg — 4

denote the tangent bundle projection. Then, (5) written as a first-
order system evolving on 7'Q is

0(t) = Z (v(t)) + u®(t)verlift (Y, (¢ o v(t))) @)

where v(t) € TQ. We now can define what it means for a me-
chanical system of the form in (5) to be (U, /) reducible to (6).
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Definition 8.3: Let V be an affine connection on () (see the
Appendix), and letZ/ and U be two families of control functions.
The system in (5) is (U, U )-reducible to the system in (6) if the
following two conditions hold.

1) For each (U, T) solution (7, u) of the dynamic equation
(5), with initial conditions 7(0) in the distribution Dy;y,,
there exists a (U, T) solution (7, ) of the kinematic (6)
with the property that v = 7 o 7).

2) For each (U, T) solution (vy, %) of the kinematic (6), there
exists a (U, 7T) solution (1, u) of the dynamic (5), with the
property that n(t) = ~/(¢) for almost every ¢ € [0, T].

Condition 1) says that for every solution of a dynamic system,
there must exist a kinematic solution that is the projection of
the dynamic system. In the case of a vehicle, this corresponds
to requiring that for every trajectory of the vehicle, there ex-
ists a corresponding path that can be obtained from kinematic
considerations alone. Condition 2) says that for every kinematic
solution, there must exist a dynamic solution that is equal to the
kinematic solution coupled with its time derivative (so that it
lies in 7'Q)). This means that there must exist a dynamic solu-
tion for every feasible kinematic path. We should point out here
that this is related to the classes of admissible inputs. Because
kinematic inputs must be essentially integrals of dynamic in-
puts, they must be absolutely continuous if the dynamic inputs
are integrable. Otherwise, infinite forces would be required (see
[7D).

Let x>°(D) denote those C*° vector fields taking values in a
distribution D. The following theorem states the local test for
(5) to be (U, U), reducible to (6).

Theorem 8.1 [7]: Let V be an affine connection, and let
Y1,...,Y,, and X, ..., X7 be vector fields on a manifold Q.
The control system in (5) is (U, U )-reducible to a system of the
form in (6) if and only if (iff) the following two conditions hold.

) SpanR{Xl(q)7 s 7Xm(q)}: SpanR{YI(q)7 ce Yﬁ(q)}
for each ¢ € @ (in particular, ™ = m).

2) (X 1Y) € x*°(Dayn) for every X,Y € x*°(Dayn)
where (-, -) is the symmetric product of vector fields, de-
fined in the Appendix.

This theorem says that if the input distributions of both the
kinematic and dynamic systems are the same, and the dynamic
system is closed under symmetric products, then the system
is kinematic. Some other things to note about kinematic re-
ducibility include the following. First, all fully actuated sys-
tems are automatically kinematically reducible, because their
dynamic input vector fields are always closed under symmetric
products. For instance, the forward kinematics of a robotic ma-
nipulator are kinematic whether moving in air (where the kine-
matic approximation is obvious), or in a viscous fluid of some
sort.

Note that kinematic reducibility is not the same thing as the
“quasi-static” assumption commonly made in robotics. This is
because kinematic reducibility only requires that there be a com-
plete correspondence between dynamic motions and kinematic
motions. This implies that systems operating at high speeds
with large forces can still be kinematic. On the other hand,
quasi-static assumptions, when formalized at all, typically re-
quire that the system be moving slowly in some sense, or to
have forces balance such that the net force is zero. We will see

that the quasi-static motions predicted by the PDM are indeed
kinematic, but kinematic motions need not be quasi-static.

B. Main Result on Reducibility of Multiple-Model Systems

We now consider the problem of whether or not a dynamic
multiple-model system is kinematically reducible to an MMDA
system. Lemma 8.2 states that if switches in system dynamics
are separated by a small amount of time (making the switching
signal piecewise continuous), then the resulting solution is also
kinematically reducible.

Lemma 8.2: Let ¥ be a multiple-model system where the
individual model components Y, ., are of the form in (5),
and whose switching signal o is piecewise constant. Then, ¥ is
(U, U)-reducible iff the individual model components 3, sy
are all (U, U)-reducible.

Proof: Since o is piecewise constant, o switches a count-
able number of times. Therefore, let the times when o changes
its value be denoted {t1,ts,...,} for ¢ in some index set I.
Then, on the intervals (¢;,t;41), X is (U,U)-reducible, making
it (U, U)-reducible almost always.? It therefore satisfies the re-
quirements of Definition 8.3. [ |

We will use this lemma to prove Theorem 8.4, which says that
solutions to the differential inclusion defined by multiple-model
systems are kinematically reducible iff the individual models are
kinematically reducible. Before proving that this is true, we will
need the following result from [31].

Theorem 8.3 [31]: Letf: M x R — T,M (q € M) be a
compact, set-valued map, and let {®;} be a sequence of solu-
tions to the differential inclusion

qef(qt) 8)

such that lim ®; — ®. Then, @ is also a solution to (8).

Note thba?gglutions to the differential inclusion f are, in gen-
eral, not unique, meaning that there is often an infinite family
of solutions. This theorem says that for a compact differential
inclusion, a converging sequence of solutions converges to a
solution. Theorem 8.3 will be used several times in the proof
of Theorem 8.4. Roughly speaking, piecewise continuous
(U,U)-reducible solutions of the multiple-model mechanical
system can be used as approximations to flows of elements in f,
where f assumes the form of the right-hand side of (9). Theorem
8.3 can then be used to show that their kinematic counterparts
on T'() must also converge to an element of the differential
inclusion defined on 7'Q). This brings us to our main result.

Theorem 8.4: A multiple-model system X where the
individual model components E(,i,___,(,] are of the form
in (5) [or equivalently, the first-order form in (7)] is
(U, U)-reducible iff the individual dynamical models 3,
are all (U, U)-reducible.

Proof: First, note that it is obviously necessary that all
of the individual models be (U, )-reducible in order for the
resulting multiple-model system to be reducible. Otherwise, a
valid solution to a multiple-model system is the smooth, nonre-
ducible solution of one of the models in the set of models. To
show sufficiency, we must show that when the individual models

SR

2That is, it is reducible everywhere except for a set of measure zero.
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are (U,U)-reducible, all solutions to the MMDA system are
(U,U)-reducible. We show this in two steps. The first step con-
structs kinematic solutions given dynamic ones, and the second
step constructs dynamic solutions given kinematic ones.

1) A multiple-model mechanical system has the form

AV wye () = u™ Yo (c(1)) )

where [ € A C N is the index for a given model, G| is
the metric appropriate to that model, ©'V is the affine
connection associated with the metric Gy, and 'Y, is the
vector field representing the force input corresponding
to u® of the [th model of the multiple-model system. In
coordinates, (9) is equivalent to

i+ T =u Y (10)

where & 1"3 . are the Christoffel symbols associated with
the metric (). Expressed as a first-order system evolving
on T'Q in natural coordinates (¢,v) € TQ, these equa-
tions take the form

q=v

b= — T " +u YL

Using these coordinates on 7TQ, set '} =
{v, —Gll—‘;kq'jq'k +u® 'Y} and Y = co{'YV? : 1 € A},
with co{-,-} denoting the convex hull. In [31], it
was shown that solutions to a discontinuous system
coincide with solutions of a differential inclusion of the
convex hull of the discontinuous system. Applying this
to our systems of interest, we see that solutions to a
multiple-model system (viewed as a first-order system
on T'Q)) coincide with solutions to the differential
inclusion ©* € Y* for v(t) € TQ, or in vector notation

veEY. (11)

Then, for a given solution ®(¢) of (11), we know that
(d/dt)® € Y. Therefore, we can choose a selection
(an element) of Y, denoted s(Y) € Y, such that os(Y)
locally approximates the flow ®. Because Y is convex,
we can rewrite a selection of Y as

s(Y)=6'YV+6YV++6,"Y (12)

for any 6; such that §; > 0 .and 37" 6; = 1.

Now we need to approximate solutions of the differen-
tial inclusion in (11) using a piecewise constant o. Let
®/ be the flow of a smooth vector field f for time e.
Moreover, let (®f)" = &/ 0 &/ o... &/ 0 &/ In [32],
it was shown that we can choose the following map to

2)
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approximate (in the sense of pointwise convergence to a
set) the flow of a selection s(Y):

n
ol (@) & (27 Vo0t "VE) (g). (13)
Each of the component flows ®%= "Y(*/7) contributing
to the flow @Z’;’n(q) consists of a flow along a (U, U )-re-
ducible mechanical system. Moreover, (I)fi’;fn(q) is a so-
lution of (11) on T'Q), which is absolutely continuous
for every n. This is due to the fact that we assume that
the switching and forces are measurable, and that the
Lebesgue integral of measurable signals is absolutely
continuous. This construction is useful because it allows
one to produce a solution (with o piecewise constant)
that approximates the flow along any selection of ).
More precisely, it converges to the flow of the selection
s(Y) as n — ooj; that is, by applying Theorem 8.3 to the
Taylor expansion of @3’;1, we locally get

lim ®5" = oY),

n—oo

By assumption, we know that each segment ®% Y (/")
of @fi’;n is (U, U)-reducible. Therefore, for every choice
of n, ®yr., is (U,U)-reducible by Lemma 8.2. These
results then yield us, for each n, a corresponding map

on )

Fin(a) < (00 FF o0 8™ ") g 14)

where @77 (q) = 7 o @47, (q). Here, each @ " X(*/")
is the flow of equations that are (I, )-reductions [as
in (6)] from equations that generate the flow ®®Y(*/7)
Moreover, from Theorem 8.3, we know that nh_I)I;O (I)f{l’zl

exists, and that its limit is a solution to

geX (15)

where X = co{u® 'X,|l € L}, and the {'X} come
from the reduced equations in (6). Therefore, part 1) of
Definition 8.3 is satisfied.

The analysis of this second condition uses the same es-
sential steps as above, but begins with the solution to
the kinematic equations and works towards a dynamic
solution. Starting with the solutions from (6), we know
that for an individual model with index [, we have (j’i =
u® !X}, or in vector form

§g=u"'X,. (16)

Therefore, this MMDA system can be written in the
form of (15). Again, for any given solution ¢ of (15),
we have (d/dt)® € X, so we can choose a selection
5(X) such that ®*(X) Jocally approximates the flow for
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that solution. We can, moreover, construct a sequence of
solutions @f{’fl converging to ®*(X)
From Definition 8.3, we know we must show there exists an
7 solution with

d
ZpsX)
dt

By our construction, we know that

:7’].

Jim @ (q0) = 279 (g, 1).
By assumption, for every n and @i’ﬁl, there exists a corre-
sponding (I)ff;n such that <I>f1’;n(q) = (d/dt)®;"(q). In the
limit

. tn _ xs(Y
Jim, O, = @)
for some selection of the differential inclusion s(Y). Conse-
quently, ®*(Y) is a solution to (11), again by Theorem 8.3.
Taking the derivative of both sides, we get

d s(X d . t,n . d t,n
E‘I’ ) = o nh_)n;o Py = 'n,h—>nolo E‘I’kin
= lim @G, =
so part 2) is satisfied. This ends the proof. ]

Notice that the proof of Theorem 8.4 relied heavily on specif-
ically constructing a solution with the desired properties based
on known solutions to the individual models comprising the
multiple-model system. This result shows that determining the
kinematic properties of the individual models in a multiple-
model system is sufficient for determining the kinematic prop-
erties of the entire system. Moreover, the transitions between
models as the state evolves are also kinematic if the individual
models are all kinematic.

IX. PDM AND (U, )-REDUCIBILITY

Here, we address the relationship between the models pro-
duced by the PDM and the kinematically reducible states of a
generic mechanical system. An informal restatement of this is
the question: does the PDM produce equations of motion that
are kinematic reductions of Euler—Lagrange equations? First,
we derive a result that will be shortly used to show the rela-
tionship between PDM solutions and solutions of mechanical,
second-order systems.

Proposition 9.1: Given a configuration manifold () and a set
of constraints w’(q) which span the cotangent space T;(Q), then
the input distribution Dy, (¢) minimizing D(q) will always sat-
isfy Dyin(q) = Null(Q4at)(q) where Qa1 (g) is some collection
of w;(q) which satisfy w(q)¢ = 0 for ¢ € Dyin(q).

Proof: Suppose that this was not the case. Then there
would exist v # 0, which minimizes D(q) such that, if w!
are the constraints which are satisfied, then v € Null{w!} and
v & Dyin. This implies that, for the choice of uk = 0 Vk, v still
minimizes D(q). However, because the {w’} span T*(Q, zero is

the unique minimizer, since D is convex in ¢. This contradicts
the assumption that v # 0 and is a minimizer of D(q). ]

This result roughly corresponds to the intuition that the min-
imum dissipation in any unactuated direction is to not move at
all in that direction. We should comment that this can still lead
to a solution of no motion in the group variables; if the unactu-
ated constraints dominate the motion, then the actuators will all
slip.

Next, we consider the case where we are given a metric G for
some mechanical system and a set of constraints described by
1-forms {w,;}. What are sufficient conditions for the resulting
system to be (U, U )-reducible? Lemma 9.2 gives one sufficient
condition which is invariant with respect to the metric G, and is
a simple corollary to the work found in [33] and [34].

Lemma 9.2: Given a “constraint distribution” D.,, C TQ
which annihilates the constraints {w; } and an input distribution
Dygyn, if Dgyn = Decon, the mechanical system described by
VG = u®Y, is (U,U)-reducible.

Proof: Denote by V the connection and by V the con-
strained connection defined by the Lagrange—dAlembert prin-
ciple (see the Appendix and [7] for details of this construction).
We know that

VxY € Doy VY € Deop and X € T(M)

which implies VxY + VyX € Deon VX, Y € Deon.
This, in turn, implies by Theorem 8.1 that V;q = u®Y, is
(U,U)-reducible. ]

Therefore, (U, U )-reducibility of a multiple-model mechan-
ical system is guaranteed regardless of the metric G when
the constraint distribution is equal to the input distribution.
Moreover, we already know that the power-dissipation model
only admits solutions where this is true. This allows us to
interpret the use of the PDM. The PDM is a way of choosing a
more tractable subset of contact states from the full Lagrangian
contact mechanics. In other words, when we make the “kine-
matic” assumption, we are merely restricting our attention to
(U, U)-reducible systems. Moreover, when the reaction forces
due to friction do not lie in Dy;,, then those contact states are
not (U, U)-reducible. However, we should be very clear that
this only shows that the PDM captures (I, U )-reducible states
when D.,, = Dyin. That is, the correspondence only goes
one direction: all PDM contact states are kinematic states, but
not all kinematic states can necessarily be predicted by the
PDM. There are examples of mechanical systems which are
(U, U)-reducible by virtue of properties of the metric G. For
examples of such systems, see [7].

In summary, we have shown the following.

Theorem 9.3: Given a configuration manifold ) with tan-
gent space T'QQ and constraints represented by 1-forms w’, then
all solutions to the PDM are (U, )-reductions of solutions to
Euler-Lagrange equations on T'Q, constrained by a subset of
{w}.

We should also remark on the relationship between The-
orem 8.1 (reduction for smooth systems) and Theorem 8.4
(reduction for multiple-model systems). In the smooth case,
(U, U)-reducibility is equivalent to geodesic invariance (for
details, see [7]). However, in the nonsmooth case, there is no
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Fig. 2. Planar bicycle.

well-defined notion of geodesic invariance because the metric
changes over time. Nevertheless, we were able to extend the
notion of (U,U)-reducibility relatively easily. Therefore, the
concept of (U, U)-reducibility is, in some sense, more general
than that of geodesic invariance.

X. EXAMPLES

To illustrate how the results presented in this paper are useful
and point towards more general applications of theories devel-
oped here, we now revisit the examples from Section II. First,
we come back to the bicycle example to illustrate all of the
theory details. We study the bicycle example in detail as il-
lustration, and then quickly summarize several applications in
other related work. For instance, we show how this analysis
helps to establish controllability characteristics for the Mars
rover family of vehicles and stability analysis for distributed ma-
nipulation problems. We end this section with a brief discussion
of how the method presented here can be applied to grasping and
locomotion.

A. Bicycle

Now, we return to the bicycle example of Section II (see
Fig. 2) in detail. Assume that the bicycle is constrained to move
on a line. Recall that the bicycle has a total mass of m, each
wheel has a moment of inertia .JJ and radius R, and that the re-
action forces FI? are at the point of contact between the wheel
and the ground. Using the mechanics formulation as described
in the Appendix, the configuration space is {z, ¢1, p2} € RxT?
(where T? = S x S'), and the Riemannian metric describing
the kinetic energy is

G=mdr®@de+ Jdp1 @dp1 + J dpa @ ds.
The two nonrolling constraints are

i — Ry =0
i — Ry =0
and the constraint covectors can be written as
w1 =dx — Rd§b1
w2 =dx — RdQSQ
As inputs, we have
F' =d¢,
F? =dg,.
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Now, for each combination of slipping and no slipping of the
wheels, we have a set of equations to solve. Therefore, we have
four sets of equations to solve. Note that because the metric does
not depend on the configuration, the Christoffel symbols F;'-k
are all identically zero for this problem. Moreover, as we shall
see, the G-orthogonal projection operator P’ onto D~ also does
not depend on the configuration, indicating that the Christoffel
symbols AF;»k for the constrained system [found in (26)] are
also identically zero. Therefore, the equations depend entirely
on the input forces and external forces due to friction.

1) No Slipping: When both wheels do not slip, both con-
straints w1 and wo are satisfied. This implies that the constraint
distribution is one-dimensional, spanned by

9,90 90
dp1  Oda’

Moreover, one can compute that the G-orthogonal complement
of D is

7] 0 0 0
span{—Ja —f—mRa¢1 J8 +mR8¢2}
If we compute the G-orthogonal projection P onto the distribu-
tion D, we get P(x, ¢1,¢2) + (Vz, Vg1, Vg,) = (1/2J + mR?)
{R(J(v</)1 + 'U¢2) + mRU$)7 J('U¢1 + ’U¢,2) + mRvy, J('U</)2 +
Vg, ) + mRv, }. The unprojected input vector fields are

1 0
=500

1 0
Y2 —j%

Hence, the projected input vector fields are

1 Ra +i+i
2J + mR2 Op1  Ooo

and the equations of motion are therefore

PY; = PY, =

j = PYiu' + PYsu?.

It is easy to see that (PY; : PY3) = 0, so this is a kinematic
system [i.e., it is reducible to (4)].

2) One Wheel Slipping: In the case where one wheel slips, we
may assume without loss of generality that the slipping wheel
is wheel number 2. In this case, the constraint distribution is

{ n9 g L9 o 0 }
span
9p1” Opa
Moreover, one can compute that the orthogonal complement of
D is

0 0
—J—+mR—.
ox Ot
To compute the reaction force due to the other wheel slipping,
note that such a reaction force can be considered an external
force, and can therefore be added to the right-hand side of (5),
with the associated control assuming constant unity value u® =



MURPHEY AND BURDICK: PDM AND KINEMATIC REDUCIBILITY OF MULTIPLE-MODEL ROBOTIC SYSTEMS 705

1. If we compute the G-orthogonal projection P onto the distri-
bution D, we get P(z, 1, ¢2) - (Vay Vg, Ve, ) = (1/J + mR?)
{R(Jvg, +mRvy), Jvy, + mRv,,(J + mR?)vgs,}. The un-
projected nominal inputs vector fields are the same as before

1 0
Y= T 901
nelo
and the projected inputs vector fields are
R 0 1 g
m “ T+ mR20x J +mR2 0¢y
1 0

PY, =7 90"

The unprojected reaction force coming from the friction reac-
tion force is

E:FRE_FFRi

ox 0o
which, when projected onto the distribution D, becomes
PE - FRmRQE FEmR 9 FRRi
 J+mR20x  J+mR20¢, J O

The equations of motion are therefore

j = PYiu' + PYsu? + E.

To determine whether this system is kinematically reducible or
not, we first note that (PY; : PY3) is again identically zero.
Moreover, note that although Theorem 8.1 does not directly ad-
dress the case of external forces, we can, by direct inspection
of Definition 8.3, see that if E ¢ span{Y;}, then the system
cannot, in general, be reducible. However, if F € span{Y;} and
the {Y;} satisfy the conditions for reducibility, then the system
is automatically reducible, because the external forces are “cov-
ered” by the inputs. Therefore, we need only check that E lies
in the span of Y7 and Y». Indeed, £ € span{Y7, Y5} for this ex-
ample. Therefore, this system is kinematically reducible. Note
that this property does not depend on the particular description
of the reaction force, and is, moreover, invariant with respect to
the reaction forces’ differentiability.

3) Both Wheels Slipping: When both wheels slip, there are
no constraints to enforce. In this case, the constraint distribution
is identically zero and the orthogonal complement is trivially the
entire tangent space. Moreover, we can compute the reaction
force due to the wheels slipping to be wi (F{#) and wy(FF).
The associated input vector fields and external vector fields are

10
Yi=——0o
YT T 01
10
Yo=——r
27 T 0¢s

p_FE+FF o RFF 0 RFf 0

N m ox J 8(;51 J 8¢2

and the equations of motion are therefore

j=Yiu' +You’ + E.

Fig. 3. Simplified Rocky 7: (a) Schematic of a six-wheeled rover.
(b) Schematic of a simplification of the rover. The configuration of this
vehicle consists of the «, y, and 6 coordinates and the steering angle
(shown), as well as the three wheel angles (@1, @2, ¢ ) (not shown).

In this case, it is clear that E ¢ span{Y;,Y>}. Therefore, this
system (not surprisingly) is not kinematically reducible, at least
for generic F'T.

B. Simplified Mars Rover

Next, we revisit the example of Fig. 1(b), the geometry of
which we simplify here in Fig. 3 for the sake of discussion. This
simplification has three wheels, with all three wheels driven.
This model can be interpreted as a simplification of the Mars
rover Rocky 7 vehicle, also seen in Fig. 1. The three-wheeled ve-
hicle seen in the schematic has a configuration space consisting
of (2,y,0,v, b1, P2, ¢3) € RZ x T5 = SE(2) x T*. Hence,
in this example, Q, = SE(2) (the Special Euclidean group of
distance preserving transformation in the plane) and Q, = T*
(the four-dimensional input set). This system has six nonholo-
nomic constraints (one associated with each wheel having both a
no-roll constraint and a no-sideways-slip constraint). Therefore,
there are 2 = 64 possible models governing the dynamics of
the vehicle. For this reason, we do not relate all of the calcula-
tions for this vehicle. However, one can show, using a symbolic
mathematics package such as Mathematica, that this system also
has a subset of kinematic solutions, and that these solutions cor-
respond to the the solutions to the PDM for this system. One
can show that there only exist (§) = 20 kinematic solutions
for this system. Such a correspondence is important, because
the PDM is very straightforward to solve, and these solutions
can be used for both controllability analysis and for purposes of
motion planning (we have carried out this analysis in [14] and
[15D).

In [14] and [15], we showed that this system’s controlla-
bility properties can be analyzed using a set-valued extension
of the Lie bracket (the prerequisite calculation for understanding
controllability using the classical LARC that arises naturally in
MMDA analysis). Controllability is important for systems like
the Rocky 7, primarily because many motion-planning algo-
rithms for vehicles are based on controllability properties. For
instance, rapidly exploring random trees (RRTs) have been used
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with much success to develop motion-planning strategies. How-
ever, the computational intensity of these calculations is formi-
dable, and recently [2] showed that significant advantage can be
taken by reducing mechanical systems to kinematic ones when
using RRTs for motion planning. Work is currently underway
to extend RRTs to the multiple-model systems of this paper.
See [32] for a preliminary motion planning that is based on the
MMDA structure found here.

We should comment on the relationship between kinematic
reducibility results and controllability results which can be ob-
tained for multiple-model systems [14], [15]. One of the intu-
itive aspects of Theorem 8.4 is precisely that it is sufficient for
each model to be (U,U)-reducible in order to guarantee that
the multiple-model mechanical system is (I, u )-reducible, i.e.,
piecewise (U, U )-reducibility is enough to guarantee (U, U )-re-
ducibility across discontinuities. However, in the case of con-
trollability, this no longer holds. An MMDA system can switch
among individually controllable systems in such a way as to de-
stroy controllability [15]. Thus, controllability of each model in
an MMDA is not sufficient for overall controllability.

The fact that there is such a high number of models for the
Rocky 7 suggests the need for a reduction theory for multiple-
model systems. Indeed, for a six-wheeled system like the actual
Rocky 7, there are 2'2 = 4096 possible models governing its
dynamics, which is a completely unmanageable number. For the
three-wheeled vehicle in the schematic, 20 kinematic models is
also perhaps an unreasonably large number of models to ana-
lyze. In [15] we did an ad hoc reduction of this model, which
turned it into a two-model multiple-model system (although it
can be shown that no additional reduction is possible). Com-
bining kinematic reduction with this multiple-model reduction
reduced the number of models from 4096 to 2. Therefore, for-
mally using reductions (both discrete and continuous) to reduce
the dimensionality of the problem will be very useful, both for
motion planning and estimation purposes. This will be a focus
of future research.

C. Distributed Manipulation With Changing Contacts

Fig. 4(a) shows a photograph of a particular configuration of
a distributed manipulation experiment developed by the authors
pictured in Fig. 1(c) which has been used previously to test al-
gorithms for distributed manipulation [13].3 In the photograph,
we see four driving wheels whose rims are oriented towards the
origin. Each actuator is a one-degree-of-freedom actuator. We
use a piece of plexiglass (for the purposes of visualization) on
top of the four wheels to represent a manipulated object. The
white line seen in the photograph indicates the outline of the
plexiglass. The goal is to control the center of mass to the origin
in R? with a desired orientation of # = 0. To do this, we ob-
tain feedback of the plexiglass’ configuration by affixing a piece
of paper with a black triangle (also seen in the photo) whose
right-angle corner coincides with the plexiglass’ center of mass.
Using this, we obtain the position and orientation of the plexi-
glass through visual feedback. Fig. 4(b) is a schematic of the
experiment, where the four arrows correspond to actuators and

3Video of these experiments can be found at the website http://robotics.col-
orado.edu/~murphey
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Fig. 4. Photograph and schematic of a four-cell distributed manipulator.

the regions denoted by I-VIII and 0 — (77 /4) will be impor-
tant in our subsequent description of the equations of motion
described by the PDM.

Note that this system thus described is overactuated because
there are four inputs and only three outputs. Assume that the
coefficient of friction is the same for all four driving actuators.
In this case, we can show that the model switches as the center of
mass moves across the array. In fact, under these assumptions,
the actuator wheel nearest to the center of mass will have both its
“rolling” constraint and its “sideways” slip constraint satisfied.
The actuator wheel second closest to the center of mass will
have one of its two constraints satisfied. In the case of the wheels
shown in the figure, it will be the rolling constraint. For details
on this analysis, see [13]. Denote the actuator input associated
with the closest actuator by w;, and the actuator input associated
with the second closest actuator by u; using the PDM. Then,
these considerations lead to first-order governing equations of
motion of the form

T
Y| = g1ui + gau;
0

a7)

where g7 and g» are defined in (18) and (19), respectively, shown
at the bottom of the next page.

In these equations, z;, y;, and 6; refer to the planar coordi-
nates and orientation of the th actuator. The set-valued notation
of (18) and (19) is due to the discontinuous nature of the gov-
erning equations as the kinematic constraints change. Therefore,
at these configurations, we must allow multivalued differentials
in order to guarantee existence of solutions to the differential
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Fig. 5. Underactuated distributed manipulation feedback control.
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Fig. 6. Underactuated distributed manipulation movie snapshots. The goal is to
align the black triangle affixed to the plexiglass with the superimposed triangle.

equation in (17). It should be noted that here, the index notation
should be thought of as mapping (i, j) pairs to equations of mo-
tion in some neighborhood (not necessarily small) around the
sth and jth actuators. In each region I-VIII, between the kine-
matics are smooth, but when a trajectory crosses a boundary
0 — (77 /4), there is a discontinuity in the kinematics. It is pos-
sible to obtain point stabilization to (z,y,0) = (0,0,0) from
any initial condition, using discontinuous control laws based on
the kinematics and knowing the current model (see [13] for de-
tails of this control design). Moreover, this stability is provably
exponential. Figs. 5 and 6 illustrate experimental results from
[13] for this distributed manipulation system. Notice, in par-
ticular, in Fig. 5 that despite the rough behavior illustrated in
the (z,y) trajectory, the Lyapunov function monotonically de-
creases. These experiments show the power of the simplified
modeling techniques discussed in this paper; the control laws
designed in the context of the nonsmooth kinematic equations
perform quite well, and would have been much more difficult
to analyze in the full dynamic setting. Moreover, they are static,
and the friction model does not show up in their design. Fig. 6

i —Yi
(zj — wi)sin(6;) + (yi — yj;) cos(8;)
E N Ty =) sin(@) + (v — ) cos(0)) (e
L (zi — ;) sin(0;) + (y; — vi) cos(6;)
sin(6;) ((z; — z;) cos(8:) + yi Sln(9z)) + cos(8:) cos(8;)y;
(zj — ;) sin(0;) + (yi — y;) cos(0;)
—cos(6;) cos(8;)x; — sin(6;) (z; sin(f;) — (y; — y;) cos(6,))
€ (e — ) sin(0) + (v — yy) cos(7) >
—cos(f; — 0;)
- (ot — 25) 0(65) + (5 — 92) cos(;)
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shows nine snapshots illustrating the plexiglass’ progress to-
wards the desired final state.

However, there are many questions relevant to this system
which remain unanswered. In particular, we are currently de-
veloping algorithms which do not require any knowledge of
the slipping state, and instead use an online estimation process
based on hierarchical control, like that found in [8]-[11].

D. Relationship to Grasping and Locomotion

We briefly give our vision of how the preceding ideas can be
related to both grasping and locomotion. Traditionally, analysis
of grasping and locomotion has assumed clean interactions be-
tween the robot and its environment. Moreover, kinematic anal-
ysis has proven to be a very computationally and theoretically
useful venue for understanding many issues in both areas. How-
ever, in real robotic systems, interactions in contact are often
not clean, and we expect slipping to take place. Consider, for
example, the hand shown in Fig. 1(d). As the hand manipulates
the ball, its fingers will slip against the surface. However, we
generally expect such motions to not interfere with the stability
of the motion. The analysis presented in this paper provides a
forum for robustness analysis, as well as development of algo-
rithms that explicitly require slipping.

XI. SOME FINAL REMARKS

In this paper, we derived conditions that are both necessary
and sufficient for a multiple-model system to be kinematically
reducible. Moreover, we connected these solutions to solutions
of the PDM, which is a method for determining the quasi-static
equations of motion for an overconstrained system (see [1] and
[12]). Such an understanding of a system’s kinematic motions is
important for the purposes of tasking and motion planning. The
structure we describe here is put to advantage in [13] in an appli-
cation to distributed manipulation and in [15], where we analyze
the controllability properties of an example like that found in
Fig. 1. Moreover, it has future potential for greatly simplifying
friction-compensation problems in robotics. We have been able
to show that the solutions to the PDM correspond to kinematic
solutions of multiple-model systems.

We do not claim that the PDM is a better model than the
full Lagrangian description, only that it is more tractable. It
produces first-order equations of motion that are amenable to
analysis. Moreover, the fact that it allows us to compute ex-
plicit controllers that work on a real experiment is an indication
of its validity [13]. Nevertheless, there are certainly important
systems that must be treated in the full Lagrangian mechanical
framework, since, even in the example of the planar bike, there
are important dynamic states not accounted for in the PDM. This
determination will, in general, have to be made by the control
designer.

Finally, this study leaves several open questions to be an-
swered. First of all, in the definition presented in this paper, the
dissipation functional is only applicable to a finite number of
contacts. However, in many pushing problems, the frictional in-
teraction occurs at the interface between two continuous media.
The example of the Mars rover in Section X-B makes it clear
that reduction theory (beyond kinematic reduction theory pre-
sented here) needs to be formally explored for multiple-model
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systems. Finally, there is the question of external forces. Our use
of kinematic reducibility in the example avoids the problems of
differentiation of friction forces, because the manifold and con-
straint data provides all the information we need. However, this
cannot be expected in general, and there is a clear need to extend
the work in [7] to cases with generic reaction forces entering the
equations of motion.

APPENDIX

This appendix gives a brief introduction to the geometric for-
mulation of control systems on manifolds, primarily following
[7], [33], and [34]. We assume that the reader is familiar with the
basic notation and formalism of differential geometry and non-
linear controllability theory. See [17] and [35]-[38] for more
details. A simple mechanical control system consists of a mani-
fold @ of dimension 7, a Riemannian metric G that defines the
kinetic energy, a set of constraints represented as a constraint
distribution D, and a set of external forces representing control
inputs. Although we do not discuss potential energy here, it also
can be included in this formulation [33].

First, we introduce some geometric concepts. Associated
with the Riemannian metric is the affine connection, which
assigns to a pair of vector fields X and Y another vector field
VY. This is referred to as the covariant derivative of Y with
respect to X.

Definition 1.1: In coordinates, the covariant derivative of Y
with respect to X is

Yy . . . 0
Go. v _ J i yIiyk Z
VAY_< - X —|—F]kXY>0qj.

50 (20)

Also associated with a Riemannian metric G are what are called
Christoffel symbols.

Definition 1.2: The Christoffel symbols for the connection
GV (associated with the metric G) are

gk Oqd g

where summation over repeated indexes is implied used unless
otherwise stated, and upper indexes indicate the inverse.
Finally, we define the symmetric product, which is used
in establishing the kinematic reducibility result found in
Section VIIL.
Definition 1.3: The symmetric product between two vector
fields X and Y is defined to be

(X:Y)=C%VxY +°VyX. (22)

As noted by Lewis [7], the symmetric product plays a similar
role in establishing (U, )-reducibility to the Lie bracket in es-
tablishing integrability.

Now we turn to mechanics in this context. Given a metric G
on the manifold @ and inputs u, it is possible to show that the
Euler-Lagrange dynamical equations can be written in the form

GV o (t) = u®(t)Ya (c(t)) (23)
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where t +— ¢(t) is a path on Q and ¢/(t) =
coordinates, this is written as

(d/dt)c(t). In

(24)

i+ T i ¢ = u® Y
Constrained systems, which are those control systems whose
trajectories must lie in some distribution D, can also be de-
scribed by (23). However, the affine connection must be mod-
ified in order to incorporate the constraints. Let D be a distri-
bution on @, and let D+ denote the G-orthogonal complement
of D. Moreover, let P: TQQ — T(Q be a G-orthogonal projec-
tion operator onto D, and let P': T'Q) — T'Q) be a G-orthogonal
projection onto D+ Last, let A(q) be any invertible (1,1) tensor
field on @, and let B(q) be its inverse. Then, the Euler-Lagrange
equations can be written as (24), where the Chrisoffel symbols
are
O(AP’ )5
gk
+B{CTY,, (AP = BiCTy(AP'),,

Al =T + B]

J

where, again, A(q) is any invertible (1,1) tensor on ). In order
to add forces, we must ensure the forces comply with the con-
straints. Hence, the final equations of motion are

OV )¢ (t) = u () P (e(t)) (25)

or in coordinates

Q'+ T = u Py 20

Therefore, simple mechanical control systems all can be repre-
sented using an affine connection. For more details and exam-
ples worked out in detail, refer to [33].
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