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the theoretical aspect, the stability analysis of specific missions and the
inclusion of nonholonomic issues are of great interest.
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Visual Tracking in Cluttered Environments Using the
Visual Probabilistic Data Association Filter

Cheng-Ming Huang, David Liu, and Li-Chen Fu

Abstract—Visual tracking in cluttered environments is attractive and
challenging. This paper establishes a probabilistic framework, called the
visual probabilistic data-association filter (VPDAF), to deal with this
problem. The algorithm is based on the probabilistic data-association
method for estimating a true target from a cluster of measurements. There
are two other key concepts which are involved in VPDAF. First, the sensor
data are visual, similar to the target in the image space, which is a crucial
property that should not be ignored in target estimation. Second, the tra-
ditional probabilistic data-association filter for the underlying application
is vulnerable to stationary disturbances in image space, mainly due to
some annoying background scenes which are rather similar to the target.
Intuitively, such persistent noises should be separated out and cleared
away from the continuous measurement data for seeking successful target
detection. The proposed VPDAF framework, which incorporates template
matching, can achieve the goal of reliable realtime visual tracking. To
demonstrate the superiority of the system performance, extensive yet
challenging experiments have been conducted.

Index Terms—Data association, probabilistic data-association filter
(PDAF), visual tracking.

I. INTRODUCTION

In the practical implementation of visual tracking in the real world,
it is hard to get perfect image data from the target. Disturbances due
to mechanical vibration and optical projection will seriously interfere
with the true target’s detection or estimation in the image space.
Mechanical noise also usually arises from undesirable shaking of the
camera, whereas optical interference may come from similar objects,
cluttered background, occlusions, lighting changes, etc. Under such
circumstances, it is hard to distinguish the true target from the fake
ones through the target-detection process. To cope with this difficulty,
apparently we have to incorporate a more sophisticated tracking
methodology into our visual tracking system. Instead of using only the
best measurement among the perceived ones and discarding the rest,
an alternative approach is to consider multiple measurements at the
same time, using the probabilistic data-association filter (PDAF) [1].

The PDAF algorithm has been extensively applied to radar systems.
But in the last decade, its applications gradually included tracking
with imaging sensors or some other visual aspects. Bar-Shalom et
al. [2]–[4], [15] have put a lot of effort into how to use probabilistic
data association (PDA) algorithms to track single or multiple objects
through image-domain reasoning, and PDAF has been modified in
various ways in order to adapt to different task environments. Besides
the above, PDAF based on a nonlinear motion model for establishing
correspondences between two consecutive frames was shown in [5].
Furthermore, Hager et al. [6], [16] reported many experiments on
visual-object tracking performed using the PDAF idea with different
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Fig. 1. Overall architecture of the VPDAF.

modalities for image analysis. They mainly resolved the overlapping
problem with modified joint PDAFs given the tasks of tracking mul-
tiple objects. Finally, the contours connecting the edge points were
used to derive the shape-based PDAF for shape tracking [7].

However, most of the above research views the visual measurements
as the sensed light spots on the radar screen. The locations of multiple
validated measurements are input to the PDAF-like estimator, which
then outputs a prediction of the target’s position. The most significant
characteristics, such as visual similarity or image intensity, are unfortu-
nately not taken into consideration [15]. The validated measurements,
which are close to the prediction but exhibit low visual similarity, will
deteriorate the tracking result, since they fail to originate from the true
target of interest. Some other research [4], [6], [7] has used visual
measurements to interpret estimations with more logical hypothetical
events. They apparently can decrease the false alarm rate, but the vi-
sual similarity property of each event is not taken as a weighting when
the associated probability is to be evaluated. Last but not least, the tra-
ditional PDAF has been challenged [8], in that its performance is de-
graded when a large number of nearly stationary false clutter appears.
Many scene elements, including a static background and other objects
[18], may also produce visually similar noise, and degrade the target es-
timate and tracking. One natural remedy is to separate this noise from
the validated measurements according to the different motion trajecto-
ries.

In this paper, we describe a reliable visual-tracking system that em-
ploys the visual PDAF (VPDAF) algorithm. Fig. 1 illustrates the archi-
tecture of VPDAF. Conceptually, an image frame is just like a space
concealing much of the target’s information from the real world that
is projected onto the imaging sensor domain. Through target detection
within a reasonable region around the prediction, we can filter the data
after image processing and then output validated measurements which
should be refined again, since stationary noise can degrade the final es-
timate, as mentioned above. The traditional PDAF is then engaged and
augmented with visual similarity. The associated probability of each
measurement is evaluated in order to validate the sensed data and gen-
erate the final state estimate.

This paper is organized as follows. Section II describes the obser-
vational densities of measurements’ features, which cooperate with
the traditional PDAF to evolve into the augmented PDAF. Section III
presents the modified PDAF, excluding the augmentation in Section II,
with the persistent-noise-removal unit and a MATLAB simulation
for comparison purposes. In Section IV, various applications of the
proposed VPDAF, i.e., the PDAF with the visual-similarity evaluation
unit and persistent-noise-removal mechanism, as shown in Fig. 1,
are demonstrated with extensive experiments and discussed. Finally,
conclusions are drawn in Section V.

II. AUGMENTED PDAF WITH OBSERVATIONAL DENSITY

The measurements Z(k) = fzi(k); i = 1; . . . ;mkg, returned by
the target-detection process and filtered through the validated measure-
ment generation process, will process a visual similarity score as the
basis for the so-called observational density. Let mk be the number of
current validated measurements. The state estimate should depend on

both the feature-likelihood ratio and the position distribution of the val-
idated measurements [15], i.e., the updated state can be estimated by

x̂(kjk) = Efx(k)jIz(k);Z
kg (1)

where IZ(k) is the observational density distribution of the validated
measurement set Z(k), and Z

k = fZ(j); j = 1; . . . ; kg denotes
the cumulative measurement history. Thus, from the total probability
theory with respect to the event �i(k), of which measurement is target-
originated, (1) can be rewritten as

x̂(kjk) =

m

i=0

Efx(k)j�i(k); Iz(k);Z
kgPf�i(k)jIz(k);Z

kg

=

m

i=0

x̂i(kjk)�i(k) (2)

where �i(k) Pf�i(k)jIz(k);Z
kg; i = 0; 1; . . . ; mk is the mixed

probability of each measurement associated with the final estimate. No-
tice that �0(k) is associated with the event �0(k), of which none of the
measurements are target-originated. Applying Bayes’ theory, we ob-
tain the following expression:

�i(k) = PfIz(k) j �i(k);Z
kgPf�i(k) jZ

kg: (3)

The joint probability of the observational density conditioned on
the event �i(k) indicates the quality of this event arising from the ith
measurement zi(k). Since there is only one interesting target in this
tracking scenario, no more than one measurement can originate from
the same target. When the event �i(k) is considered, the associated
probability of the measurement zi(k) that is assumed to be the correct
one should also be proportional to its observational density. Hence, the
first factor in (3) can be broken down as follows [15]:

PfIz(k)j�i(k);Z
kg

= PfIz (k)jzi(k); �i(k);Z
k�1g

�

m

j 6=i;j=1

P Iz (k)jzj(k); �j(k);Z
k�1

=
Ii(zi)

I0(zi)

m

j=1

I0(zj); i = 1; . . . ; mk (4)

where Ii(zi) is the observational density of the validated measurement
zi(k), and I0(zj) is the probability distribution function of the obser-
vational density for measurement j when it is assumed to be false. We
denote (4) as the conditional observational density of the measurement
zi(k). Obviously, there is no observational density for the case with
i = 0, since there are no measurements taken under that circumstance.

The second factorPf�i(k)jZ
kg in (3) corresponds to the probability

of the event �i(k), given the validated measurements. This term
can be referred to as the original PDA estimation [1]. Finally, the
data-associated probabilities should be normalized so as to satisfy
d m

i=0
�i(k) = 1.
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III. PERSISTENT NOISE REMOVAL

The original PDAF assumes a single a priori probability density
function (pdf) for the false measurements [1], [12]. The authors in [9]
established a new false-measurement model for multiple a priori pdfs.
Although these models might work for radar or sonar tracking pur-
poses, they are not useful for visible light object tracking. Data-dis-
tortion factors, such as partial occlusion and the presence of clutter,
can lead to false alarms whose distributions are unknown a priori [10],
[11], but which usually occur at almost the same position in consecu-
tive frames with little variance. Hence, false measurements should be
modeled with nearly stationary, clustered, but unknown pdfs.

The above conclusion is based on experimental observations
showing that even though the augmented PDAF has been strengthened
by incorporating image features, the tracking system is still vulnerable
to persistent interference. Neither the original PDAF nor augmented
PDAF can filter out these persistent disturbances, such as a static back-
ground or other moving objects [18], with image features similar to
the target. In other words, measurements that involve nearly stationary
clutter will seriously contaminate the state estimate. In this section, we
will propose a new method that can improve the PDAF’s ability to deal
with nearly stationary and clustered clutter. This approach also does
not require a priori knowledge about the distribution of the clutter [8].

Define the measurement variation asDi(k) = minj kzi(k)�zj(k�
1)k; i = 1; . . . ;mk; j = 1; . . . ;mk�1. These measurement variations
Di(k) can be separated into two clusters in one-dimensional (1-D)
space. The cluster with the smaller value of Di(k), originating from
current-previous measurement pairs zi(k) and zj(k� 1), should have
measurements that are all nearly stationary. Also, the cluster with the
larger value of Di(k) may come from either nonstationary–nonsta-
tionary pairs or nonstationary–stationary pairs. The truly target-orig-
inated measurement will belong to the latter cluster, due to the motion
of the target. We can use hypothesis testing or statistical pattern-recog-
nition techniques to find the decision boundary for the two clusters, and
the discriminant function will be very helpful in deriving the modified
association probabilities.

By converting the distribution of Di(k) into a histogram, we can
reduce the hypothesis-testing problem to a 1-D thresholding problem.
We adopt the iterative threshold selection [13] for finding the threshold
through the following steps.

Step 1) Assume no knowledge about whether a measurement is sta-
tionary (Class A) or nonstationary (Class B). Randomly se-
lect one measurement zi(k); 1 � i � mk , assign it to Class
A, and assign the rest to Class B. Moreover, set the initial
threshold Thr0 = 0.

Step 2) At iteration t, compute

�tst =
i2Class A

Di(k)

number of Class A measurements

�tnst =
i2Class B

Di(k)

number of Class B measurements

and Thrt+1 = (�tst + �tnst)=2.
Step 3) Use Thrt+1 as the threshold for classification

if Di(k) < Thrt+1; i 2 Class A
else; i 2 Class B:

Step 4) If the thresholds of two consecutive iterations are different,
i.e., Thrt+1 6= Thrt, return to step 2. Otherwise, the op-
timal threshold Thr is found, and all measurements have
been classified as belonging to either Class A or B.

After the optimal threshold is obtained, the measurements that be-
long to Class A are filtered out. The augmented PDAF mentioned in
Section II is then performed on the reduced set of measurements.

A question arises if such a decision boundary or threshold does not
exist or is ill-defined, e.g., when the target moves slowly or stays still,
and is taken almost as the stationary false measurements. To prevent
this, the noise-removal process will be turned off if the estimated dis-
placement from PDAF is small or close to the optimal threshold Thr. In
this case, all of the measurements will belong to the same class (non-
stationary), and the proposed modified PDAF then returns back to the
standard PDAF. This fact suggests that the proposed modified PDAF
will work at least as well as the traditional standard PDAF in a pure
nonstationary cluttered environment, and may perform better in a more
complicated cluttered environment, i.e., with both nonstationary and
stationary measurements.

To demonstrate the effectiveness of this proposed noise-removal
process, simulations are done in the following. The plant equation,
discretized with time interval T = 1 s, is

x(k + 1) = Fx(k) (5)

where the state is x(k) = [x(k) _x(k) y(k) _y(k)]T and

F =

1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

:

The initial state is x(0) = [200m 0 104 m �15m/s]T . The measure-
ment model is determined using

z(k) = Hx(k) +w(k) (6)

where

Efw(k)g = 0; E w(j)w(k)T = �jk
200 m2 0

0 200 m2 ; �jk

is the Kronecker delta, and

H =
1 0 0 0

0 0 1 0
:

At first, initialization was done in a clean environment with no
false measurements, and false measurements are introduced into the
system at k = 10. There are 200 measurements generated per unit
time, including one target-originated measurement, 130 nonstationary
false measurements, and 69 stationary false measurements. The
nonstationary false measurements are generated at each time step
independently and uniformly distributed within the whole 2-D space.
Also, we also generate persistent stationary false measurements dis-
tributed near the moving trajectory of the actual target. The stationary
false measurements are generated with uniform distribution, clustered
in a confined region, and containing small perturbation at every
sampling instant. The small perturbation is simulated using Gaussian
noise with zero mean and identity covariance. One snapshot of all the
measurements generation at k = 200 s is plotted in Fig. 2.

Fig. 2(a) and (b) shows the estimated trajectories of the original
PDAF [1] and modified PDAF over the entire duration (0–200 s) in
simulation time. All of the measurements have to be verified to see
whether they are located within the validation region [1], whose size is
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Fig. 2. The “�” and “
” marks denote the nonstationary false measurements and persistent stationary noise at k = 200, respectively. Solid straight lines show
the true trajectories over the entire duration (k = 0 to 200) of the target moving along X = 200 from Y = 10000 down to Y = 7000. The oscillating curve
indicates the filtered trajectory over the entire duration. (a) Simulation result of the traditional standard PDAF (without removing stationary noise). (b) Simulation
result of the modified PDAF with persistent noise removal. (Color version available online at http://ieeexplore.org.)

Fig. 3. Finger tracking with Kalman filter. The drawn square shows the best-matched and estimated position.

Fig. 4. Finger tracking with VPDAF. The squares denote the validated measurements used in VPDAF. The scenario is the same as in Fig. 3.

affected by the chosen threshold value 
 = 16. In Fig. 2(a), the orig-
inal PDAF-filtered trajectory is biased away from the real trajectory.
However, the solid curve which indicates the modified PDAF-filtered
trajectory is now close to the real trajectory in Fig. 2(b).

IV. EXPERIMENTS

In the following experiments, we adopt the sum of absolute differ-
ences (SAD) template matching as the target-detection process. Tem-
plate matching is implemented with the help of the Winner–Update
(WinUp) algorithm [14] and the Intel MMX instructions to speed up
the process. On the other hand, since the appearance and posture of the
target will change over time, the template must be updated. We apply
the Kalman-filter update strategy [17] to update the target template.

A. Kalman Filter versus VPDAF

First, we track fingers in front of stationary books, with the latter
being treated as a similar and cluttered background. Two algorithms

are considered for comparison purposes: the Kalman filter and VPDAF.
The same SAD matching process is used for the two algorithms, but the
Kalman filter only adopts the best (most similar) measurement for pre-
diction. Fig. 3 shows that the Kalman filter fails to track the fingers. The
Kalman filter misidentifies the books as the fingers, and gradually loses
track of them in the background. On the other hand, VPDAF tracks the
fingers successfully, as shown in Fig. 4. With the proposed VPDAF, a
weighted average of the target estimates results, instead of relying on
some particular measurement alone. This has a side effect in that the
estimated target position may be at a small tolerable distance from the
real target, but satisfactory tracking can still be achieved.

In this scenario, both the augmented PDAF mentioned in Section II
and the modified PDAF with stationary noise removal in Section III
will track the target as well as VPDAF. Since we can see that most of
the validated measurements in Fig. 4 are originated from the hand, the
disturbance from the poor measurement’s visual similarity augmenta-
tion and the background noise on tracking is not evident. We will preset
the improvements of VPDAF in the next two experiments.
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Fig. 5. Comparison of traditional PDAF and VPDAF estimation in one image frame. (a) Template. (b) Original image. (c) Normalized SAD score distribution.
(d) PDAF without weight augmentation. (e) VPDAF. (Color version available online at http://ieeexplore.org.)

Fig. 6. Tracking an airplane model with VPDAF. The stationary airplane model acts as the “similar” but “stationary” false measurement.

Fig. 7. Tracking a pedestrian with VPDAF.

B. PDAF versus VPDAF

In this experimental comparison, we will focus on the target estimate
from one single image frame. Through exhaustive SAD computation
in the image space, the visual similarity scores are normalized, and the
observational distribution is shown in Fig. 5(c). The summit of this dis-
tribution is the target, namely, a round magnet. In Fig. 5(d) and (e), the
“�” marks denote positions with observational density values greater
than 0.75, and the rectangles represent those within the validation re-
gion, i.e., the validated measurements considered by PDAF or VPDAF.
In order to show the improvement achieved by the augmentation which
evaluates visual similarity in VPDAF as mentioned in Section II, we
purposely set the predicted target position before performing the mea-
surement update x̂0(kjk) near the false measurements. As shown in
Fig. 5(d), since the associated probabilities of PDAF [1] only rely on
the location, it is misled by the validated measurements which stay
close to the prediction, but have low visual similarity. However, the
VPDAF, which enhances PDAF with observational density, success-
fully performs an accurate update, as shown in Fig. 5(e).

Furthermore, some of the false measurements, originated from the
background, with large visual similarity can still perturb the tracking
result. The stationary noise removal will be introduced to improve the
estimate in the next experiment.

C. Tracking Airplane Model

Instead of the fixed camera used in the above two scenarios, here
the camera is mounted on a stepping-motor platform with two degrees
of freedom (DOFs). In order to use the measurements’ positions for
the aforementioned classification purpose, we have to transform their
image coordinates (ui; vi) into a well-defined spherical camera plat-
form coordinate. By counting the shifting steps of the camera platform

and using perspective projection, we can derive the azimuthal angle and
polar angle of each measurement in this coordinate system as

azimuthi
polari

= [ tan�1 u

f
tan�1 v

f
]T ; i = 1; . . . ;mk (7)

where f is the camera constant. Replace the states of (5) as

x(k) = [ azimuth(k) �azimuth(k) polar(k) �polar(k) ]T : (8)

Then, substitute this result into VPDAF to fulfill the designed func-
tions. The final output of VPDAF is the predicted position of the target
in the camera spherical coordinate. We also command the stepping mo-
tors to turn to the desired prediction. Hence, the surveillance range can
be expanded while realtime visual tracking is realized.

Here we consider a more complicated situation to test the functions
of VPDAF. The tracking target is a moving airplane model, but there
is also a stationary airplane model in the environment. The moving
trajectory of the airplane passes through the cluttered background. In
Fig. 6, we can see that many false measurements are generated for the
stationary airplane model and background. These false measurements,
which have the same observational density value as the actual target, are
unlike the noise in Fig. 5. They can be eliminated by the persistent noise
removal of VPDAF based on the motion situation. Only the similar
measurements originating from the interested target are preserved for
evaluation of the association probabilities.

D. Pedestrian Tracking

A visual tracker with the same moving camera platform and VPDAF
is applied to track a pedestrian. We perform this experiment to verify
the robustness of VPDAF in an outdoor environment. As shown in
Fig. 7, the VPDAF succeeds in the outdoor tracking experiment, no
matter how the light changes affect the captured images. Especially
from frames (d) to (f), occlusion occurs on the tracked pedestrian so
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that the target of interest disappears for a while, but tracking is main-
tained in this situation. The reason of success is explained as follows.

It is well known that the target detection process used, SAD template
matching, is weak when it comes to tracking with occlusion. When oc-
clusion happens, the reference template can not find similar measure-
ments in the sensed image frame before the template is updated. How-
ever, this case is also considered in VPDAF by assuming event �0(k)
in (4). The corresponding association probability �0(k) dominates the
estimate. The updated state x̂0(kjk) in (2) increases the effect on the
final weighted average x̂(kjk) at the same time. The result is that the
estimation only depends on the object motion model. Once the target of
interest appears around this estimate again, the SAD template matching
detects candidates, and the functions of VPDAF are recovered.

V. CONCLUSION

The VPDAF proposed in this paper is an extension of the traditional
PDAF [1], which is designed mainly for target tracking from a cluster
of measured data. It constructs the data-associated relationships of the
measurements based on their positions. In the field of visual tracking,
the measured data obtained through target detection in the image do-
main include not only position but also visual similarity information.
Thus, in this paper, the significant visual characteristics are consid-
ered, while augmented association probabilities are derived. On the
other hand, nontarget objects or some patterns in the background are
major disturbances for visual target tracking. Fortunately, these per-
sistent noises can be eliminated by classifying their motions. Through
persistent noise removal, VPDAF generates modified data-association
probabilities and outputs the final suboptimal target estimate.

VPDAF with template matching applied to target detection has been
investigated through several experiments. The visual tracking system
is constructed on either a fixed or 2-DOF camera platform. Reliable
target-tracking performance has been achieved, even in a highly clut-
tered environment or one subjected to occasional occlusions. Although
VPDAF takes a bit more time to evaluate the measurement variations
and to filter out the stationary noise than the traditional PDAF, it still
can be processed in about 30 ms for every image frame. Hence, real-
time visual tracking is indeed achieved in our work.
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Modeling and Control of a Small Autonomous
Aircraft Having Two Tilting Rotors

Farid Kendoul, Isabelle Fantoni, and Rogelio Lozano

Abstract—This paper presents recent work concerning a small tiltrotor
aircraft with a reduced number of rotors. The design consists of two pro-
pellers which can tilt laterally and longitudinally. A model of the full birotor
dynamics is provided, and a controller based on the backstepping proce-
dure is synthesized for the purposes of stabilization and trajectory tracking.
The proposed control strategy has been tested in simulation.

Index Terms—Backstepping methodology, helicopter dynamics mod-
eling, tiltrotor rotorcraft, trajectory tracking.

I. INTRODUCTION

Since the beginning of the 20th century, many research efforts have
been done to create effective flying machines with improved perfor-
mance and capabilities. The tiltrotor aircraft configuration [1] has the
potential to revolutionize air transportation by providing an economical
combination of vertical takeoff and landing (VTOL) capability with ef-
ficient high-speed cruise flight. Indeed, the Bell Eagle Eye unmanned

Manuscript received October 2, 2005; revised February 14, 2006. This paper
was recommended for publication by Associate Editor G. Sukhatme and Editor
F. Park upon evaluation of the reviewers’ comments. This work was supported
in part by the ONERA (French Aeronautics and Space Research Centre), in part
by the DGA (French Arms Procurement Agency of the Ministry of Defence),
and in part by the French Picardie Region Council. This paper was presented
in part at the 44th IEEE Conference on Decision and Control/European Control
Conference, Seville, Spain, December 2005. Color versions of Figs. 1–4 are
available online at http://ieeexplore.org.

The authors are with Laboratoire Heudiasyc, UMR CNRS 6599, Université
de Technologie de Compiègne, BP 20529–60205 Compiègne cedex, France
(e-mail: fkendoul@hds.utc.fr; ifantoni@hds.utc.fr; rlozano@hds.utc.fr).

Digital Object Identifier 10.1109/TRO.2006.882956

1552-3098/$20.00 © 2006 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 13, 2009 at 21:55 from IEEE Xplore.  Restrictions apply.


