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Landmark Selection for Task-Oriented Navigation
Ronen Lerner, Ehud Rivlin, Member, IEEE, and Ilan Shimshoni, Member, IEEE

Abstract—Many vision-based navigation systems are restricted
to the use of only a limited number of landmarks when computing
the camera pose. This limitation is due to the overhead of detecting
and tracking these landmarks along the image sequence. A new
algorithm is proposed for subset selection from the available land-
marks. This algorithm searches for the subset that yields minimal
uncertainty for the obtained pose parameters. Navigation tasks
have different types of goals: moving along a path, photographing
an object for a long period of time, etc. The significance of the
various pose parameters differs for different navigation tasks.
Therefore, a requirements matrix is constructed from a supplied
severity function, which defines the relative importance of each
parameter. This knowledge can then be used to search for the
subset that minimizes the uncertainty of the important param-
eters, possibly at the cost of greater uncertainty in others. It is
shown that the task-oriented landmark selection problem can be
defined as an integer-programming problem for which a very good
approximation can be obtained. The problem is then translated
into a semi-definite programming representation which can be
rapidly solved. The feasibility and performance of the proposed
algorithm is studied through simulations and lab experimentation.

Index Terms—Covariance matrix, feature selection, landmarks,
pose estimation, semi-definite programming (SDP).

I. INTRODUCTION

I N THIS PAPER, the problem of landmark-based navigation
is examined. Landmarks are distinctive features in the sur-

rounding scene for which the 3-D location is known with respect
to some global coordinate system. Consider an autonomous ve-
hicle equipped with a camera. In order to perform vision-based
navigation, a set of predefined landmarks is supplied and the
2-D projections on the camera’s image-plane are identified and
tracked during the vehicle’s movement. Given the 3-D and 2-D
data, the navigation problem is defined as the estimation of the
camera pose (position and orientation) with respect to the global
reference frame.

During the last two decades robust pose estimation algorithms
have been developed by the computer vision community. These
algorithms can integrate an arbitrary number of landmarks in the
pose computation, leading to accurate and numerically stable
results (e.g., [1]–[6]). However, due to performance limitations,
many real-time navigation systems are restricted to the use of
only a very small number (usually 4–10) of landmarks. This lim-
itation arises from the large overhead of detecting and tracking
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these landmarks along the image sequence. In [7], for example,
a navigation system is presented where only four landmarks are
simultaneously tracked.

If the number of available landmarks is small as well, the
system will use all the visible landmarks at hand. However, if
the system is equipped with a large landmark database, a subset
needs to be selected from the visible landmarks as the camera
moves. An example of such a scenario is an unmanned aerial ve-
hicle (UAV) that utilizes a digital map and an ortho-photo of the
observed terrain. In this configuration, the 3-D location of any
point on the terrain is known, and any visually distinctive point
can thus be used as a landmark. The number of potential land-
marks in such a case is large, and a subset must be chosen. An-
other example is a simultaneous localization and map building
(SLAMB) system such as the ones in [8]–[11]. These systems
estimate the camera motion and simultaneously track new fea-
tures along the path of the robot’s movement. The 3-D loca-
tions of the tracked features are reconstructed and added to a
landmark database. As a result, the database is progressively
enlarged and after a while there will be more visible landmarks
than it is possible to track.

While the navigating platform moves, new landmark subsets
should be occasionally selected. The need for a new subset may
arise, for example, when one of the landmarks leaves the camera
field of view or after the camera has moved more than a cer-
tain distance since the last subset was chosen. Whenever a new
subset is required, an initial guess of the camera pose can be uti-
lized to filter the landmarks which are supposed to be visible at
the moment and to predict their projection location on the image
before actually detecting them. At this stage we face an impor-
tant question: how do we choose the subset from the filtered
landmarks wisely, in a manner that will lead to the best pose es-
timate according to the requirements of the specific navigation
task? This task-oriented landmark selection problem stands at
the center of the present work.

In most previous works (e.g., [8], [12], and [13]), the land-
mark selection problem was addressed from the image appear-
ance standpoint, where the 3-D location of the landmarks was
disregarded and the selection criterion based solely on a measure
of distinction of the 2-D features in the captured image. In [14],
the region from which each landmark is visible constituted the
selection criteria in order to construct a small landmark subset
that can be used from a variety of locations.

In [7], [15], and [16], as in the present work, the 3-D struc-
ture of the selected landmark constellation and its influence on
the obtained accuracies was studied. In [15], the design of spe-
cial positioning objects (i.e., fiducials) was considered. The rel-
atively small dimensions of such objects (compared to their dis-
tance from the imaging device) enabled the authors to assume
weak-perspective projection, which is inadequate for general
landmark-based navigation. In [7] and [16], a full-perspective
projection model was used; however, the navigation problem

1042-296X/$25.00 © 2007 IEEE



LERNER et al.: LANDMARK SELECTION FOR TASK-ORIENTED NAVIGATION 495

was restricted to a two-dimensional world where only three pose
parameters had to be estimated.

None of the aforementioned works addressed task-oriented
considerations when selecting the landmark subset. Both [7] and
[15] used the condition number of the pose covariance matrix
as the landmark selection criterion. This criterion does not re-
flect the different severity of errors in the different pose param-
eters. For example, a unit error in the camera’s position (e.g.,
1 cm) should not be considered equivalent to an angular unit
error (e.g., 1 rad) in its orientation. Additionally, the purpose
of the pose computation should not be overlooked. The navi-
gation system usually supports a control system that uses the
pose estimates to perform some predefined task. According to
the requirements of the specific task, some of the pose parame-
ters may be considered more essential than others. For example,
if the platform needs to follow a predefined path, then accu-
rately identifying its location along the path is not as important
as identifying any drifts from the path. Another example is the
task of landing an airplane on a landing track. Obviously, the
set of relevant parameters and accuracies during landing differs
from those that need to be controlled for maintaining straight
and level flight. It would thus be desirable to select a subset of
landmarks that minimizes the error in some of the pose parame-
ters even at the expense of larger errors in the other parameters.

In this paper we present a new criterion for task-oriented land-
mark selection. The system designer can use a severity function
to specify the adequacy of different poses for the specific nav-
igation task. This function can be used to construct a require-
ments matrix that reflects the importance of the different pose
parameters for the task at hand. Next, we show that the land-
mark subset selection problem can be approximated by solving
a semi-definite programming (SDP) problem. A solution for this
class of optimizations can be found easily and rapidly, quali-
fying the proposed algorithm for real-time navigation systems.
Although this paper shows how SDP can be utilized for land-
mark selection, it can also be applied to variety of problems from
the computer-vision and robotics fields.

The paper continues as follows. Section II reviews the topic of
pose estimation from landmarks and its uncertainty. A method
for evaluating how well the different subsets conform to the re-
quirements of the navigation task is developed in Section III. A
good and efficient approximate solution to the subset selection
problem is presented in Section IV. Section V presents a method
for translating the preferences of the navigation task into a re-
quirements matrix. Experimental results on simulated and real
data are presented in Section VI. We conclude in Section VII.

II. LANDMARK-BASED NAVIGATION

Before considering the task-oriented landmark selection
problem, we briefly summarize the landmark-based navigation
problem. Let be a set of available
landmarks. The 3-D location of these points is assumed to be
known with respect to some reference coordinate system . In
order for an autonomous vehicle to navigate in this scene, it is
equipped with a calibrated camera, to which another Cartesian
coordinate system, denoted , is attached. Traditionally, the
origin of this system coincides with the camera’s center of
projection and the axis is oriented along the optical axis. The

pose of the camera with respect to can be represented by an
orthonormal rotation matrix, , and by the camera
position vector such that

(1)

where is the representation of in the camera’s system
. Due to the orthonormality of , the camera’s orientation

has only three degrees of freedom, usually represented by the
Euler-angles and , which reflect the rotation around the

and axes, respectively. Thus, the camera pose is fully
defined by a 6-D parameter vector, .

In the camera frame, the 3-D landmarks are perspectively pro-
jected to their 2-D location in the image-plane

(2)

Given the 3-D landmarks and their corresponding 2-D camera
measurements , the navigation problem is to accurately
estimate the camera pose parameters - . These parameters can
be estimated by a nonlinear optimization procedure that min-
imizes the squared error between the camera’s 2-D measure-
ments and the landmark projections (which are calculated using
the pose hypothesis)

(3)

This least-squares solution is known to be the optimal so-
lution when independently and identically distributed (i.i.d)
isotropic errors are assumed. However, this solution is also
known to be extremely sensitive to outliers. In order to esti-
mate the pose parameters in a more robust manner, standard
robust techniques, such as M-estimation (that searches for a
reweighted least-squares solution), should be used in practice.
In the present work it is assumed that the pose parameters are
periodically estimated as part of the control-loop. As a result, a
relatively accurate initial guess of these parameters is always
available. Hence, any outlier will yield a large residual from the
very beginning and therefore it will be easily suppressed using
the aforementioned robust techniques.

A. Pose Covariance Matrix

The 2-D measurements obtained from the camera are not
error-free. These errors result from errors in the feature detec-
tion procedure and are commonly modelled as i.i.d Gaussian ad-
ditive errors. Let be the standard deviation of this isotropic
Gaussian distribution. In the absence of these errors the exact
pose would have been obtained; however, in realistic sce-
narios these errors propagate through the optimization process
and lead to the perturbed estimate of the pose .

Let be the perspective projection function of the
th landmark

(4)

Then the Jacobian of the ith landmark is the 2 6 matrix
containing all ’s partial derivatives, and the Jacobian matrix
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of all the landmarks which participate in the pose computation
is defined as the concatenation of all the respective ’s

(5)

Following the derivations in [17], a first-order approximation
of the error propagation from image measurements to the pose
parameters is given by the covariance matrix of

(6)

where in the above expression is the covariance matrix of the
image measurements, which reflects the errors in the 2-D mea-
surements. Since it was assumed that these errors are i.i.d. and
isotropic, takes the special form of a diagonal matrix with
constant value along the diagonal. Hence, the expression for
the pose covariance matrix may be simplified as follows:

(7)

The diagonal of the pose covariance matrix contains the vari-
ances of the six pose parameters, while the off-diagonal ele-
ments represent the dependencies between these parameters.
This symmetric matrix also represents a 6-D ellipsoid (usually
known as the uncertainty ellipsoid) in the pose configuration
space. The main axes of this ellipsoid are in the direction of

’s eigenvectors and their lengths correspond to the square-
roots of ’s eigenvalues. One can think of this ellipsoid as an
approximation of the volume in which the real pose is located
up to some certainty. For accurate pose estimates this volume
will be relatively small.

III. TASK-ORIENTED GRADING OF LANDMARK SUBSETS

Consider a scenario where 100 landmarks are available for
robot navigation. Selecting all these landmarks for the camera
pose computation will probably yield a very accurate estimate.
However, for each selected landmark, its 2-D measurements
need to be extracted from each image along the robot’s tra-
jectory. A feature-extraction algorithm may be used in the first
frame in order to identify the landmarks in the image, and some
tracking algorithm will be used in the consecutive frames to ob-
tain the 2-D feature displacement. Since navigation is a real-
time task, the overhead of the tracking procedure must be con-
sidered. According to the specific system capabilities and per-
formance, the maximal number of features that can be tracked
is usually bounded to be very small (e.g., 10 or even 4, as was
proposed in [7]). It is clear that different selections of landmark
subsets will lead to different pose accuracies. As an illustrative
example, consider the choice of a subset containing landmarks
with very small distances between them. Their projection rays
will form a very narrow bundle, which will in turn lead to a
very inaccurate pose estimate as compared to a subset of land-
marks that are far away from each other. The landmark selec-
tion problem is simply defined as the problem of finding the best
subset—the one that will lead to the most accurate pose.

Fig. 1. Comparison between uncertainty ellipsoids in a 3-D pose configuration
space. It is clear that ellipsoids B and C are preferable to A, but the choice
between these two is less obvious and should take into account the requirements
of the specific navigation task.

As was already shown in Section II-A, the pose accuracy is
not represented by a scalar but rather by a 6 6 covariance ma-
trix. Any landmark subset will lead to a different covariance
matrix. This leads to a fundamental question: given two covari-
ance matrices, which one is “better” ? Each covariance matrix
reflects an uncertainty ellipsoid. If one of the ellipsoids contains
the other, then it is clear that the smaller one should be pre-
ferred. For example, one can see that ellipsoids B and C in Fig. 1
are preferable to ellipsoid A. However, the choice between el-
lipsoids B and C is less obvious and should take into account
the requirements of the specific navigation task. For example, if
for some reason the -parameter is much more important than
the -parameter to our navigation task, it may be preferable to
choose ellipsoid C over ellipsoid B although it has higher un-
certainty along the (less important) -direction.

In [7] and [15], each landmark subset was graded according
to the condition number of its covariance matrix, which is de-
fined as the ratio between the largest and smallest eigenvalues.
In terms of uncertainty ellipsoids, the condition number is the
squared lengths ratio of the longest and shortest main-axes, thus
measuring the “roundness” of the ellipsoid. Using this crite-
rion will bring us to choose the landmark subset with the most
spherical uncertainty ellipsoid. Note that in our 3-D example,
ellipsoid A would have been chosen according to the condition
number. Another problem with this criterion is that it perceives
the configuration space as a Euclidian space, and thus an error of
one angular unit (e.g., radian) in the camera orientation would
be considered equivalent to an error of one metric unit (e.g.,
centimeter) in the pose translation vector. This behavior seems
arbitrary and does not reflect the real severity of such errors.

In order to address the aforementioned issues, a new grading
criterion for landmark subsets is proposed. First, instead of
grading according to the uncertainty ellipsoid’s roundness, we
would like to use a criterion that reflects its size. Two straight-
forward alternatives are the summation and the product of the
covariance matrix eigenvalues. These quantities can be easily
obtained as the covariance matrix’s trace and determinant,
respectively. At first glance, it seems that the product of the
eigenvalues would be a better choice since it is proportional
to the squared volume of the uncertainty ellipsoid. However,
such a criterion might prefer an ellipsoid with a very long axis
when the rest of the axes are very short and hence compensate
for the long one. When summing the eigenvalues, on the other
hand, the squared lengths of the axes are summed and hence
will be relatively large even if only one of the axes is long.
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Additionally, a requirements matrix should be supplied by the
system designer, who is familiar with the requirements of the
specific navigation task. The requirements matrix, denoted ,
should be symmetric, positive semi-definite, and reflect the
importance of the different pose parameters (particularly the
correct balance between angular and translational errors). The
length of the uncertainty ellipsoid’s main axes will not be mea-
sured using the Euclidian norm but rather by the Mahalanobis
norm induced by this requirements matrix. In Section V a
systematic method for constructing such a matrix is described.

Given a covariance matrix that was obtained from a
landmark subset, the grading criterion is developed as follows.
Let be the eigenvectors-eigenvalues de-
composition of . is an orthonormal
matrix in which the eigenvectors of the covariance matrix
are its columns, and is a diagonal matrix containing the
eigenvalues- . Therefore, the grade of the covariance matrix,
which is defined to be the sum of squared Mahalanobis lengths
of the ellipsoid’s main axes, is

grade

(8)

where denotes the Mahalanobis norm. In contrast to a
simple summation of ’s eigenvalues, here we obtained their
weighted sum. The weights represent the severity of
the pose errors in the direction.

During the optimization process, where the landmark subset
with the minimal grade is sought, the grade function is evaluated
many times for different subsets. Therefore, in order to reduce
the overhead of the optimization, it would be desirable to avoid
the eigenvectors-eigenvalues decomposition of . Since it is
only the sum of squared lengths that we need for the grade com-
putation, this function takes a much simpler form

grade (9)

where represents the matrix trace. The two grade definitions
(8) and (9) are equivalent since

where is the diagonal matrix containing the square roots
of the six eigenvalues— . In the above manipulation we used
a cyclic permutation of the matrices in the trace. Such a permu-
tation is known to preserve the trace.

To conclude, given the requirements matrix of the navigation
task, any landmark subset can be evaluated in a task-oriented
manner by computing its corresponding covariance matrix, and
then grading it according to the trace of the multiplication of
these two matrices.

IV. APPROXIMATE SOLUTION FOR THE SUBSET

SELECTION PROBLEM

Equipped with the task-oriented grading criterion, we can ad-
dress the central problem of this work: the task-oriented land-
mark selection problem. Given a set of available and visible
landmarks, we would like to obtain the best landmark subset of
some predefined size . This problem can be posed as
an integer programming optimization problem by introducing
indicator variables, , each indicating
whether the corresponding landmark was selected to the subset.
Let be the vector concatenation of these vari-
ables. Stipulating the participation of each in (7) according
to its corresponding yields the subset’s covariance matrix

(10)

By substituting (10) into (9) and ignoring the constant factor
, the integer-program becomes

(11)

The first constraint guarantees that the obtained subset size will
be as required, while the second constraint enforces the Boolean
behavior of the indicators.

Computing the exact solution for this program is NP-Hard.
However, a very good approximation can be obtained by solving
the problem relaxation, where the Boolean restriction of the
variables is replaced by the relaxed constraint . The
objective function of this program is convex (see Appendix I)
and can be solved using any nonlinear optimization toolbox
(e.g., [18]) to obtain the fractional solution. In order to de-
cide which of the landmarks should be selected, a rounding
heuristic should be applied to the obtained fractional vari-
ables. A well-known rounding method [19] proceeds as follows:
each fractional is perceived as the probability that the corre-
sponding landmark will be selected to the subset. Hence, several
subsets are randomly constructed according to these probabili-
ties; next, the grade of each subset is evaluated according to (9),
and the subset with the minimal grade is chosen. Note that al-
though the expected size of the subsets is as desired (due to
the subset size constraint), the actual size of the randomly gen-
erated subsets may be slightly different. Therefore, the random
subsets should be corrected by adding or discarding landmarks
in order to reach the necessary size, where the choice of which
landmarks to add/discard is in accordance with the value of each



498 IEEE TRANSACTIONS ON ROBOTICS, VOL. 23, NO. 3, JUNE 2007

fractional : for subsets that are too large we will discard the
landmarks with the lowest , and for subsets that are too small
we will add the landmarks with the largest . Experimental re-
sults, which are presented in Section VI, demonstrate that this
scheme can obtain a very good approximation for the optimal
solution.

A. Normalization Procedure for Improving Numerical Stability

Computing the objective function of (11) requires the inver-
sion of

When all the selected landmarks are far away from the camera,
the translational elements of the Jacobian become extremely
small compared to the rotational counterparts, which are not af-
fected by the landmark’s range. Therefore, an ill-conditioned
matrix is obtained and the inversion procedure might be prone
to numerical instability. In order to prevent such a problem, the
Jacobian elements can be scaled by multiplication with a diag-
onal “normalization” matrix

(12)

Each element on ’s diagonal can be chosen such that the av-
erage of the elements in the corresponding column of will be
1. Next, one can define the normalized covariance matrix of a
subset as

(13)

where the constant factor was dropped as in (11). The com-
putation of the normalized matrix should be numerically stable.
However, plugging (13) back into (9) yields a different objec-
tive function that may obtain its minimum at a different . In
order to circumvent the aforementioned obstacle, the same nor-
malization should be applied to the requirements matrix

(14)

As a result

B. Posing the Relaxed Program as an SDP

The relaxed problem is a constrained nonlinear optimization
problem. Although it can be solved using general optimization
toolboxes (e.g., [18]), the overhead of converging to an accurate
solution might be large, thus disqualifying the proposed method
for real-time navigation systems. However, this problem can be
easily converted to a SDP problem for which powerful and very
efficient algorithms exist [19]–[22]. One can think of SDP as an
extension of the well-known linear programming, in which the
linear inequality constraints are extended by the so-called linear
matrix inequality (LMI) constraint. Such an LMI constraint on
the variables should be in the form

(15)

where and are symmetric matrices and the notation
reflects that should be positive semi-definite. Despite its
name, one can see that such a constraint can express nonlinear
behavior (through the requirement that the matrix will be posi-
tive semi-definite).

Note that in the SDP formulation the objective function is
still required to be linear in the problem’s variables. Recall the
original relaxed problem

(16)

In order to transfer the nonlinearity of from the objective
function to the problem constraints (where nonlinearity can be
handled), we introduce 21 additional slack variables arranged in
a 6 6 symmetric matrix

(17)

With these new variables the problem can be redefined as

(18)

In order to verify that (16) and (18) are equivalent, one needs
to show that the following two conditions hold.

• Every feasible solution of (16) can be extended to a feasible
solution of (18) by setting some values to such that the
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two objective functions coincide [which implies that the
optimum of (16) the optimum of (18)].

• The objective function of (16) is a lower bound of the ob-
jective function in (18) for any given and [implying
that the optimum of (16) the optimum of (18)].

The first condition is easily verified by letting be equal to
. The second condition is proved in the following lemma:

Lemma 1: Let and be defined as before.
Then

Proof:

In the above derivation, the Cholesky decomposition was used
to decompose the requirements matrix into . The
next step is based on the well-known property that multiplying
positive semi-definite matrix from both sides by any matrix,

, will not effect its positiveness. The last inequality re-
sults from the fact that the matrix trace is equal to the sum of
its eigenvalues, which are all nonnegative for positive semi-def-
inite matrices.

In order to represent the nonlinear constraint in (18) as an
LMI, the Schur complement lemma will be used:

Lemma 2 (Schur complement lemma): Let

be a symmetric matrix where is positive definite. Then, is
positive semi-definite iff is positive semi-defi-
nite.

See [19] for a proof of this lemma. Thus, the constraint
can be replaced by

(19)

Finally, the LMI representation of our constraint is

(20)

where are 6 6 matrices with all elements
equal to zero except the entries of the corresponding in
(as was defined in (17)), which are set to one. For example

(21)

The relaxed problem in its new formulation can be fed into
an SDP toolbox such as [23]–[25] to rapidly obtain its solu-
tion. Such toolboxes solve semi-definite problems using inte-
rior point algorithms, which simultaneously optimize two prob-
lems: the original minimization problem—known as the primal
problem—and its dual maximization problem. As in the linear
programming scenario, the optimal solutions of the two prob-
lems coincide. Monitoring the decreasing gap between the two
solutions thus gives us a very simple stopping criterion for the
optimization process. The convergence speed of interior point
algorithms is known to be exponential. Together with the con-
vexity of the problem, this implies that a correct solution with
the desired accuracy can be obtained in almost a fixed number
of iterations regardless of the quality of the initial guess. On a
Pentium 4 machine, full convergence is reached after about 0.1
s for 10 available landmarks and about 0.5 s in the case of 100
available landmarks. Much faster results can be obtained with a
small compromise on the obtained accuracy. Since the selection
procedure should be activated only once in a while, its time con-
sumption is not too high for reasonable problem sizes. Thus, the
algorithm can be integrated into real-time navigation and con-
trol systems of autonomous robots.

C. Generalization for Nonidentical Distribution of
Measurements Error

There might be cases where some measure of stability or ac-
curacy is associated with each of the available landmarks. In
such a case, the covariance matrix cannot be simplified as
shown in (7) of Section II-A, since the assumption about iden-
tical distribution of the image measurements error is dropped.
However, the landmarks are still assumed to be independent, and
thus takes the form of a block-diagonal matrix. Each block,
denoted , is a 2 2 covariance matrix associated with the th
landmark’s measurements. The relaxed optimization program,
therefore, becomes

(22)

where is defined in (13).
As before, this program can be solved using any nonlinear op-

timization toolbox to obtain the fractional solution, which later
can be rounded into an integral solution, as described in the be-
ginning of this section. However, it is not clear how to translate
this generalized problem into a SDP formulation, and thus it will
be more time consuming to solve.

V. CONSTRUCTION

This section elaborates a method for translating the require-
ments of the navigation task into the symmetric positive semi-
definite 6 6 requirements matrix . At first, a pose-severity
function, denoted , is defined by the system designer. This
function evaluates how “bad” the pose is for the specific task.
For example, if our task is to photograph an object in
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the scene, then a proper severity function could be the 2-D dis-
tance between the object’s projection and the principal-point

(23)

where is the principal-point. Such a severity function reflects
the desire to keep the object at the center of the image. Another
classical example appears when the task is to follow some pre-
defined trajectory. In this case, a reasonable severity function
could measure the distance of the camera from the trajectory.
Landing an airplane is an example of such a task: the trajectory
leads the airplane along the landing track in a smooth and tan-
gential manner. In the simpler case of a straight trajectory, de-
fined by a source-point and a direction-vector , the severity
function takes the form of

(24)

In order to obtain , we choose a close camera pose
which is optimal according to the severity function . Thus, the
value and gradient of at this pose vanish. In this simplified
case, the second order approximation of at any perturbed is

(25)

where is the Hessian matrix of . The vector
represents the perturbation direction in the pose’s configuration
space, and therefore can be replaced by any of ’s eigenvec-
tors,

(26)

Comparing the above result to (8), we observe that is pro-
portional to the weights in the sum of the eigenvalues. There-
fore, we conclude that the Hessian may serve as the require-
ments matrix.

VI. RESULTS

In this section the performance and the advantages of the pro-
posed algorithm are demonstrated through simulations and lab
experimentation.

A. Simulations

Obtaining the dual value as part of the SDP solution is advan-
tageous: it is a lower bound on the primal grade optimum, which
is in itself a lower bound on any feasible integral solution of the
original problem. Hence, one can use the dual value to obtain an
upper bound on the approximation factor of any evaluated land-
mark subset. In Fig. 2 the approximation factors obtained by
the algorithm are evaluated. A set of 100 landmarks was syn-
thetically generated, from which subsets of different sizes were
selected. One can see that the obtained approximation is very
good, almost 1 for any subset size larger than 3. For comparison,
groups of 10 and 100 subsets were selected uniformly as well
(the dotted and dashed lines in Fig. 2). As could be expected, the

Fig. 2. Approximation factors that were obtained for different subset sizes. The
solid line was obtained by the algorithm, the dotted line by taking the best of
10 uniformly selected subsets, and the dashed line by taking the best of 100
uniformly selected subsets.

Fig. 3. Synthetic landmarks were placed on a plane parallel to the image plane
z = 30 (black dots). The obtained fractional� values (vertical lines) and the se-
lected subset (circles) are presented. (a) Subset of four landmarks was selected
when the navigation task required the camera position. (b) Subset of ten land-
marks was selected when only the roll angle of the camera was required.

approximations obtained by this method were similar to those
of the proposed algorithm when the subset size was near 100.
However, a clear and drastic advantage can be observed in the
more realistic scenarios where small subsets are selected.

In some scenarios there exists a clear intuition about which
landmarks should be selected for the subset. Fig. 3 demonstrates
two such scenarios. In Fig. 3(a), most of the landmarks are lo-
cated as a dense cluster while only two landmarks are placed at
distant locations. If one needs to select a subset of size 4 in order
to estimate the camera position, it is obvious that the two distant
landmarks should be included, while the rest of the subset will
be selected from the cluster. As can be seen, the obtained frac-
tional values of these two features are 1, guaranteeing their
inclusion as desired. In Fig. 3(b) a 10 landmark subset was se-
lected from 100 synthetic landmarks that were placed on a plane
parallel to the image plane. This time, computing the roll angle
of the camera was defined as relevant for the task. In this case,
landmarks should be selected from the image periphery in order
to maximize their arc-length displacement for roll movement.
Indeed, the relaxed values are equally distributed between
the most extrinsic landmarks, necessitating that the subset be
chosen from them.
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Fig. 4. Subset selection of 5 and 40 landmarks for different tasks: (a) and (d) show coplanar landmarks parallel to the image plane, (b) and (e) show coplanar
landmarks in general position, (c) and (f) show landmarks placed on three orthogonal planes. In all six images, the markers represent the selected landmarks
according to different navigational tasks: an “x” marker—a task of computing the X component of camera position, a diamond—a task of computing the Y
component of camera position, a circle—a photographing task.

Fig. 5. Weighted error obtained by different subset sizes for the scene presented
in Fig. 4(c). The dashed line shows the mean error of the pose when using the
uniformly selected subsets, the solid line shows the pose error when using the
selected subset of the algorithm. In (a), the navigation task requires theX com-
ponent of the camera position, while (b) shows the results for the photographing
task.

B. Lab Experimentation

In order to demonstrate the advantage of the proposed algo-
rithm in real scenarios, two lab experiments were conducted:
one with still images and the other with a video that was cap-
tured while a robotic arm was performing some tasks.

1) Still Images Experiment: For the first experiment two
environments were constructed: the first one contained 100
coplanar landmarks that were defined by the squares’ corners
on a 10 10 chessboard [see Fig. 4(a) or (b)], and the other
contained 300 landmarks from three orthogonal chessboards
[see Fig. 4(c)]. A calibrated camera was placed in various
positions and orientations in the two environments and images
of 640 480 were captured. Using the Harris corner detector,
the image location of the visible landmarks was found up to
subpixel resolution and the ground-truth camera pose was
calculated from all available landmarks. Next, different tasks
were defined and subsets were selected accordingly using the

Fig. 6. Video camera mounted on 6 DOF robotic arm.

task-oriented algorithm. In order to study the advantages of the
algorithm for different sizes of subsets, we examined subsets
ranging from 4 to 50 landmarks.

Fig. 4 shows the selected subsets of size 5 and 40 for three
examined tasks: the first requires only the X-component of the
camera position, the second requires the Y-component, and the
third task is one in which an object is photographed as described
in Section V. One can see that different subsets were automat-
ically selected as a result of the different task definitions. For
example in Fig. 4(d), only 25 out of the 40 selected landmarks
were repeatedly selected regardless to the task, while the other
15 landmarks (37%) were selected differently from one task to
another.

Next, for each examined task and subset size, 500 addi-
tional subsets were uniformly selected for comparison. Fig. 5
compares the weighted error of the pose obtained by the algo-
rithm’s selected subset to the mean weighted error of the poses
when using the uniformly selected subsets. All these subsets
were selected from the environments presented in Fig. 4(c).
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Fig. 7. Subsets of ten landmarks that were selected during the six experiments. In (a), (b), and (c), a path-following task was performed. In (d), (e), and (f), a
photographing task was performed. (a) and (d) show the first scene, (b) and (e) the second scene, and (c) and (f) show the third scene. The stars mark the selected
landmarks. The circles in the subfigures of the photographing task show the location of the sight.

The weighted error was defined as the Mahalanobis norm of
the pose parameter error. A clear advantage of the proposed
algorithm can be observed for all subset sizes, although this
advantage diminishes for large subsets, as in Fig. 2. Note that
the graphs are not always monotonic. This is due to the specific
measurement errors of the selected points, which affect the
quality of the result.

2) Robot Experiment: In this experiment, a video camera
with a resolution of 720 428 pixels was attached to a robotic
arm (see Fig. 6). This arm can be manipulated in 6 DOF and
supplies the trajectory in which it was maneuvered up to sub-
millimetric accuracy. The positional information that was gath-
ered from the robot was not used during the navigation task but
rather was collected and saved as a ground truth for the algo-
rithm evaluation.

Six different scenarios were examined. These scenarios were
a result of three scenes with different landmark constellations
and two tasks to be performed. The first scene contained 90
coplanar landmarks homogeneously dispersed on a rectangular
grid [see Fig. 7(a)]). Only 34 landmarks from the first scene
were kept in the second: the upper 30 (forming a dense cluster)
and 4 additional landmarks, widely dispersed in the lower part of
the scene [see Fig. 7(b)]. The third scene was constructed from
34 landmarks lying on three orthogonal planes. Once again, 30
of them were located in a relatively dense cluster while the other
4 were dispersed in different locations [see Fig. 7(c)].

Using subsets of these landmarks, the robotic arm was sup-
posed to perform two types of tasks: one was to accurately
move along a predefined trajectory (path-following task), and
the other was to keep a predefined target in a fixed location on
the image (referred to as the sight) for as long as the camera was
in motion (photographing or targeting task).

While the camera was in motion, landmark subsets were se-
lected whenever required: when one of the landmarks left the
field of view, or after the camera pose shifted beyond a certain
threshold. As part of the control loop, the camera pose was con-
stantly estimated on the basis of the selected landmarks and,
as a consequence, the robotic arm trajectory was periodically
adjusted. Fig. 7 shows examples for the selection results when
using the proposed algorithm in the different scenarios.1 Note
that in the nonhomogeneous landmark constellations the dis-
tant landmarks were always selected by the algorithm. This con-
forms to the intuition discussed in Section VI-A.

For each examined scenario, subsets of different sizes were
tested (6–15 landmarks). For each subset size, ten experiments
were performed: in five of them the subsets were selected
using the proposed algorithm while in the others the subsets
were selected arbitrarily for purposes of comparison. The
mean and maximum task-related errors are presented in Figs. 8
and 9. In all these figures the solid line represents the errors
obtained when using the selection algorithm, and the dashed
line represents the errors obtained when selecting the subsets
arbitrarily. For the path-following task, the 3-D distance be-
tween the ground-truth camera location and the predefined
trajectory was computed. For the photographing task, the target
was located in the captured images at subpixel accuracy and its
2-D distance from the predefined sight was computed. It can be
observed in all the experiments that there is a clear advantage

1Supplementary downloadable material provided by the authors is available
at http://ieeexplore.ieee.org. This includes video files of the six examined
scenarios with the selected landmarks at any moment along the trajectory.
For the photographing experiments, additional videos are supplied showing
the target-to-sight alignment during the experiments, with and without the
selection algorithm. This material is 21.8 MB in size.
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Fig. 8. Mean and maximal millimetric errors obtained for different subset sizes
when a path following task was performed. In (a) and (b), the first landmark con-
stellation was used, in (c) and (d), the second constellation, and in (e) and (f), the
third constellation. Solid line—the error obtained when using the selection al-
gorithm, dashed line—the error obtained when selecting the subsets arbitrarily.

to utilizing the proposed algorithm. As could be expected,
the merit of the selection algorithm becomes more significant
when the subset size decreases and when the distribution of
the available landmarks is nonhomogeneous. One illustration
of this is the vanishing gap between the mean photographing
errors in Fig. 9(a) as the subset size increases. This is due to the
homogeneous ordering of the landmarks in that experiment.

VII. CONCLUSION

In this paper, a new algorithm for landmark selection was
proposed. Due to performance limitations, a real-time naviga-
tion system can usually use only a small number of landmarks
to compute the camera pose. It was shown that by defining the
specific task requirements in the form of a requirements matrix,
different subsets from the available landmarks are automatically
selected. The obtained subset yields minimal uncertainty for the
pose parameters according to the Mahalanobis metric, which is
defined using the requirements matrix. Simulations and experi-
mentation verify the advantages of integrating the proposed al-
gorithm in real-time navigation systems.

Fig. 9. Mean and maximal projection errors (in pixels) obtained for different
subset sizes when a photographing task was performed. In (a) and (b), the first
landmark constellation was used, in (c) and (d), the second constellation, and in
(e) and (f), the third constellation. Solid line-the error obtained when using the
selection algorithm, dashed line-the error obtained when selecting the subsets
arbitrarily.

APPENDIX I
PROOF OF THE GRADE FUNCTION CONVEXITY

In this appendix, we present a convexity proof for the objec-
tive function of the relaxed selection problem

grade

(27)

where

grade (28)

It is shown that the objective function grade is convex on ,
and thus maintains its convexity on any convex subset of .
Since each of the constraints in the relaxed problem defines a
convex set (half-space or hyperplane), so does their intersection,
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and therefore grade is convex on the problem’s feasible set. As
a result, a search for a local minimum will surely lead to the
global minimum as well.

Proof: There are several methods for proving function con-
vexity. The line restriction method, which is used in this proof,
relies on the following lemma.

Lemma 3: Let be defined as

grade

where the domain of is is feasible . Then, grade
is convex iff is convex (in ) for any feasible and

.
Substituting (28) in the above definition yields

(29)

where

(30)

In order to show that is convex, it is proved that its second
derivative is nonnegative. The following two equations are re-
quired for the derivations:

(31)

(32)

for any matrix and scalar . Therefore, the first derivative of
is

(33)

where the matrix is defined as

(34)

Next, the second derivative of is obtained by

(35)

In the last step of the above derivations, we used a circular per-
mutation of the matrices inside the trace. Such a permutation
keeps the trace value unchanged. Since is assumed to
be feasible, is a symmetric positive semi-definite matrix and
so is its inverse . Therefore, can be decomposed using
the Cholesky decomposition, as , where is a
real matrix. Once again the circular permutation of the matrices
inside the trace will be used

(36)

Because and are symmetric matrices, it is clear that
. Taking into account that ,

the multiplication of this matrix by and its trans-
pose from each side does not affect its positiveness. Thus, the
trace is activated on a positive semi-definite matrix, which yields
a nonnegative value, as desired.
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