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Sparse Local Submap Joining Filter for Building
Large-Scale Maps

Shoudong HuangWlember, IEEE Zhan Wang, and Gamini Dissanayakéember, |IEEE

Abstract—This paper presents a novel local submap joining transferred into the global coordinate frame. Common features
algorithm for building large-scale feature based maps: Sparse present in both the local and global maps are identified and
Local Submap Joining Filter (SLSJF). The input to the filter is o EKF js used to enforce identity constraints to obtain the
a sequence of local submaps. Each local submap is representeda . . ..
in a coordinate frame defined by the robot pose at which the global map. The resulting maP covar|ancg matrix Is .fuIIy
map is initiated. The local submap state vector consists of the Correlated and thus the map fusion process is computationally
positions of all the local features and the final robot pose within demanding. Overall computational savings are achieved due to
the submap. The output of the filter is a global map containing the fact that the frequency of global map updates is reduced.
the global positions of all the features as well as all the robot This paper demonstrates that local submap joining can be

start/end poses of the local submaps. . . . A
Use of an Extended Information Filter (EIF) for fusing achieved through the use of a sparse information filter. The

submaps makes the information matrix associated with SLSJF Proposed map joining filter, Sparse Local Submap Joining
exactly sparse. The sparse structure together with a novel state Filter (SLSJF), combines the advantages of the local submap

vector and covariance submatrix recovery technique make the joining algorithms and the sparse representation of SLAM to

SLSJF computationally very efficient. The SLSJF is a canonical g hstantially reduce the computational cost of the global map
and efficient submap joining solution for large-scale Simultaneous construction

Localization and Mapping (SLAM) problems that makes use . . .
of consistent local submaps generated by any reliable SLAM ~ The paper is organized as follows. Section Il presents the
algorithm. The effectiveness and efficiency of the new algorithm overall structure of the SLSJF and demonstrates that the

is verified through computer simulations and experiments. associated information matrix is exactly sparse. The SLSJF
Index Terms—Simultaneous localization and mappmg algorithm iS described in deta” in SeCtion 1R Section v prO-
(SLAM), Extended Kalman Filter, Extended Information Filter,  vides simulation and experiment results. Section V discusses
Map joining, Sparse matrix. some properties of the SLSJF and some related work. Section
VI concludes the paper.

I. INTRODUCTION

In the recent years, it has become evident that the Simul- !l. THE OVERALL STRUCTURE OFSLSJF

taneous Localization and Mapp|ng (SLAM) prob'em can be Th|S SeCtion presents the OVera" structure of the SLSJF and
efficiently solved by exploiting the sparseness of the inform&xplains why it results in a sparse representation.

tion matrix or techniques from sparse graph and sparse linear

algebra (see e.g. [1]-[5]). However, most of the methods bas&d The input and output of SLSJF

on sparse representation have focused on building a singlg,q input to the SLSJF is a sequence of local submaps

large-scale map, resulting in the need to update a large M@ sirycted by some SLAM algorithm. Local mapsare
whenever a new observation is made. denoted b
. o . ' y

Alternatively, local submap joining [6][7] provides an effi- (XL PLy 1)
cient way to build large-scale maps. In local submap joining, . ’
a sequence of small sized local submaps are built (e.g. usimgere X “ (the superscript ‘L’ stands for the local map) is an
conventional Extended Kalman Filter (EKF) SLAM [8]) ancestimate of the state vector
then combined into a large-scale global map. During map Xt = (XE XxE - XD
joining [6], the state vector of the local submap is first = (al yk ok ab yk .ozl yb) @)
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of local mapk (defined as the global position of the last robc features and robot
pose when building local maj) is the same as the robot star f;’cs;t;f;"’évc‘l i
pose of local mafk + 1 (Flg 1) features and robot

The output of SLSJF is a global map. The global map ste poses involved in
vector contains all the feature positions and all the robot e losdlumagel o
poses of the local maps (see Fig. 1).

B. Why can local map joining have sparse representation?

The reason why SLSJF can be developed is that the infi
mation contained in each local map is the relative positic
information about some “nearby objects” — the features ai
the robot start/end poses involved in the local map.

By including all the objects (all the features and all the rob
start/end poses) in the global map state vector, the local n
joining problem becomes a large-scale estimation proble end posc of local map 1
with only “local” information (similar to Smooth and Mapping itfr‘ilg’i‘;lei’g o i = start pose of local map 2
(SAM) [2] and full SLAM [5]). When Extended Information
Filter (EIF) is used to solve the estimation problem, a noi
zero off-diagonal element of the information matrix (a “link”
between the two related objects) occurs only when the tWi. 1. Structure of SL_SJF: Small ellipses _indicate_ the obje_cts“involved in
objects are within the same local map Since the size of e 0% maps. Exch obict (0. the feauyes ony nked fo = neary
each local map is limited, any object will only have link withfinal global map state vector contains the locations of all the shaded objects.
its “nearby objects” no matter how many (overlapping) local
maps are fused (Fig. 1). This results in an exactly sparse
information matrix. A

Since all the objects involved in the local maps are included
in the global state vector, no marginalization is required in the The state vector of the global map contains the global
map joining process and thus the information matrix will stajositions of all features and all the robot end poses of the
exactly sparse all the time. Because most of the robot pod@&al maps. For convenience, the origin of the global map is
are marginalized out during the local map building procesgosen to be the same as the origin of local nhgfig. 1).
the dimension of the global state vector is much less than thatAfter local mapsl to k are fused into the global map, the

State vector of the global map

of SAM [2] and full SLAM [5]. global state vector is denoted a&% (k) (the superscript ‘G’
stands for the global map) and is given by
C. The overall structure of SLSJF XY(k)

: . — G G yG
SLSJF fuses the local maps sequentially to build a global = (XC} 7"'»Xn17GX1ea .
map, in a manner similar to [6][7], using the structure pre- Xn1 s Xy X6 ®3)

sented in Algorithm2. e

> SHTITSENETEEEID ¢ ST 59
Algorithm 1 Overall structure of SLSJF where X& ... XG are the global positions of the features
Require: A sequence_ofocal maps: each_ local map _containsm local map1; XS ., -, XS ,,, are the global positions
a state vector estimate and a covariance matrix of those features in local map but not in local mapl;
1: Set local mapl as theglobal map X7?1+--.+nk 1+1a""Xr?1+---+nk _+n, are the global posi-
2: Fork =2:p (p is the total number of local maps), tions of the features in local majp but not in local maps
fuselocal map k into the global map 1tok—1. XS = (28,45,0%) (1 <i < k) is the global
3 End position of the robot end pose of local mapwhich is also

the robot start pose of local map-1 . Here the subscript ‘e’
stands for robot ‘end pose’.
I1l. THE SLSJFALGORITHM In the information filter framework, an information vector

itfe) and an information matrix (k) is used for map fusion.

This section describes the various steps of SLSJF algorithi; | k N~
including global map initialization and update, reordering of'€ relationship between state vector esym’ét%(k) and the
the global state vector, state vector and covariance submafig"esponding covariance matrix(k) andi(k), I(k) is ([5])

recovery, and data association. 1()XC (k) = i(k), P(k)=I(k)"L. (4)

2An off-diagonal element of the information matrix is exactly zero if the two As I(k) is an exactly sparse matrix. it can be stored
related variables are conditionally independent given all the other variablesd d effici v. Th ’ mﬁ@ k) i
(see e.g. [9] for a proof). In local map joining, two objects are conditionall@d COMputed efficiently. The state vector esti (k) is

independent unless they are involved in the same local map. recovered after fusing each local map by solving the sparse
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linear equation (the first equation in (4)). The whole dens
matrix P(k) is neither computed nor stored in SLSJF. Sma radius of local map k+1
parts of P(k) required for data association are computed t
solving a set of sparse linear equations, as outlined in Sect
-C3.
When fusing local mapk + 1 into the global map,

the features that are present in local map + 1
but have not yet been included in the global maj

radius of local map 1

X ottt XS o nping.,» together with the robot
end pose of local mag + 1, X(C;iﬂ)e, are added into the

global state vectoX “(k) in (3) to form the new state vector
X (k+1).

H s
i 5
y 5
o
% .’ < ®

~.start posc

B. Steps of local map fusion

The steps used in fusing local mép+ 1 into the global
map are listed in Algorithm 2.

global map

distance between the global
position of the two start poses

Algorithm 2 Fuse local magk + 1 into global map
Require: global map andlocal map k + 1

1. Data association Fig. 2.  Finding the potentially overlapping local maps: If the distance
2: |nitialize the new features anN(C]iH) in the global map between the global position of robot start pose in local mapd the global
e " . )

. position of robot start pose in local ma&p+ 1 is larger than the sum of the
3 Update the gIObal map two local map radii, then the two local maps cannot overlap.
4. Reorder the global map state vector when necessary
5. Compute the Cholesky Factorization bk + 1)
6: Recover the global map state estimai€ (k + 1)

2) The set of potentially matched features:feature from

potentially overlapping local maps is added to a potentially
. . . . 7, G -
C. Data Association matched fea_ture list, if the distance from it 167 is small_er
o o ) than the radius of local map+ 1 plus the maximal possible

Data association refers to finding the features in local M@Rtimation error. This list is further simplified by removing any
k +1 that are already included in the global map and theiRember that is located further than a predetermined threshold
corresponding indices in the global state vector. This is fsiance from all features in local map+ 1.
essential step in any practically deployable SLAM algorithm, 3) Covariance submatrix associated with’ and all po-

yet is often neglect_ed in many of th_e sparse information fiIt%ntially matched featuresThe covariance submatrix can be
based SLAM algorithms published in the literature. .1btained by first computing the corresponding columns of the

?attr? assoma;u(_)n ISI ‘3 cha;l_lenge prob:cemt in EIF SLAth_I, 'tovariance matrixP (k) and then extracting the desired rows.
only the geometric retationships among features present In %sing (4), thel-th column of the covariance matriR(k),

global and local maps are available. How this can be efficient ; . . .
achieved in SLSJF is described in the following. 7, can be obtained by solving the sparse linear equation [10]

Algorithm 3 Data association between local map- 1 and [k = e ®)
the global map where
Require: global map andlocal map k + 1 -1

1: Determine the set of potentially overlapping local maps e = m7 1,,0---,0]7. (6)

2: Find the set of potentially matched features
3: Recover the covariance submatrix associated Withand Since the Cholesky factorization é{k), Ly, is a triangular

the potentially matched features matrix satisfyingL, LY = I(k), the sparse linear equations (5)
4. Use a statistical data association method to find the matdin be solved efficiently by first solving,q = ¢; and then
solving LY P, = ¢ [2][11]. Note that the Cholesky factorization

1) The set of potentially overlapping local mapkocal L; is already available from Step 5 of Algorithm 2 when
map i cannot overlap with local mag + 1 if the distance fusing local magk into the global map, as described in Section
between the origins of the two maps in the global coordinaté-G.
frame, is larger than the sum of the two local map radii plus 4) Feature matching:Since both the state estimates and
the possible estimation error. The radius of a local map tise covariance matrices of the potentially matched features are
defined as the maximal distance from the local map featurailable, any statistical data association algorithm (such as the
to its origin. Fig. 2 illustrates the idea. Note that the locatiosimple Nearest Neighbor method [8] or the more robust Joint
estimate of the origin of local majps X(Cj_l)e (for2 <i < k), Compatibility Test with branch and bound technique [12]) can
while that of local map 1 i40,0,0). be used to find the matching features.
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D. Initialize the new features amz{'(c;;ﬂ)e in the global map Degree (AMD) reordering [2][13] and the reordering based on

The initial values of the global positions of all unmatchedistances [4].
features and the robot end pose of local map- 1 are ~ Whether to reorder the global map state vector or not
computed (usingkC and the local map state estimate) anf€Pends on where the features in local ihap 1 are located
inserted taX ¢ (k) to form a new state vector estimate” (k).  Within the global state vector. If all of the features in local map
The dimensions of(k), I(k) and L are increased by adding*+1 are present within the, elements from the bottom of the

matrix I(k), and the corresponding Cholesky factorizatign ~this condition is violated, which happens only when closing a
large loop, then the state vector is reordered.

The state vector is reordered using the following process.
The robot poseX((,iH)e and the features that are within

Suppose local map+1 is given by (1). Since the local mapgistanced, 4 to X, ., are placed at the bottom part of the
provides a consistent estimate of the relative positions frafflte vector. Their order is determined based on the distances
robot start pose to the local features and the robot end poggm them to X¢ . The smaller the distance, the closer
this map can be treated as an observation of the true relatiyg position to ’{ﬁé ebottom. All the other robot poses and
positions with a zero-mean Gaussian observation noise Wh@sgtres are placed in the upper part of the state vector, they
covariance matrix is>™. o are reordered based on AMD.

2’0 stateG it cleariy, suppgsg the Fiata association result ISThe major advantage of reordering by AMD is that the
Xy e X, Xy < Xi (including both old and new ,mper of fill-ins in Cholesky factorization will be reduced.
features). Then the local map state estimaté can be rpo major advantage of reordering the nearby features based
re%arded asan otéservgtlon of the true relative positions frQff gistances is that once the reordering is performed, another
Xye 10 X7+ Xiny X Gogpyer That is, reordering will not be required for the next few local map

map = L= Hmap(XG) + Winap @) fusion. This is b(_acause the robot cannot observe features_ that
are not located in the bottom part of the state vector until it
where H,,.,(X ) is the vector of relative positions given bytravels a certain distance.

Once the state vector is reordered, the corresponding infor-
mation matrix/(k + 1) and information vectoi(k + 1) are
¢ﬁ+1)p G reordered accordingly. qu notational simplicity, they are still

5G4 (4G — yC ) sin 6%, denotgd gsl(k + 1) and i(k + 1). Note that the Choles.ky

factorization of the reordered(k + 1) cannot be easily

(1521 B xgé) €08 ¢Ck;e + G G G
(yil - yke) COS ¢ke - (xil - xk:e) sin ¢ke .
. obtained fromLy.

E. Update the global map

(‘TGkH-l)c - kae) COoS ¢kGe + (ycic+l)c - yl?e) sin ¢kGe
(Y1) — Yie) €08 O — (T(iy1ye — Tf) sin OF
G
(

(‘TSL - kae) Cos ¢kGe + (ygz - ykce) sin ¢kGe

(v6s — yke) cos ¢ — (x5, — 2f.) sin i G. Compute the Cholesky factorization igf + 1)
and wyqy IS the zero-mean Gaussian “observation noise” The method used to compute the Cholesky factorization
whose covariance matrix 8" of I(k + 1) depends on whether the global state vector was
The “observation”z,,,, can now be used to update thgegrdered in Section IlI-F or not.
information vector and the information matrix as follows: Case (i) If the global state vector was not reordered in Sec-
I(k+1) = I(k)+VHL, (P*)"'VHpap tion 1lI-F, then the Cholesky factorization df(k) (available
i(k+1) = i(k)+VHL, (P") " zmap (8) from Step 5 of Algorithm 2 when fusing local may) is used
—Hmap(f(a(k)) + VHmapXG(k)} to construct the Cholesky factorization bfk + 1) as follows.

By (8), the relation between(k + 1) and I(k) is
where VH,,,, is the Jacobian of the functiof,,,, with y @) (k+1) (k)

respect taX ¢ (k) evaluated atX (k). B 0 0
Since znq, = X% only involves two robot poses I(k+1) = I(k) + 0 Q ©)
X,?e,X((,iH)e and some local features (a small fraction

of the total features in the global map), the matrivhere the upper-left element 2 is non-zero. Here
VHZ  (PL)~"'VH,,, in (8) and the information matrix ¢ 1S @ symmetric matrix determined by the term

I(k+1) are both exactly sparse. VHL, (PY)"'VH 4, in (8). Its dimension is less thany

since otherwise the state vector would have been reordered.

F. Reorder the global map state vector when necessary 3The thresholdny needs to be properly chosen in order to make the
: . SJF algorithm efficient. A smallety will make the incremental Cholesky
The purpose of reordermg the g|0bal state vector s to mag torization step (Case (i) in Section IlI-G) more efficient but will also

the computation of Cholesky factorization (Section I-G)increase the total number of reordering and the direct Cholesky factorization
the state vector recovery (Section Ill-H), and the covarianeéﬁrations (dCase (i) ir;] S?CEond!ll-G)-_As afrurlle ofI tEU{m, can be chosen

: ; ] - 0 be around one tenth of the dimension of the global state vector.
submatrix recovery (Sectlon i C3) more  efficient. Man)s 4The thresholdd, is related to the parameter; it also depends on the

different strategies for reordering are available. The strate@¥ture density of the environment. The guideline is that the number of features

proposed here is a combination of the Approximately Minimaiiat are within distance to XG ) is around half ofr.
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Let I(k) and its Cholesky factorizatiofi;, (a lower trian- Six hundred small sized local maps were built by con-

gular matrix) be partitioned according to (9) as ventional EKF SLAM using the odometry and measurement
. IT I 0 information. Each local map contains aroutitifeatures. Fig.
I(k) = { I; Iz; ] , Ly { L; Lo ] (10) 3(a) shows the global map generated by fusing all Ghe

local maps using SLSJF. The data association in SLSJF was
According to (9) and (10)/(k + 1) can be expressed by performed using Nearest Neighbor method [8]. The global
In I Iy IT map was superimposed with the global map generated by
= 2! . (11) fusing the600 local maps using EKF sequential map joinin
I, 15;1] [[21 [22_|_Q] ( g ps using EKF seq p joining
) ) [6][7] and the map generated by a single EKF SLAM. Close
~ By Lemma 1 in the Appendix of [4], the Cholesky factorexamination (e.g. Fig. 3(b)) shows that the feature position
ization of I(k + 1) can be obtained by estimates computed by the three methods are all consistent.
Ly 0 The feature position estimates of SLSJF and EKF sequential
L1 = { Loy LA } (12)  map joining are almost identical.

Fig. 3(c) shows the errors aritr bounds of the estimates
where L5 is the Cholesky factorization of the low dimen-of the 600 robot end poses obtained using the three methods.
sional matrixQ + Lo L3, = I ' — Lo1 L3, It is clear that the estimates are all consistent. It should be

Computing Ly, by (12) is much more efficient thannoted that in SLSJF, the robot end poses are included in the
directly computing the Cholesky factorization of the higlylobal state vector and are continuously updated. Therefore
dimensional matrix/ (k + 1). the error and2o bounds of SLSJF are smaller than that of

Case (i) If the global state vector has been reordered {aKF sequential map joining and EKF SLAM where the robot
Section Ill-F, then the Cholesky factorization 6fk) cannot poses except the most recent are not included in the state
be used to construct the Cholesky factorization/¢f +1). vector (hence are not updated).

In this case, a direct Cholesky factorization bfk + 1) is  Fig. 3(d) shows all the non-zero elements of the sparse

I(k—s—l):[

performed to obtain’. ;. information matrix obtained by SLSJF in black. Fig. 3(e)
Since the reordering only happens occasionally, Case §hows the CPU timé required for the local map fusion
occurs most of the time. using SLSJF and EKF sequential map joining. The total time

for fusing all the600 local maps isl45 seconds for SLSJF
H. State vector recovery and 7306 seconds for EKF sequential map joining (building

Because the global map is maintained as an informatiéfie 600 local maps take®)5 seconds, it takes conventional
vector and an information matrix, the global state estimateKF SLAM more thanl5 hours to finish the map). Table |
X% (k+1) is not directly available. Using (4), the state vectoPresents the detailed processing time for the two map joining
estimateXG(k + 1) can be recovered by So|ving the Spars@lgorithms. In SLSJF, the major Computation cost is due to

linear equation “data association” which includes the time for covariance
5 _ submatrix recovery. The “others” including reordering of the
Ik +1D)X"(k+1) = i(k +1). (13)  state vector, Cholesky factorization and state vector recovery

The Cholesky factorizationL,,; computed in Section &0 take significant time. On the other hand, “global map
-G is used to solve the sparse linear equation. Sin&pdat_e’_’ uses most of the computation time in EKF sequential
Ly LE, = I(k + 1), the sparse linear equation (13) cafap Joining. _ _
be solved efficiently by solvingl,.1Y = i(k + 1) and Fig. 3(f) compares the CPU time of SLSJF with the pro-

LT, XCk+1)=Y. posed reordering strategy and that of SLSJF with the AMD-
only reordering [2][13] (for the proposed reordering, the pa-
IV. SIMULATION AND EXPERIMENT RESULTS rametersy, = 400 andd, = 15, for the AMD-only reordering,

. . . . . . the reordering is performed after fusing evéryjocal maps,
In this section, simulation and experiment results are given . .
X - e parameters are chosen such that both algorithms have their
to illustrate the accuracy and efficiency of SLSJF. .
best performance). The performance of the two reordering
) i algorithms are very similar, presumably due to the fact that the
A. Simulation results MATLAB implementation of AMD algorithm is very efficient.

The 150 x 150m? simulation environment used contains
2500 features arranged in uniformly spaced rows and columns.
The robot started from the left bottom corner of the square aﬁd
followed a random trajectory as shown in Fig. 3(a). A sensor SLSJF was also applied to the Victoria Park data set
with a field of view of 180 degrees and a range 6fmeters which was first used in [14]. Neither ground truth nor noise
(the small semi-circle seen near the bottom in Fig. 3(a)) wagrameters are available for this data set. Published results
simulated to generate relative range and bearing measurem#gitsthe vehicle trajectory and uncertainty estimates vary
between the robot and the features. There vsi824 robot
poses in total and70846 measurements were made from the SAll time measurements in this paper are performed on a laptop computer

. with Intel Core 2 Duo T7500 at 2.2GHz, 3GB of RAM and running Windows,
robot poses. The robot observed70 features in total and

- with all programs written in MATLAB. More simulation results are available
most of them were observed a number of times. at the web site: http://services.eng.uts.edu.au/"sdhuang.

Experimental results
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(a) The robot trajectory and the global map obtained by (b) A close look at the estimate of the five features at
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Fig. 3. Simulation results

Algorithm Data Association| Update | Others | Total

EKF map joining 12s 7287s 7s 7306s

SLSJF 87s 12s 46s 145s
TABLE |

PROCESSING TIME OFEKF SEQUENTIAL MAP JOINING AND SLSJF.

proposed reordering and that using AMD reordering

data set.

Fig. 4(a) shows the map obtained by conventional EKF
SLAM. The odometry and range-bearing observation data
were used to build200 local maps by EKF SLAM. Fig.
4(b) shows the global map obtained by joining &t® local
maps using SLSJF. Data association in SLSJF was performed
using Nearest Neighbor method [8]. Fig. 4(c) shows all the

[3][4][13][14], presumably due to different parameters usedon-zero elements of the information matrix in black. The
by various researchers. The results in this section therefaméormation matrix is not very sparse because the sensor range
only demonstrate that SLSJF can be applied to this popularelatively large (aroun80m) as compared with the size of
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the environment300m x 300m). Fig. 4(d) shows the CPU B. Computational complexity

time required to fuse each of th#0 local maps. The total  The map joining problem considered in this paper is similar
processing time for joining all the00 maps by SLSJF i22 {5 that studied in [6] and [7]. The computational complexity
seconds (the time required for building t2e0 local maps is  of the local map building i©)(1) since the size of local map is
63 seconds). small. The computational complexity of the global map update
is O(n?) for the sequential map joining approach in [6] and
V. RELATED WORK AND DISCUSSIONS the Constrained Local Submap Filter in [7].
. . . In SLSJF, the robot start/end poses of the local maps are
In this section, some of the properties of SLSJF and SOMEIuded in the global state vector and the EIF implementation
related work are discussed. results in an exactly sparse information matrix. This makes
SLSJF much more efficient than the EKF sequential map

A. Different ways to achieve sparse representation joining [6][7].

. . Although simulation results show that SLSJF is compu-
The sparse representations of SLAM recently proposedtgldona”y very efficient for large-scale SLAM, the compu-
the literature (e.g. [1][2][3][4][15]) make use of different stat% .

vectors and/or have different strategies for marginalizing Ogtlonal complexity of several steps in SLSJF may not be

robot poses. In SAM [2], incremental SAM (iSAM) [13] (n) for worst case scenarios. For example, the number of
Tectonic SAM [11] and fL,J||-SLA|\/| [5], all the robot poses’fill—ins introduced in the Cholesky factorization depends on

. . L """ the environment and the robot trajectory. This influences the
are included in the state vector and no marginalization is

needed. However, the dimension of the state vector is v computational cost of the full Cholesky factorization step and

high, especially when the robot trajectory is long. She step of solving the sparse linear equations. Also, the

) O computational cost of the proposed reordering is not well
When all the previous robot poses are marginalized out &8derstood yet. In theory, SLSJF suffers the genéxal-?)
in conventional EIF SLAM, the information matrix becomesost for worst 'case scer’1ario of planar grids, as all sparse
dense although it is approximately sparse [16]. The Sparse Igt'zl((':torization based methods do [18]. This is ,similar to the

tended Information Filter (SEIF) presented in [1] approximateis '

. . . ; . reemap algorithm [19] and the SAM using nested dissection
the information matrix by a sparse one using sparsification, beﬂ orithm [20]
thir:eags tot||nc§n5|stené istlra;els £3]' ion Filter (ESE(R) VETY recently, it was shown in [21] that the total compu-
q Ie >(<jacby 3pafrs”e Xin ed Informa I(I)nEIFI grl_,gM It}zltional cost of local map building and map joining can be
eveloped by [3] follows the conventiona reduced toO(n2) by an EKF based “Divide and Conquer

gorithm, but marginalizes out the robot pose and relocatgls_AM,, (D&C SLAM). Although D&C SLAM was shown

the robot from time to time. In this way the mformaﬂqnto be much more efficient than conventional EKF SLAM, it

matrix is kept exa_ctly sparse by sacrificing the robot Iocat|cwas not compared with the more efficient EKF sequential map
information once in a while. joining [21]

In Decoupled SLAM (D-SLAM) algorithm [4], the robot The SLSJF has some similarity to the Tectonic SAM
pose is not incorporated to the state vector for mapping. The Jhm [11]. Tectonic SAM is also an efficient submap
observations made from one robot pose are first transfegﬁied approach and the state vector reordering and Cholesky
into the relative position information among the observ

. S ctorization are used in solving the least-square problem. The
features (the robot pose is marginalized out from the Obser\é%bmap fusion in Tectonic SAM uses a divide-and-conquer
tions), then the relative position information is used to upda;

. . ; X %proach, which is more efficient than the sequential map
the map. This process also results in some information |OSﬁjining in SLSJE when data association is assumed. The

The D-SLAM map .join_ing algorithm [15] first builds local major difference between Tectonic SAM and SLSJF is that
maps and then marginalizes out the robot start and end poiﬁe%ectonic SAM, all the robot poses involved in building the

from the local map, the obtained relative position informatioBcal maps are kept and the dimension of the global state
among features are fused into the global map in a way Simi@éctor is much higher than that of SLSJF
to the D-SLAM algorithm. The odometry information is '

maintained in the local maps but there is still some information
loss due to the marginalization of robot start/end poses. C- Requirements on SLSJF

In SLSJF, the robot start and end poses of the local mapdn SLSJF, it is assumed that the local maps are consistent
are never marginalized but kept in the global state vector. Thaisd accurate enough. If the local maps are inconsistent, SLSJF
all the information from local maps is preserved. may produce wrong results due to the wrong information pro-

If each local map is treated as one integrated observatieiged by the local maps. When the local maps are inaccurate,
then SLSJF has some similarity to iSAM [13]. The role oELSJF may become inconsistent due to linearization errors.
local maps in SLSJF is also similar to the “star nodes” in Another assumption made in SLSJF is that the local map
the Graphical SLAM [17]. However, in the Graphical SLAM,only involves “nearby objects”. This guarantees that the in-
the poses are first added in the graph and then “star nodé&®'mation matrix is exactly sparse no matter how many local
are made. While in SLSJF, most of the robot poses amaps are fused. When this assumption does not hold such
marginalized out during the local map building steps. Those the case with vision sensors, SLSJF can still be applied
robot poses are never present in the global state vector. since a significant number of feature pairs will not be present
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Fig. 4. The map joining results using Victoria Park data set.

concurrently in the same local map. However, the processesaimber of entries far from the diagonal, but can be more
selecting potentially matched features and reordering the stakpensive for general sparse matrices” [13]. The covariance
vector may need modifications to make the algorithm moseibmatrix recovery in SLSJF is similar. The major advantages
efficient. of SLSJF over iSAM is that the dimension of the state vector
Similar to [6][7], there is no requirement on the structure dh SLSJF is much lower than that of iISAM. Thus SLSJF may
the environments for SLSJF to be applicable. This is differebe more suitable for the situations where the robot trajectory
from the efficient treemap SLAM algorithm [19] where thds very long and/or the observation frequency is high, which
environment has to be “topological suitable”. Another differis true for many common sensors such as laser range finders.
ence between SLSJF and the treemap SLAM algorithm is that
the covariance submatrix recovery and data association hgve|ncremental Cholesky factorization for recovery

been ignored in the treemap SLAM implementations available . _ .
to date [19][22][23]. The idea of incrementally computing the Cholesky factor-

ization is motivated by [4]. The main difference between the
recovery method in SLSJF and that in [4] is that complete
Cholesky factorization and direct method for linear equation
The covariance submatrix recovery in SLSJF is exadolving are used in SLSJF, while approximate Cholesky factor-
This is different from the approximate covariance submatrixation and Preconditioned Conjugate Gradient method were
recovery methods (e.g. [1] [10]) where only an approximate ased in [4].
upper bound of covariance submatrix is computed. As pointedThe incremental Cholesky factorization also has some sim-
out in [10], the upper bound can only be used in neargldrity with the QR factorization update in [13]. The QR
neighbor data association [8] but cannot be used in the mdaetorization update in [13] is based on “Givens rotations”,
robust joint compatibility test [12]. while the incremental Cholesky factorization process in SLSJF
An algorithm for exact recovery of covariance submatriis based on the “block-partitioned form of Cholesky factoriza-
was proposed in iISAM [13]. It hasC(n) time complexity tion”. The performance of these two approaches are expected
for band-diagonal matrices and matrices with only a constantbe similar.

D. Exact covariance submatrix recovery
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F. Reordering of the global state vector the robot start pose to all the features in the local map and

In SLSJF, the reordering of state vector aims to combine tRevirtual robot located at the robot end pose”. This motivates
advantages of AMD reordering (where the number of fill-in1e inclusion of all the robot start/end poses in the global state
is reduced [2][13]) and the reordering by distance (where tNgCtor to achieve exactly sparse information matrix.
efficient incremental Cholesky factorization procedure can be
applied in most cases [4]).

The idea behind the “reordering by distance” is to make suke Comparison with two level mapping algorithms

that the robot observes only the features that are in the bottomyy,o output of SLSJF is one single global stochastic map.
part of the state vector for as long as possible no matter g approach is different from the two level mapping al-
which direction the robot is moving. However, this is not th@orithms (e.g. Hierarchical SLAM [26], Atlas [27], Network
best way of reordering for indoor environments where featurg$, \pied Feature Maps [28]), where a set of local maps are
in different rooms might actually be very close but cannot Bgsintained and the relationship among these maps is described
seen simultaneously. For indoor environments, the knowledge , higher level. Though promising due to their reduced
on the structure of the environment (and the knowledge @y tational cost, the two level mapping approaches require
the possible robot trajectory) can be exp:loned to place “thEore work to completely resolve the question of how to treat
features that are likely to be re-observed” near the bottom g@f, overlapping regions among local maps. As pointed out in

the state vector. [26], all the two level mapping systems result in suboptimal
_ solutions because the effect of the upper level update cannot
G. Consistency be propagated back to the local level.

The SLSJF algorithm does not contain any approximations
(such as sparsification [1]) that can lead to estimator inconsis-
tency. However, as the case with all EKF/EIF based estimation VI. CONCLUSIONS

algorithms, it is possible that inconsistencies occur in SLSJFBy adding robot start/end poses of the local maps into the

due to errors introduced by the linearization process. lobal state vector, an exactly sparse extended information
It has been suggested that local map based strategies %grt\) ' y sp

improve the consistency of SLAM by keeping the robo er for local submap joining, SLSJF, is developed. There is
orientation error small [24][25]. We had conducted man\® approximation involved in SLSJF apart from linearization

simulations and found that this is true for some Scenariérocesses. SLSJF contains not only the filter steps but also two

S . S

. . . important steps that are essential for real world application of
especially when the process noise, the feature density and g’g based alqorithms — a covariance submatrix recovery ste

sensor range are all small, or sequential update is used in E 9 y step

when multiple features can be observed from one robot po?g.d a dat"?‘ association step. The sparse mflormatlon matrllx
gether with the novel state vector and covariance submatrix

In many practical scenarios, for example, in the simulation . .
results presented in Section IV-A, we found that both ExECOvery procedure make the SLSJF algorithm computation-

SLAM (with batch update) and map joining results are consigllly Very eff|C|.ent. . . L
tent, mainly due to the small observation and odometry noisess!‘S‘JF ac_h|eves an exactl_y sparse mfo_rmatlon matrix W'_th
and the high feature density. When noise values were gradudl| |_n_format|on loss. The dimension of its state vector s
increased both strategies became inconsistent, almost alwgggificantly less than that of the full SLAM algorithm [5]
at the same level of noise. This is likely due to the fact th ere all the robot poses are included in the stgte vector.
in any submap joining algorithm, inconsistency in even orfds it does not matter how the local maps are built, 'SLSJF
of the submaps, leads to an inconsistent global map. can also be applleq to large-scale range-only or bearing-only
In SLSJF, all the robot start/end poses are in the global stae”M Problem —first use range-only or bearing-only SLAM
vector and there is no prediction step within the EIF. Th@gorithms t.o build local maps and then fuse the local maps
the SLSJF can be treated as a linearized least square solufRgfther using SLSJF. o
with only one iteration in each map fusion step. In fact, at any For the successful application of SLSJF for local map
map fusion step, the linearization error can be reduced furt@{ning. it is important that all the local maps are consistent.
by recomputing the information matrik and the information Thus it is essential to use reliable SLAM algorithms to build

vectori as a sum of all the contributions in (8) using the nefe local maps. _ _ _
estimate as linearization point for the Jacobians. This procesdMore work is required to determine the best reordering

is able to improve the consistency significantly, but with morgtrategy for SLSJF, to improve the robustness of SLSJF to
computational cost. linearization errors, and to extend SLSJF to 3D local map

joining. Research along these directions is underway.
H. Treating the local map as a virtual observation

Many submap based SLAM algorithms (either explicitly or ACKNOWLEDGMENT
implicitly) treat the local map as a virtual observation, but
most of them treat a local map as “an observation made fromThe authors would like to thank Dr. Udo Frese for very
the robot start pose to all the features in the local map”. helpful suggestions and the anonymous reviewers for the
SLSJF, the local map is treated as “an observation made frealuable comments.
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