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On Discrete-time Pursuit-evasion Games
with Sensing Limitations

Abstract—We address discrete-time pursuit-evasion games in
the plane where every player has identical sensing and motion
ranges restricted to closed discs of given sensing and stepping
radii. A single evader is initially located inside a boundedsubset
of the environment and does not move until detected. We propose
a Sweep-Pursuit-Capture pursuer strategy to capture the evader
and apply it to two variants of the game: the first involves a
single pursuer and an evader in a bounded convex environment
and the second involves multiple pursuers and an evader in a
boundaryless environment. In the first game, we give a sufficient
condition on the ratio of sensing to stepping radius of the
players that guarantees capture. In the second, we determine the
minimum probability of capture, which is a function of a novel
pursuer formation and independent of the initial evader location.
The Sweep and Pursuit phases reduce both games to previously-
studied problems with unlimited range sensing, and captureis
achieved using available strategies. We obtain novel upperbounds
on the capture time and present simulation studies that address
the performance of the strategies under sensing errors, different
ratios of sensing to stepping radius, greater evader speed and
different number of pursuers.

Index Terms—Pursuit-evasion games, sensing limitations, co-
operative control.

I. I NTRODUCTION

The game of pursuit can be posed as to determine a strategy
for a pursuer (a team of pursuers) to capture an evader in a
given environment. Bycapture, we mean that the evader and
the pursuer (some pursuer) meet at the same location after a
finite time. The aim of the pursuer (pursuers) is to capture the
evader for any evader trajectory. The evader wins the game if
it can avoid capture indefinitely. All the players have identical
motion capabilities. Capture strategies are important in surveil-
lance where we would like to detect and capture equally agile
intruders. Another application is search-and-rescue operations
where a worst-case capture strategy guarantees a rescue, in
spite of any unpredictable motion of the victim.

The continuous time version of this game has been studied
in [1], [2] and [3] to cite a few. Recently, the discrete-time
version of the game has received significant attention. [4]
describes sufficient conditions and a strategy for a single
pursuer to capture an evader in a semi-open environment.
This strategy has been extended in [5] to the case of multiple
pursuers in an unbounded environment, to capture a single
evader which is inside their convex hull. [6] and [7] describe
pursuer strategies of moving towards, and towards the previous
positions of the evader respectively, so that the distance to
the evader is reduced to a finite, non-zero amount in finite
time. The game has also been studied in different types of
bounded environments, e.g., circular environment [6], curved
environments [8]. Visibility-based pursuit evasion has been
studied in a continuous-time setting in [9] and in polygonal
environments in a discrete-time setting in [10].

In the context of sensing limitations, in continuous time
formulations, [11] deals with a version of visibility limited to
an angle, instead of the entire region. [12] considers a suc-
cessive pursuit of multiple evaders by a single faster pursuer
in the plane with sensing range limited to a finite disc. [13]
proposes a multi-phase pursuit strategy for groups of pursuers
with limited range sensing and has demonstrated its capture
properties in bounded environments via simulation without
formal proof. In discrete time formulations, [14] considers the
problem on a graph, with the visibility of the pursuer limited to
nodes adjacent to the current node of a pursuer. A framework
which uses probabilistic models for sensing devices for the
agents is described in [15] and [16].

We address the case of limited range sensing capability:
a pursuer and an evader can sense each other only if the
distance between them is less than or equal to a given sensing
radius. We consider the discrete-time version with one or many
pursuers and a single evader in a planar environment. The
motion of each player is constrained to a stepping disc around
it. The evader is initially located inside a bounded subset of
the environment, which we term as thefield. The players can
leave the field but not the environment. The evader follows
a reactive rabbitmodel, i.e., does not move until it senses a
pursuer [14]. We present an algorithmic approach in the form
of a Sweep-Pursuit-Capturestrategy for the pursuer to capture
the evader. We demonstrate this strategy using two variantsof
the pursuit-evasion game: the first involves a single pursuer
and the evader in a bounded convex environment while the
second considers multiple cooperating pursuers to capturethe
evader in a boundaryless environment.

In the first game, the pursuersweepsthe environment in a
definite path until the evader is sensed, which must necessarily
happen in finite time. This is analogous to the spanning-tree
based coverage presented in [17]. We then establish how a
GREEDY strategy of moving towards thelast-sensedlocation
of the evader, eventually reduces the present problem to a
previously-studied one with unlimited sensing. The convexity
assumption on the environment is required because otherwise,
due to the limited sensing range, there exist environments
similar to those considered in [10] and an evader strategy,
such that the evader does not get detected again. Finally, we
show how capture is achieved using the established LION

strategy [4]. Our contributions are as follows: First, we present
an analysis which provides a novel upper bound on the time
required for the pursuit phase to terminate. This bound is an
improvement compared to our earlier work [18]. Second, we
obtain a sufficient condition on the ratio of sensing to stepping
radius of the players for capture to take place in a given
environment. Finally, we show that this condition is tight in
the sense that if it is violated, then there exist sufficiently large
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environments, an evader strategy and initial positions forthe
players, that lead to evasion against the GREEDY strategy.

The second game is played with at least five cooperative pur-
suers in a boundaryless environment and the field is a bounded
region known to the pursuers. Our contributions are as follows:
First, we design a novel pursuer formation and a randomized
SWEEP strategy for the pursuers to search the field. They
succeedwhen they detect the evader inside a specialcapture
region, which we characterize for the pursuer formation. We
show that using our SWEEP strategy, the pursuers succeed
with a certain probability which is a function of the pursuer
formation and independent of the initial evader location. Next,
we propose a cooperative pursuit strategy for the pursuers to
confine the evader within their sensing discs. We show that
using this pursuit strategy, the present problem is reducedto
a previously-studied one with unlimited sensing. Finally,we
show how capture is achieved using the established PLANES

strategy [5]. We obtain novel upper bounds on the time for
each phase in our strategy, which is an improvement compared
to our earlier work [19]. Also, we present a simulation-based
study of the performance of the strategies under sensing errors,
different ratios of sensing to stepping radius, greater evader
speed and different number of pursuers.

The inspiration for the cooperative strategy proposed in
this paper has been derived from aspects of animal behavior.
It is well known that predators hunt as a conjoined group,
when it is less efficient to hunt alone. This behavior is also
observed when the prey is large or can move as fast as the
predators [20]. Further, predators show an inclination towards
specialized behavior by maintaining a fixed formation during
search and capture of preys [21]. Such specializations suggest
that there may be configurations that are preferred during
group hunting. Also, in the presence of sensing limitations,
groups tend to maintain spacing between each other that is
regulated by their sensory capabilities [22]. These facts give us
additional hints towards designing capture-conducive predator
formations. In this context, our analysis sheds light on how
the maximum group size of the predators varies with prey
availability and with the prey’s nutrition value.

The paper is organized as follows: the problem’s mathe-
matical model and assumptions are presented in Section II.
The individual phases of thesweep-pursuit-capturestrategies
and the corresponding main results for both the problems are
presented in Section III. Due to space constraints, the proofs of
all the results are presented in the online technical report[23].
Simulation results are presented in Section IV. Finally, in
Section V, we study the relationship between pursuer group
sizes and evader availability and its nutrition value.

II. PROBLEM SET-UP

We assume a discrete-time model with alternate motion
of the evader and the pursuers: the evader moving first. We
assume that the players can sense each other precisely only if
the distance between them is less than or equal to the sensing
radiusrsens. Further, we assume that at each time instant, the
players take measurements of each other before and after the
evader’s move, as shown in Figure 1. DefineQφ := Q ∪ φ,

whereQ ⊆ R
2 denotes the environment andφ is the null

element. The null element will be used to denote a lack of
measurement in our limited range sensing model. LetG ⊂ Q
denote the field, i.e., the region that initially contains the
evader. The evader follows areactive rabbitmodel - moves
only after being detected for the first time. We assume that the
pursuers know the fieldG and the environmentQ. The goal of
the pursuer(s) is tocapturethe evader, i.e., a pursuer and the
evader are at the same position at some finite time.Evasion
is said to occur if the pursuer cannot capture the evader. We
describe theSweep-Pursuit-Capturestrategy for the following
problems:

Fig. 1. A snapshot of each time instantτ ∈ {1, 2, . . . } in our alternate
motion model. Players take measurements before and after the evader’s move.

A. Single pursuer problem

We have a bounded convex environmentQ ⊂ R
2 and the

field G = Q. Let e[t] andp[t] denote the absolute positions of
the evader and the pursuer respectively, at timet ∈ Z≥0. The
discrete-time equations of motion are

e[t] = e[t − 1] + ue
(

e[t − 1], {ye
bef[τ ]}t

τ=1, {ye
aft[τ ]}t−1

τ=1

)

,

p[t] = p[t − 1] + up
(

p[t − 1], {yp
bef[τ ]}t

τ=1, {yp
aft[τ ]}t

τ=1

)

,

(1)

where at theτ th time instant, ye
bef[τ ], ye

aft[τ ] ∈ Qφ are
the measurements of the pursuer’s position taken by the
evader before and after theevader’s move, as shown in
Figure 1. The parentheses notation{yp

bef[τ ]}t
τ=1 denotes the

set {yp
bef[1], yp

bef[2], . . . , yp
bef[t]}. Due to limited range sensing

model, forτ ∈ {1, . . . , t}, we define

ye
bef[τ ] =

{

p[τ − 1], if ‖p[τ − 1] − e[τ − 1]‖ ≤ rsens,

φ, otherwise.
(2)

For notational convenience, we define{yp
aft[τ ]}t−1

τ=1 = φ for
the initial time t = 1. For t ≥ 2 and for τ ∈ {1, . . . , t − 1},
we have

ye
aft[τ ] =

{

p[τ − 1], if ‖p[τ − 1] − e[τ ]‖ ≤ rsens,

φ, otherwise.
(3)

Similarly, at the τ th time instant , yp
bef[τ ], yp

aft[τ ] ∈ Qφ

are the measurements of the evader’s position taken by the
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pursuer before and after theevader’smove respectively, as
shown in Figure 1. Due to limited range sensing model, for
τ ∈ {1, . . . , t}, we have

yp
bef[τ ] =

{

e[τ − 1], if ‖e[τ − 1] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.
(4)

For τ ∈ {1, . . . , t}, we have

yp
aft[τ ] =

{

e[τ ], if ‖e[τ ] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.
(5)

The functionsue : Q × Qφ × · · · × Qφ
︸ ︷︷ ︸

2t − 1 times

→ Q and up :

Q × Qφ × · · · × Qφ
︸ ︷︷ ︸

2t times

→ Q are termed asstrategiesfor the

evader and pursuer respectively. The apparent lack of symme-
try between the number of arguments in the strategies of the
evader and the pursuer is due to the alternate motion model.
We assume that both players can move with a maximum step
size ofrstep, that is,

‖ue‖ ≤ rstep, ‖up‖ ≤ rstep. (6)

The sensing radius,rsens, is κ times the motion radius,rstep. We
assumeκ is greater than 1, i.e., both players can sense further
than they can move. From the reactive rabbit model for the
evader, we haveue = 0 until the evader is detected. After this
happens, the single pursuer problem consists ofdetermining
up that guarantees capture for any evader strategy,ue. This
problem is described by two key parameters: the ratio of
sensing to stepping radiusκ and the ratio of the diameter of
the environment to the stepping radiusdiam(Q)

rstep
.

B. Multiple pursuer problem

We have a total ofN ≥ 5 pursuers that can communicate
among themselves the location of a sensed evader as well as
their own position with respect to a fixed, global reference
frame. The environmentQ is R

2 and the fieldG is a bounded
subset ofR2. Define R

2
φ := R

2 ∪ φ. Let pj [t] denote the
absolute positions of thejth pursuer at timet for every j ∈
{1, . . . , N}. Analogous to (1), the discrete-time equations of
motion are

e[t] = e[t − 1] + ue
(

e[t − 1], {ye
bef[τ ]}t

τ=1, {ye
aft[τ ]}t−1

τ=1

)

,

pj [t] = pj [t − 1]

+ upj

({

{pj[τ ]}N
j=1

}t−1

τ=1
,
{
yp

bef[τ ]
}t

τ=1
,
{
yp

aft[τ ]
}t

τ=1

)

,

(7)

where at theτ th time instant,ye
bef[τ ], ye

aft[τ ] ∈ R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

N times
denote the sets of measurements of the pursuers’ positions
taken by the evader before and after its move. Similarly,
yp

bef[τ ], yp
aft[τ ] ∈ R

2
φ are the measurements of the evader’s

position taken by the pursuers before and after the evader’s
move. The measurements are given by expressions analogous
to (2)-(5). Akin to the single pursuer problem, the functions

ue : R
2 × R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(2t − 1)N times

→ R
2 and upj : R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(t − 1)N times

×

R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

2t times

→ R
2 for everyj ∈ {1, . . . , N}, are strategies

for the evader and pursuers respectively. The constraint onthe
maximum step size, given by (6), holds for the evader and
every pursuer. Due to the reactive rabbit model for the evader,
ue = 0 until it is detected by the pursuers for the first time.

The multiple pursuer problem consists ofdesigning a pur-
suer formation and a corresponding strategy that guarantees
capture of the evader. This problem is described by the
following key parameters: the ratio of sensing to stepping
radius of the playersκ, the ratio of the diameter of the field
to the stepping radiusdiam(G)

rstep
, and the number of pursuersN .

III. T HE SWEEP-PURSUIT-CAPTURE STRATEGIES AND

MAIN RESULTS

In this section, we describe the Sweep-Pursuit-Capture
strategies for both problems and the corresponding main
results.

We first introduce the following weak notion of capture.

Definition III.1 (Trap) The evader istrapped within the
sensing radius (resp. radii)of the pursuer (resp. pursuers) if
for any evader strategyue, the motion disc of the evader is
completely contained in the sensing disc of the pursuer (resp.
union of the sensing discs of the pursuers) after a finite time.

To be specific, the evader is trapped at time instantTtrap if
for any evader strategy,

yp
bef[Ttrap] = e[Ttrap− 1], and yp

aft[Ttrap] = e[Ttrap].

The idea behind Sweep-Pursuit-Capture strategies is to detect
the evader and pursue it so as to trap it. Next, we show that
the evader remains trapped for all subsequent time instantsand
that capture is achieved by using strategies that were developed
for the unlimited range sensing version of the respective game.
This principle applies to both versions of the problem.

A. Single pursuer problem

We first present each phase of the strategy for the single
pursuer problem.

1) Sweep phase -SWEEPstrategy:Let diam(Q) denote the
diameter ofQ. The SWEEPstrategy is to move with maximum
step size along a path, as shown in Figure 2 such that the
union of the sensing discs of the pursuer at the end of each
step until the end of this phase containsQ. We term such a
path asweeping pathfor Q. Let tsweep denote the time taken
for this strategy to terminate. We have the following result.

Lemma III.2 (S WEEP strategy) In the single pursuer prob-
lem with parametersκ and diam(Q)

rstep
, the timetsweep taken by

the SWEEP is at most
⌈

diam(Q)
2κrstep

⌉ (⌈
diam(Q)

rstep

⌉

+ ⌈κ⌉
)

steps.
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Fig. 2. A sweeping path to detect the evader in the Single pursuer problem
using the SWEEP strategy.

2) Pursuit phase -GREEDY strategy: Once the evader is
detected, the GREEDY strategy for the pursuer is tomove
towards the last sensed position of the evader with maximum
step size. This strategy has the property that the pursuer senses
the evader’s position at every successive time instant. Letttrap

denote thetrapping time, i.e., the time taken by the pursuer
to trap the evader after detecting it. We now present our main
result for the GREEDY strategy.

Theorem III.3 (G REEDY strategy) In the single pursuer
problem with parametersκ and diam(Q)

rstep
, if κ >

√
2 + 2 cosβc,

where

βc :=

√
3

4κ

⌈
diam(Q)

2κrstep

⌉−1

arctan
1

8κ
, (8)

then theGREEDY strategyhas the following properties:
(i) the pursuer traps the evader within its sensing radius,

and
(ii) the trapping timettrap satisfies

ttrap ≤















log

(√
κ2−sin2 βc−cos βc−1

κ−1

)

log(1 − 1−cos βc

κ
)









+ 1







⌈
diam(Q)

2κrstep

⌉

.

(9)
Furthermore, if κ > 2, then as(diam(Q)/rstep) → +∞,

ttrap ∈ O
(

(diam(Q)/rstep)
3
)

.

Theorem III.3 is tight in the sense that if the condition on
κ is violated then there exist sufficiently large environments,
an evader strategy and initial positions for the players, that
lead to evasion against the GREEDY pursuer strategy. This is
described by the following result.

Proposition III.4 (Evasion) Given a single pursuer problem
with parametersκ and diam(Q)

rstep
such thatκ ≤ √

2 + 2 cosβc,
whereβc is given by(8), and Q contains a circle of radius

rstep√
4−κ2

, then there exist an evasion strategy and initial posi-
tions of the players for which the pursuer’sGREEDY strategy
fails to trap the evader.

Figure 3 illustrates this evasion strategy under the conditions
required by Proposition III.4.

3) Capture phase -L ION strategy: Once the evader is
trapped within the sensing range of the pursuer, the pursuer
employs the LION strategy from [4] to complete the capture.
For the sake of completeness, we now give a brief description
of the LION strategy, adapted to the present problem setting.

The LION strategy can be applied to this phase as follows:

Fig. 3. Illustrating evasion. The dotted circles are the player’s motion discs
and the solid circle is the pursuer’s sensing disc.e[t] and p[t] are on the
circle Ω described in Proposition III.4 such that‖e[t]− p[t]‖ = rstep. Evader
chooses to move toe[t + 1] on Ω with full step size.

(i) Prior to its (t + 1)th move, the pursuer constructs the
line e[t]p[t], as shown in Figure 4. Let this line intersect the
boundary of the environment at a pointX [t] such thatp[t] lies
betweene[t] andX [t].

(ii) The pursuer then also constructs the linee[t+1]X [t] and
moves to the intersection of this line with the circle centered at
p[t] and of radiusrstep. Of the two possible intersection points,
the pursuer selects the one closer toe[t + 1].

Fig. 4. Single pursuer problem: Using the LION strategy to capture the
evader. The dotted circles represent the motion discs of theplayers.

This construction guarantees that the pointX [t] remains the
same as the pointX [tsweep+ ttrap], for everyt ≥ tsweep+ ttrap,
wheretsweep+ ttrap is the time at the end of the pursuit phase.
Let tcap be the time taken by the pursuer to capture the evader
after trapping it. We have the following result.

Theorem III.5 (L ION strategy [4]) In the single pursuer
problem with parametersκ and diam(Q)

rstep
, after trapping the

evader within the sensing radius and using theLion strategy,
(i) the distance,‖p[t] − e[t]‖, is a non-increasing function

of time,
(ii) the pursuer captures the evader,

(iii) tcap is at most

⌈(
diam(Q)

rstep

)2
⌉

steps.

Thus, our problem with limited sensing is solved because
once the evader is trapped within the pursuer’s sensing radius,
it remains trapped until capture, from part (i) of Theorem III.5.
We have also obtained an upper bound on the total time to
capture, i.e.,tsweep+ ttrap + tcap.

B. Multiple pursuer problem

This section describes the sweep-pursuit-capture strategy for
multiple pursuers and the corresponding results. We assume
that κ ≥ 4 andN ≥ 5. We define the following formation.
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Definition III.6 (Trapping chain) A group of N ≥ 5 pur-
suers{p1, . . . , pN} are said to be in atrapping chainforma-
tion if

(i) p2, . . . , pN−1 are placed counterclockwise on a semi-
circle with diameter equal to‖p2 − pN−1‖,

(ii) for all j ∈ {1, . . . , N − 1}

‖pj − pj+1‖ = rstep

√

4κ2 − 25, and

(iii) p1, p2, pN−1, pN are on the vertices of a rectangle such
that the polygon with vertices{p1, . . . , pN}, in that
order, is convex (cf. Figure 5).

Fig. 5. A trapping chain formation forN = 9 pursuers. The circles around
the pursuers denote their sensing ranges. The lightly shaded region denotes
the capture region and the darkly shaded region along with the lightly shaded
one denotes the extended capture region.

We now describe the Sweep-Pursuit-Capture strategy for the
multiple pursuer problem.

1) Sweep phase -SWEEP strategy: The pursuers begin by
placing themselves in a trapping chain formation. We define
the capture regionS for a trapping chain by

S =
⋃

j∈{3,...,N−2}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1},

whereBpj
(rsens) ⊂ R

2 denotes the sensing disc of pursuer
pj and C̊o{p2, . . . , pN−1} ⊂ R

2 denotes the interior of the
convex hull of{p2, . . . , pN−1}. The lightly shaded region in
Figure 5 is the proposed capture region,S, for the trapping
chain. In the sweep phase, pursuers wish to detect the evader
within the capture region. We consider a square region of
length equal to diameter of the regionG, diam(G) that contains
the field G. The pursuers sweep this square region in the
direction of the normal top1pN , outward with respect to the
convex hull of the pursuers. For a trapping chain shown in
Figure 5, we define theeffectivelength l as

l := ‖p1 − pN‖ − 2rsens= rstep

( √
4κ2 − 25

sin( π
2(N−3) )

− 2κ

)

. (10)

As the pursuers move in the direction described earlier, they
clear a rectangular strip of lengthdiam(G) and widthl+4rsens.
The SWEEP strategy for the pursuers is as follows.

(i) Choose the first rectangular strip at a random distance
l0 from one edge of the square region containingG
and sweep it length-wise. The distancel0 is a uni-
form random variable taking values in the interval

[−2rsens, l + 2rsens]. Here, negativel0 implies that some
of the pursuers may begin sweeping from outsideG.

(ii) Form a sweeping path for the square region and sweep
along adjacent strips as shown in Figure 6.

The shaded region in Figure 6 refers to the area that would fall
in the proposed capture regionS. Now we are interested in
determining the probability that an evader falls in the shaded
region in Figure 6. That is given by the following result.

Fig. 6. Multiple pursuer problem: SWEEP strategy. The shaded region
represents the region swept by the capture region of the trapping chain.

Theorem III.7 (SWEEP strategy) In the multiple pursuer
problem with parametersκ, diam(G)

rstep
and N , for any prob-

ability distribution for the initial position of the evaderwith
support onG, using theSWEEP strategy,

(i) the probabilityP of detecting the evader insideS for a
group of pursuers in a trapping chain, satisfies

P ≥ l

l + 4rsens
≥ 1 − 2πκ

(√
4κ2 − 25(N − 3) + 2πκ

) , and

(ii) the timetsweeptaken by theSWEEPstrategy to terminate
satisfies

tsweep≤
⌈diam(G)

rstep

( π/2√
4κ2 − 25(N − 3) + πκ

)⌉

×
⌈diam(G)

rstep
+ 2
√

4κ2 − 25N
⌉

.

Remark III.8 The minimum probabilityP of the pursuers
detecting the evader inside the capture region by using the
SWEEPstrategy isindependentof the evader’s location. Hence,
the best that the evader can do in the present framework is to
locate itself initially with a uniform probability inG.

We shall see that the pursuers win when the evader is
detected inS by the pursuers. Otherwise, there exists a path for
the evader such that it can avoid being captured indefinitely.

2) Pursuit phase -CIRCUMCENTER strategy: If the evader
is detected within the proposed capture region at timetsweep,
the pursuers need to ensure that they trap the evader within
their sensing ranges. Before we describe the strategy for the
pursuit phase, consider the following possibility: if the evader
steps into the darkly shaded region of the sensing range of
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p2 (or of pN−1), thenp2 (resp.pN−1) can use the GREEDY

strategy (ref. Section III-A2). By moving towards the evader,
the evader’s motion disc gets contained inside that pursuer’s
sensing disc and thus the evader gets trapped. This motivates
us to define anextended capture regionSe for the trapping
chain by

Se =
⋃

j∈{2,...,N−1}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1}.

The darkly shaded region along with the lightly shaded region
in Figure 5 is the extended capture regionSe for the trapping
chain.

We now present the following pursuit strategy. At each time
stept ≥ tsweep,

(i) While e[t+1] /∈ Se[t], the pursuersp2, . . . , pN−1 move
towards thecircumcenter1 O of the triangle formed by
p2[tsweep], e[tsweep] andpN−1[tsweep] with maximum step.
Pursuersp1 and pN move parallel top2 and pN−1

respectively.
(ii) Otherwise, one of the pursuers which senses the evader

directly, makes a GREEDY move (ref. Section III-A2)
towards the evader and the others move parallel to that
pursuer with the maximum step.

One such move is shown in Figure 7. In case (i) of the strategy,
note that the pursuers may not sense the evader in every
subsequent move. But they will encircle the evader by closing
the trapping chain around it and then shrink the enclosed
region around the evader. We have the following result.

Fig. 7. Multiple pursuer problem: CIRCUMCENTERstrategy. At timetsweep,
the evader position is sensed byp4. Pursuersp2, . . . , p8 move towards O, the
circumcenter of triangle formed byp2, e andp8. p1 andp9 move parallel to
p2 andp8 respectively. The circles around the pursuers represent their sensing
discs.

Theorem III.9 (C IRCUMCENTER strategy) In the multiple
pursuer problem with parametersκ, diam(G)

rstep
and N , starting

from a trapping chain formation, if the evader is detected with
e[tsweep] ∈ S[tsweep], then using theCIRCUMCENTER strategy,

(i) the pursuers trap the evader within their sensing radii,
(ii) the trapping timettrap satisfies

ttrap ≤
√

4κ2 − 25N
(

1 +
1

2 sinφ

)

,

1The circumcenter of a triangle is the unique point in the plane which is
equidistant from all of its three vertices.

where

φ(κ) =
π

4
− arctan

( κ√
3κ2 − 25

)

, and

(iii) at that time instant, the evader is inside the pursuers’
convex hull in such a way that

B rstep
2

(e[tsweep+ ttrap]) ⊂ Co{p1, . . . , pN}[tsweep+ ttrap], (11)

where the notationBr(a) refers to the closed disc of radiusr
centered at pointa in the plane.

The CIRCUMCENTER strategy guarantees trapping of the
evader even without pursuersp1 andpN . But in that case, the
inclusion in (11), which will be required to establish an upper
bound on the time for the capture phase that follows, is not
guaranteed.

3) The Capture phase -PLANES strategy: Once the evader
is trapped within the sensing ranges of the pursuers, the
pursuers use the PLANES strategy from [5] to capture the
evader. Before stating our results, we reproduce this strategy
for completeness.

Let the time at the end of the pursuit phase betsweep+ ttrap

and the evader be inside the convex hull of the pursuers as
in (11) (cf. Figure 8(a)). Fort ≥ tsweep+ ttrap and for every
pursuerpj :

• Draw the linehj [t + 1] throughe[t + 1], parallel to the
line joining e[t] andpj [t], as shown in Figure 8(b).

• Move to the point closest toe[t+1] on the linehj [t+1]
with maximum step size.

(a) Evader inside pur-
suers’ convex hull

(b) PLANES strategy.
Illustrating a pursuer
move.

Fig. 8. Algorithm PLANES

Theorem III.9 shows that use of the CIRCUMCENTER strat-
egy in the pursuit phase leads to the evader being trapped and
inside the convex hull of the pursuers. Now capture follows
from the following theorem, which was partly inspired by the
results on the PLANES strategy in [5].

Theorem III.10 (PLANES strategy) In the multiple pursuer
problem with parametersκ, diam(G)

rstep
and N , let the evader

be trapped inside the convex hull of the pursuers such that
property(11) is satisfied. If every pursuer follows thePLANES

strategy, then

(i) the distances,‖pj[t] − e[t]‖ for everyj ∈ {1, . . . , N},
are non-increasing functions of time,

(ii) the pursuers capture the evader and
(iii) the time tcap taken in the capture phase is at most

18κ
√

4κ2 − 25N .
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Item (i) of Theorem III.10 implies that once the evader is
trapped within the sensing ranges of the pursuers, it remains
trapped within their sensing ranges at the end of every pursuer
move. The capture is now complete and we obtained a novel
upper bound on the total time to capture, i.e.,tsweep+ttrap+tcap.

IV. SIMULATION RESULTS

We now present simulation studies to investigate the ro-
bustness of the algorithms to sensing errors. We study the
performance of the algorithms in several cases such as differ-
ent sensing to stepping radius ratio and faster evader. We also
study the case of different number of pursuers in the multiple
pursuer problem. All simulations were run using MATLABR©.

We assume two types of sensing error models:
Gaussian errors: We assume zero-mean additive Gaussian

measurement errors in the position of the evader with a
standard deviation given by

σj [t] = ǫ‖pj[t] − e[t]‖,
for some constantǫ ≥ 0. This means that the uncertainty in
the location of the evader increases with its distance from a
pursuer. The evader is defined to be captured if the probability
of the evader being inside the motion disc of the pursuer before
the pursuer’s move is more than a certain threshold. In other
words, for somet and for some pursuerpj ,

Bσj [t](y
p
bef[t]) ⊂ Brstep(pj [t − 1]),

whereBσj [t](y
p
bef[t]) denotes the circular region of radiusσj [t]

centered atyp
bef[t].

Non-Gaussian errors: The measured distance is given by
(1+ǫ∗)‖pj [t]−e[t]‖, whereǫ∗ is a random variable uniformly
distributed in the interval[−ǫ, ǫ], whereǫ ≥ 0 is the specified
error parameter. With respect to angular measurements, ifθa

is the actual angular location of the evader with respect to a
local reference frame of a pursuer, then the measured angular
location is given byθa + ǫθ, whereǫθ is a random variable
uniformly distributed in the interval[−∆θ, ∆θ], where the
value of∆θ was chosen to be1 degree. The evader is captured
in this model ifyp

bef[t] ∈ Brstep(pj [t − 1]).

A. Single pursuer problem

Under the considered noisy sensor models:
• The SWEEP strategy remains unchanged. It terminates

when an evader measurement is available.
• For the GREEDY and LION strategies, the pursuer uses

the noisy measurements of the evader position instead of
the true positione[t] to compute its next position.

For the evader’s motion, we assume that it moves away from
the pursuer with some randomization, while avoiding the
boundary. Specifically,

• if the evader is not close to the boundary of the environ-
ment, then it chooses to move to a point on its motion
circle, selected uniformly randomly in a sector with angle
0.2 radians. This sector is placed symmetrically along the
line e[t]p[t] and away from the pursuer.

• If the boundary is visible to the evader, then it chooses
to move to a pointe[t + 1] on its motion circle such that

∠e[t + 1]e[t]p[t] = π − 0.2. Of the two points possible,
the evader chooses that point which is further away from
the boundary. In other words, when the evader reaches the
boundary, it chooses to move to a point that is away from
the pursuer as well as not very close to the boundary.

For our simulations, the environment is a circle with diameter
40 units. We assumeκ = 5 units andrstep= 1 unit. The initial
position of the evader was chosen uniformly randomly in the
environment. An upper limit of2, 000 time steps was set to
decide whether the strategy terminated in a success.

The following is a summary of our findings:
(i) Performance of the strategy with noisy measurements:

The plots of probability of success of the strategy and average
capture times after detection (given that the strategy terminates
with capture) for both noise models versus the respective error
parametersǫ are shown in Figure 9. We observe a similar trend
in the performance of the strategy in both noise models.

Fig. 9. Effect of measurement noise in the single pursuer problem. For a
particular evader strategy, we study how the capture probability and average
capture time given that the strategy succeeds, vary with thenoise parameterǫ,
under Gaussian and Non-gaussian error models. In the top figure, an interval
of ±0.1 (not shown to preserve clarity) about the probability estimates is

the 95% confidence interval given by
h

P (ǫ) − 2
q

0.25
n

, P (ǫ) + 2
q

0.25
n

i

,
wheren = 100 is the number of trials [24]. In the bottom figure, the vertical
bars give a95% confidence interval about the average capture timeT (ǫ)

which is given by
h

T (ǫ) − 2
q

SD(ǫ)
nP (ǫ)

, T (ǫ) + 2
q

SD(ǫ)
nP (ǫ)

i

, whereSD(ǫ) is

the standard deviation in the capture time,P (ǫ) is the estimated probability
of success andn = 100 is the number of trials [24].

(ii) Different sensing to stepping radius ratios: We repeated
the simulations for the cases of the ratio of sensing to stepping
ratioκ = 7 andκ = 10. We present the variation of probability
of success in the Gaussian noise model in Figure 10.

(iii) Faster evader: We repeated the simulations for the case
of faster evader. Assuming no noise, we present the variation
of the probability of success in the top part of Figure 11. We
observe that when the evader is at least3/2 times that of the
pursuer, the proposed pursuer strategy is not efficient.

B. Multiple pursuer problem

Under the considered noise models:

• The SWEEP strategy remains unchanged. It terminates
when an evader measurement is available.
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Fig. 10. Effect of varying the sensing to stepping radius ratio κ in the single
pursuer problem. For a particular evader strategy, we studyhow the capture
probability varies forκ = 7 and κ = 10 with the noise parameterǫ, under
Gaussian noise model. The error bars are in accordance with Figure 9.

Fig. 11. Performance of Sweep-Pursuit-Capture strategy against a faster
evader. For a particular evader strategy, we study how the capture probability
varies for higher evader speeds, assuming no measurement noise. The top
figure presents the single pursuer case and the bottom figure presents the
multiple pursuer case. The error bars are in accordance withFigure 9.

• For CIRCUMCENTER and PLANES strategies, the pur-
suers use the average of the available evader measure-
ments to compute their next positions.

For the sake of simulations, we assumeN = 7 pursuers
with κ = 5 units andrstep= 1 unit. We assume a square field
of edge length100 units, where the evader is initially placed
at a uniformly randomly selected location. Upon detection,we
assume that the evader moves away from the closest pursuer
with some randomization. Specifically, it moves to a point on
its motion circle, selected uniformly randomly in a sector of
angle equal to0.2 radians. This sector has its vertex ate[t] and
angle bisector parallel to the linee[tsweep]O, wheretsweepis the
time when the evader is detected andO is the circumcenter of
the trianglep2[tsweep], p6[tsweep] and e[tsweep]. We study how
the average capture time after detection varies withǫ. An upper
limit of 1000 time steps was set to decide whether the strategy
terminated in a failure.

The following is a summary of our findings:

(i) Performance of the strategy with noisy measurements:
The plots of probability of success of the strategy and average
capture times after detection (given that the strategy terminates
with capture) for both noise models versus the respective error
parametersǫ are shown in Figure 12. We observe a similar
trend in the performance of the strategy in both noise models.

Fig. 12. Effect of measurement noise in the multiple pursuerproblem. For
a particular evader strategy, we study how the capture probability (top figure)
and average capture time (bottom figure) given that the strategy succeeds, vary
with the noise parameterǫ, under Gaussian and Non-gaussian error models.
The error bars are in accordance with Figure 9.

(ii) Different number of pursuers: We repeated the simula-
tions for the cases of the number of pursuersN = 10 and
N = 15. We present the variation of probability of success in
the Gaussian noise model in Figure 13.

Fig. 13. Effect of varying the number of pursuersN in the multiple pursuer
problem. For a particular evader strategy, we study how the capture probability
varies forN = 10 andN = 15 with the noise parameterǫ, under Gaussian
noise model. The error bars are in accordance with Figure 9.

(iii) Faster evader: We repeated the simulations for the case
of faster evader. Assuming no noise, we present the variation
of the probability of success in the bottom part of Figure 11.
We observe that when the evader is at least1.8 times that of
the pursuers, the proposed pursuer strategy is not efficient.
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V. B IOLOGICAL INTERPRETATIONS

Our analysis in the previous sections can shed light on the
trade-offs that predators face when deciding upon the group
size. Based on our results from Section III-B, we now study
how the group size of the pursuers varies with the evader
availability in the multiple pursuer problem.

For simplicity, we assume a square field where the evader
is initially located and denote byδ := 1

diam2(G)
the evader

density. From the results in Section III-B, an upper bound on
the total time taken by the pursuers in all three phases of the
strategy is given by

1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN,

wherea := 2r2
step

√
4κ2 − 25/π, b := (2πκ−6

√
4κ2 − 25)/π,

c := 2rstep
√

4κ2 − 25 and k :=
√

4κ2 − 25(1 + 1/ sinφ) +
18κ

√
4κ2 − 25 are constants independent of the number of

predatorsN or the evader densityδ.
From part (i) of Theorem III.7, we observe that when all

other variables are kept constant, the lower bound on suc-
cessful detection probability of the SWEEP strategy increases
with N . However, a higherN results into a greater time to
capture the evader. This suggests a trade-off on the group size
N which we analyze as follows.

Let ν denote the nutritional content of the evader. We
quantify the energy spent by each pursuer as the time taken
to capture the evader. The energy gain from the pursuit is
quantified as the amount of nutrition each participating pursuer
receives from the evader. For a self-sustaining pursuit, wemust
have that the energy gained by each pursuer is at least equal
to the energy spent during the hunt. Thus,

ν

N
≥ 1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN.

From this relation, we observe that for a given value ofδ,
there exists an upper limit on the number of pursuers in the
group for which it is advantageous for the pursuers to engage
in a pursuit with the prospect of gaining energy. A plot of the
upper limit on the group sizeN versus the evader densityδ
is shown in Figure 14.

This analysis shows that for higher values ofδ, a larger
number of pursuers can be accommodated in the trapping
chain. This is consistent with observations in the biology
literature by Caraco and Wolf [25] that have reported higher
group size in foraging lions during the wet season (prey
abundance), than in the dry season, (prey scarcity). Further,
from our analysis, it also follows that for a given evader
density, the higher the prey nutrition valueν, the higher is
the upper limit on the number of pursuers in the trapping
chain. This is consistent with the observations reported by
Griffiths [26] regarding how the size of hunting packs relate
to the size of the prey relative to that of the predators.

VI. CONCLUSIONS ANDFUTURE DIRECTIONS

We have addressed discrete-time pursuit-evasion problems
in the plane with sensing capabilities restricted to a finitedisc.

Fig. 14. Plot of maximum group size of pursuers that can be sustained versus
the evader densityδ, for κ = 5, rstep = 1, ν = 10000.

We considered two variants of the pursuit-evasion in discrete-
time. The first involved a single pursuer and an evader in a
bounded convex environment. The second was a formation
design problem for multiple communicating pursuers to cap-
ture a single evader in a boundaryless environment. In both
problems, the evader was initially located inside a bounded
subset of the environment and moved only when detected. We
proposed a Sweep-Pursuit-Capture strategy for both problems.

In the first problem, we gave sufficient conditions on the
range of values taken by the ratio of sensing to stepping
radius of the players so that the GREEDY pursuer strategy
of moving towards the last-sensed evader position leads to
the evader being trapped within the pursuer’s sensing disc
and finally to capture. We also gave conditions under which
there exist locations from which the evader can escape. In
the second problem, we have shown that the pursuers capture
the evader with a certain probability that is independent of
the initial evader location in a bounded region. We gave
novel upper bounds on the total time taken to capture for
both problems. We also presented simulation studies that
addressed the performance of the strategies under sensing
errors, different ratios of sensing to stepping radius, greater
evader speed and different number of pursuers. Finally, on the
basis of the obtained upper bound on the total capture time,
we provided an upper bound on the group size of the pursuers
for which the pursuit is advantageous from the point of view
of gaining energy. The conclusions based on our analysis are
consistent with observations reported in ecology literature.

In the future, it would be interesting to design efficient
strategies for the single pursuer problem in complex environ-
ments. Also, considerations such as communication losses or
errors in the multiple pursuer problem and more sophisticated
sensing models for the players are potential future directions.
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