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Abstract—An important problem in the control of locomotion  has found to deal with the redundancies in animal bodies
of robots with multiple degrees of freedom (e.g., biomimet and the requirement to easily modulate locomotion: central
robots) is to adapt the locomotor patterns to the propertiesof the pattern generators. Central pattern generators (CPGsjeare

environment. This article addresses this problem for the lcomo- . .
tion of an amphibious snake robot, and aims at identifying fat ral networks capable of producing coordinated patterns of

swimming and crawling gaits for a variety of environments. qur ~ rhythmic activity without any rhythmic inputs from sensory
approach uses a locomotion controller based on the biologait feedback or from higher control centers [1]. Even compyetel
concept of central pattern generators (CPGs) together witha jsolated CPGs in a Petri dish can produce patterns of activ-
gradient-free optimization method, Powell's method. A keyaspect ity, called fictive locomotion, that are very similar to iota

of our approach is that the gaits are optimized online, i.e. \ile | ti h tivated by simole electrical hemical
moving, rather than as an off-line optimization process. ocomotion when activated by simple €lectrical or cheémica

We present various experiments with the real robot and Stimulation [2]. Typically, varying simple stimulationlais
in simulation: swimming, crawling on horizontal ground, and modulation of both the speed and direction of locomotion.

crawling on slopes. For each of these different situationsthe  From a control point of view, CPGs therefore implement some
optimized gaits are compared with the results of systematic ind of internal model, i.e. a controller that “knows” which

explorations of the parameter space. The main outcomes of ¢h t d to be rhvthmicall lied t btai .
experiments are (1) optimal gaits are significantly differat from  ‘0fqUes neea to be rhythmically applied 1o obtain a given

one medium to the other, (2) the optimums are usually peaked, SPeed of locomotion. Interestingly, CPGs combine notions
i.e. speed rapidly becomes suboptimal when the parameters of stereotypy (steady state locomotion tends to show little
are moved away from the optimal values, (3) our approach variability) and of flexibility (speed, direction and types
finds optimal gaits in much fewer iterations than the systemtc gait can continuously be adjusted).

search, and (4) the CPG has no problem dealing with the In thi ticl imol t 2 CPG del t f
abrupt parameter changes during the optimization processThe n this articie, we impiement a model as a system o

relevance for robotic locomotion control is discussed. coupled amplitude-controlled phase oscillators inspiiredn
. ) the lamprey’s swimming CPG. The CPG can produce and
Index Terms—Amphibious snake robot, locomotion control, . . .
online optimization, swimming, serpentine crawling modulate the travelling waves necessary for swimming and
serpentine locomotion of the amphibious robot Amphibot Il
(figure 1). The CPG has several explicit parameters, which
. INTRODUCTION can be continuously modified, controlling the shape of the
OTH animals and biomimetic robots (or, more generallgenerated gaits. Interesting properties of the CPG incl(ige
robots with multiple degrees of freedom) face a complékis computationally cheap, (2) it exhibits limit cycle talior
problem when adapting their locomotion to their environmer(temporary perturbations are rapidly forgotten), (3) timaitl
Indeed, animals and robots must generally carefully adagytcle behavior has an analytical solution with explicit-fre
their gaits depending on multiple criteria: whether theugmd quency, amplitude, and phase lag parameters that can be used
is soft or hard, slippery or sticky, flat or uneven, horizénta@s control parameters, and (4) it produces smooth trajestor
or with a slope. In some cases the environment may eveven when the control parameters are abruptly changed.
dramatically change between ground, water, and/or air, andlhese properties allow us to run an optimization algorithm
locomotion must be adapted to the corresponding physics.in parallel of the locomotion controller and to regularly
this article, we address the problem of adaptive locomotietpdate the CPG parameters online, i.e. during locomotion.
with an amphibious snake robot. This problem is very relevahhe criterion optimized is the forward speed. To maximize
for such a robot because of the tight interaction with thiée speed (and also to obtain any locomotion at all), the
environment: indeed it has multiple contact points with thearameters of the CPG have to be adapted depending on the
ground when crawling, and complex interaction with the wat@nvironmental conditions. We demonstrate how a gradient-
when swimming. free optimization algorithm (the Powell’s method) can be
We propose a framework for learning locomotion controllengsed to search for the CPG parameters (phase lag, oscillatio
based on two components: a central pattern generator andmaplitude) that produce the maximum speed of the robot for
gradient-free optimization algorithm: Powell’s methodurO a given environment. Our goal is to demonstrate that the CPG
approach is inspired by a control mechanism that naturgplemented as a system of coupled nonlinear oscillators is
an ideal building block for doing online optimization in a
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movements, risking damages of the motors and gearboxes.

This problem can to some extent be overcome by filtering the

parameter and/or the outputs but the approach then loses its

simplicity. Another disadvantage is that sine-based fionst

do not offer simple ways of integrating sensory feedback

signals. In this article, we will argue that a simple CPG

model can combine, without much computational costs, the
simplicity of time-indexed sine-based functions with dabdial
interesting properties related to numerical integratidnao
system of differential equations.

Fig. 1. The robot with passive wheels and the tracking LED mted on it. Model-based approaches use kinematic ([15], [16]) or dy-
namic ([17], [18], [19], [20]) models of the robot to de-
sign control laws for gait generation. The control laws are

trajectories will smoothly converge towards the new linyitle  sometimes based on sine-based functions as above (e.g. [15]

after a short transient period. This means that the robo$ dggq]), but the model-based approaches offer a way to identif

not need to be stopped or reset between iterations. fastest gaits for a given robot by using kinematic constsain

This article extends a previous conference article [3] thgf approximations of the equations of motion, for instance.
presents the CPG model and its interactive control with \odel-based approaches are therefore very useful forriglpi
human-in-the-loop. This work is also related to CPG modej§ design controllers but have two limitations. First, the-p
used to control a fish [4] and a salamander-like robot [5] thg§rmance of controllers will deteriorate when models beeom
we constructed using the same hardware modules. The nov@{giccurate, which is rapidly the case for interaction feraéth

here is the online learning and the adaptation to differegtcomplex environment (e.g., friction with uneven ground).

terrains (different grounds, different slopes) and envinents second, the resulting controllers are not always suited for

(ground and water). This possibility to dmline optimization, nteractive modulation by a human operator.

i.e. |earning while mOVing, is one of the main contributiafs CPG-bhased approaches use dynamica' SystemS, e.g. Systems

this article. Being able to learn gaits online, as opposetbto of coupled nonlinear oscillators or recurrent neural neksp

offline optimization with a model or a simulator for instancegor generating the travelling waves necessary for locoomoti

is of great importance for biomimetic robotics. Indeed ighti (see for instance [21], [22], [12], [23]). These approaches

be one of the only solutions to tackle the problem of adaptifigplemented as differential equations integrated overetim

gaits to complex, possibly unknown, environments. Keepinghd the goal is to produce the travelling wave as a limit

a realistic and up-to-date model of the interaction forcegcle. If this is the case, the oscillatory patterns are sbbu

with such environments might be impossible or not accuraggainst transient perturbations (i.e., they asymptdyicaturn

enough to allow alternative (e.g., model-based), appe®chg the limit cycle). Furthermore, the limit cycle can usyall

(see below). be modulated by some parameters which offer the possibility

In the rest of the article, we will first review related workiy smoothly modulate the type of gaits produced. Finally,

(section I1). We will then describe the snake robot Amphithot cpGs can readily integrate sensory feedback signals in the

(section 1), the central pattern generator model (sectid), djfferential equations, and show interesting propertisshsas

and the simulated robot model (section V). We then presefiitrainment by the mechanical body [24].

the results obtained with the optimization experiment$ e However, one difficulty with CPG-based approaches is to

real and simulated robots (section VII). Finally, a diseoss determine how to design the CPG to produce a particular

of the results is presented in section VIII. pattern. Many CPG models do not have explicit parameters
defining quantities such as frequency, amplitude, and wave-
Il. RELATED WORK length (for instance, a van der Pol oscillator does not have

A considerable number of snake-like robots has been caxplicit frequency and amplitude parameters). This dods no
structed. Most of them were designed for use on ground [Blged to be the case. In this article, we use a CPG model
[71, 8], [9], [10], a few were designed for swimming [11],based on amplitude-controlled phase oscillators. An @stimg
[12]; only a small minority of them has the capability to bespect of this approach is that the limit cycle of the CPG
amphibious [13], [14]. Their control architecture can rblyg has a closed form solution, with explicit frequency, amyuli
be divided into three categories: sine-based, model-hased and wavelength parameters. The approach therefore combine
CPG-based. the elegance and robustness of the CPG approaches with the

Sine-based approaches use simple time-indexed sine-basiewplicity of sine-based approaches. Furthermore, our CPG
functions for generating travelling waves (see for inséaf8, modelis computationally very light which makes it well sdt
[10]). The advantages of such an approach are its simplicttybe programmed on a microcontroller on board of the robot.
and the fact that important quantities such as frequency, aifthe implementation of the CPG is inspired from lamprey
plitude and wavelength are explicitly defined. A disadvgeta models [25]. It is close to the CPG model presented in [23],
is that online modifications of the parameters of the sirfmut differs in the following aspects: (1) it is made of a daubl
function (e.g., the amplitude or the frequency) will lead tehain of oscillators, (2) it has differential equations tohing
discontinuous jumps of setpoints, which will generate yerkthe amplitudes of each oscillator (not only the phase), &d (



Power circuit

Fig. 2. The salamander (left) and fish (right) robots thaehasen constructed G
using the same elements used for the snake robot descriltbd iarticle. earbox

Battery

Fig. 3. Internal view of a part of an actuated element. Thepuwugxis,

the CPG is used to control not only serpentine crawling b2l inserted at the output of the gearbox, is not shown.
also swimming.

a set of gears and a rechargeable Li-lon battery. The eleament
are thus completely independent from each other.

Our online optimization method is tested with AmphiBot Il, The motor controller is based on a PIC16F876A microcon-
an amphibious snake/lamprey robot capable of swimminller, which runs a PID motor controller developed at the A
and serpentine crawling. The robot is an improved versiednomous Systems Laboratory of the EPFL and is connected
of AmphiBot | [14], a previous amphibious prototype. Theo the EC bus of the robot. The controller receives feedback
main improvements are the following: we added wirele§som the motor encoder through a quadrature detector, and
communication, onboard trajectory generation, bettesteda- drives the H-bridges powering the motor with a PWM signal.
ics, stronger motors, and compliant connection elemerite. T The electronics (with the exception of the motor) are
modules used for Amphibot Il were also used to construpbwered using 5 V. This voltage is generated from the battery
Salamandra robotica, a salamander-like robot [S] and Bokybvoltage by the power circuit, using a step-up converter. The
a fish robot [4] (figure 2). power circuit also features a battery charger (when emipgy, t

The AmphiBot Il robot has a modular design and ipattery can be recharged in approximately one hour) and a
constructed out of 7 actuated elements and a head elenigattery protection system which avoids damaging the batter
(which is externally identical to the others). The externdly discharging it excessively.
casing of each element consists of two symmetrical partsA water detector circuit, used internally to detect and
molded using lightened polyurethane resin. The elemem¢galize any leakage, is placed at the bottom of the element,
are connected using a compliant connection piece fixed dad is connected to a LED fixed through the top of the element,
the output axis. All the output axes are aligned, therefotierefore allowing the user to immediately detect the Igaka
producing planar locomotion. To ensure the waterproofing of The 2.83 W DC motor (Faulhaber 1724 T 003 SR) has a
the robot, custom O-rings are uskdhe total length of the maximum torque of 4.2 mkh and drives a gearbox with a
robot is 77 cm. The asymmetric friction with the groundreduction factor of 125. The output axis of the gears is fixed t
required to correctly crawl on the ground, is obtained bye connection piece, which is inserted into the next elemen
fixing a couple of passive wheels to each element. The whesig wires are inserted into the axis, and connected to thepow
are removed for swimming, except for experiments implyingoards of two adjacent elements: two are used for the externa
transitions between water and ground. The density of thetrolpower, two for the 4C bus, one for the power switch and the
is slightly lower than 1 kg/hy so that it floats under the surfacdast one is reserved for future usage and currently uncaedec
when in water. The battery is placed at the bottom of the
elements to have the center of mass below the vertical cenEr

therefore ensuring the vertical stability of the robot dgrboth ) )
swimming and crawling. The head element, like the body elements, has three printed

circuits (a power board without all the motor-related citsu

a controller board, and a water detector). The controller

_ _ o circuit is based on a PIC18F2580 microcontroller, which is
Each element contains three printed circuits connected Wihaster on the2C bus of the robot. It implements the CPG

a flat cable, a DC motor with integrated incremental encodggiescribed in section 1V), and sends out the setpoints to the
i~ _ - o - motor controllers of each element in real time. The main
During extensive swimming tests, air is insufflated inside tobot by a . I . . ial i ith

small pump through a highly flexible silicone tube for mainitag a little microcontroller 90mmun'catesi qsmg a serial line, wit .a

overpressure inside the elements and avoiding leakage. PIC16LF876A microcontroller, which controls a nRF905 madi

IIl. HARDWARE DESCRIPTION

Head element

A. Actuated elements
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The coefficientsu, b, ..., 7 are obtained (for a given place-
ment and orientation of the camera) by solving a linear syste
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i experment where D;...D, are the real coordinates of four reference
S points (aligned on two parallel lines), ardd... P, their coor-
f dinates in pixels. The system is currently solved numdiical
by writing it into matrix form and using SVD decomposition.
The tracking system includes a TCP/IP server, allowing
the coordinates of the robot (and its visibility status) ® b
remotely retrieved in real time.

Fig. 4. The video tracking system used for crawling. Theséu swimming
is very similar.
IV. CENTRAL PATTERN GENERATOR MODEL
Our CPG model is based on a system of amplitude-

transceiver. The antenna is internal to the element andstenscontrolled phase oscillators. The design of the CPG is lgose
of a simple \/4 wire (where X is the wavelength of the inspired from the neural circuit controlling swimming ineth
used frequency). The radio system uses the 868 MHz ISlprey [26]: it spontaneously produces travelling wavéth w
band: preliminary experiments showed that a 10 mW sign@nstant phase lags between neighboring segments along the
(the power transmitted by the nRF905) on this frequency caady, and it is made of multiple oscillators connected as a
penetrate in water up to at least 30 cm (the maximum testg@duble chain. An oscillator in the model corresponds to an
depth). The more common 2.4 GHz band has not been usggillatory center in the lamprey, i.e. a subnetwork of save
because it is heavily absorbed by the water. The maxim@busands of neurons located in one segment of the spinal
bandwidth is approximately 50 kbps, largely enough to ser@rd that is capable of producing oscillations indepenigient
control commands and parameters to the online trajectasf/other centers.
generator. The CPG model is a double chain of oscillators with nearest
neighbor coupling (figure 5). The chain is designed to gerera
a travelling wave, from the head to the tail of the robot.
This wave is used to achieve anguilliform swimming in water

To run an optimization algorithm, we need an estimation @ind serpentine locomotion on ground. The total number of
the performance of the robot (the speed in this article) forascillators i2 NV whereN = 7 is the number of actuated joints
given set of locomotion parameters. Several solutions it thin the robot. Actuated joints are numbered 1Nofrom head
problem exist. For simplicity, we chose video tracking ifsth to tail. Oscillators in the left chain of the CPG are numbered
article (in future work, we are planning to provide the robdt to N and those on the right side are numberéd-1 to 2N
means to estimate its speed on its own). The tracking systéwm head to tail.
that has been developed for these experiments is relativelyThe CPG is implemented as the following system2df
simple: a bright 48 Im green led having an irradiation angleoupled oscillators:
of 130° and powered by an independent Li-lon battery is fixed

C. Video tracking

on the head of robot. The experimental setup is flmed using a )

Basler a622f camera connected through a IEEE 1394 interface 0 = 2mvi+ Z Wij S (93' —0i— d’ij)

to a PC on which a simple tracking program is running. The JETE) 3
whole system is depicted in figure 4. T = ai(%(Ri —7) = Tz) (3)

The tracking program acquires the data from the camera ri(l +cos(9i))
at 15 fps, with a resolution of 800x600 pixels and a depth
of 8 bhits per pixel (grayscale). The used image processingwhere the state variablés andr; represent, respectively,
algorithm is trivial: the coordinatesS,, S,) of the LED spot the phase and the amplitude of tffeoscillator, the parameters
(in pixels) are calculated as the average coordinates of ajlandR; determine the intrinsic frequency and amplitude, and
the pixels having a lightness higher than a given threshaldis a positive constant. The coupling between the oscikator
(currently 192). The coordinates are then converted to treedefined by the weights;; and the phase biases;. An
real (homogeneous) coordinates of the robot on the plaoscillator i receives inbound couplings from the oscillators
(Rs/Rw, Ry/R,) using a 2D transformation matrix: in the discrete sef'(i) according to the topology shown in

Tq



from the left and right oscillators. A standard PD motor
controller is then used to computgthe voltage (i.e., torque)

1 8 — — applied to the motor:
2 9 —> _— $Yi = Ti —TN+1 4)
T, = eri + Kqé;
3 0 —> —_—> - . .
o, T wheree; = p; — @; is the tracking error between the desired
4 Ho— : anglesp, and the actual angleg; measured by the motor

incremental encoders, anll,, and K, are the proportional
and derivative gains.
In order to reflect the symmetries of the robot and to

12 —>

PD controllers

6 13 —> _—
reduce the number of parameters to optimize, we set several
7 “o——> —> parameters to the same values. The frequency parameters are
¢ equal for all oscillators, i.er; = v. We also chose the
T ‘ ! amplitude parameters on one side of the CPG to be an affine

function of the maximal amplitude on that sidR; = «; - A,
) . for the left side { = [1,..,N]) and R, = a;_n - Ag for
Fig. 5. Structure of the CPG used in the robot. the right side { = [N + 1,...,2N]). The a; parameters are
linearly interpolated between the open parameter(head)
and ay = 1.0 (tail). The parametet; therefore acts as an
amplitude gain, and allows the CPG to make undulations of
increasing amplitude from head to tail, as it is often seen
during anguilliform swimming. The phase biasgs are equal
to m between left and right oscillators (i.e., these will osd#l
in anti-phase). The phase biases between neighbor oscsllat
are set toA¢ for the descending connections and-td\¢ for
the ascending connections. The paraméterwill determine
the phase lag between modules, see below. We usgd- 4
for all connections and; = 100 for all oscillators. The PD
coefficientskK,, and K4 are tuned manually for each element
(e.g., elements in middle of the chain require larger gdias t
those at the extremities for good trajectory tracking).

With these settings, the CPG asymptotically converges to
a limit cycle that is defined by the following closed form

solution for thei™™ actuated joint (a skeleton of the proof is
Fig. 6. Effect of changing the parameters of the CPG. Tomaset signals, given in Appendix):
Bottom: control parameters. Initial parameters dre = Agr = 1, v = 1 Hz,
d=N-A¢p=1anda; = 1.0. At t = 45, v is temporarily changed to

2.0 Hz, att = 8s, A;, and Agr are temporarily changed to 0.5 and 1.5 oo o . . . .
respectively which leads to a negative offset of the setpogwillations. At #i (t) = al(AL Ar+(Ar+ARg)-cos(2my t—HA¢+¢O))

t = 12s, ap is changed to 0.2 which leads to oscillations of increasing (5)
amplitude from head to tail. At = 165, ® is set to—1.0 which leads to a  where ¢y depends on the initial conditions of the system.

reversal of the direction of the travelling wave. This means that the system always stabilizes into a tragelli
wave which depends on the five control parameterg\o,
Ar, Ag, anda;. Indeed the frequency, phase lag, amplitude
Figure 5. For instance, oscillator number 2 receives cagplignd offset are directly determined by A¢, a;(Ar + AR),
from oscillators number 1, 3, and 9'(2) = [1,3,9]). The anda;(AL — Ag), respectively. It is here useful to introduce
variablez; is the rhythmic and positive output signal extracteg = NA¢, the total phase lag between head and tail. The
out of oscillatori. The first differential equation determinescontrol parameters can be modified online by the optimimatio
the time evolution of the phasg. It can easily be shown algorithm (or by a human operator) from a control PC using
that two (or more) coupled oscillators will synchronizee(j. the wireless connection. The CPG will rapidly adapt to any
oscillate at the same frequency and with a constant phaye lggrameter change and converge to the modified travelling
if the coupling weightav;; are sufficiently large compared towave after a short transient period. An example of how the
the differences of intrinsic frequencies (see AppendiX)e T CPG reacts to parameter changes can be observed in figure
phase lag between the oscillators will then dependgnwi;  6: when the parameters are changed, the oscillator smoothly
and v;. The second differential equation is a second ordepnverges to the new limit cycle, without any discontiresti
linear differential equation that ensures that the am@éitts  in the outputs.
smoothly converges t&; in a critically dampened fashion.  The differential equations are integrated by the microcon-
The setpointsp;, i.e. the desired angles for thé actuated troller of the head (see section Il1-B) using the Euler mdtho
joints, are obtained by taking the difference between dggnavith a time step of 10 ms and using fixed point arithmetics.




Note that similar lamprey CPG models based on phasenverges for smooth functions. The main risk associatél wi
oscillators have been extensively studied by Kopell and Bhis kind of algorithm is the possibility to converge to a
mentrout and their colleagues [25], [27], [28], [29], [3Dore local optimum of the function, rather than to the global one;
generally, the behavior of networks of phase oscillatora ishowever, systematical tests with the snake robot show hieat t
large field of study since the pioneering work of Winfree angpeed functionv(Z) is rather smooth with typically a single
Kuramoto. See for instance [31], [32], [33], [34], [35], [36 global optima for a given frequency. A brief description loét
Unlike our model, most of these models do not have the ampdilgorithm, inspired from the one found in [40], follows.
tude as a state variable (it is typically a constant). Asudised a) One dimensional optimizatioriThe goal of function
in Section I, the closest model used to control a robot is tltimization is to findxz such thatf(z) is the highest or
one developed by Conradt and Varshavskaya [23]. Compaledest value in a finite neighborhood. From now on we
to previous neural network models that we developed of tfigst consider the problem of function minimization. Note
lamprey CPG [37], [38], the model in this article is simplethat function maximization is trivially related becauseist
(much fewer state variables) and therefore better suited fquivalent to a minimization-f(x). The main idea of one-
being programmed on a microcontroller on board of the robatimensional function optimization is to bracket the minimu
while keeping the essential features of lamprey travelliage with three pointsa < b < ¢ such thatf(b) is less than
generation. both f(a) and f(c). In this case and iff is nonsingular,f

must have a minimum betweenand c. Now suppose that a
V. SIMULATION new pointz is chosen betweeh andec. If f(b) < f(z), the

In order to test our approach more systematically and finimum is bracketed by the triplét, b, ). In the other case
allow easier adjustments of the environment (e.g., vaiati ' /() < f(b), the new bracketing points afé x, ¢). In both
of the slope) a simulated model of the robot has been creaf@F€S: the bracketing interval decreases and the funalae v
with Webots [39]. It is controlled by the same CPG of thQf th.e middle _pomt is the minimum found so far. Brackgtmg_
real robot (with the exception that it is implemented on a PEONtinues until the distance between the two outer points is
using standard floating point arithmetics) and has the saffierably small [40]. The challenge is finding the best siggt
mechanical and physical properties of the real robot. TH@ Choosing the new point in the bracketing interval at each
wheels are modelled with asymmetric friction (simulatedhwi 't€ration. The Powell's algorithm is based on Brent's mettho

a simplification of the Coulomb friction model): yvhich is a combination of golden section search and paraboli
interpolation [41], [40].
F, = —u,-Fn- ”Tf‘ b) Multi-dimensional optimizationConsider a line de-
B = —p-Fn- ﬂ ©)  fined by a starting poinP and a directior in N-dimensional

v space. Itis possible to find the minimum of a multidimensiona
where F'; and F) are the friction forces perpendicularfynction f on this line using a one-dimensional optimization
and parallel to the main axis of each elemefily is the a|gorithm [40] (e.g., Brent's method, see above). Directet
normal force due to gravity,, andy are (dynamic) friction methods for multidimensional function minimization cestsi
coefficients, and, andv; are the perpendicular and parallebf sequences of such line minimizations. The methods differ
components of the velocity' of the center of mass of thepy the strategies in choosing a new direction for the next lin
element. The used friction coefficients are = 1.0 and mjnimization at each stage. Powell's method starts with the
py = 0.05. This friction model is only a first approximationynit vectorses, e, ..., ex of the N-dimensional search space
of the dynamics of the passive wheels, and although thg 3 set of directions. One iteration of the algorithm ddes
simulation is giving maximal speeds similar to the onege minimizations along thé/ directions in the set. After each
obtained with the real robot, the underlying parameters aggration, Powell’s method checks if it is beneficial to e

often quite different (see figures 8 and 11). one of the directions in the set hy = P, — Py whereP,
was the starting point at the current iteration dhg the new
VI. OPTIMIZATION ALGORITHM point after theN line minimizations. For most problems, this

The function we want to optimize is the locomotion speesignificantly increases the speed of convergence compared t
v(Z) of the robot, wherer is the parameter vector containingusing the original unit vectors. The mechanisms for degdin
the parameters to be optimized (oscillation amplitudeotal whether or not to include the new directian after each
phase lagb = NA¢ and amplitude gaimyv;). The value of iteration and which direction in the set should be replaced
the function for a given set of parameters can be autombticaire described in [41], [40]. Note that there is no learning
estimated using the video tracking system (the paramétersate; the algorithm simply always goes to the optimum in the
can be sent to the robot using a TCP/IP gateway, see belomgxt direction. The Powell's method has two open parameters

As the convergence time is critical in this context (onlinge., the stopping thresholds of the one dimensional antef t
optimization of locomotion parameters), methods reqgidn multi-dimensional optimizations.
large number of function evaluations (e.g., genetic athors)
have to be avoided. Moreover, we do not have any gradient VII. RESULTS
information for v(Z), and are therefore limited to gradient- Several optimization experiments, both with the real snake
free methods. The algorithm we chose is Powell's methodbot and in simulation, have been done, using two fixed fre-
[40], which is an heuristic optimization algorithm that idly quenciesy = 0.4 Hz andv = 1.0 Hz. The frequency has not



Fig. 7. The robot crawling a®l = 53°, & = 1.24, v = 1.0 Hz anda; = 0.90. The time step between the snapshots is 0.12 s. Videos obtiw are
available athtt p: // bi rg. epfl . ch/ anphi bot .
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Fig. 8. Results of the optimization for crawling. The datanirthe systematic tests with; = 1.0 are plotted in the background, and the evaluations done
by five runs of the optimization algorithm are representedhgysmall dots (thex; dimension is not visible in the plot). All the speeds are irsnfhe speed
indicated in the caption inside the plot is the highest spe®dined with optimization.

been included in the optimized parameters as the systemdtie beginning after a manual repositioning of the robot. The
tests showed a direct dependence of the speed on the frgguemtimization has been run five times, starting from a point at
[42], [3]. The optimization has been done with the real robdhe center of the parameter spack £ 30°, & = 0.75 and

for crawling on a horizontal plane and for swimming, and; = 0.5). For comparison, systematic tests have been done
with the simulator for crawling on a horizontal plane andor the same frequencies, with a fixed value @of = 1.0,

on a slope (ascending and descending). All the experimeataplitudes betweem0° and 60° (with a step of10°) and a
with the real robot have been repeated five times. Note thatttdal phase lag between 0.25 and 1.50 (with a step of 0.25).

keep them tractable, all the systematic tests have been don_(lah | lotted in fi 8 Fore 0.4 Hz. the fi
with a fixed value ofa; = 1.0 (and thus in a 2D space, for e results are plotted in figure 8. For= 0.4 Hz, the five

a given frequency), while the optimization experiments afgﬁgrer?t P?pt|m|zat|on runs converlge(l: Mc;sl(l)gr(gly_élfént
carried in a 3D spaced, ®, anda;). The comparison of the OPtima: the average parameter valuesare 52.3%, ¢ = 0.87

optimization with the systematic tests permits a validatd andoy = 0'70’. with an average speed ?j 0.178 m/s (0.231
the optimization algorithm. BL/s) for the first optimum, andd = 52.3°, & = 1.05 and

a1 = 0.50, with an average speed of 0.169 m/s (0.220 BL/s)
L ] for the second optimum. The maximal speed obtained during
A. Optimization of crawling (real robot) systematic tests was 0.201 m/s (0.261 BL/s). The reason for
The parametersl, ® = NA¢ anda; have been optimized the slightly lower quality of the optima found by Powell's
at fixed frequencies af = 0.4 Hz andv = 1.0 Hz, on a hori- algorithm (and for the fact that different optima were found
zontal linoleum experimental surface. The speed functias wis likely due to variations in the estimation of the speed &nd
evaluated automatically, using the video tracking systbyn, our relatively large tolerance parameters of Powell's atm
running the robot for a fixed period of 10 s with the parametewghich stops it a bit prematurely in this case. In practicés th
to be evaluated and then measuring its distance from thaliniis not a problem since the obtained speeds are reasonable. Fo
position. Whenever the robot left the experimental surfaee v = 1.0 Hz, the algorithm converged to a single optimal result
when it was not anymore visible by the tracking camera), thaving average parameter values®dt= 52.8°, & = 1.24 and
measure was automatically stopped and then restarted fram= 0.81, and an average obtained speed of 0.296 m/s (0.384
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Fig. 10. Results of the optimization for swimmingat= 0.4 Hz andv = 1.0 Hz. The speed indicated in the caption is the highest spetgined during
optimization.

BL/s). This is better than the maximal speed obtained durisgme starting point. Systematic tests have been done for the
systematic tests, which was 0.278 m/s (0.361 BL/s). Thesame frequencies [3], with the same parameter range than for
were always two iterations of the algorithm, with an averaggawling.

of 32.2 evaluations at = 0.4 Hz and of 29.2 evaluations at The results are p|otted in ﬁgure 10. For= 0.4 Hz, the

v = 1.0 Hz. Figure 7 shows snapshots of the optimal crawlingigorithm converged to several distinct optima (havingilsim

gait aty = 1.0 Hz. amplitudes but different values ¢b and «;) with similar
The obtained gaits have a high amplitude for both frequepesylting speeds and an average of 0.132 m/s (0.171 BL/s). Th

cies. The other parameters depend on the frequency, whigdtameter values for the best result are= 42.0°, ® = 0.45

is in agreement with the results obtained during systemaf@d o, = 0.50, with a resulting speed of 0.136 m/s (0.177

tests; the wavelength is shorter (i.€.= NA¢ is larger) for BL/s). The maximal speed obtained during systematic tests

v = 1.0 Hz than forv = 0.4 Hz, anda, increases with the was 0.147 m/s (0.191 BL/s). For = 1.0 Hz, the algorithm

frequency. found four optimal results, all having the same amplitude
(A = 52.9°), but with different values of and a;. The
B. Optimization of swimming (real robot) resulting average speed is 0.220 m/s (0.286 BL/s). The best

The parameters!, ® and«; have been optimized at fixedresult hasd = 1.05 anda; = 0.82, and the obtained speed
frequencies ofr = 0.4 Hz andv = 1.0 Hz, in an aquarium is 0.249 m/s (0.323 BL/s). The average speed obtained with
measuring 2.5 x 0.8 m. The speed function was evaluatét optimization is therefore very similar to the one found
automatica”y’ using the video tracking System, by runnh'@ during SyStematiC tests, which was 0.222 m/s (0288 BL/S)
robot with the parameters to be evaluated and then measurligre was always only one iteration of the algorithm, with
its distance from the point reached after an accelerati@s@han average of 14.4 evaluations at= 0.4 Hz and of 10.4
of 1.50 s. For each measure, the robot was placed at @M@luations at = 1.0 Hz. Figure 9 shows shapshots of the
beginning of the aquarium, and stopped when it reached timal swimming gait.
position threshold (15 cm before the end of the aquarium), orThe parameters of the obtained optimal gaits clearly depend
a maximum run time of 10 s (whichever came first). As foon the frequency. As for crawling, the wavelength is shorter
crawling, the optimization has been run five times, with thehen the frequency is higher; the amplitude increases with



the frequency, and there is only a slight changexef The A =51.5°, & = 0.68 anday = 0.78, and a resulting speed of
fact that all optimal values ofy; are smaller than 1.0 is in 0.117 m/s (0.152 BL/s), slightly higher than the maximal one
accordance with the anguilliform swimming with increasindpund during systematic tests, 0.109 m/s (0.142 BL/s). &her

amplitude observed in animals [43]. always were two iterations of the algorithm, with a total @f 1
evaluations atv = 0.4 Hz and 22 evaluations at= 1.0 Hz.
C. Optimization of simulated crawling Figure 12 shows snapshots of the resulting optimal gait.

We reproduce here in simulation the optimization of crawl- The parameters of the found optima are similar for both fre-

: : : . uencies (with a slightly higher amplitude:at= 0.4 Hz). The
ing done with the real robot. The use of a simulation allow; . o .
I . .. algorithm clearly found waves with higher amplitudes than f
us to test the optimization in environments that are difficu : o
. . crawling on a plane, as it is the case for real snakes [44]. The
to realize (see next subsection). The parametersb and

a1 have been optimized at fixed frequenciesvof 0.4 Hz explanat|on_ is simple: having higher oscillation amplﬂsq
. : k o - means an increase of the number of elements perpendicular
andv = 1.0 Hz, in an environment with friction coefficients

ji. = 1.0 and i = 0.05. For each evaluation, the simulatorto the slope, which therefore reduces the slipping downward

. . - . ; the slope.
was started with the robot in the initial position, and iterage o
speed measured over 20 s after a stabilization time of 10. s.-]l:.he reililtstor a_dooivrlywart(:] slolpé (ih_m ) are p:;)ttted
The starting from was at the center of the parameter spé@e'gure - oy = 0.4 Hz, Ine algorithm converged 1o an

o . optimum with A = 0.2°, ® = 1.31 anda; = 0.18, with a
(A = 30° ® = 0.75 anda; = 0.5). Systematic tests have . .
been done for the same flrequencies, with a fixed value %Reed of 118.7 m/s (154.2 BL/s). The maximal speed obtained

a1 = 1.0, amplitudes between0° and 60° (with a step of with systematic tests is 95.3 m/s (123.8 BL/s). kot 1.0 Hz,

10°) and a total phase lag between 0.25 and 1.50 (with a s%'ﬁ algorithm found optimal parameter _values/bf: 0.3
of 0.25), = 1.41 anda; = 0.11, and a resulting speed of 118.7

m/s (154.2 BL/s), whereas the maximal one found during
systematic tests is 100.6 m/s (130.6 BL/s). There always wer

algorithm converged to an optimum with= 37.4°, & = 0.45 . ) . ) .
anda; — 0.82, with a speed of 0.207 m/s (0.269 BL/s). Théwo iterations of the algorithm, with a total of 17 evaluatso
' t v = 0.4 Hz and 22 evaluations at= 1.0 Hz.

maximal speed obtained during systematic tests was s;]igh% he obtained d learlv physicall listi d
higher, 0.222 m/s (0.288 BL/s). For= 1.0 Hz, the algorithm The obtained speeds are clearly physically unrealistic an

found optimal parameter values df = 41.5°, ® = 0.56 and are caused by the simplicity of the physical model that da¢s n

ay = 0.45, and a resulting speed of 0.401 m/s (0.521 BL/s nclude velocity-dependent friction terms. The optimaltga
slightly IO\,/ver than the maximal one found with systemati%’re very similar for both frequencies, and can be summarized

tests, which was 0.415 m/s (0.539 BL/s). There was alwa?gnhc?vmg trr]‘e r?bOt a_?hgtraight as p_ossible(??fd Iettir;gely‘ri
only one iteration of the algorithm, with 9 evaluationsvat 0 fowndtfe S|9Pg_- 'S strategy Is very difierent from the
0.4 Hz and 14 evaluations at= 1.0 Hz. one found for cimbing.
The amplitude and wavelength of the optimum are similar

for the two frequencies, and only tlke parameter decreases VIIl. DISCUSSION AND CONCLUSION
with the freque.ncy. T.h's is a clear difference pompareq o This work has shown that the fastest gaits are considerably
the results obtained with the real robot: the obtained makim,. : ; .

: I ifferent from one medium to the other. For instance, cnagvli
speeds are higher than the real ones, and the position of the

optima in the systematical tests is clearly different. Thisstly up a .slope requires unduIaupns with large ampllt.udes,e/vhll
o o7 R rawling down a slope requires very small amplitudes. And
owes to the used friction model, which is too simplified angl

. . Slow swimming requires shorter phase lags than slow crgwlin
needs to be improved in the future to better model the passive dependence on the environment is in agreement with
wheels’ dynamics.

observations made by others [44]. In agreement with our
previous studies [42], [3], frequency is the parameter whos
D. Optimization of simulated crawling on a slope influence on the speed of locomotion is the simplest: with
The movement of a snake on a slope has different paranadl- other parameters fixed (i.e., amplitude, phase lag, and
ters than on a flat ground [44], and it is clearly expected thamplitude gain), increasing the frequency generally leads
this will be also the case for a snake robot. an increase of speed (in the range tested). This makes the
The parameterst, ® and a; have been optimized in thefrequency a useful control parameter. But one should notice
same way of the simulated crawling, using an environment iiat the optimal gaits change with the frequency. It is tferee
which the ground was rotated of a given angleSystematic important to adapt all parameters when the frequency is
tests have also been done with the same parameter rangechanged. Another important observation is that the optima
The results fod = 15° (where a positive angle means thatre peaked. For a given medium and a given frequency, the
the robot climbs on the slope) are plotted in figure 13. Fepeed of locomotion drops rapidly when the parameters are
v = 0.4 Hz, the algorithm converged to an optimum withchanged compared to their optimal values. In other words,
A =574° ® = 0.69 anda; = 0.70, with a speed of 0.054 two seemingly very similar gaits might result in dramatigal
m/s (0.070 BL/s), which is very similar to the maximal speedifferent speeds of locomotion.
obtained with systematic tests, 0.055 m/s (0.071 BL/s). ForAll these observations confirm the importance to finely
v = 1.0 Hz, the algorithm found optimal parameter values aidapt gaits to the environment. There is not a single gait

The results are plotted in figure 11. For= 0.4 Hz, the
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Fig. 11. Results of the optimization for simulated crawlasig’ = 0.4 Hz andv = 1.0 Hz. The speed indicated in the caption is the highest spetinell
during optimization.

Fig. 12. The simulated robot crawling on a sloge= 15°) at A = 51°, ® = 0.68, v = 1.0 Hz anda; = 0.78. The time step between the snapshots is
0.12 s.

which performs satisfactorily in all conditions, and a rotimt the function, whereas the Powell's method can obtain simila
would rely on a single gait for various environments wouldesults with an order of magnitude less evaluations (batwee
be strongly suboptimal for most conditions. These emdirich and 37 during the described experiments). In preliminary
tests with our robot have therefore confirmed the necess#tfyidies, it has also be found to be one or two orders of
of designing online optimization methods for snake robotmagnitude faster than alternative methods such as genetic
Note that in this article, we essentially explored variati@f algorithms [45]. An analysis of the results shows that there
a single type of gait (serpentine crawling). Real snakegbéixh is clearly space for improvements: particulary, the stogpi

a larger variety of gaits such as side-winding, concertamal conditions of the one dimensional optimization and of the
others [44], which our simple planar robot cannot perform. Powell’s algorithm itself have to be carefully calibrated,
order to minimize the number of evaluations needed and to
" avoid stopping the algorithm too early (or too late), as it
at least two_chara_cterlstlcs: (1) to allow parame_ters to_ ems to have been the case during some of the experiments.
changed online —i.e. to have a control mechanism whi mpared to related work on learning (e.g. [46], [47]), our
smoothly adapts to parametgr changes and does not nSBBroach is very empirical and is fast enough to learn gaits
Fo be reset bereen evgluahons— and (2) to be fa}s@ _directly on the robot without requiring a simulator or a mbde

in order to avoid excessive wear and tear, and pmh'b't'\ﬁs mentioned in the introduction, we believe this empirical

testing duratloqs. The. resultg pres_ented here ShO_W that c-M)roach is the only viable for many situations, for ins&anc
control mechanism satisfactorily fulfills the two requirents. for complex terrains that cannot be modelled or simulated
The CPG is a useful building block that is well-suited foﬁccurately enough

optimizing the locomotion and modulating it (e.g., adagtin

the speed and the direction, see [3]), and for optimizingtie In previous work [3], we used results from systematic
Powell's method proved to be a useful algorithm for rapidlgearches to design interface functions to maintain an @btim
finding the optimal parameters of the CPG in a given envirogait for a given frequency. Frequency is used as the control
ment. It is significantly faster than doing extensive systten parameter that monotonously adjusts speed, and the ic¢erfa
evaluations of the robot speed on the parameter space. feorctions adjust the other parameters (amplitude and phase
instance, a systematic exploration of the three-dimemsiohag) by linearly interpolating between the optimal valuesrid
parameter space considered during our experiments, wittwiih the systematic search. Two interface functions, orre fo
steps for each parameter, would require 216 evaluationslae€omotion on a wooden floor and one for locomotion in

Any method for doing online optimization requires to fulfill
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Fig. 14. Results of the optimization for simulated crawlioig a slope § = —15°).

water, were designed. A human operator could thus eadiliture. First the robot will be modified such as to be capable
control the speed (and direction) of locomotion by adjugstinof estimating its speed independently of any external devic
the frequency (and the asymmetry of amplitudes), witho(.g., by doing odometry with a passive wheel, using an aptic
having to worry about the other control parameters. This mouse sensor, integrating signals from accelerometedgoilan
done transparently for the human operator, except for theeasuring the optical flow of a camera), and of running
switch between functions for different environments. the optimization algorithm on board instead of on the off-

This work extends the previous results by allowing to fingoard PC. The current setup with an external camera and
optimal interface functions for a given environment mucRC was used because it was readily available. Second, it
faster. There are two interesting outcomes: (1) It is musk lewould be useful to find ways to allow the robot to discover
tedious to create a database of interface functions foriatyar itS €nvironment by itself, for instance to distinguish beéen
of environments. This database can be used by the hun¥ger and ground, to estimate the slope, the friction of the
operator to rapidly switch between different locomotiondes Surface, etc. This could be done with the addition of sensors
(ideally this decision should be made by the robot itselg s@nd/or by measuring the response to predefined movements.
below). (2) The optimization is fast enough to be run durin@/ith that information available, we could build some simple
operation time for novel environments. For instance, if tHeeuristics to re-use previously learned gaits: e.g. to yjaer
robot is brought to a new terrain for a specific mission (e.glatabase with previously optimized gaits for parametess$ th
search and rescue), and one notices that locomotion is si&itch the estimated terrain, and to only run the optimizatio
the operator could rapidly run the optimization processe Trlgorithm if the current environment seems too differentrir
optimization takes in average 20 evaluations (i.e., leas th Previous ones or if the speed seems suboptimal compared to
minutes), which seems acceptable for finding a good gait. the previous situation. Finally, it would be interestingaaply

This work will be extended in several directions in théhe online optimization method to deal with real (or simett



mechanical damage, e.g. to find new gaits that allow forward
motion despite some mechanical failures (e.g., one or akver
modules that are blocked). The optimization algorithm doul 4
be started after an unexpected drop in forward speed, and
should in principle lead to modified gaits adapted to the new?!
situation.

(3]
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APPENDIX (6]

The limit cycle of the CPG is determined by the time
evolution of the amplitude and phase variables. We here show
the particular case of two oscillators coupled bi-direatilly
with coupling weightsw,;; = we; = w and phase biases

P12 = —Po1 = A¢:

(8]
9.1 = 271'1/1 —+w sin(92 - 91 — Agf))
'ifl = CL(%(Rl —Tl) —7;1) (7) [9]
0 = 27w 4w sin(91 — 0y + A¢)
f;g = a(%(Rg —7‘2) —7;2)

[10]
It is easy to demonstrate that the state variableandr,
asymptotically converge t&; and R,, respectively, from any
initial condition. Indeed, the variablds;, ;] have[R;,0] as
single stable fixed point. Since we are interested in deténmi
whether these two oscillators will synchronize (i.e., &eol
with a constant phase difference), and, if yes, with whighy

phase difference, it is useful to introduce the phase diffee
1) = 6 — 01. The time evolution of the phase difference is
determined by [13]

b= f() =0y — by = 21(1n — 1) — 2wsin(y — Ag) (8)

If the oscillators synchronize, they will do so at the fixec[il4]
points., (i.e., points wheref (1) = 0):

[11]

[15]
()

In our case we have; = v, = v, and this equation has[
a single solutiory,, = A¢. This solution is asymptotically
stable becauséf(1.)/0% < 0. The outputs of the oscilla-
tors therefore asymptotically converge to oscillationast thre
phase-locked with a phase differencefo$: x5°(t) = R1(1+
cos(27mut + ¢p)) andxs° (t) = Ra(1 + cos(2mvt + Ag + ¢p)) 18]
whereg, is a constant that depends on initial conditions. Since
the complete CPG is made of multiple bi-directionally caapl [19)
oscillators and that all parameteps; are consistent (i.e., the
sums of the parameters;; are equal to a multiple of 2 20
on any closed path between oscillators), the same reasomné
can be recursively applied to demonstrate convergenceeof th
complete CPG. Note that more in-depth analysis of networkd!
of phase oscillators can be found in [32], [25], [27], [289],
[30].

Voo = arcsin(iw(y2 — Ul)) + Ao
w 16]

[17]
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