
1

Online optimization of swimming and crawling in
an amphibious snake robot

Alessandro Crespi and Auke Jan Ijspeert

Abstract—An important problem in the control of locomotion
of robots with multiple degrees of freedom (e.g., biomimetic
robots) is to adapt the locomotor patterns to the propertiesof the
environment. This article addresses this problem for the locomo-
tion of an amphibious snake robot, and aims at identifying fast
swimming and crawling gaits for a variety of environments. Our
approach uses a locomotion controller based on the biological
concept of central pattern generators (CPGs) together witha
gradient-free optimization method, Powell’s method. A keyaspect
of our approach is that the gaits are optimized online, i.e. while
moving, rather than as an off-line optimization process.

We present various experiments with the real robot and
in simulation: swimming, crawling on horizontal ground, and
crawling on slopes. For each of these different situations,the
optimized gaits are compared with the results of systematic
explorations of the parameter space. The main outcomes of the
experiments are (1) optimal gaits are significantly different from
one medium to the other, (2) the optimums are usually peaked,
i.e. speed rapidly becomes suboptimal when the parameters
are moved away from the optimal values, (3) our approach
finds optimal gaits in much fewer iterations than the systematic
search, and (4) the CPG has no problem dealing with the
abrupt parameter changes during the optimization process.The
relevance for robotic locomotion control is discussed.

Index Terms—Amphibious snake robot, locomotion control,
online optimization, swimming, serpentine crawling

I. I NTRODUCTION

BOTH animals and biomimetic robots (or, more generally,
robots with multiple degrees of freedom) face a complex

problem when adapting their locomotion to their environment.
Indeed, animals and robots must generally carefully adapt
their gaits depending on multiple criteria: whether the ground
is soft or hard, slippery or sticky, flat or uneven, horizontal
or with a slope. In some cases the environment may even
dramatically change between ground, water, and/or air, and
locomotion must be adapted to the corresponding physics. In
this article, we address the problem of adaptive locomotion
with an amphibious snake robot. This problem is very relevant
for such a robot because of the tight interaction with the
environment: indeed it has multiple contact points with the
ground when crawling, and complex interaction with the water
when swimming.

We propose a framework for learning locomotion controllers
based on two components: a central pattern generator and a
gradient-free optimization algorithm: Powell’s method. Our
approach is inspired by a control mechanism that nature

A. Crespi and A.J. Ijspeert are with the Biologically Inspired Robotics
Group, Faculty of Computer and Communication Sciences, Ecole Poly-
technique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. (e-mails:
{alessandro.crespi,auke.ijspeert}@epfl.ch)

has found to deal with the redundancies in animal bodies
and the requirement to easily modulate locomotion: central
pattern generators. Central pattern generators (CPGs) areneu-
ral networks capable of producing coordinated patterns of
rhythmic activity without any rhythmic inputs from sensory
feedback or from higher control centers [1]. Even completely
isolated CPGs in a Petri dish can produce patterns of activ-
ity, called fictive locomotion, that are very similar to intact
locomotion when activated by simple electrical or chemical
stimulation [2]. Typically, varying simple stimulation allows
modulation of both the speed and direction of locomotion.
From a control point of view, CPGs therefore implement some
kind of internal model, i.e. a controller that “knows” which
torques need to be rhythmically applied to obtain a given
speed of locomotion. Interestingly, CPGs combine notions
of stereotypy (steady state locomotion tends to show little
variability) and of flexibility (speed, direction and typesof
gait can continuously be adjusted).

In this article, we implement a CPG model as a system of
coupled amplitude-controlled phase oscillators inspiredfrom
the lamprey’s swimming CPG. The CPG can produce and
modulate the travelling waves necessary for swimming and
serpentine locomotion of the amphibious robot Amphibot II
(figure 1). The CPG has several explicit parameters, which
can be continuously modified, controlling the shape of the
generated gaits. Interesting properties of the CPG include: (1)
it is computationally cheap, (2) it exhibits limit cycle behavior
(temporary perturbations are rapidly forgotten), (3) the limit
cycle behavior has an analytical solution with explicit fre-
quency, amplitude, and phase lag parameters that can be used
as control parameters, and (4) it produces smooth trajectories
even when the control parameters are abruptly changed.

These properties allow us to run an optimization algorithm
in parallel of the locomotion controller and to regularly
update the CPG parameters online, i.e. during locomotion.
The criterion optimized is the forward speed. To maximize
the speed (and also to obtain any locomotion at all), the
parameters of the CPG have to be adapted depending on the
environmental conditions. We demonstrate how a gradient-
free optimization algorithm (the Powell’s method) can be
used to search for the CPG parameters (phase lag, oscillation
amplitude) that produce the maximum speed of the robot for
a given environment. Our goal is to demonstrate that the CPG
implemented as a system of coupled nonlinear oscillators is
an ideal building block for doing online optimization in a
redundant robotic system. Indeed the optimization algorithm
can run in parallel to the CPG and regularly update its
parameters. Despite abrupt parameter changes, the produced

2

Fig. 1. The robot with passive wheels and the tracking LED mounted on it.

trajectories will smoothly converge towards the new limit cycle
after a short transient period. This means that the robot does
not need to be stopped or reset between iterations.

This article extends a previous conference article [3] that
presents the CPG model and its interactive control with a
human-in-the-loop. This work is also related to CPG models
used to control a fish [4] and a salamander-like robot [5] that
we constructed using the same hardware modules. The novelty
here is the online learning and the adaptation to different
terrains (different grounds, different slopes) and environments
(ground and water). This possibility to doonlineoptimization,
i.e. learning while moving, is one of the main contributionsof
this article. Being able to learn gaits online, as opposed todo
offline optimization with a model or a simulator for instance,
is of great importance for biomimetic robotics. Indeed it might
be one of the only solutions to tackle the problem of adapting
gaits to complex, possibly unknown, environments. Keeping
a realistic and up-to-date model of the interaction forces
with such environments might be impossible or not accurate
enough to allow alternative (e.g., model-based), approaches
(see below).

In the rest of the article, we will first review related work
(section II). We will then describe the snake robot AmphibotII
(section III), the central pattern generator model (section IV),
and the simulated robot model (section V). We then present
the results obtained with the optimization experiments with the
real and simulated robots (section VII). Finally, a discussion
of the results is presented in section VIII.

II. RELATED WORK

A considerable number of snake-like robots has been con-
structed. Most of them were designed for use on ground [6],
[7], [8], [9], [10], a few were designed for swimming [11],
[12]; only a small minority of them has the capability to be
amphibious [13], [14]. Their control architecture can roughly
be divided into three categories: sine-based, model-based, and
CPG-based.

Sine-based approaches use simple time-indexed sine-based
functions for generating travelling waves (see for instance [8],
[10]). The advantages of such an approach are its simplicity
and the fact that important quantities such as frequency, am-
plitude and wavelength are explicitly defined. A disadvantage
is that online modifications of the parameters of the sine
function (e.g., the amplitude or the frequency) will lead to
discontinuous jumps of setpoints, which will generate jerky

movements, risking damages of the motors and gearboxes.
This problem can to some extent be overcome by filtering the
parameter and/or the outputs but the approach then loses its
simplicity. Another disadvantage is that sine-based functions
do not offer simple ways of integrating sensory feedback
signals. In this article, we will argue that a simple CPG
model can combine, without much computational costs, the
simplicity of time-indexed sine-based functions with additional
interesting properties related to numerical integration of a
system of differential equations.

Model-based approaches use kinematic ([15], [16]) or dy-
namic ([17], [18], [19], [20]) models of the robot to de-
sign control laws for gait generation. The control laws are
sometimes based on sine-based functions as above (e.g. [15],
[20]), but the model-based approaches offer a way to identify
fastest gaits for a given robot by using kinematic constraints
or approximations of the equations of motion, for instance.
Model-based approaches are therefore very useful for helping
to design controllers but have two limitations. First, the per-
formance of controllers will deteriorate when models become
inaccurate, which is rapidly the case for interaction forces with
a complex environment (e.g., friction with uneven ground).
Second, the resulting controllers are not always suited for
interactive modulation by a human operator.

CPG-based approaches use dynamical systems, e.g. systems
of coupled nonlinear oscillators or recurrent neural networks,
for generating the travelling waves necessary for locomotion
(see for instance [21], [22], [12], [23]). These approachesare
implemented as differential equations integrated over time,
and the goal is to produce the travelling wave as a limit
cycle. If this is the case, the oscillatory patterns are robust
against transient perturbations (i.e., they asymptotically return
to the limit cycle). Furthermore, the limit cycle can usually
be modulated by some parameters which offer the possibility
to smoothly modulate the type of gaits produced. Finally,
CPGs can readily integrate sensory feedback signals in the
differential equations, and show interesting properties such as
entrainment by the mechanical body [24].

However, one difficulty with CPG-based approaches is to
determine how to design the CPG to produce a particular
pattern. Many CPG models do not have explicit parameters
defining quantities such as frequency, amplitude, and wave-
length (for instance, a van der Pol oscillator does not have
explicit frequency and amplitude parameters). This does not
need to be the case. In this article, we use a CPG model
based on amplitude-controlled phase oscillators. An interesting
aspect of this approach is that the limit cycle of the CPG
has a closed form solution, with explicit frequency, amplitude
and wavelength parameters. The approach therefore combines
the elegance and robustness of the CPG approaches with the
simplicity of sine-based approaches. Furthermore, our CPG
model is computationally very light which makes it well suited
to be programmed on a microcontroller on board of the robot.
The implementation of the CPG is inspired from lamprey
models [25]. It is close to the CPG model presented in [23],
but differs in the following aspects: (1) it is made of a double
chain of oscillators, (2) it has differential equations controlling
the amplitudes of each oscillator (not only the phase), and (3)

3

Fig. 2. The salamander (left) and fish (right) robots that have been constructed
using the same elements used for the snake robot described inthis article.

the CPG is used to control not only serpentine crawling but
also swimming.

III. H ARDWARE DESCRIPTION

Our online optimization method is tested with AmphiBot II,
an amphibious snake/lamprey robot capable of swimming
and serpentine crawling. The robot is an improved version
of AmphiBot I [14], a previous amphibious prototype. The
main improvements are the following: we added wireless
communication, onboard trajectory generation, better electron-
ics, stronger motors, and compliant connection elements. The
modules used for Amphibot II were also used to construct
Salamandra robotica, a salamander-like robot [5] and Boxybot,
a fish robot [4] (figure 2).

The AmphiBot II robot has a modular design and is
constructed out of 7 actuated elements and a head element
(which is externally identical to the others). The external
casing of each element consists of two symmetrical parts
molded using lightened polyurethane resin. The elements
are connected using a compliant connection piece fixed to
the output axis. All the output axes are aligned, therefore
producing planar locomotion. To ensure the waterproofing of
the robot, custom O-rings are used.1 The total length of the
robot is 77 cm. The asymmetric friction with the ground,
required to correctly crawl on the ground, is obtained by
fixing a couple of passive wheels to each element. The wheels
are removed for swimming, except for experiments implying
transitions between water and ground. The density of the robot
is slightly lower than 1 kg/m3, so that it floats under the surface
when in water. The battery is placed at the bottom of the
elements to have the center of mass below the vertical center,
therefore ensuring the vertical stability of the robot during both
swimming and crawling.

A. Actuated elements

Each element contains three printed circuits connected with
a flat cable, a DC motor with integrated incremental encoder,

1During extensive swimming tests, air is insufflated inside the robot by a
small pump through a highly flexible silicone tube for maintaining a little
overpressure inside the elements and avoiding leakage.

Battery

Motor

Gearbox

Power circuit

Fig. 3. Internal view of a part of an actuated element. The output axis,
normally inserted at the output of the gearbox, is not shown.

a set of gears and a rechargeable Li-Ion battery. The elements
are thus completely independent from each other.

The motor controller is based on a PIC16F876A microcon-
troller, which runs a PID motor controller developed at the Au-
tonomous Systems Laboratory of the EPFL and is connected
to the I2C bus of the robot. The controller receives feedback
from the motor encoder through a quadrature detector, and
drives the H-bridges powering the motor with a PWM signal.

The electronics (with the exception of the motor) are
powered using 5 V. This voltage is generated from the battery
voltage by the power circuit, using a step-up converter. The
power circuit also features a battery charger (when empty, the
battery can be recharged in approximately one hour) and a
battery protection system which avoids damaging the battery
by discharging it excessively.

A water detector circuit, used internally to detect and
localize any leakage, is placed at the bottom of the element,
and is connected to a LED fixed through the top of the element,
therefore allowing the user to immediately detect the leakage.

The 2.83 W DC motor (Faulhaber 1724 T 003 SR) has a
maximum torque of 4.2 mN·m and drives a gearbox with a
reduction factor of 125. The output axis of the gears is fixed to
the connection piece, which is inserted into the next element.
Six wires are inserted into the axis, and connected to the power
boards of two adjacent elements: two are used for the external
power, two for the I2C bus, one for the power switch and the
last one is reserved for future usage and currently unconnected.

B. Head element

The head element, like the body elements, has three printed
circuits (a power board without all the motor-related circuits,
a controller board, and a water detector). The controller
circuit is based on a PIC18F2580 microcontroller, which is
master on the I2C bus of the robot. It implements the CPG
(described in section IV), and sends out the setpoints to the
motor controllers of each element in real time. The main
microcontroller communicates, using a serial line, with a
PIC16LF876A microcontroller, which controls a nRF905 radio

4

camera

antenna

PC

experimental
surfacerobot

Fig. 4. The video tracking system used for crawling. The setup for swimming
is very similar.

transceiver. The antenna is internal to the element and consists
of a simple λ/4 wire (where λ is the wavelength of the
used frequency). The radio system uses the 868 MHz ISM
band: preliminary experiments showed that a 10 mW signal
(the power transmitted by the nRF905) on this frequency can
penetrate in water up to at least 30 cm (the maximum tested
depth). The more common 2.4 GHz band has not been used
because it is heavily absorbed by the water. The maximal
bandwidth is approximately 50 kbps, largely enough to send
control commands and parameters to the online trajectory
generator.

C. Video tracking

To run an optimization algorithm, we need an estimation of
the performance of the robot (the speed in this article) for a
given set of locomotion parameters. Several solutions to this
problem exist. For simplicity, we chose video tracking in this
article (in future work, we are planning to provide the robot
means to estimate its speed on its own). The tracking system
that has been developed for these experiments is relatively
simple: a bright 48 lm green led having an irradiation angle
of 130◦ and powered by an independent Li-Ion battery is fixed
on the head of robot. The experimental setup is filmed using a
Basler a622f camera connected through a IEEE 1394 interface
to a PC on which a simple tracking program is running. The
whole system is depicted in figure 4.

The tracking program acquires the data from the camera
at 15 fps, with a resolution of 800x600 pixels and a depth
of 8 bits per pixel (grayscale). The used image processing
algorithm is trivial: the coordinates(Sx, Sy) of the LED spot
(in pixels) are calculated as the average coordinates of all
the pixels having a lightness higher than a given threshold
(currently 192). The coordinates are then converted to the
real (homogeneous) coordinates of the robot on the plane
(Rx/Rw, Ry/Rw) using a 2D transformation matrix:





Rx

Ry

Rw



 =





a b c
d e f
g h i



 ·





Sx

Sy

1



 (1)

The coefficientsa, b, ..., i are obtained (for a given place-
ment and orientation of the camera) by solving a linear system:

aPn,x + bPn,y + c− gDn,xPn,x − hDn,xPn,y − iDn,x = 0
dPn,x + ePn,y + f − gDn,yPn,x − hDn,yPn,y − iDn,y = 0

(∀n ∈ [1...4])
(2)

whereD1...D4 are the real coordinates of four reference
points (aligned on two parallel lines), andP1...P4 their coor-
dinates in pixels. The system is currently solved numerically
by writing it into matrix form and using SVD decomposition.

The tracking system includes a TCP/IP server, allowing
the coordinates of the robot (and its visibility status) to be
remotely retrieved in real time.

IV. CENTRAL PATTERN GENERATOR MODEL

Our CPG model is based on a system of amplitude-
controlled phase oscillators. The design of the CPG is loosely
inspired from the neural circuit controlling swimming in the
lamprey [26]: it spontaneously produces travelling waves with
constant phase lags between neighboring segments along the
body, and it is made of multiple oscillators connected as a
double chain. An oscillator in the model corresponds to an
oscillatory center in the lamprey, i.e. a subnetwork of several
thousands of neurons located in one segment of the spinal
cord that is capable of producing oscillations independently
of other centers.

The CPG model is a double chain of oscillators with nearest
neighbor coupling (figure 5). The chain is designed to generate
a travelling wave, from the head to the tail of the robot.
This wave is used to achieve anguilliform swimming in water
and serpentine locomotion on ground. The total number of
oscillators is2N whereN = 7 is the number of actuated joints
in the robot. Actuated joints are numbered 1 toN from head
to tail. Oscillators in the left chain of the CPG are numbered
1 toN and those on the right side are numberedN+1 to 2N
from head to tail.

The CPG is implemented as the following system of2N
coupled oscillators:























θ̇i = 2πνi +
∑

j∈T (i)

wij sin
(

θj − θi − φij

)

r̈i = ai

(

ai

4 (Ri − ri) − ṙi

)

xi = ri

(

1 + cos(θi)
)

(3)

where the state variablesθi and ri represent, respectively,
the phase and the amplitude of theith oscillator, the parameters
νi andRi determine the intrinsic frequency and amplitude, and
ai is a positive constant. The coupling between the oscillators
is defined by the weightswij and the phase biasesφij . An
oscillator i receives inbound couplings from the oscillators
in the discrete setT (i) according to the topology shown in

5

Fig. 5. Structure of the CPG used in the robot.

4 8 12 16 20
−2

−1

0

1

2

3

Time [s]

ν
Φ
A
A
α

x1

x2

x3

x4

x5

x6

x7

1

R

L

Fig. 6. Effect of changing the parameters of the CPG. Top: setpoint signals,
Bottom: control parameters. Initial parameters areAL = AR = 1, ν = 1 Hz,
Φ ≡ N · ∆φ = 1 and α1 = 1.0. At t = 4 s, ν is temporarily changed to
2.0 Hz, at t = 8 s, AL and AR are temporarily changed to 0.5 and 1.5
respectively which leads to a negative offset of the setpoint oscillations. At
t = 12 s, α1 is changed to 0.2 which leads to oscillations of increasing
amplitude from head to tail. Att = 16 s, Φ is set to−1.0 which leads to a
reversal of the direction of the travelling wave.

Figure 5. For instance, oscillator number 2 receives coupling
from oscillators number 1, 3, and 9 (T (2) = [1, 3, 9]). The
variablexi is the rhythmic and positive output signal extracted
out of oscillatori. The first differential equation determines
the time evolution of the phaseθi. It can easily be shown
that two (or more) coupled oscillators will synchronize (i.e.,
oscillate at the same frequency and with a constant phase lag)
if the coupling weightswij are sufficiently large compared to
the differences of intrinsic frequencies (see Appendix). The
phase lag between the oscillators will then depend onφij , wij

and νi. The second differential equation is a second order
linear differential equation that ensures that the amplitude ri
smoothly converges toRi in a critically dampened fashion.

The setpointsϕi, i.e. the desired angles for theN actuated
joints, are obtained by taking the difference between signals

from the left and right oscillators. A standard PD motor
controller is then used to computeτi the voltage (i.e., torque)
applied to the motor:

ϕi = xi − xN+1

τi = Kpei +Kdėi
(4)

whereei = ϕi − ϕ̃i is the tracking error between the desired
anglesϕi and the actual angles̃ϕi measured by the motor
incremental encoders, andKp and Kd are the proportional
and derivative gains.

In order to reflect the symmetries of the robot and to
reduce the number of parameters to optimize, we set several
parameters to the same values. The frequency parameters are
equal for all oscillators, i.e.νi = ν. We also chose the
amplitude parameters on one side of the CPG to be an affine
function of the maximal amplitude on that side:Ri = αi ·AL

for the left side (i = [1, ..., N]) and Ri = αi−N · AR for
the right side (i = [N + 1, ..., 2N]). The αi parameters are
linearly interpolated between the open parameterα1 (head)
andαN = 1.0 (tail). The parameterα1 therefore acts as an
amplitude gain, and allows the CPG to make undulations of
increasing amplitude from head to tail, as it is often seen
during anguilliform swimming. The phase biasesφij are equal
to π between left and right oscillators (i.e., these will oscillate
in anti-phase). The phase biases between neighbor oscillators
are set to∆φ for the descending connections and to−∆φ for
the ascending connections. The parameter∆φ will determine
the phase lag between modules, see below. We usedwij = 4
for all connections andai = 100 for all oscillators. The PD
coefficientsKp andKd are tuned manually for each element
(e.g., elements in middle of the chain require larger gains than
those at the extremities for good trajectory tracking).

With these settings, the CPG asymptotically converges to
a limit cycle that is defined by the following closed form
solution for theith actuated joint (a skeleton of the proof is
given in Appendix):

ϕ∞
i (t) = αi

(

AL−AR +(AL +AR) ·cos(2πν · t+ i∆φ+φ0)
)

(5)
whereφ0 depends on the initial conditions of the system.

This means that the system always stabilizes into a travelling
wave which depends on the five control parametersν, ∆φ,
AL, AR, andα1. Indeed the frequency, phase lag, amplitude
and offset are directly determined byν, ∆φ, αi(AL + AR),
andαi(AL −AR), respectively. It is here useful to introduce
Φ ≡ N∆φ, the total phase lag between head and tail. The
control parameters can be modified online by the optimization
algorithm (or by a human operator) from a control PC using
the wireless connection. The CPG will rapidly adapt to any
parameter change and converge to the modified travelling
wave after a short transient period. An example of how the
CPG reacts to parameter changes can be observed in figure
6: when the parameters are changed, the oscillator smoothly
converges to the new limit cycle, without any discontinuities
in the outputs.

The differential equations are integrated by the microcon-
troller of the head (see section III-B) using the Euler method,
with a time step of 10 ms and using fixed point arithmetics.

6

Note that similar lamprey CPG models based on phase
oscillators have been extensively studied by Kopell and Er-
mentrout and their colleagues [25], [27], [28], [29], [30].More
generally, the behavior of networks of phase oscillators isa
large field of study since the pioneering work of Winfree and
Kuramoto. See for instance [31], [32], [33], [34], [35], [36].
Unlike our model, most of these models do not have the ampli-
tude as a state variable (it is typically a constant). As discussed
in Section II, the closest model used to control a robot is the
one developed by Conradt and Varshavskaya [23]. Compared
to previous neural network models that we developed of the
lamprey CPG [37], [38], the model in this article is simpler
(much fewer state variables) and therefore better suited for
being programmed on a microcontroller on board of the robot,
while keeping the essential features of lamprey travellingwave
generation.

V. SIMULATION

In order to test our approach more systematically and to
allow easier adjustments of the environment (e.g., variations
of the slope) a simulated model of the robot has been created
with Webots [39]. It is controlled by the same CPG of the
real robot (with the exception that it is implemented on a PC
using standard floating point arithmetics) and has the same
mechanical and physical properties of the real robot. The
wheels are modelled with asymmetric friction (simulated with
a simplification of the Coulomb friction model):

F⊥ = −µ⊥ · FN ·
v⊥

|~v|

F‖ = −µ‖ · FN ·
v‖

|~v|

(6)

where F⊥ and F‖ are the friction forces perpendicular
and parallel to the main axis of each element,FN is the
normal force due to gravity,µ⊥ andµ‖ are (dynamic) friction
coefficients, andv⊥ andv‖ are the perpendicular and parallel
components of the velocity~v of the center of mass of the
element. The used friction coefficients areµ⊥ = 1.0 and
µ‖ = 0.05. This friction model is only a first approximation
of the dynamics of the passive wheels, and although the
simulation is giving maximal speeds similar to the ones
obtained with the real robot, the underlying parameters are
often quite different (see figures 8 and 11).

VI. OPTIMIZATION ALGORITHM

The function we want to optimize is the locomotion speed
v(~x) of the robot, where~x is the parameter vector containing
the parameters to be optimized (oscillation amplitudeA, total
phase lagΦ ≡ N∆φ and amplitude gainα1). The value of
the function for a given set of parameters can be automatically
estimated using the video tracking system (the parameters~x
can be sent to the robot using a TCP/IP gateway, see below).

As the convergence time is critical in this context (online
optimization of locomotion parameters), methods requiring a
large number of function evaluations (e.g., genetic algorithms)
have to be avoided. Moreover, we do not have any gradient
information for v(~x), and are therefore limited to gradient-
free methods. The algorithm we chose is Powell’s method
[40], which is an heuristic optimization algorithm that rapidly

converges for smooth functions. The main risk associated with
this kind of algorithm is the possibility to converge to a
local optimum of the function, rather than to the global one;
however, systematical tests with the snake robot show that the
speed functionv(~x) is rather smooth with typically a single
global optima for a given frequency. A brief description of the
algorithm, inspired from the one found in [40], follows.

a) One dimensional optimization:The goal of function
optimization is to findx such thatf(x) is the highest or
lowest value in a finite neighborhood. From now on we
just consider the problem of function minimization. Note
that function maximization is trivially related because itis
equivalent to a minimization−f(x). The main idea of one-
dimensional function optimization is to bracket the minimum
with three pointsa < b < c such thatf(b) is less than
both f(a) and f(c). In this case and iff is nonsingular,f
must have a minimum betweena and c. Now suppose that a
new pointx is chosen betweenb and c. If f(b) < f(x), the
minimum is bracketed by the triplet(a, b, x). In the other case
if f(x) < f(b), the new bracketing points are(b, x, c). In both
cases, the bracketing interval decreases and the function value
of the middle point is the minimum found so far. Bracketing
continues until the distance between the two outer points is
tolerably small [40]. The challenge is finding the best strategy
for choosing the new pointx in the bracketing interval at each
iteration. The Powell’s algorithm is based on Brent’s method,
which is a combination of golden section search and parabolic
interpolation [41], [40].

b) Multi-dimensional optimization:Consider a line de-
fined by a starting pointP and a direction~n in N -dimensional
space. It is possible to find the minimum of a multidimensional
function f on this line using a one-dimensional optimization
algorithm [40] (e.g., Brent’s method, see above). Direction-set
methods for multidimensional function minimization consist
of sequences of such line minimizations. The methods differ
by the strategies in choosing a new direction for the next line
minimization at each stage. Powell’s method starts with the
unit vectorse1, e2, ..., eN of theN -dimensional search space
as a set of directions. One iteration of the algorithm doesN
line minimizations along theN directions in the set. After each
iteration, Powell’s method checks if it is beneficial to replace
one of the directions in the set byvi = P0 − PN whereP0

was the starting point at the current iteration andPN the new
point after theN line minimizations. For most problems, this
significantly increases the speed of convergence compared to
using the original unit vectors. The mechanisms for deciding
whether or not to include the new directionvi after each
iteration and which direction in the set should be replaced
are described in [41], [40]. Note that there is no learning
rate; the algorithm simply always goes to the optimum in the
next direction. The Powell’s method has two open parameters,
i.e., the stopping thresholds of the one dimensional and of the
multi-dimensional optimizations.

VII. R ESULTS

Several optimization experiments, both with the real snake
robot and in simulation, have been done, using two fixed fre-
quencies,ν = 0.4 Hz andν = 1.0 Hz. The frequency has not

7

Fig. 7. The robot crawling atA = 53◦, Φ = 1.24, ν = 1.0 Hz andα1 = 0.90. The time step between the snapshots is 0.12 s. Videos of the robot are
available athttp://birg.epfl.ch/amphibot.

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.181

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.301

0

0.05

0.1

0.15

0.2

0.25

(b) 1.0 Hz

Fig. 8. Results of the optimization for crawling. The data from the systematic tests withα1 = 1.0 are plotted in the background, and the evaluations done
by five runs of the optimization algorithm are represented bythe small dots (theα1 dimension is not visible in the plot). All the speeds are in m/s. The speed
indicated in the caption inside the plot is the highest speedobtained with optimization.

been included in the optimized parameters as the systematic
tests showed a direct dependence of the speed on the frequency
[42], [3]. The optimization has been done with the real robot
for crawling on a horizontal plane and for swimming, and
with the simulator for crawling on a horizontal plane and
on a slope (ascending and descending). All the experiments
with the real robot have been repeated five times. Note that to
keep them tractable, all the systematic tests have been done
with a fixed value ofα1 = 1.0 (and thus in a 2D space, for
a given frequency), while the optimization experiments are
carried in a 3D space (A, Φ, andα1). The comparison of the
optimization with the systematic tests permits a validation of
the optimization algorithm.

A. Optimization of crawling (real robot)

The parametersA, Φ ≡ N∆φ andα1 have been optimized
at fixed frequencies ofν = 0.4 Hz andν = 1.0 Hz, on a hori-
zontal linoleum experimental surface. The speed function was
evaluated automatically, using the video tracking system,by
running the robot for a fixed period of 10 s with the parameters
to be evaluated and then measuring its distance from the initial
position. Whenever the robot left the experimental surface(i.e.,
when it was not anymore visible by the tracking camera), the
measure was automatically stopped and then restarted from

the beginning after a manual repositioning of the robot. The
optimization has been run five times, starting from a point at
the center of the parameter space (A = 30◦, Φ = 0.75 and
α1 = 0.5). For comparison, systematic tests have been done
for the same frequencies, with a fixed value ofα1 = 1.0,
amplitudes between10◦ and 60◦ (with a step of10◦) and a
total phase lag between 0.25 and 1.50 (with a step of 0.25).

The results are plotted in figure 8. Forν = 0.4 Hz, the five
different optimization runs converged to two slightly different
optima: the average parameter values areA = 52.3◦, Φ = 0.87
andα1 = 0.70, with an average speed of 0.178 m/s (0.231
BL/s) for the first optimum, andA = 52.3◦, Φ = 1.05 and
α1 = 0.50, with an average speed of 0.169 m/s (0.220 BL/s)
for the second optimum. The maximal speed obtained during
systematic tests was 0.201 m/s (0.261 BL/s). The reason for
the slightly lower quality of the optima found by Powell’s
algorithm (and for the fact that different optima were found)
is likely due to variations in the estimation of the speed andto
our relatively large tolerance parameters of Powell’s algorithm
which stops it a bit prematurely in this case. In practice, this
is not a problem since the obtained speeds are reasonable. For
ν = 1.0 Hz, the algorithm converged to a single optimal result
having average parameter values ofA = 52.8◦, Φ = 1.24 and
α1 = 0.81, and an average obtained speed of 0.296 m/s (0.384

8

Fig. 9. The robot swimming atA = 53◦, Φ = 1.05, ν = 1.0 Hz andα1 = 0.82. The time step between the snapshots is 0.12 s. Videos of the robot are
available athttp://birg.epfl.ch/amphibot.

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.136

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.249

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) 1.0 Hz

Fig. 10. Results of the optimization for swimming atν = 0.4 Hz andν = 1.0 Hz. The speed indicated in the caption is the highest speed obtained during
optimization.

BL/s). This is better than the maximal speed obtained during
systematic tests, which was 0.278 m/s (0.361 BL/s). There
were always two iterations of the algorithm, with an average
of 32.2 evaluations atν = 0.4 Hz and of 29.2 evaluations at
ν = 1.0 Hz. Figure 7 shows snapshots of the optimal crawling
gait atν = 1.0 Hz.

The obtained gaits have a high amplitude for both frequen-
cies. The other parameters depend on the frequency, which
is in agreement with the results obtained during systematic
tests; the wavelength is shorter (i.e.,Φ ≡ N∆φ is larger) for
ν = 1.0 Hz than forν = 0.4 Hz, andα1 increases with the
frequency.

B. Optimization of swimming (real robot)

The parametersA, Φ andα1 have been optimized at fixed
frequencies ofν = 0.4 Hz andν = 1.0 Hz, in an aquarium
measuring 2.5 x 0.8 m. The speed function was evaluated
automatically, using the video tracking system, by runningthe
robot with the parameters to be evaluated and then measuring
its distance from the point reached after an acceleration phase
of 1.50 s. For each measure, the robot was placed at the
beginning of the aquarium, and stopped when it reached the
position threshold (15 cm before the end of the aquarium), or
a maximum run time of 10 s (whichever came first). As for
crawling, the optimization has been run five times, with the

same starting point. Systematic tests have been done for the
same frequencies [3], with the same parameter range than for
crawling.

The results are plotted in figure 10. Forν = 0.4 Hz, the
algorithm converged to several distinct optima (having similar
amplitudes but different values ofΦ and α1) with similar
resulting speeds and an average of 0.132 m/s (0.171 BL/s). The
parameter values for the best result areA = 42.0◦, Φ = 0.45
and α1 = 0.50, with a resulting speed of 0.136 m/s (0.177
BL/s). The maximal speed obtained during systematic tests
was 0.147 m/s (0.191 BL/s). Forν = 1.0 Hz, the algorithm
found four optimal results, all having the same amplitude
(A = 52.9◦), but with different values ofΦ and α1. The
resulting average speed is 0.220 m/s (0.286 BL/s). The best
result hasΦ = 1.05 andα1 = 0.82, and the obtained speed
is 0.249 m/s (0.323 BL/s). The average speed obtained with
the optimization is therefore very similar to the one found
during systematic tests, which was 0.222 m/s (0.288 BL/s).
There was always only one iteration of the algorithm, with
an average of 14.4 evaluations atν = 0.4 Hz and of 10.4
evaluations atν = 1.0 Hz. Figure 9 shows snapshots of the
optimal swimming gait.

The parameters of the obtained optimal gaits clearly depend
on the frequency. As for crawling, the wavelength is shorter
when the frequency is higher; the amplitude increases with

9

the frequency, and there is only a slight change ofα1. The
fact that all optimal values ofα1 are smaller than 1.0 is in
accordance with the anguilliform swimming with increasing
amplitude observed in animals [43].

C. Optimization of simulated crawling

We reproduce here in simulation the optimization of crawl-
ing done with the real robot. The use of a simulation allows
us to test the optimization in environments that are difficult
to realize (see next subsection). The parametersA, Φ and
α1 have been optimized at fixed frequencies ofν = 0.4 Hz
andν = 1.0 Hz, in an environment with friction coefficients
µ⊥ = 1.0 andµ‖ = 0.05. For each evaluation, the simulator
was started with the robot in the initial position, and its average
speed measured over 20 s after a stabilization time of 10 s.
The starting from was at the center of the parameter space
(A = 30◦, Φ = 0.75 andα1 = 0.5). Systematic tests have
been done for the same frequencies, with a fixed value of
α1 = 1.0, amplitudes between10◦ and 60◦ (with a step of
10◦) and a total phase lag between 0.25 and 1.50 (with a step
of 0.25).

The results are plotted in figure 11. Forν = 0.4 Hz, the
algorithm converged to an optimum withA = 37.4◦, Φ = 0.45
andα1 = 0.82, with a speed of 0.207 m/s (0.269 BL/s). The
maximal speed obtained during systematic tests was slightly
higher, 0.222 m/s (0.288 BL/s). Forν = 1.0 Hz, the algorithm
found optimal parameter values ofA = 41.5◦, Φ = 0.56 and
α1 = 0.45, and a resulting speed of 0.401 m/s (0.521 BL/s),
slightly lower than the maximal one found with systematic
tests, which was 0.415 m/s (0.539 BL/s). There was always
only one iteration of the algorithm, with 9 evaluations atν =
0.4 Hz and 14 evaluations atν = 1.0 Hz.

The amplitude and wavelength of the optimum are similar
for the two frequencies, and only theα1 parameter decreases
with the frequency. This is a clear difference compared to
the results obtained with the real robot: the obtained maximal
speeds are higher than the real ones, and the position of the
optima in the systematical tests is clearly different. Thismostly
owes to the used friction model, which is too simplified and
needs to be improved in the future to better model the passive
wheels’ dynamics.

D. Optimization of simulated crawling on a slope

The movement of a snake on a slope has different parame-
ters than on a flat ground [44], and it is clearly expected that
this will be also the case for a snake robot.

The parametersA, Φ andα1 have been optimized in the
same way of the simulated crawling, using an environment in
which the ground was rotated of a given angleθ. Systematic
tests have also been done with the same parameter range.

The results forθ = 15◦ (where a positive angle means that
the robot climbs on the slope) are plotted in figure 13. For
ν = 0.4 Hz, the algorithm converged to an optimum with
A = 57.4◦, Φ = 0.69 andα1 = 0.70, with a speed of 0.054
m/s (0.070 BL/s), which is very similar to the maximal speed
obtained with systematic tests, 0.055 m/s (0.071 BL/s). For
ν = 1.0 Hz, the algorithm found optimal parameter values of

A = 51.5◦, Φ = 0.68 andα1 = 0.78, and a resulting speed of
0.117 m/s (0.152 BL/s), slightly higher than the maximal one
found during systematic tests, 0.109 m/s (0.142 BL/s). There
always were two iterations of the algorithm, with a total of 17
evaluations atν = 0.4 Hz and 22 evaluations atν = 1.0 Hz.
Figure 12 shows snapshots of the resulting optimal gait.

The parameters of the found optima are similar for both fre-
quencies (with a slightly higher amplitude atν = 0.4 Hz). The
algorithm clearly found waves with higher amplitudes than for
crawling on a plane, as it is the case for real snakes [44]. The
explanation is simple: having higher oscillation amplitudes
means an increase of the number of elements perpendicular
to the slope, which therefore reduces the slipping downward
the slope.

The results for a downward slope (θ = −15◦) are plotted
in figure 14. Forν = 0.4 Hz, the algorithm converged to an
optimum withA = 0.2◦, Φ = 1.31 andα1 = 0.18, with a
speed of 118.7 m/s (154.2 BL/s). The maximal speed obtained
with systematic tests is 95.3 m/s (123.8 BL/s). Forν = 1.0 Hz,
the algorithm found optimal parameter values ofA = 0.3◦,
Φ = 1.41 and α1 = 0.11, and a resulting speed of 118.7
m/s (154.2 BL/s), whereas the maximal one found during
systematic tests is 100.6 m/s (130.6 BL/s). There always were
two iterations of the algorithm, with a total of 17 evaluations
at ν = 0.4 Hz and 22 evaluations atν = 1.0 Hz.

The obtained speeds are clearly physically unrealistic and
are caused by the simplicity of the physical model that does not
include velocity-dependent friction terms. The optimal gaits
are very similar for both frequencies, and can be summarized
as having the robot as straight as possible and letting it freely
roll down the slope. This strategy is very different from the
one found for climbing.

VIII. D ISCUSSION AND CONCLUSION

This work has shown that the fastest gaits are considerably
different from one medium to the other. For instance, crawling
up a slope requires undulations with large amplitudes, while
crawling down a slope requires very small amplitudes. And
slow swimming requires shorter phase lags than slow crawling.
This dependence on the environment is in agreement with
observations made by others [44]. In agreement with our
previous studies [42], [3], frequency is the parameter whose
influence on the speed of locomotion is the simplest: with
all other parameters fixed (i.e., amplitude, phase lag, and
amplitude gain), increasing the frequency generally leadsto
an increase of speed (in the range tested). This makes the
frequency a useful control parameter. But one should notice
that the optimal gaits change with the frequency. It is therefore
important to adapt all parameters when the frequency is
changed. Another important observation is that the optima
are peaked. For a given medium and a given frequency, the
speed of locomotion drops rapidly when the parameters are
changed compared to their optimal values. In other words,
two seemingly very similar gaits might result in dramatically
different speeds of locomotion.

All these observations confirm the importance to finely
adapt gaits to the environment. There is not a single gait

10

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.207

0

0.05

0.1

0.15

0.2

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.401

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) 1.0 Hz

Fig. 11. Results of the optimization for simulated crawlingat ν = 0.4 Hz andν = 1.0 Hz. The speed indicated in the caption is the highest speed obtained
during optimization.

Fig. 12. The simulated robot crawling on a slope (θ = 15◦) at A = 51◦, Φ = 0.68, ν = 1.0 Hz andα1 = 0.78. The time step between the snapshots is
0.12 s.

which performs satisfactorily in all conditions, and a robot that
would rely on a single gait for various environments would
be strongly suboptimal for most conditions. These empirical
tests with our robot have therefore confirmed the necessity
of designing online optimization methods for snake robots.
Note that in this article, we essentially explored variations of
a single type of gait (serpentine crawling). Real snakes exhibit
a larger variety of gaits such as side-winding, concertina,and
others [44], which our simple planar robot cannot perform.

Any method for doing online optimization requires to fulfill
at least two characteristics: (1) to allow parameters to be
changed online —i.e. to have a control mechanism which
smoothly adapts to parameter changes and does not need
to be reset between evaluations— and (2) to be fast —
in order to avoid excessive wear and tear, and prohibitive
testing durations. The results presented here show that our
control mechanism satisfactorily fulfills the two requirements.
The CPG is a useful building block that is well-suited for
optimizing the locomotion and modulating it (e.g., adapting
the speed and the direction, see [3]), and for optimizing it.The
Powell’s method proved to be a useful algorithm for rapidly
finding the optimal parameters of the CPG in a given environ-
ment. It is significantly faster than doing extensive systematic
evaluations of the robot speed on the parameter space. For
instance, a systematic exploration of the three-dimensional
parameter space considered during our experiments, with 6
steps for each parameter, would require 216 evaluations of

the function, whereas the Powell’s method can obtain similar
results with an order of magnitude less evaluations (between
6 and 37 during the described experiments). In preliminary
studies, it has also be found to be one or two orders of
magnitude faster than alternative methods such as genetic
algorithms [45]. An analysis of the results shows that there
is clearly space for improvements: particulary, the stopping
conditions of the one dimensional optimization and of the
Powell’s algorithm itself have to be carefully calibrated,in
order to minimize the number of evaluations needed and to
avoid stopping the algorithm too early (or too late), as it
seems to have been the case during some of the experiments.
Compared to related work on learning (e.g. [46], [47]), our
approach is very empirical and is fast enough to learn gaits
directly on the robot without requiring a simulator or a model.
As mentioned in the introduction, we believe this empirical
approach is the only viable for many situations, for instance,
for complex terrains that cannot be modelled or simulated
accurately enough.

In previous work [3], we used results from systematic
searches to design interface functions to maintain an optimal
gait for a given frequency. Frequency is used as the control
parameter that monotonously adjusts speed, and the interface
functions adjust the other parameters (amplitude and phase
lag) by linearly interpolating between the optimal values found
with the systematic search. Two interface functions, one for
locomotion on a wooden floor and one for locomotion in

11

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.054

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

0.117

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b) 1.0 Hz

Fig. 13. Results of the optimization for simulated crawlingon a slope (θ = 15◦).

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

118.749
0

10

20

30

40

50

60

70

80

90

(a) 0.4 Hz

0.25 0.5 0.75 1 1.25 1.5

10

20

30

40

50

60

Φ

O
sc

ill
at

io
n

am
pl

itu
de

 (
°)

118.734

0

10

20

30

40

50

60

70

80

90

100

(b) 1.0 Hz

Fig. 14. Results of the optimization for simulated crawlingon a slope (θ = −15◦).

water, were designed. A human operator could thus easily
control the speed (and direction) of locomotion by adjusting
the frequency (and the asymmetry of amplitudes), without
having to worry about the other control parameters. This is
done transparently for the human operator, except for the
switch between functions for different environments.

This work extends the previous results by allowing to find
optimal interface functions for a given environment much
faster. There are two interesting outcomes: (1) It is much less
tedious to create a database of interface functions for a variety
of environments. This database can be used by the human
operator to rapidly switch between different locomotion modes
(ideally this decision should be made by the robot itself, see
below). (2) The optimization is fast enough to be run during
operation time for novel environments. For instance, if the
robot is brought to a new terrain for a specific mission (e.g.,
search and rescue), and one notices that locomotion is slow,
the operator could rapidly run the optimization process. The
optimization takes in average 20 evaluations (i.e., less than 4
minutes), which seems acceptable for finding a good gait.

This work will be extended in several directions in the

future. First the robot will be modified such as to be capable
of estimating its speed independently of any external device
(e.g., by doing odometry with a passive wheel, using an optical
mouse sensor, integrating signals from accelerometers, and/or
measuring the optical flow of a camera), and of running
the optimization algorithm on board instead of on the off-
board PC. The current setup with an external camera and
PC was used because it was readily available. Second, it
would be useful to find ways to allow the robot to discover
its environment by itself, for instance to distinguish between
water and ground, to estimate the slope, the friction of the
surface, etc. This could be done with the addition of sensors
and/or by measuring the response to predefined movements.
With that information available, we could build some simple
heuristics to re-use previously learned gaits: e.g. to query a
database with previously optimized gaits for parameters that
match the estimated terrain, and to only run the optimization
algorithm if the current environment seems too different from
previous ones or if the speed seems suboptimal compared to
the previous situation. Finally, it would be interesting toapply
the online optimization method to deal with real (or simulated)

12

mechanical damage, e.g. to find new gaits that allow forward
motion despite some mechanical failures (e.g., one or several
modules that are blocked). The optimization algorithm could
be started after an unexpected drop in forward speed, and
should in principle lead to modified gaits adapted to the new
situation.

ACKNOWLEDGMENT

We acknowledge the technical support of André Guignard
and André Badertscher in the design and the construction of
the robot. We thank Francesco Mondada and the Autonomous
Systems Laboratory (ASL) at the EPFL, for their PD motor
controller. This work was made possible thanks to the financial
support from the Swiss National Science Foundation.

APPENDIX

The limit cycle of the CPG is determined by the time
evolution of the amplitude and phase variables. We here show
the particular case of two oscillators coupled bi-directionally
with coupling weightsw12 = w21 = w and phase biases
φ12 = −φ21 = ∆φ:















θ̇1 = 2πν1 + w sin(θ2 − θ1 − ∆φ)
r̈1 = a(a

4 (R1 − r1) − ṙ1)

θ̇2 = 2πν2 + w sin(θ1 − θ2 + ∆φ)
r̈2 = a(a

4 (R2 − r2) − ṙ2)

(7)

It is easy to demonstrate that the state variablesr1 andr2
asymptotically converge toR1 andR2, respectively, from any
initial condition. Indeed, the variables[r1, ṙ1] have[R1, 0] as
single stable fixed point. Since we are interested in determining
whether these two oscillators will synchronize (i.e., evolve
with a constant phase difference), and, if yes, with which
phase difference, it is useful to introduce the phase difference
ψ = θ2 − θ1. The time evolution of the phase difference is
determined by

ψ̇ = f(ψ) = θ̇2 − θ̇1 = 2π(ν2 − ν1) − 2w sin(ψ − ∆φ) (8)

If the oscillators synchronize, they will do so at the fixed
pointsψ∞ (i.e., points wheref(ψ∞) = 0):

ψ∞ = arcsin(
π(ν2 − ν1)

w
) + ∆φ (9)

In our case we haveν1 = ν2 = ν, and this equation has
a single solutionψ∞ = ∆φ. This solution is asymptotically
stable because∂f(ψ∞)/∂ψ < 0. The outputs of the oscilla-
tors therefore asymptotically converge to oscillations that are
phase-locked with a phase difference of∆φ: x∞1 (t) = R1(1+
cos(2πνt+ φ0)) andx∞2 (t) = R2(1 + cos(2πνt+ ∆φ+ φ0))
whereφ0 is a constant that depends on initial conditions. Since
the complete CPG is made of multiple bi-directionally coupled
oscillators and that all parametersφij are consistent (i.e., the
sums of the parametersφij are equal to a multiple of 2π
on any closed path between oscillators), the same reasoning
can be recursively applied to demonstrate convergence of the
complete CPG. Note that more in-depth analysis of networks
of phase oscillators can be found in [32], [25], [27], [28], [29],
[30].

REFERENCES

[1] F. Delcomyn. Neural basis for rhythmic behaviour in animals. Science,
210:492–498, 1980.

[2] S. Grillner. Neural control of vertebrate locomotion – central mech-
anisms and reflex interaction with special reference to the cat. In
W.J.P. Barnes and M.H. Gladden, editors,Feedback and motor control
in invertebrates and vertebrates, pages 35–56. Croom Helm, 1985.

[3] A. J. Ijspeert and A. Crespi. Online trajectory generation in an
amphibious snake robot using a lamprey-like central pattern generator
model. InProceedings of the IEEE International Conference on Robotics
and Automation (ICRA 2007), pages 262–268, 2007.

[4] D. Lachat, A. Crespi, and A.J. Ijspeert. BoxyBot: a swimming and
crawling fish robot controlled by a central pattern generator. In The First
IEEE/RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob 2006), pages 643–648, 2006.

[5] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen. From
swimming to walking with a salamander robot driven by a spinal cord
model. Science, 315(5817):1416–1420, 2007.

[6] G.S. Chirikjian and J.W. Burdick. Design, implementation, and ex-
periments with a thirty-degree-of-freedom ‘hyper-redundant’ robot. In
4th International Symposium on Robotics and Manufacturing(ISRAM
1992), 1992.

[7] B. Klaassen and K.L. Paap. GMD-SNAKE2: A snake-like robot driven
by wheels and a method for motion control. InProceedings of 1999
IEEE International Conference on Robotics and Automation (ICRA
1999), pages 3014–3019, 1999.

[8] G.S.P. Miller. Snake robots for search and rescue. In J. Ayers, J.L.
Davis, and A. Rudolph, editors,Neurotechnology for biomimetic robots.
Bradford/MIT Press, Cambridge London, 2002.

[9] H.R. Choi and S.M. Ryew. Robotic system with active steering
capability for internal inspection of urban gas pipelines.Mechatronics,
12:713–736, 2002.

[10] D.P. Tsakiris, M. Sfakiotakis, A. Menciassi, G. La Spina, and P. Dario.
Polychaete-like undulatory robotic locomotion. InProceedings of the
2005 IEEE International Conference on Robotics and Automation (ICRA
2005), pages 3029–3034, 2005.

[11] K.A. McIsaac and J.P. Ostrowski. A geometric approach to anguilliform
locomotion: Simulation and experiments with an underwatereel-robot.
In Proceedings of 1999 IEEE International Conference on Robotics and
Automation (ICRA 1999), pages 2843–2848, 1999.

[12] C. Wilbur, W. Vorus, Y. Cao, and S.N. Currie. A lamprey-based
undulatory vehicle. In J. Ayers, J.L. Davis, and A. Rudolph,editors,
Neurotechnology for biomimetic robots. Bradford/MIT Press, Cambridge
London, 2002.

[13] H. Yamada, S. Chigisaki, M. Mori, K. Takita, K. Ogami, and Hirose S.
Development of amphibious snake-like robot ACM-R5. InProceedings
of the 36th International Symposium on Robotics (ISR 2005), 2005.

[14] A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert. AmphiBot
I: an amphibious snake-like robot.Robotics and Autonomous Systems,
50–4:163–175, 2005.

[15] J. Ostrowski and J. Burdick. Gait kinematics for a serpentine robot.
In Proceedings of the 1996 IEEE International Conference on Robotics
and Automation (ICRA 1996), pages 1294–1299, 1996.

[16] F. Matsuno and K. Suenaga. Control of redundant 3D snakerobot based
on kinematic model. InProceedings of the 2003 IEEE International
Conference on Robotics and Automation (ICRA 2003), pages 2061–
2066, 2003.

[17] P. Prautsch and T. Mita. Control and analysis of the gaitof snake robots.
In Proceedings of the 1999 IEEE International Conference on Control
Applications, pages 502–507, August 1999.

[18] H. Date, Y. Hoshi, M. Sampei, and N. Shigeki. Locomotioncontrol of
a snake robot with constraint force attenuation. InProceedings of the
American Control Conference, pages 113–118, June 2001.

[19] J. Ute and K. Ono. Fast and efficient locomotion of a snakerobot
based on self-excitation principle. InProceedings of the 7th International
Workshop on Advanced Motion Control, pages 532–539, July 2002.

[20] K. McIsaac and J. Ostrowski. Motion planning for anguilliform
locomotion.IEEE Transactions on Robotics and Automation, 19(4):637–
652, 2003.

[21] Z. Lu, B. Ma, S. Li, and Y. Wang. Serpentine locomotion ofa snake-like
robot controlled by cyclic inhibitory CPG model. InThe Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2005), pages 96–101, 2005.

13

[22] D.P. Tsakiris, M. Sfakiotakis, and A. Vlakidis. Biomimetic centering
for undulatory robots. InThe First IEEE/RAS-EMBS International Con-
ference on Biomedical Robotics and Biomechatronics (BioRob 2006),
pages 744–749, 2006.

[23] J. Conradt and P. Varshavskaya. Distributed central pattern generator
control for a serpentine robot. InProceedings of the 2003 International
Conference on Artificial Neural Networks (ICANN 2003), 2003.

[24] G. Taga. A model of the neuro-musculo-skeletal system for anticipatory
adjustment of human locomotion during obstacle avoidance.Biological
Cybernetics, 78(1):9–17, 1998.

[25] A.H. Cohen, P.J. Holmes, and R. Rand. The nature of coupling between
segmented oscillations and the lamprey spinal generator for locomotion:
a mathematical model.Journal of Mathematical Biology, 13:345–369,
1982.

[26] S. Grillner, T. Degliana,Ö. Ekeberg, A. El Marina, A. Lansner, G.N.
Orlovsky, and P. Wallén. Neural networks that co-ordinatelocomotion
and body orientation in lamprey.Trends in Neuroscience, 18(6):270–
279, 1995.

[27] T. L Williams, K. A. Sigvardt, N. Kopell, G. B. Ermentrout, and
M. P. Rempler. Forcing of coupled nonlinear oscillators: studies of
intersegmental coordination in the lamprey locomotor central pattern
generator.Journal of Neurophysiology, 64:862–871, 1990.

[28] N. Kopell, G.B. Ermentrout, and T.L. Williams. On chains of oscillators
forced at one end.SIAM Journal of Applied Mathematics, 51(5):1397–
1417, 1991.

[29] J. Nishii, Y. Uno, and R. Suzuki. Mathematical models for the swimming
pattern of a lamprey – I. analysis of collective oscillatorswith time-
delayed interaction and multiple coupling.Biological Cybernetics, 72:1–
9, 1994.

[30] K.A. Sigvardt and T.L. Williams. Effects of local oscillator frequency
on intersegmental coordination in the lamprey locomotor CPG: theory
and experiment.Journal of Neurophysiology, 76(6):4094–4103, 1996.

[31] A.T. Winfree. Biological rhythms and the behavior of populations of
coupled oscillators.Journal of Theoretical Biology, 16:15–42, 1967.

[32] Y. Kuramoto. Chemical oscillations, Waves, and Turbulence. Springer
Verlag, 1984.

[33] A.T. Winfree. The geometry of biological time. Springer Verlag, 1990.
[34] Y. Kuramoto. Collective behavior of coupled phase oscillators. In M.A.

Arbib, editor,The handbook of brain theory and neural networks, pages
223–226. MIT Press, 2003.

[35] B. I. Triplett, D. J. Klein, and K. A. Morgansen. Discrete time kuramoto
models with delays. InLecture Notes in Control and Information
Sciences, volume 331, pages 9–23. Springer Verlag, 2006.

[36] R. Sepulchre, D. Paley, and N.E. Leonard. Stabilization of planar
collective motion with limited communication.IEEE Transactions on
Automatic Control, In press.

[37] A.J. Ijspeert, J. Hallam, and D. Willshaw. Evolving swimming con-
trollers for a simulated lamprey with inspiration from neurobiology.
Adaptive Behavior, 7(2):151–172, 1999.

[38] A.J. Ijspeert and J. Kodjabachian. Evolution and development of a
central pattern generator for the swimming of a lamprey.Artificial Life,
5(3):247–269, 1999.

[39] O. Michel. Webots: Professional mobile robot simulation. Journal of
Advanced Robotics Systems, 1(1):39–42, 2004.

[40] W. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery.Numerical
recipes in C: the art of scientific computing, 2nd edition. Cambridge
University Press, 1994.

[41] R. Brent. Algorithms for Minimization without Derivatives. Prentice-
Hall, 1973.

[42] A. Crespi and A.J. Ijspeert. AmphiBot II: An amphibioussnake robot
that crawls and swims using a central pattern generator. InProceedings
of the 9th International Conference on Climbing and WalkingRobots
(CLAWAR 2006), 2006.

[43] G.B. Gillis. Undulatory locomotion in elongate aquatic vertebrates:
Anguilliform swimming since Sir James Gray.American Zoologist,
36:656–665, 1996.

[44] S. Hirose. Biologically Inspired Robots. Snake-like locomotors and
manipulators. Oxford University Press, 1993.

[45] D. Marbach and A.J. Ijspeert. Online optimization of modular robot
locomotion. InProceedings of the IEEE International Conference on
Mechatronics and Automation (ICMA 2005), pages 248–253, 2005.

[46] K. Dowling. Limbless Locomotion: Learning to Crawl with a Snake
Robot. PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, December 1997.

[47] G.M. Kulali, M. Gevher, A.M. Erkmen, and I. Erkmen. Intelligent gait
synthesizer for serpentine robots. InProceedings of the 2002 IEEE

International Conference on Robotics and Automation (ICRA2002),
pages 1513–1518, 2002.

Alessandro Crespi is a postdoctoral researcher at
the Biologically Inspired Robotics Group (BIRG)
at EPFL. He has a BSc/MSc and PhD in computer
science from the EPFL. His research interests are in
the field of biologically inspired amphibious robots.
He is mainly working on the development of the
electronics of the robots, and on the experiments to
characterize their locomotion.

Auke Jan Ijspeert is an assistant professor at the
EPFL (the Swiss Federal Institute of Technology at
Lausanne), and head of the Biologically Inspired
Robotics Group (BIRG). He has a BSc/MSc in
physics from the EPFL, and a PhD in artificial
intelligence from the University of Edinburgh. His
research interests are at the intersection between
robotics, computational neuroscience, nonlinear dy-
namical systems, and applied machine learning. He
is interested in using numerical simulations and
robots to get a better understanding of sensorimotor

coordination in animals, and in using inspiration from biology to design
novel types of robots and adaptive controllers. With his colleagues, he has
received the Best Paper Award at ICRA2002, the Industrial Robot Highly
Commended Award at CLAWAR2005, and the Best Paper Award at the
IEEE-RAS Humanoids 2007 conference. He was the Technical Program
Chair of 5 international conferences (BioADIT2004, SAB2004, AMAM2005,
BioADIT2006, LATSIS2006), and has been a program committeemember of
over 30 conferences.

