
Disassembly Path Planning for Complex Articulated Objects

Juan Cortés, Léonard Jaillet, Thierry Siméon
LAAS-CNRS

7, avenue du Colonel-Roche
31077 Toulouse - France
fax: +33 561 33 64 55

email: {juan.cortes,ljaillet,nic}@laas.fr

Corresponding author : Juan Cortés (juan.cortes@laas.fr)

Abstract:
Sampling-based path planning algorithms are powerful tools for computing constrained disassembly motions. This paper

presents a variant of the RRT algorithm particularly devised for the disassembly of objects with articulated parts. Configuration
parameters generally play two different roles in this type of problems: some of them are essential for the disassembly task,
while others only need to move if they hinder the progress of the disassembly process. The proposed method is based on
such a partition of the configuration parameters. Results show a remarkable performance improvement compared to standard
path planning techniques. The paper also shows practical applications of the presented algorithm in robotics and structural
bioinformatics.

Keywords:
Path planning algorithms, Disassembly paths, Articulated mechanisms, Robotic manipulation, Molecular interactions.

Submitted to IEEE Transactions of Robotics as Short Paper

First submission : 11th September 2007

Reviewed version : 30th November 2007



SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS, VOL. 0, NO. 00, NOVEMBER 2007 1

Disassembly Path Planning for
Complex Articulated Objects

Juan Cortés, Léonard Jaillet, Thierry Siméon

Abstract—Sampling-based path planning algorithms are pow-
erful tools for computing constrained disassembly motions. This
paper presents a variant of the RRT algorithm particularly
devised for the disassembly of objects with articulated parts.
Configuration parameters generally play two different roles
in this type of problems: some of them are essential for the
disassembly task, while others only need to move if they hinder
the progress of the disassembly process. The proposed method
is based on such a partition of the configuration parameters.
Results show a remarkable performance improvement compared
to standard path planning techniques. The paper also shows
practical applications of the presented algorithm in robotics and
structural bioinformatics.

Index Terms—Path planning algorithms, Disassembly paths,
Articulated mechanisms, Robotic manipulation, Molecular inter-
actions.

I. INTRODUCTION

THIS paper1 addresses the problem of automatically com-
puting motions to disassemble objects. The problem

can be formulated as a general path planning problem [2],
[3] (see Section III). Indeed, path planning concepts and
algorithms have been applied to solve different instances of
the (dis)assembly planning problem (see Section II). The
instance treated in this paper considers two objects, with the
particularity that both objects may have multiple articulated
parts. Fig. 1 illustrates a simple two-dimensional example.

The algorithm presented in this paper is a variant of a
sampling-based path planning method: the RRT algorithm
introduced in [4]. Section IV reminds the principle of this
method. Sampling-based path planners are efficient, general
and easy-to-implement methods. The RRT algorithm has been
widely studied and applied to different types of problems in
the last years (see http://msl.cs.uiuc.edu/rrt/ for a
general survey). The particularity of the proposed variant is
to introduce two types of configuration parameters, labeled as
active and passive, and to generate their motion in a decoupled
manner. We call this variant Manhattan-like RRT (ML-RRT)
because the computed paths look like Manhattan paths over
these two sets of parameters that change alternatively. The
ML-RRT algorithm is explained in Section V. The partition
of the configuration parameters into active and passive cor-
responds to their role in the disassembly problem. Active
parameters are essential for the disassembly task, while passive
parameters only need to move if they hinder the progress
of the disassembly process. The ML-RRT algorithm presents
two main advantages with respect to the basic RRT: (1) The

The authors are with the LAAS-CNRS, Université de Toulouse, France.
1A preliminary version of this paper appeared in [1].

Fig. 1. Disassembly path planning problem for two objects with articulated
parts. The problem consists in finding a path to extract the small (red/dark)
object from the big one.

computing time is notably reduced (see results in Section VI).
(2) The passive parts that have to move for finding a solution
path are automatically identified. Thus, the planner is able
to handle models involving hundreds of potential degrees of
freedom, avoiding user intervention to select the important
ones. This feature is particularly interesting for one of the
applications commented in Section VII: the simulation of
molecular interactions. Besides this application in structural
bioinformatics, the ML-RRT algorithm is applicable to more
classic domains involving part disassembly, such as Product
Lifecycle Management (PLM) [5]. Moreover, the algorithm
can be easily extended for integrating the constraints imposed
by the handling device (e.g. a robotic manipulator) that carries
out the disassembly task (see Section VII). Other possible
extensions are outlined in Section VIII.

II. RELATED WORK

Assembly and disassembly planning are important problems
in manufacturing engineering. Many techniques have been de-
veloped in this field for automatically generating (dis)assembly
plans that optimize time, cost, etc. [6], [7]. Most of these
techniques are based on relation graph models of the assembly
or precedence graphs and use graph theory and AI algorithms
for computing disassembly sequences. Geometric reasoning
approaches have been proposed for reducing the combinatorial
complexity of the problem, as well as the amount of informa-
tion that has to be provided by the user. Wilson’s pioneering
work on geometric reasoning about mechanical assembly [8]
introduces the directional blocking graph (DBG), which iden-
tifies which parts collide given an instantaneous displacement
in a given direction, and the non-directed blocking graph



2 SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS, VOL. 0, NO. 00, NOVEMBER 2007

(NDBG), which represents how parts are constraining each
other, based on a partition of the space of allowed motions
and on the associated DBGs. Many subsequent (dis)assembly
sequencing methods have used these two concepts. The ap-
proach presented in [9] generalizes the solutions in [8] to
arbitrary motions between parts. The method involves con-
structing configuration-space diagrams that explicitly represent
interferences between pairs of parts for every relative motion.
A similar approach is developed in [10], based on the concept
of motion space, which is an extension of the notion of
configuration-space, and represents possible motions of sub-
assemblies. More recently, disassembly sequencing planners
have been proposed based on randomized path planning al-
gorithms. Contrarily to the above-mentioned planners, these
methods are not complete, but they are able to treat complex
models thanks to their computational efficiency. The technique
presented in [11] constructs a disassembly tree rooted at
the starting (assembled) configuration using a randomized
diffusion strategy. The sampling of movement directions is
biased using geometric information (e.g. face normals) for
improving performance.

The assembly maintainability study [12] is a variant of the
(dis)assembly problem. Given an assembled system, maintain-
ability studies are conducted to determine if it is possible
to remove a particular part, and if so, to obtain the disas-
sembly path. Normally, such studies involve only one mobile
part, and therefore, “standard” path planning algorithms could
be applied. However, the workspace is usually extremely
constrained in this context, and problem-specific algorithms
are required for efficiently computing disassembly paths. A
fast and effective algorithm for this kind of problems is
presented in [5]. The method is based on an iterative RRT-
like algorithm that reconstructs some parts of the search tree
while progressively increasing the size of the objects.

All the methods above address (dis)assembly problems
involving rigid objects. The method we present in this paper
is well suited for assembly maintainability studies in which
the disassembled objects have articulated parts.

III. PROBLEM FORMULATION

The disassembly path planning problem can be formu-
lated as a general path planning problem for a system with
multiple mobile objects, using the notion of configuration-
space C [13], [2], [3]. A configuration q is a minimal set
of parameters defining the location of the mobile system in
the world, and C is the set of all the configurations. Given
the assembled configuration qinit and a goal configuration
qgoal (any disassembled configuration) the problem consists
in finding a feasible collision-free path in C that connects both
configurations.

The instance studied in this paper considers two objects with
possibly multiple articulated parts. Considering that the spatial
location of one of the objects is fixed, then, the configuration
parameters are those defining the pose of the reference frame
attached to the other (mobile) object plus the degrees of
freedom associated with the articulated parts in both objects.
Thus, the configuration vector is given by: q = {qM ,qJm,qJs},

where qM contains parameters defining the position and the
orientation of the mobile reference frame, and qJm and qJs

represent the joint variables of the articulated parts in the
mobile object and the static object respectively.

In general, the most significant parameters for the disas-
sembly of articulated objects are those concerning the pose
of the mobile object, qM . The parameters associated with
the articulated parts are relatively less important, since they
only need to move if they hinder the progress of the mo-
bile object toward the disassembled configuration. Therefore,
configuration parameters can be separated into two sets:
q = {qact,qpas}, with qact = qM representing the active
parameters, and qpas = {qJm,qJs} the passive parameters.
The terms active and passive have been chosen in relation
to how the algorithm described in Section V acts on them.
This partition induces the corresponding sub-manifolds in the
configuration-space: C = C act×C pas.

Although the above described partition can be generally
adopted, any other partition can be defined by the user.
The mobile parts are separated into two lists Lact and Lpas

containing the active and the passive parts respectively. For
a given partition, qact is the set of configuration parameters
associated with the parts in Lact and qpas is is the set
associated with Lpas.

IV. THE BASIC RRT ALGORITHM

The basic principle of the RRT algorithm [4] is to incremen-
tally grow a random tree τ rooted at the initial configuration
qinit in order to explore the reachable configuration-space and
to find a feasible path connecting qinit to a goal configuration
qgoal. Fig. 2 illustrates the process and Algorithm 1 gives
the pseudo-code for the RRT construction. At each iteration,
the tree is expanded toward a randomly sampled configuration
qrand∈C. This random sample is used to simultaneously deter-
mine the tree node to be expanded and the direction in which
it is expanded. Given a distance metric in the configuration-
space, the nearest node qnear in the tree to the sample qrand is
selected and an attempt is made to expand qnear in the
direction of qrand. For kinematically unconstrained systems,
the expansion procedure can be simply performed by moving
on the straight-line segment between qnear and qrand. If the
expansion succeeds, a new node qnew and a feasible local
path from qnear are generated. The key idea of this expansion
strategy is to bias the exploration toward unexplored regions
of the space. Hence, the probability that a node will be chosen
for an expansion is proportional to the volume of its Voronoi
region (i.e. the set of points closer to this node than to any
other node). Therefore, RRT expansion is biased toward large
Voronoi regions enabling rapid exploration before uniformly
covering the space.

Different strategies can be adopted for the design of RRT-
based path planners [14]. Configuration sampling (function
SampleConf) is normally made using a uniform random
distribution in the configuration-space C. However, more so-
phisticated sampling strategies (e.g. [15], [16]) may improve
the performance of the RRT algorithm. Another technical point
concerns the function BestNeighbor. The basic RRT algo-



CORTÉS et al.: DISASSEMBLY PATH PLANNING FOR COMPLEX ARTICULATED OBJECTS 3

q init q

q rand

near
qnew

feas

C

C

Fig. 2. Illustration of one expansion step of an RRT search tree. The tree
tends to cover Cfeas: the feasible subset of the configuration-space C.

Algorithm 1: Construct RRT

input : the configuration-space C;
the root qinit and the goal qgoal;

output : the tree τ ;
begin

τ ← InitTree(qinit);
while not StopCondition(τ , qgoal) do

qrand ← SampleConf(C);
qnear ← BestNeighbor(τ , qrand);
qnew ← Expand(qnear , qrand);
if not TooSimilar(qnear , qnew) then

AddNewNode(τ , qnew);
AddNewEdge(τ , qnear , qnew);

end

rithm selects qnear as the nearest node to qrand using an Eu-
clidean metric2 in C. Such a metric distance is very simple and
easy to compute. However, since it does not consider motion
constraints (e.g. obstacles, kinematic constraints), it may lead
to a poor performance of the planner, by repeatedly selecting
“exhausted” nodes for futile expansion. To avoid this problem,
two modifications can be introduced in BestNeighbor:
(1) A node is no longer selected after its expansion fails a given
number of consecutive times l. (2) qnear is selected at random
among the k nearest neighbors3. The efficiency of these two
modifications has been shown in related works [18], [19], [20].
One can also choose a more or less greedy strategy for the
expansion procedure (function Expand in Algorithm 1). In
the basic RRT algorithm, a single expansion step of fixed dis-
tance is performed. Here we use the RRT-Connect variant [14],
which iterates the expansion step while feasibility constraints
are satisfied. This variant is in general more efficient than the
single-step version for systems without differential constraints,
which are the type of systems considered in this paper.

2We use a weighted metric for translation and rotation components, with
3D rotations represented by Euler angles. Note however that the use of unit
quaternions will be more appropriate [17].

3In our implementation, l is a constant with default value equal to 10, and
k is computed as nnodes/100 rounded to the nearest upper integer, where
nnodes is the current number of nodes in the tree. These values have been
empirically determined.

Algorithm 2: Construct ML-RRT

input : the configuration-space C;
the root qinit and the goal qgoal;
the partition {Lact, Lpas};

output : the tree τ ;
begin

τ ← InitTree(qinit);
while not StopCondition(τ , qgoal) do

qact
rand ← SampleConf(C, Lact);

qnear ← BestNeighbor(τ , qact
rand, Lact);

(qnew, Lcol
pas) ← Expand(qnear , qact

rand);
if not TooSimilar(qnear , qnew) then

AddNewNode(τ , qnew);
AddNewEdge(τ , qnear , qnew);
qnear ← qnew;

while Lcol
pas 6= ∅ do

qpas
rand←PerturbConf(C, qnear , Lcol

pas);
(qnew, Lcol′

pas ) ← Expand(qnear , qpas
rand);

if not TooSimilar(qnear , qnew) then
AddNewNode(τ , qnew);
AddNewEdge(τ , qnear , qnew);
qnear ← qnew;

Lcol
pas ← Lcol′

pas \ Lcol
pas;

end

V. THE ML-RRT VARIANT

This section presents a variant of the RRT algorithm that
considers the active/passive partition of the configuration
parameters introduced in Section III. The algorithm, called
Manhattan-like RRT (ML-RRT), computes the motion of the
parts associated with both parameter types in a decoupled
manner. Active parameters are directly handled by the planner,
while passive parameters are treated only when required to
expand the tree. Indeed, passive parts only move if they hinder
the motion of other mobile parts (active parts or other passive
parts involved in the expansion).

The ML-RRT algorithm is schematized in Algorithm 2. At
each iteration, the motion of active parts is computed first.
The function SampleConf receives as argument the list of
active parts Lact and it only samples the associated parameters
qact. Thus, this function generates a configuration qact

rand in a
sub-manifold of the configuration-space involving the active
parameters, C act. The function BestNeighbor selects the
node to be expanded qnear using a distance metric in C act.
Note that the function BestNeighbor also integrates the
basic improvements mentioned in Section IV. Then, Expand
performs the expansion of the selected configuration by only
changing the active parameters. A greedy strategy is used.
The returned configuration qnew corresponds to the last valid
point computed along the straight-line segment from qnear

toward {qact
rand,qpas

near}. If the expansion is not negligible, a
new node and a new edge are added to the tree. The function
Expand also analyzes the collision pairs yielding the stop
of the expansion process. If active parts in Lact collide with
potentially mobile passive parts in Lpas, the list of the involved
passive parts Lcol

pas is returned. This information is used in the



4 SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS, VOL. 0, NO. 00, NOVEMBER 2007

second stage of the algorithm, which generates the motion
of passive parts. The function PerturbConf generates a
configuration qpas

rand by randomly sampling the value of the
passive parameters associated with Lcol

pas in a ball around
their configuration in qnear. Note that, if the previous call
to Expand has been successful, qnear has been updated in
order to contain the new configuration of the active parameters.
An attempt is then made to further expand qnear toward
{qact

near,qpas
rand}. Only the parts in Lcol

pas move during this tree
expansion. The function Expand returns a list Lcol′

pas if the
expansion is stopped by a collision involving passive parts.
If this list contains new passive parts (in relation to Lcol

pas),
the process generating passive part motions is iterated. Such a
possible cascade of passive part motions may be useful to solve
problems where passive parts indirectly hinder the motion of
the active ones because they block other passive parts.

Finally, note that although the active and passive parts move
alternately in the path obtained by the ML-RRT algorithm, a
randomized path smoothing post-processing4 is performed in
the composite configuration-space of all the parameters, so
that simultaneous motions are obtained in the final path.

VI. EMPIRICAL PERFORMANCE ANALYSIS

The basic RRT algorithm and the ML-RRT variant have
been implemented into the motion planning software Move3D
[22]. An empirical performance analysis has been carried
out applying both algorithms to several two-dimensional and
three-dimensional academic examples. The first example, 2D-
simple, corresponds to the problem illustrated in Fig. 1. The
second example, 2D-hard, is a more difficult version involving
a longer static object with six mobile sticks (see Fig. 3). The
other two examples, 3D-simple and 3D-hard, correspond to
similar variants of the three-dimensional problem illustrated
in Fig. 5. In all cases, the active parameters for the ML-RRT
algorithm are those defining the location of the mobile object,
while the parameters corresponding to all the articulated parts
are passive. Tests have been performed on an Apple iBook
with a 1.2 GHz PowerPC G4 processor. Numerical results
presented below have been averaged over 10 runs.

Table I displays the computing time (with standard devia-
tion), and the number of nodes, samples and collision tests
required for solving the four problems with RRT and ML-
RRT. Note that, for ML-RRT, Nsamp represents the number

4We use the probabilistic path shortening method [21] for path smoothing.

TABLE I
NUMERICAL RESULTS

2D-simple 2D-hard 3D-simple 3D-hard

NDOF 7 10 9 11

RRT T(sec.) 752 ± 526 →∞ 10 ± 9 →∞
Nnode 5047 →∞ 1102 →∞
Nsamp 32348 →∞ 1207 →∞
Ncoll 44742 →∞ 5054 →∞

ML-RRT T(sec.) 8 ± 4 14 ± 6 3 ± 2 11 ± 8
Nnode 856 1189 757 1142
Nsamp 1698 2226 412 1194
Ncoll 5458 7650 5061 11353

a) b)

Fig. 3. Projection of search trees for problem 2D-hard obtained with the
basic RRT algorithm (a) and with the ML-RRT algorithm (b).

a) b)

Fig. 4. Trace of solution paths for problem 2D-simple obtained with the
basic RRT algorithm (a) and with the ML-RRT algorithm (b).

of samples for the active parameters. These results show
that ML-RRT clearly outperforms the basic RRT, and that
the performance gain increases with the complexity of the
articulated objects. Note that the basic RRT is unable to solve
the difficult versions of the problems in reasonable computing
time, while the performance of ML-RRT is only slightly
affected by the problem difficulty. Fig. 3 shows a projection
of the search trees on the coordinates of the center of mass
of the mobile object for example 2D-hard. The tree computed
with the basic RRT algorithm contains 10000 nodes but all
are concentrated in a small region of the search-space around
the initial configuration. The tree obtained with the ML-RRT
algorithm contains less than 1000 nodes and yet better covers
the search-space.

Besides the computational efficiency, the solution paths
obtained with the ML-RRT algorithm are also qualitatively
different to those of the basic RRT. Fig. 4 shows the trace of
a solution path obtained with each algorithm. The difficulty of
the basic RRT in finding the solution is reflected by an ugly
path (Fig. 4.a) with many small motions needed to circumvent
the mobile parts of the fixed object. ML-RRT produces a
much more natural-looking path in which the mobile object
progresses toward its goal while “pushing” the passive parts.



CORTÉS et al.: DISASSEMBLY PATH PLANNING FOR COMPLEX ARTICULATED OBJECTS 5

a) b)

Fig. 5. Two variants of a three-dimensional academic example: a) 3D-simple,
b) 3D-hard.

VII. PRACTICAL APPLICATIONS

A. Robotic Manipulation

The proposed algorithm can be extended to integrate a robot
that manipulates the mobile object. The system composed by
the robot grasping the mobile object at a given pose can be
seen as a closed-chain mechanism, and possible motions take
place in the self-motion manifold of this mechanism.

For non-redundant manipulators, only a finite number of
configurations will match a given object pose and grasp
position. These configurations can be directly obtained by
inverse kinematics (IK). For ensuring the path continuity and
avoiding singularities, only the IK solution corresponding to
the same configuration type (e.g. elbow-up or elbow-down) as
the expanded configuration should be considered.

The extension is more difficult for redundant manipulators,
since the robot can grasp the object with an infinite number
of configurations. The general approach for closed-chain path
planning described in [23] can be applied to explore the
self-motion manifold for these more difficult cases. This
approach solves the configuration sampling problem using
the Random Loop Generator (RLG) algorithm. The kinematic
loop is broken into two open sub-chains, called the active and
passive sub-chains. The passive sub-chain is a non-redundant
mechanism, with a finite number of possible configurations
corresponding to a given configuration of the active sub-chain.
RLG combines random sampling techniques with simple ge-
ometrical operations aiming to generate configurations of the
active sub-chain into the reachable workspace of the passive
sub-chain, whose configuration is then obtained by IK.

Fig. 6 shows an example in which a non-redundant manip-
ulator arm extracts an object from a box containing articulated
parts. This problem has been solved with ML-RRT (extended
to closed chains) in only 4 seconds.

B. Structural Bioinformatics

The computational analysis of molecular interactions in
biological systems is a key instrument for the understanding of
life. In this framework, we address protein-ligand interactions
[24]. Fig. 7 shows a protein model with a ligand located in
its active site. Most of the computational approaches to this
problem address a static view of the molecular recognition.

q qinit goal

Fig. 6. The two objects of the example 3D-simple are disassembled by a
robotic manipulator.

However, several studies tend to show that the ligand ac-
cess/exit to the protein active site can be very important for the
understanding of the biological mechanism [25]. The difficulty
is that computing the pathway of a ligand to go out from a
deep active site to the surface of a protein (or vice versa) with
“classic” molecular modeling methods [26] is too computa-
tionally expensive. For facing the complexity of computing
molecular motions, molecules can be modeled as articulated
mechanisms [27] and efficient path planning algorithms can
be used to explore their conformational changes [28]. Con-
sidering such a mechanistic representation of molecules, the
protein-ligand exit problem can be formulated as a mechanical
disassembly problem for articulated objects and the ML-
RRT algorithm can be applied for finding solution pathways.
The difficulty comes from the complexity of the molecular
model that contains hundreds of flexible side-chains possibly
involved in the disassembly. Thus, if no prior knowledge on
the ligand passageway is available, hundreds of degrees of
freedom (DOF) have to be considered. The ML-RRT algorithm
performs well when applied to this kind of difficult problems
[20]. Problems involving hundreds of potential DOF are solved
in very short computing time. For example, the protein in
Fig. 7 contains 628 amino-acid residues. If all the protein side-
chains are considered to be flexible, the model contains 1237
DOF. The ligand exit pathway in this example (computed in
160 seconds) is very constrained and requires an important
motion of some side-chains. Among all the side-chains, the
ML-RRT algorithm determines that the motion of only 9 of
them is required for “disassembling” the ligand, as illustrated
in Fig. 8. Note the significant motion of the side-chain located
at the middle-top of the image. This side-chain motion, which
is known to be biologically important for the protein-ligand
interaction, was automatically identified by the algorithm.

VIII. CONCLUSIONS AND FUTURE WORK

The ML-RRT algorithm described in this paper is an ef-
ficient method for disassembly path planning of two objects
with articulated parts. An interesting feature of the algorithm is
its ability to treat problems with a high number of potentially
mobile parts and to automatically identify the degrees of
freedom that are important for the disassembly task. This
feature has already been exploited in structural bioinformatics
applications, and we think that it will be also very useful in



6 SUBMITTED TO IEEE TRANSACTIONS ON ROBOTICS, VOL. 0, NO. 00, NOVEMBER 2007

Fig. 7. Ligand in the active site of a protein. Both molecules can be modeled
as articulated mechanisms.

Fig. 8. Solution path for the molecular disassembly problem illustrated in
Fig. 7. The image shows a transversal cut of the protein active site and the
trace of the ligand path. The ligand and the 9 residues with moving side-
chains are displayed in stick representation. The configurations of the ligand
and the moving side-chains at different steps along the path are colored in
red scale and blue scale respectively.

CAD/PLM problems.
The current version of ML-RRT is devised for solving

problems in which passive articulated parts are “pushed” by
the mobile object. A future extension of the algorithm will
also consider “pulling” motions, which may be important in
some classes of disassembly problems.

Another envisaged extension is to address disassembly
planning problems for multiple (possibly articulated) objects.
Disassembly sequences could be computed using an ac-
tive/passive decomposition of the configuration parameters and
applying the mechanism for motion propagation implemented
in the ML-RRT algorithm. The active/passive roles could
be assigned based on a (random) selection of objects being
moved with priority. Sampling-based path planning algorithms
have already been proposed for disassembly sequencing [11].
The main advantage of ML-RRT over other existing methods
is a reduced computational cost thanks to the decoupled
exploration of configuration-space sub-manifolds associated
with the active/passive parameter subsets.

ACKNOWLEDGMENT

This work has been partially supported by the EC under Contract
IST 045359 “PHRIENDS”, the Région Midi-Pyrénées under projets ITAV
“ALMA” and CTP “AMOBIO”, and the ANR project “NanoBioMod”.

REFERENCES

[1] J. Cortés and T. Siméon, “Disassembly path planning for objects with
articulated parts,” Proc. IFAC Workshop on Intelligent Assembly and
Disassembly, pp. 34–39, 2007.

[2] J.-C. Latombe, Robot Motion Planning. Boston: Kluwer Academic
Publishers, 1991.

[3] S. M. LaValle, Planning Algorithms. New York: Cambridge University
Press, 2006.

[4] ——, “Rapidly-exploring random trees: A new tool for path planning,”
TR 98-11, Computer Science Dept., Iowa State University, 1998.

[5] E. Ferré and J.-P. Laumond, “An iterative diffusion algorithm for part
disassembly,” Proc. IEEE Int. Conf. Robot. Automat., pp. 3149–3154,
2004.

[6] A. Bourjault, “Contribution à une approche méthodologique de
l’assemblage automatisé : Elaboration automatique des séquences
opératoires,” Thèse d’Etat, Université de Franche-Comté, 1984.

[7] L. S. Homem de Mello and S. Lee, Computer-Aided Mechanical
Assembly Planning. Boston: Kluwer Academic Publishers, 1991.

[8] R. H. Wilson, “On geometric assembly planning,” Ph.D. dissertation,
Stanford University, 1992.

[9] T. Lozano-Pérez and R. H. Wilson, “Assembly sequencing for arbitrary
motions,” Proc. IEEE Int. Conf. Robot. Automat., pp. 527–532, 1993.

[10] D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26,
pp. 577–601, 2000.

[11] S. Sundaram, I. Remmler, and N. M. Amato, “Disassembly sequencing
using a motion planning approach,” Proc. IEEE Int. Conf. Robot.
Automat., pp. 1475–1480, 2001.

[12] H. Chang and T.-Y. Li, “Assembly maintainability study with motion
planning,” Proc. IEEE Int. Conf. Robot. Automat., pp. 1012–1019, 1995.

[13] T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. 32, pp. 108–120, 1983.

[14] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees :
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, B. Donald, K. Lynch, and D. Rus, Eds. Boston: A.K.
Peters, 2001, pp. 293–308.

[15] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-
Domain RRTs: Efficient exploration by controlling the sampling do-
main,” Proc. IEEE Int. Conf. Robot. Automat., pp. 3867–3872, 2005.

[16] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” Proc. IEEE Int. Conf. Robot. Automat., pp. 3307–
3312, 2007.

[17] J. J. Kuffner, “Effective sampling and distance metrics for 3D rigid body
path planning,” Proc. IEEE Int. Conf. Robot. Automat., pp. 3993–3998,
2004.

[18] P. Cheng and S. M. LaValle, “Reducing metric sensitivity in randomized
trajectory design,” Proc. IEEE/RSJ Int. Conf. Intel. Rob. Sys., pp. 43–48,
2001.

[19] C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT
growth,” Proc. IEEE/RSJ Int. Conf. Intel. Rob. Sys., pp. 1178–1183,
2003.

[20] J. Cortés, L. Jaillet, and T. Siméon, “Molecular disassembly with RRT-
like algorithms,” Proc. IEEE Int. Conf. Robot. Automat., pp. 3301–3306,
2007.

[21] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Multi-
level path planning for nonholonomic robots using semi-holonomic
subsystems,” Int. J. Robot. Res., vol. 17(8), pp. 840–857, 1998.

[22] T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: A generic
platform for path planning,” Proc. IEEE Int. Symp. on Assembly & Task
Planning, pp. 25–30, 2001.

[23] J. Cortés and T. Siméon, “Sampling-based motion planning under kine-
matic loop-closure constraints,” in Algorithmic Foundations of Robotics
VI, M. Erdmann, D. Hsu, M. Overmars, and F. van der Stappen, Eds.
Berlin: Springer-Verlag, 2005, pp. 75–90.

[24] H.-J. Böhm and G. Schneider, Protein-Ligand Interactions: From Molec-
ular Recognition to Drug Design. Weinheim: Wiley-VCH, 2003.

[25] S. K. Lüdemann, V. Lounnas, and R. C. Wade, “How do substrates
enter and products exit the buried active site of cytochrome p450cam?
1. random expulsion molecular dynamics investigation of ligand access
channels and mechanisms,” J. Mol. Biol., vol. 303(5), pp. 797–811, 2000.

[26] T. Schlick, Molecular Modeling and Simulation - An Interdisciplinary
Guide. New York: Springer, 2002.

[27] D. Parsons and J. Canny, “Geometric problems in molecular biology
and robotics,” Proc. Int. Conf. Intel. Sys. Mol. Biol., pp. 322–330, 1994.

[28] J. Cortés, T. Siméon, V. Ruiz, D. Guieysse, M. Remaud, and V. Tran,
“A path planning approach for computing large-amplitude motions of
flexible molecules,” Bioinformatics, vol. 21, pp. 116–125, 2005.


