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Occam’s Razor Applied to Network
Topology Inference

Dimitri Marinakis and Gregory Dudek

Abstract—We present a method for inferring the topology of a
sensor network given nondiscriminating observations of activity
in the monitored region. This is accomplished based on no prior
knowledge of the relative locations of the sensors and weak assump-
tions regarding environmental conditions. Our approach employs
a two-level reasoning system made up of a stochastic expectation
maximization algorithm and a higher level search strategy employ-
ing the principle of Occam’s Razor to look for the simplest solution
explaining the data. The result of the algorithm is a Markov model
describing the behavior of agents in the system and the underlying
traffic patterns. Numerical simulations and experimental assess-
ment conducted on a real sensor network suggest that the tech-
nique could have promising real-world applications in the area of
sensor network self-configuration.

Index Terms—Expectation maximization (EM), learning sys-
tems, Markov processes, multisensor systems, Occam’s Razor, self-
configuring systems, sensor networks, topology.

1. INTRODUCTION

N THIS PAPER, we address the self-calibration problem of
I inferring the topology, or internode connectivity, of a sensor
network given nondiscriminating observations of activity in the
environment. We are interested in recovering a representation
of the network that identifies physical intersensor connectivity
from the point of view of an agent navigating the environment
(Fig. 1). This topological information differs from a metric rep-
resentation that identifies the relative locations of the sensors but
does not provide information about the layout of the region, or
obstructing objects within it. We assume that we have no prior
knowledge of the relative locations of the sensors and that we
have only a limited knowledge of the type of activity present in
the environment. We must use observational data returned from
our sensors to understand the motion of agents present in the
environment. By inferring underlying patterns in their motions
we can then recover the relationships between the sensors of our
network.

Our approach employs a two-level reasoning system. The
first level is made up of our fundamental topology inference
algorithm that takes the sensor observations and environmen-
tal assumptions as inputs and returns the network parameters.
This algorithm is formulated using Monte Carlo expectation
maximization (MCEM), but it depends on fixed values for cer-
tain numerical parameters that represent a priori knowledge
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Fig.1. (a)Example of a sensor network layout and (b) corresponding topology.

regarding traffic patterns in the environment. The second level
searches over the input parameter space of the first-level algo-
rithm to find a global solution that optimizes a more abstract
objective function based on the principle of Occam’s Razor.!

The final output of the two-level approach is a probabilis-
tic model of the sensor network connectivity graph and the
underlying traffic trends. It is worth noting that the technique
recovers a much more complete description of network con-
nectivity than just a topological map of the environment. We
learn information about the number of agents in the system,
internode delay distributions, internode transition likelihoods,
and additional statistics regarding motion activity.

As sensor networks are established in more locations for mon-
itoring and surveillance purposes, there will be a demand for
algorithms and software approaches that can make inferences
about the environment based on large quantities of highly dis-
tributed and possibly low-quality sensing information. This is
especially true in areas where we are unable to venture our-
selves, or unwilling to venture for fear of influencing the data
we are collecting. On Great Duck Island, Maine, for example,
a sensor network was successfully employed to collect habitat
data without disturbing wildlife with human presence [1], [2].
Another example is the proposed underwater observing system
NEPTUNE [3], which plans to wire the Juan de Fuca tectonic
plate off the coast of the North-West Pacific ocean. The under-
water network will generate observational data from a variety of
distributed sensors that could be used to infer additional infor-
mation about the ocean environment which would be difficult
to collect directly for logistical and financial reasons.

This paper addresses a single aspect of the more general prob-
lem of inferring information about the environment given dis-
tributed sensor data: recovering connectivity parameters. Moni-
toring projects that log data for offline analysis should be able to
benefit from our technique. For example, a vehicle monitoring
network distributed about a city could help make decisions about

'Occam’s Razor is the principle enunciated by William of Occam that the
simplest explanation is the best.
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road improvements that might best alleviate congestion. Another
motivation are applications using the connectivity information
inferred by our technique for sensor network self-calibration
efforts; e.g., the calibration of a surveillance system. With this
paper, we are addressing a type of problem that will grow in
importance as distributed sensing becomes more prevalent. We
believe that techniques for solving questions such as the one
we address in this paper are of practical interest and are worth
investigating.

II. BACKGROUND

It is recognized that self-calibration and other more general
self-configuration algorithms are important issues for both mul-
tirobot systems and for sensor networks [4], [5]. The main point
is that a network must operate autonomously in a dynamic en-
vironment. It should be capable of reorganizing itself to handle
network changes such as individual node failures or changes in
communication range.

A key requirement for many network applications is the abil-
ity to self-localize [6]; i.e., recover the relative metric positions
of the individual sensors in the network. This is especially im-
portant where global positioning system (GPS) solutions are
too expensive, not available, or otherwise impractical [7], [8].
In general, localization efforts are based on methods for estimat-
ing the distances between sensors. Common techniques include
the use of received communication signal strength in radio net-
works [9], or time-of-arrival ranging using ultrasound [10], [11].
This positional information can also be calculated explicitly
through the use of a mobile robot [12].

The problem of inferring the topology of a sensor network
is closely related to that of metric self-localization. In self-
localization, the goal is to recover the relative locations of the
nodes independent of the layout of the space in which the net-
work is embedded. Topology inference as we define it, however,
must take into account the spatial constraints of the environment
since they determine the internode connectivity parameters. Al-
though the topological mapping problem has been well explored
in mobile robotics [13]-[16], most sensor-network-related in-
vestigations have been more recent [17], [18]; the outcome is
generally a graph where vertices represent embedded sensors in
the region and edges indicate navigability.

By combining a topological description of the environment
with metric data obtained from self-localization algorithms, fur-
ther information regarding obstructions and motion corridors
could be inferred. For example, two spatially proximal nodes
that were not topologically adjacent would suggest a barrier of
some sort. Additionally, the topological and metric data could
complement each other. Information regarding the spatial loca-
tions of the nodes as well as their communication connectivity
can make it easier to determine topologically adjacent nodes
and vice versa. However, in many cases, the information can
be misleading (Fig. 2). Spatial proximity does not necessarily
imply a topological connection, and likewise, two nodes that are
topologically adjacent do not have to be close to each other.

In this paper, we attempt to solve for the topology of a net-
work, accounting for spatial constraints, without relying on tra-
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Fig.2. Examples where communication signal strength is misleading. (a) Thin
interior wall prevents passage but signal is strong. (b) Blocking exterior wall
prevents signal but nodes are topologically adjacent.
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ditional self-localization techniques such as time-to-arrival and
signal strength. However, along with agent signatures, these
methods could be incorporated into our approach as part of the
probabilistic framework.

While much of the research conducted on sensor networks
is based on developing distributed and efficient algorithms ap-
propriate for networks of low-powered sensor platforms, re-
cently there has been a shift toward more complex approaches
incorporating advanced probabilistic techniques and graphical
models [19], [20]. The traditional sensor network assumption
of homogenous systems of impoverished nodes is making way
for tiered architectures that incorporate network components of
some computational sophistication [21]. This lack of emphasis
on the traditional sensor network concerns of efficiency and dis-
tributed processing is especially true in networks of vision-based
Sensors.

In the domain of vision-based networks, there are a num-
ber of examples of recent work that have looked at self-
calibration though the exploitation of motion in the environ-
ment [17], [22]-[27]. These efforts generally focus on re-
search issues regarding the processing of observations collected
from distributed sensors. Of particular relevance is the work of
Ellis, Makris, and Black [17], [27] on the topology inference of
camera networks.

Ellis, Makris, and Black [17], [27] presented a technique for
topology recovery based on event detection only. In their ap-
proach, they first identified entrance and exit points in camera
fields of view and then attempted to find correspondences be-
tween these entrances and exits based on video data. Their tech-
nique relies on exploiting temporal correlation in observations of
agent movements. The method employs a threshold-based tech-
nique that looks for peaks in the temporal distribution of travel
times between entrance—exit pairs; a clear peak suggesting that
a correspondence exists. The technique gave promising results
on experiments carried out on a six-camera network. Although
it requires a large number of observations, the method does not
rely on object correlation across specific cameras. Thus, the
approach can be used to efficiently produce an approximate net-
work connectivity graph; however, when the network dynamics
are complex or the traffic distribution exhibits substantial vari-
ation, it would appear the technique will have difficulty.

Unlike the threshold-based approach of Ellis, Makris, and
Black [17], [27], our method for topology inference is based
on constructing plausible trajectories of motion sources in the
environment. This approach is closely related to multitarget
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tracking, which is a well-established research area in sensor
networks [28]-[30] and multirobot systems [31]. One of the key
difficulties faced is that of maintaining target identities during
periods when two or more targets move close together or are
unobserved for a period of time. Probabilistic techniques, such
as identity mass flow [32], have been devised to handle this
situation. Other work poses the target identity problem as a data
association problem [33]-[35].

Pasula et al. [36] successfully approached a traffic monitor-
ing problem from the data association perspective through a
stochastic sampling technique, although only in very simple
networks. Given known sensor positions and topology, the goal
of the work was to track multiple objects passing through the
network and recover their long-range origin/destination infor-
mation. An iterative EM algorithm was employed that assigned
probable trajectories to each vehicle. These samples were then
used to update model parameters such as link-travel time and ve-
hicle characteristics. Our method of generating trajectory sam-
ples shares some techniques employed by Pasula e al. [36];
however, our implementation differs due to the specifics of the
problem.

Another example of an approach with some similarity to ours
is the paper by Dellaert et al. [37] in the domain of finding struc-
ture from motion. These authors also employ EM and Markov
chain Monte Carlo (MCMC) methods to solve a difficult data
association problem.

Another related problem domain is the simultaneous local-
ization and mapping (SLAM) problem in mobile robotics. Re-
cently, hybrid robot/sensor network systems have been em-
ployed to address SLAM issues. Examples include the work
of Rekleitis et al. [38] in their use of an extended Kalman filter,
and work by Djugash et al. [39] who incorporate intersensor
range data from a deployed sensor network in their approach.

In the remainder of this paper, we describe a computation-
ally intensive but powerful approach for constructing a topo-
logical representation of a network-embedded region based
on distributed observations collected from information-poor
sensors. Our work addresses aspects of sensor network self-
configuration, but has techniques in common with multitarget
tracking, SLAM, and other problem domains where data associ-
ation is an issue. The algorithm uses only detection events from
the deployed sensors and is based on reconstructing plausible
agents trajectories through statistical techniques.

III. PROBLEM DESCRIPTION

We describe the problem of topology inference in terms of
the inference of a weighted directed graph that captures the
spatial relationships between the positions of the sensor nodes.
The motion of multiple agents moving asynchronously through
a sensor-network-embedded region can be modeled as a semi-
Markov process. The network of sensors is described as a di-
rected graph G = (V, E), where the vertices V' = v; represent
the locations where sensors are deployed, and the edges E = ¢; ;
represent the connectivity between them; an edge e; ; denotes
a path from the position of sensor v; to the position of sensor
v;. The motion of each of the IV agents in this graph can be de-

scribed in terms of their transition probability across each of the
edges A,, = {a;;}, as well as a temporal distribution indicating
the duration of each transition D,,. The observations O = {o;}
are a list of events detected at arbitrary times from the various
vertices of the graph, which indicate the likely presence of one
of the NV agents at that position at that time.

The goal of our paper is to estimate the parameters describ-
ing this semi-Markov process based on a number of assump-
tions. We assume that each observation was generated by ex-
actly one agent, and furthermore, that the behavior of all the
agents in the system can be approximated as being homoge-
neous; i.e., the motion of all agents is described by the same
A and D. In addition, we must make some assumptions about
the distribution of the intervertex transition times. Generally,
we make the assumption that the delays fit some family of
distributions and are bounded within a fixed range. We will
show later, however, that we relax this assumption in some
situations.

In the approach that we have outlined earlier, we are mak-
ing some inherent assumptions about the behavior and quality
of our sensors. We assume that an individual sensor generates
only a single observation for an agent despite the fact that the
agent will spend some finite amount of time within the de-
tection range. This assumption can usually be guaranteed in
practice through postprocessing of raw sensor measurements;
a technique sometimes referred to as “debouncing.” More dif-
ficult, in practice, is the assumption that, ideally, this sensor
can generate a second observation when a second agent enters
its detection range, even if the first agent is still detectable. A
more easily satisfied assumption is that agents do not travel
close enough together for this duplicate detection situation to
be encountered. If this assumption is only occasionally vio-
lated, the system can model one of these events as a missing
observation (i.e. a false-negative). As we will show in later sec-
tions, our technique is robust to moderate levels of sensor error.
As long as the assumptions that we have outlined earlier are
approximately correct, i.e. are violated infrequently and in a
nonsystematic manner, the inference process produces accurate
results.

Given the observations O and the vertices V, the problem
is to estimate the network connectivity parameters A and D,
subsequently referred to as 6.

IV. FIRST LEVEL: TOPOLOGY INFERENCE THROUGH EM

The algorithm that makes up the first level of our technique
infers the connectivity of a sensor network given nondiscrim-
inating observations. It assumes knowledge of the number of
agents in the environment and attempts to augment the given
observations with an additional data association that links each
observation to an individual agent. The approach is based on
the statistical technique of EM [40]. The algorithm iterates over
constructing plausible trajectories of agent motions based on
current estimates of connectivity parameters (E Step), and then,
updating the parameters to maximum likelihood estimates based
on the sampled trajectories (M Step). Fig. 3 shows a block dia-
gram illustrating the control form of the inference algorithm.
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Fig.3. Block diagram of level one of the two-level approach, where the blocks
indicate algorithmic components and the arrows indicate the transfer of data.

A. Expectation Maximization

The algorithm simultaneously converges toward high-
likelihood observation data correspondences and network pa-
rameters values. We iterate over the following two steps:

1) The E-Step: Calculates the expected log likelihood of the

complete data given the current parameter guess

Q(0,60"Y) = Ellogp(0, Z|6)|0, 6~ Y]

where O is the vector of binary observations collected
by each sensor, and Z represents the hidden variable that
determines the data correspondence between the observa-
tions and agents moving throughout the system.

2) The M-Step: Updates our current parameter guess with a
value that maximizes the expected log likelihood

0" = argmaxQ(0,0"").

We employ MCEM [41] to calculate the E-Step because of
the intractability of summing over the high-dimensional data
correspondences. Note that there is one dimension for each ele-
ment of the observation vector O. We approximate Q (6,0 ~1))
by drawing M samples of an ownership vector L") = {Im}
(an instance of Z) that uniquely assigns the agent i to the obser-
vation o; in sample m

M
, 1
() — m — 1 m)
0 arg max mEZI og p( ,010)

where L") is drawn using the previously estimated #(~1) ac-
cording to an MCMC sampling technique.

At every iteration, we obtain M samples of the ownership
vector L, which are then used to reestimate the connectivity
parameter 6 (the M-Step). We continue to iterate over the E-
Step and the M-Step until we obtain a final estimate of 6. At
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every iteration of the algorithm, the likelihood of the ownership
vector tends to increase, and the process is terminated when
subsequent iterations result in very small changes to 6.

In general, we make the assumption that the intervertex delays
fit some family of distributions and determine the maximum
likelihood parameters for each of the intervertex distributions.
In a subsequent section, we will describe how we occasionally
reject outlying low-likelihood delay data and omit it from the
parameter update stage.

B. Trajectory Sampling

We use MCMC sampling to assign each of the observations to
one of the agents, thereby breaking the multiagent problem into
multiple versions of a single-agent problem. In the single-agent
case, the observations O specify a single trajectory through
the graph, which can be used to obtain a maximum likelihood
estimate for . Therefore, we look for a data association that
breaks O into multiple single-agent trajectories. We express
this data association as an ownership vector L that assigns each
of the observations to a particular agent.

Given some guess of the connectivity parameter 6, we can
obtain a likely data association L using the Metropolis algo-
rithm; an established method of MCMC sampling [42]. From
our current state in the Markov Chain specified by our cur-
rent observation assignment L, we propose a symmetric tran-
sition to a new state by reassigning a randomly selected ob-
servation to a new agent selected uniformly at random. This
new data association L’ is then accepted or rejected based
on an acceptance probability, which is defined by the rela-
tive probabilities of L and L’ according to the Metropolis
algorithm.

The acceptance probability o can be expressed in a simple
form since the trajectories described by L’ differ from those in
L by only a few edge transitions. Consider L as a collection
of ordered nonintersecting sets containing the observations as-
signed to each agent L = (T UT, U...UTN), T, = {wji},
where w;;, refers to the edge traversal between vertices j and k.
The probability of a single-agent trajectory is then the product
of all of its edge transitions.

Therefore, a proposed change that reassigns the observation
o, from agent y to agent x must remove an edge traversal w
from T}, and add it to 7},. Only the change in the trajectories of
these two agents need be considered, since all other transitions
remain unchanged.

In between each complete sample of the ownership vector L,
each of the observations are tested for a potential transition to
an alternative agent assignment. This testing is accomplished
in random order and should provide a large-enough spacing
between realizations of the Markov Chain that we can assume
to have some degree of independence in-between samples.

Although our method of proposing transitions is simple and
does not result in large jumps through the state space, the accep-
tance test can be evaluated efficiently, and hence we can afford
to test many proposals. The resulting chain is ergodic and re-
versible, and thus, ultimately produces samples representative
of the true probability distribution.
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C. Delay Model

To make the algorithm more robust to realistic traffic patterns,
we have introduced an intervertex delay model that allows for
the possibility of agent transitions to and from sources and sinks.
This makes the algorithm more robust both to shifting numbers
of agents in the environment and to agents that pause or delay
their motion in between sensors. Additionally, assuming the
existence of sources and sinks, we can recover their connectivity
to each of the sensors in our network.

In addition to maintaining a vertex that represents each sen-
sor in our network, we introduce an additional vertex that rep-
resents the greater environment outside the monitored region:
a sourcel/sink node. A mixture model is employed during the
E-Step of our iterative EM process in which we evaluate po-
tential changes to agent trajectories. An intervertex delay time
is assumed to arise from some specified family of distributions
(e.g., a gamma distribution or a truncated normal) or else from a
uniform distribution of fixed likelihood. This model allows for
low-probability jumps of almost arbitrary length.

The data assigned to the internode delay distribution are as-
sumed to be generated by direct transitions between nodes and
are used during the M-Step to update our belief of the internode
delay times and transition likelihoods. On the other hand, the
data fit to the uniform distribution are used to model transitions
from the first vertex into the sink/source node, and then, from the
sink/source node to the second vertex. Therefore, they are not
used for updating intervertex delay parameters of the two nodes,
but rather are considered outliers and are used only for updat-
ing the belief of transitions to and from the source/sink node
for the associated vertices. Note that no parameters are used
to characterize the distribution suggested by the outlying data
points; i.e., we are not attempting to learn the delay distribution
between any particular node in the system and the sink/source
node. Instead, we specify when a data point should be consid-
ered an outlier given only our current belief of the parameters
for the associated delay distribution. This value cannot be es-
timated explicitly without attempting to parameterize a second
distribution that would not be consistent with our model.

While the data assigned to the internode delay distributions
are expected to be within a realistic temporal range for direct
agent transitions, the delay data fit to the uniform distribution
are more loosely bounded. This gives the inference technique a
manner of temporarily removing agents from the system by as-
signing them to long transitions, or to explain events that would
otherwise seem extremely unlikely such as the disappearance of
an agent from one node and its almost immediate appearance at
a second.

The delay model provides robustness to noise by discarding
outliers in the delay data assigned to each pair of vertices and ex-
plaining their existence as transitions to and from a source/sink
node. The key to this process is determining whether or not a de-
lay value should be considered an outlier. This is implemented
through a tunable parameter, called source sink likelihood (SSL)
that determines the threshold probability necessary for the de-
lay data to be incorporated into parameter updates (Fig. 4). The
probability for an intervertex delay is first calculated given the

Probability

Accept Z one Data not used for

Parameter Updates

Delay T ime
Fig. 4. Graphical description of the SSL Parameter.
Sensor Observations
Search:
Assumptions Regarding
Environmental Activity
~
. Evaluation
| ', Function
! \
* t
Topology Inference Inferred
Algorithm (Level One) Network Parameters
Seel . 7
Best Solution
Fig.5. Block diagram of level two of the two-level approach, where the blocks

indicate algorithmic components and the arrows indicate the transfer of data.

current belief of the delay distribution. If this probability is lower
than the SSL, then this motion is interpreted as a transition made
via the source/sink node. The delay is given a probability equal
to the SSL, and the transition is not used to update the network
parameters associated with the origin and destination vertices.

The value assigned to the SSL parameter determines how
easily the algorithm discards outliers, and hence, provides a
compromise between robustness to observational noise and a
tendency to discard useful data.

V. LEVEL TWO: NETWORK PARAMETER EVALUATION

The second level of our approach treats the topology inference
algorithm described in the previous section as a “black box”
and attempts to search over its input parameter space to find
reasonable solutions (Fig. 5). We construct a heuristic evaluation
function that quantitatively assesses a potential solution based
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on the principle of Occam’s Razor. The first-level topology
inference algorithm takes the following inputs: the observations
O, the assumed number of agents in the environment N, and the
SSL parameter. The outputs of the algorithm are the network
parameters 6 and the ratio of data Ry, incorporated into the
parameter updates

(97 Rdata) — alg(O, ]\/v7 SSL)

Different input values result in different environmental assump-
tions, and hence, produce different outputs.

We have created a metric that attempts to assess the validity
of a solution by making the assumption that a good solution both
explains the majority of the data and is as simple as possible.
This principle, known as Occam’s razor, states, “if presented
with a choice between indifferent alternatives, then one ought
to select the simplest one.” The concept is a common theme
in computer science and underlies a number of approaches in
Al; e.g., hypothesis selection in decision trees and Bayesian
classifiers [43].

Our simplicity metric incorporates a measure of the simplicity
of the transition matrix and the amount of data explained by the
solution. We measure the simplicity of a transition matrix by
rewarding it in inverse proportion to how close it is to a uniform
belief of transition probabilities

Asimp = Z (ai)ﬁ

a; €A

where § determines the degree of the reward. We measure the
utility of a given data use ratio by constructing an adjusted data
ratio that attempts to reflect our belief in the solution as a func-
tion of the data used. The adjusted data ratio should incorporate
the fact that some small portion of discarded data is actually
optimal, but that our belief tails off rapidly as the discarded
portion grows

r,.,, _ [Explained Ob|
data — |Obs‘
Ra‘dj = eXpig(Rdata*’yV

where v and 7 describe the shape of the belief curve (Fig. 6).
The final simplicity metric incorporates a weighted combination
of Agmp and R,qj:

Qsimp = (Asimp)ﬁ X (Radj))\'

where x and A reflect the relative weights assigned to the two
portions.

With the construction of the simplicity metric Qgimp, we have
shifted our dependence from specific a priori assumptions that
must be made on a case-to-case basis. Instead, we depend on
more general assumptions regarding the attributes of a believ-
able solution for our problem domain.

Instead of the two-level approach outlined in this and the pre-
vious section, an alternative approach to recovering the network
connectivity parameters would be to stay within the EM frame-
work of the fundamental algorithm. At this level, one could at-
tempt to infer the MAP solution for a particular problem using

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008

1 T T T T

09 | 3

08 | g
g
& 07 F 4
)
2 o6 4
8
© L ]
S o0s
b
D o4+ g
|2}
2
oat ]

02 | .

— Adjusted Ratio
o1 : line y=x 4
oL . . , . |
0 04 02 03 04 05 06 07 08 09 1
Data Use Ratio

Fig. 6. Example relationship between Rq.¢, and R,q; with v = 0.9 and
7 =0.1.

the Qsimp metric as a Bayesian prior for favoring appropriate
models. However, there would be some difficulties with this
approach. The first disadvantage is that, although varying the
number of agents at the MCMC proposal level is possible and
is related to the work of Oh et al. [44], one must invent a suit-
able model capable of preventing the algorithm from improving
configuration likelihoods through overfitting. The specification
of the priors could be sufficiently challenging to make this ap-
proach difficult in practice. Additionally, incorporating an ar-
bitrary prior into the ) function of the M step of the EM loop
prevents a closed-form solution for maximizing the parameter
values, hence forcing the use of a numerical estimation method.
A potential danger here is that by formulating the problem in
this manner, we risk destabilizing or substantially slowing the
convergence of the EM algorithm, which is not guaranteed for
stochastic variants. Instead, we have chosen to clearly delineate
between the inner, fundamental algorithm, which, in our inves-
tigations, has shown robust dependable behavior, and a second
higher level component that attempts to enforce the priors we
desire.

VI. SIMULATION RESULTS

In this section, we will examine our approach through a num-
ber of experiments conducted in simulation. We will assess the
performance of the first-level topology inference algorithm and
examine the effect of varying the input parameters. Then, we will
justify our tuning of the parameters shaping the Qgimp metric.

A. Simulator

We have developed a tool that simulates agent traffic through
an environment represented as a planar graph. Our simulation
tool takes as input the number of agents in the system and
a weighted graph, where the edge weights are proportional
to mean transit times between the nodes. All connections are
considered two ways; i.e., each connection is made up of two
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Fig. 7.
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Incremental belief of the topology of a 12-node, 48 (directed) edge graph using four simulated agents on 8000 observations: (a) initially; (b) after one

iteration; (c) after two iterations; (d) after three iterations (the true graph). Dotted lines indicate incorrect transitions.

unidirectional edges. The output is a list of observations gener-
ated by randomly walking the agents through the environment.
Internode transit times are determined based on a normal distri-
bution with a standard deviation equal to the square root of the
mean transit time.?

Two types of noise were modeled in order to assess perfor-
mance using data that we believe more closely reflects obser-
vations collected from realistic traffic patterns. First, a “white”
noise was generated by removing a percentage of correct obser-
vations and replacing them with randomly generated spurious
observations. Second, a more systematic noise was generated by
taking a percentage of intervertex transitions and increasing the
Gaussian distributed delay time between them by an additional
delay value selected uniformly at random. The range of this ad-
ditional delay time was selected to be from zero to twenty times
the average normal delay time. The hope is that small values
of these types of noise simulate the effects of both imperfect
sensors and also the tendency for agents to stop occasionally
along their trajectories; e.g. to talk, use the water fountain, or
enter an office for a period.

A number of experiments were run using the simulator on
randomly generated planar, connected graphs. The graphs were
produced by selecting a subgraph of the Delaunay triangulation
of a set of randomly distributed points.

For each experiment, the results were obtained by comparing
the final estimated transition matrix A’ to the real transition
matrix A. A graph of the inferred environment was obtained
by thresholding A’. The Hamming error was then calculated
by measuring the distance between the true and inferred graphs
normalized by the number of directed edges m in the true graph:

HamErr, = (7711) Z

a,_,»eA.,a;J €A’
where thr(a) = [a;; — 0].2

[thr(aq;j) - thr(“;i )] i

B. Assessment of the Topology Inference Algorithm (Level One)

Our experiments show that in the absence of significant mea-
surement noise, the network structure can be determined very
reliably with a handful of agents and a sufficient number of ob-
servations (e.g. four or ten agents). This appears to be true for

2Negative transit times are rejected.
3 A threshold value of # = 0.1 was selected for our experiments.

various graph sizes, although for this low-noise condition, we
have only tested graphs of limited size. For example, the topol-
ogy of 95% of 12 node graphs was perfectly inferred with zero
Hamming error for 200 simulations with four agents. Generally,
the algorithm converged quickly, finding most of the coarse
structure in the first few iterations and making incrementally
smaller changes until convergence (Fig. 7).

While the algorithm is robust to moderate levels of “white”
observational noise, its sensitivity to significant levels of sys-
tematic noise depends on the tuning of the delay model. The
delay model is controlled by the SSL parameter, which deter-
mines the probability threshold for including delay data in the
update of the network connectivity parameters. Note that for
purposes of brevity, any value assigned to the SSL parameter in
these results is given in the logarithmic form. Fig. 8§ shows the
result of varying the value assigned to the SSL parameter for
different types of noise.

When assigned a high-SSL value, the mixture approach for
modeling delays was successful at minimizing the effects of
systematic noise. Even when 10% of the delay times were uni-
formly increased, the Hamming error of the inferred transition
matrix was near zero [Fig. 8(a)]. When the SSL parameter was
assigned a value of zero, the algorithm had no method of dis-
carding delay data and had to update its network parameters
given all the observations.

Moderate amounts of “white,” unbiased observational noise
could be handled regardless of the tuning of the delay distribu-
tion mixture [Fig. 8(b)]. However, the inferred transition beliefs
were strongly effected by heavy amounts of this type of noise.
The effect of randomly inserting and deleting observations is to
skew the distribution of likely sampled trajectories. Hence, the
inference technique develops an incorrect belief of the under-
lying network and its intersensor transition probabilities. Since
determining the correlation between the various sensor observa-
tions is key to our approach, it is unsurprising that, after about
10% of both missing and spurious observations, the performance
of the algorithm drops significantly.

The robust behavior of the algorithm under noisy condi-
tions demonstrates both the general stability of the sampling-
based approach and the success of the delay model. With an
appropriately selected value assigned to the SSL parameter,
the technique can infer highly accurate connectivity informa-
tion even with moderate levels of both systematic and white
noise.
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C. Automatic Parameter Selection (Level Two)

In this section, we attempt to validate our general approach
for selecting nearly-optimal input parameters for the first-level
topology inference algorithm by using attributes of the solution
it produces. We select parameters defining the Qgimp metric
based both on domain knowledge and experimental methods
(Table I).

In order to justify these parameter values and to assess the
effectiveness of this approach, we conducted a number of simu-
lations in which we varied the input parameters and looked for
a correlation between the performance of the algorithm and the
simplicity metric.

1) Effect of Input Parameters: Input parameters that resulted
in good algorithm performance also resulted in simple models,
as measured by the Qqimp quotient (Figs. 9 and 10). For exam-
ple, under noise-free operation, the most accurate solutions also
generated the highest Qimp values. This result gives support for
our adoption of Occam’s Razor as a mechanism for selecting
input parameters.

The accuracy of the solution we obtain depends heavily on
the assumed number of agents in the environment. The lowest
error was consistently observed when the assumed number of
agents was set to the correct value, and generally, the closer to
the correct value this parameter was set, the better the results.
Overestimating the assumed number of agents had less impact
on accuracy than underestimation.

A correctly tuned SSL parameter was also important to the
accuracy of the final solution. As the input value for this param-
eter was increased, there appeared to be a “phase transition” in
the accuracy of the results. Past a certain threshold, the error
suddenly increased dramatically. Interestingly, the best results
for both the inferred mean delay times and transition likeli-
hoods seems to be obtained just before this sudden degradation
in performance.

2) Direct Correlation Between Performance and the Simplic-
ity Quotient: When the error in the inferred transition matrix
was plotted against the value obtained for the simplicity quo-
tient Qsimp for a number of simulations, there was evidence of
a definite correspondence (Fig. 11). The effect appeared robust
to moderate levels of observational noise and different sizes of
graphs. While, the shaping of the (Q)simp metric is an ongoing
task, the current parameter values are adequate to demonstrate
the correlation between the correctness and simplicity of the
inferred transition matrix. In our experimental work, described
in the next section, we took advantage of this correlation to se-
lect appropriate input parameters since the ‘correct’ values were
unknown.

VII. EXPERIMENTS CONDUCTED ON A HETEROGENEOUS
SENSOR NETWORK

In order to test our technique under real-world conditions, we
set up an experiment using a network of sensors and analyzed
the results using our two-level approach.

A. Experimental Setup

The sensor network was made up of two types of platforms:
vision-based sensors running on single-board computers; and
photocell-based sensors running on low-powered commercial
devices. Both types of sensors were programmed to act as simple
motion detectors sending event messages to a central server,
which logged the origin and time of the activity.

The vision-based sensor nodes were constructed of inexpen-
sive single-board computers running the Linux operating sys-
tem networked together over Ethernet using custom software.
A standard client/server architecture was implemented over the
Transmission control protocol/Internet protocol (TCP/IP) in the
C language. The client software functions as a motion detector
employing a Labtech Webcam.

The second type of motion sensor consisted of a flashlight and
a MICA2 Crossbow wireless sensor with an attached sensor
board (Fig. 12). Custom firmware developed for this project
ran on the TinyOS real-time operating system [45], [46]. The
flashlight beam was focused on the photocell of the sensor board.
Any decrease in the intensity of the light was detected by the
firmware which sent an event message to a central server.
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Fig. 10.
four simulated agents on 12-node, 48-edge graphs with 4000 observations.

The experiment was conducted in the hallways of one wing
of an office building (Fig. 13). The data were collected during a
6 h 30 min period from 10:00 a.m. to 4:30 p.m. on a weekday. In
total, approximately 4700 time-stamped events were collected.

The three low-powered sensors were placed close to the cen-
tral server to accommodate their shorter communication range.
Despite this layout, the furthest low-powered sensor, I, was only
able to communicate to the central server via an intermediate
sensor, H, using a multihop communication protocol.

B. Ground Truth

Ground truth values were calculated in order to assess the
results inferred by the approach. A topological map of the envi-
ronment was determined [Fig. 15(a)] based on an analysis of the

Simplicity Q uotient

I
25 20 15 10 5 0

SSL P arameter S etting
(b)

Effect of varying the value assigned to the SSL parameter on performance and the simplicity quotient. Results are averaged over 20 graphs using the

sensor network layout. In addition, intervertex transitions times
for the connected sensors were recorded with a stopwatch for a
typical subject walking at a normal speed (Table II).

C. Selection of Input Parameters

To determine appropriate input parameters for our infer-
ence algorithm, we conducted an exhaustive search over the
range of N =2,...,6 and SSL = —7,...,—3 (Fig. 14). We
then chose the output values that maximized our Qgimp met-
ric. (We used the same shaping parameters for the Qimp metric
that were verified through simulations.) The maximizing argu-
ments were: N = 5 and SSL = —5. Therefore, we selected the
solution generated by these parameter values as our inferred
network.
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values are consistently among those with the lowest transition matrix error.

(b)

Fig. 12. (a) Complete setup and (b) close up of a deployed photocell-based
sensor constructed out of a flashlight and a crossbow wireless sensor. (Plastic
containers were used as protective covering during experiments.)

D. Assessment of Results

Except for a few small differences, the network parameters
computed by our topology inference algorithm closely corre-
sponded to the ground truth values. Fig. 15 compares the analyt-
ically determined and inferred topological maps. Disregarding
reflexive links, the difference between the inferred and “ground
truth” results amounted to a Hamming error of 2. The two sig-
nificant errors are: an extra edge found between sensors A and
B; and a missing one-way edge from sensor D to I.

The missing edge from D to I is likely due to the ten-
dency of people to go straight rather than turn right when nav-
igating the corridor on the bottom right of the region (head-
ing left), as shown in Fig. 13. This missing inferred con-
nection demonstrates a limitation in the approach of exploit-
ing motion in the environment. Our technique can only learn
traffic patterns common enough to be easily recognized and
distinguished.
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Fig. 13.

Layout of the nine-sensor (heterogeneous) network used for the experiment. Labeled triangles represent vision-based sensor positions (A—F) and labeled

rectangles represent low-powered photobased sensors (G—I). The circle represents the location of the central server.

Simplicity Metric

5

Assumed Number of P eople SSL P arameter

Fig. 14.  Plotof the Qsimp metric as a function of input parameters.

The extra edge found leading from sensor A to sensor B is
likely due to a correlation in the detection intervals between
these two nodes. Since both sensors are in boundary locations,
they are likely to receive events caused by people that then
leave the monitored region for some time. Both of these areas
see heavy traffic, much of which does not directly lead to another
monitored area. Fig. 16(c) shows the inferred delay distribution
between these two nodes; the distribution is far from what would
be expected from “through-traffic.” It is possible that erroneous
edges of this type could be eliminated based on the shape of
their associated delay distribution. Although a probabilistic be-
lief of likely delay distributions could be incorporated into the
algorithm, a simpler solution could be to implement a post-
processing technique. For example, edges could be eliminated
if the standard deviation of their delay distribution is large in
comparison to the mean.

It should be noted that, in this paper, a truncated normal was
used to model the delay distributions; however, results were
also obtained using a gamma distribution. Interestingly, better

Fig. 15. Topological maps of the environment that were: (a) analytically de-
termined based on the layout; (b) inferred by the algorithm; (c) inferred by the
algorithm including the source/sink node.

results were obtained using the truncated normal. It is possible
that when using this distribution family, the algorithm is better
at symmetrically rejecting outliers on both sides of the mean,
and as a consequence, finds parameters that form tighter, more
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TABLE II
COMPARISON OF TIMED AND INFERRED DELAY TIMES (BOTH WAYS) BETWEEN
SENSORS. ALL VALUES ARE ROUNDED TO THE NEAREST SECOND

Connection | Timed | Inferred
AG 6 8/11
AC 9 12 /10
B,C 5 6/8
C,G 5 5/5
CH 5 6/6
D,F 14 15717
D,H 5 5/6
DI 6 TIT
E,F 13 13713
EI 13 15/ 14
H,I 4 4/4

decisive intervertex distributions. Presumably, this has the effect
of improving the accuracy of the inference process.

The mean transition times produced by the algorithm were
consistent to those determined by the stopwatch (Table II,
Fig. 16). Additionally, the number of reflexive links or self-
connections inferred by the algorithm also seem to be consis-
tent with the expected results. Except for node D, the other
reflexive links all occur on sensors that are on the boundary of
the monitored region [Fig. 15(b)]. Traffic passing node G, for
example, might be correlated to the arrival of the elevator. (The
elevators are located to the right, immediately below sensor G.
See Fig. 13.) Hence, a pattern in the detection events that was
uncorrelated to other sensor detections would lead to a belief in a
self-connection. The self-connection seen on sensor D might be
due to regular traffic to an office located in the hallway between
sensor D and sensor F'.

The connections to the source/sink node also occur only for
boundary nodes [Fig. 15(c)] and are, therefore, consistent with
an analytical assessment of the traffic patterns. Since traffic
commonly enters and exits the monitored region via one of
the boundary nodes, the inference algorithm should commonly
employ the source/sink node in order to bring the agent back
into the system.

VIII. CONCLUSION

In this paper, we presented a method for inferring the topology
of a sensor network given nondiscriminating observations of

0 5 10 15 20 25 £ 35 ) 5 15

Delay in S econds

(b) (©

Count

30 35 15 35
Delay in S econds

Examples of delay distributions inferred for: (a) sensor D to sensor H; (b) sensor F to sensor D; (c) sensor A to sensor B (an erroneously inferred edge).

activity in the monitored region. Our technique recovers the
network connectivity information opportunistically through the
exploitation of existing motion. This task is accomplished based
on no prior knowledge of the relative locations of the sensors
and only a limited knowledge of the type of activity present in
the environment.

We described a formulation of the problem such that it
could be iteratively solved with a stochastic EM algorithm. The
method uses the observational data and MCMC sampling to con-
struct likely trajectories describing the motion of agents present
in the environment. By inferring underlying patterns in their
motions, the technique recovers the connectivity relationships
between the sensors and constructs a Markov model describing
their behavior. From this information, a topological description
of the network can be constructed.

The work also entails some open problems. We assume that
agents in the system tend to transit the sensors separately. While
we can tolerate some degree of inconsistency with this assump-
tion, an explicit model might be required to deal with an en-
vironment in which this happens with high frequency. We also
assume that the behavior of the agents in the environment is
statistically independent. Dealing explicitly with correlated be-
havior is an interesting problem and is related to the work of
Haigh [47].

Results from both simulations and experiments have shown
the ability of our algorithm to generate accurate results under
conditions of sensor noise and complex traffic patterns. The
technique compares favorably to related approaches and could
have promising real-world applications in the area of sensor
network calibration and self-configuration.
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