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Abstract—This paper presents a relational positioning method-
ology that allows to restrict totally or partially the movements of
an object by specifying its allowed positions in terms of a set of
intuitive geometric constraints. In order to derive these positions,
a geometric constraint solver must be used. To this end, positioning
mobile with respect to fixed (PMF), a geometric constraint solver
for the relational positioning of rigid objects in free space is in-
troduced. The solver exploits the fact that, in a set of geometric
constraints, the rotational component can often be separated from
the translational one and solved independently. PMF may be used
as an interface for specifying offline-programmed robot tasks, as
well as for assisting the execution of teleoperated tasks requiring
constrained movements. Examples describing both the solver’s op-
eration and typical applications are discussed.

Index Terms—Assembly planning, geometric constraint solving,
relational positioning, robot programming.

I. INTRODUCTION

WHEN ASKED to perform a positioning operation, hu-
mans usually think of it in terms of satisfying geometric

relations. For example, placing a glass on top of a table can be
accomplished by making the bottom surface of the glass coin-
cide with the tabletop. Positioning operations can restrict not
only totally, but also partially the movement of an object. So, in
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the previous example, the glass can freely translate along direc-
tions parallel to the tabletop and can freely rotate about an axis
perpendicular to it and still comply with the imposed relation.
Furthermore, by using geometric relations, a positioning opera-
tion can be defined independently of the initial configurations of
the involved objects, so if by some reason, the initial positions of
the glass and the table change, the operation definition remains
meaningful and need not be restated.

In the same way, many robot tasks require the positioning
of objects with respect to their surroundings. Although this is
a ubiquitous problem in robotics, most existing approaches fail
to fulfill all the end user’s needs, are not intuitive enough, and
rarely support the notions of partial movement restriction and
initial configuration independence. For example, in traditional
offline programming, configurations are defined in terms of non-
intuitive parameters such as homogeneous transformations and
joint space coordinates. In gestural programming, the burden
is placed on an operator that manually moves the robot end-
effector along the desired trajectories, trading a simpler interface
for possible workcell downtime and imprecision issues inherent
to humans. Simulation-based programming is an attractive alter-
native since it imposes no workcell downtime, but its usefulness
depends on a task representation interface that needs to be both
intuitive and adapted to the end user’s requirements. Relational
positioning can be used to create such an interface.

Relational positioning is a powerful means for placing objects
in space, in which the problem is formulated in terms of geo-
metric constraints. A geometric constraint is a relation (distance,
angle, tangency, etc.) between two or more geometric elements
(points, curves, surfaces) that must be satisfied. These elements
usually represent boundary or reference features of parent ob-
jects. For example, a point may represent the vertex of a cube,
and a line may represent the axis of a cylinder. A geometric
constraint solver is used to find the positions that each object
should have to comply with these constraints. Relational posi-
tioning problems that can be solved by positioning one object
at a time are called sequential.

Specifying a robot task can be done at multiple levels. Lower
levels require defining all the details needed to complete the
task (points, trajectories, etc.), while higher levels involve more
abstract instructions leaving the details to automated processes.
Relational positioning can be used at both levels: at low levels
by using geometric constraints to define trajectory points and
at high levels by using the constraints as an intermediate layer
between an automatic task planner and the robot controller.

De Schutter et al. [1] present a constraint-based methodology
for the specification of complex sensor-based robot tasks. They
propose a means for dealing with geometric uncertainty and
demonstrate the approach through various experiments, both
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RODRÍGUEZ et al.: RELATIONAL POSITIONING METHODOLOGY FOR ROBOT TASK SPECIFICATION AND EXECUTION 601

simulated and real. Although very general and systematic, the
approach requires the definition of appropriately chosen frames
and geometric relationships, a process that can be convoluted in
complex tasks, but can be greatly simplified with the addition
of an intuitive relational positioning interface such as the one
presented in this paper.

Thomas et al. [2] present a general approach for specifying
and executing assembly tasks in the presence of uncertainty.
Task descriptions can be generated with different modules, one
of which is a geometric-restrictions-based assembly planner [3]
that has been embedded in the Robcad Robot Simulation Sys-
tem. The planner has an intuitive interface but only supports a
small set of geometric constraint types, limiting the complexity
of the problems that can be formulated.

On the other hand, teleoperated task execution relies on op-
erator skills. Some tasks involve movements that require the
satisfaction of specific constraints, such as following a line or
maintaining a fixed orientation. Turro et al. [4] present a sys-
tem that can generate forces on a haptic device to restrict its
movement to curves and surfaces, but these must be explicitly
defined by the operator. DeJong et al. [5] use a combination of a
structured light sensor system and an augmented-reality user in-
terface to select curves and surfaces, which are then introduced
to a constrained dynamic system simulation [6] for haptic ren-
dering. In such situations, geometric constraints required for the
correct execution of the task can be defined, and their effect can
be fed back to the operator via visual displays and haptic devices.

The most important part of a relational positioning system is
the geometric constraint solver, that translates the set of intuitive
input constraints into an explicit set of allowed positions ex-
pressed in a way that is convenient for the automatic system that
has to use them. There exist many methods for solving geomet-
ric constraint problems [7], most of which can be classified as
graph-based, logic-based, algebraic, or a combination of these.

Graph-based methods construct a (hyper)graph in which the
nodes represent geometric objects and the arcs, constraints.
Topological features like cyclic dependencies and open chains
can be easily detected. Graph analysis identifies simpler and
solvable subproblems whose solutions are combined while
maintaining compatibility with the initial problem. There exist
algorithms with O(n2) [8], [9] and O(nm) [10] time complex-
ity, where n is the number of geometric elements and m is the
number of constraints.

Logic-based methods represent the geometric elements and
constraints using a set of axioms and assertions. The solution
is obtained following general logic reasoning and constraint
rewriting techniques [11], [12].

Algebraic methods translate the problem into a set of non-
linear equations, which can be solved using a variety of nu-
meric and symbolic methods. Numeric methods range from the
Newton–Raphson method [13] that is simple but does not guar-
antee convergence nor finding all possible solutions, to more
sophisticated ones like homotopy [14] that guarantee both. They
tend to have O(n2)–O(n3) time complexity. Symbolic methods
use elimination techniques such as Gröbner basis to find an ex-
act generic solution to the problem, which can be evaluated with

numerical values to obtain particular solutions [15]. These meth-
ods are extremely slow since they have O(cn ) time complexity.

The application area for geometric constraint solvers is cur-
rently dominated by the computer-aided design (CAD) commu-
nity, which has widely adopted them as an intuitive framework
for parts and assembly design. Most CAD solvers deal with 2-D
sketching problems [8], [9], but there exist methods that model
parts directly in 3-D [12], [16]. Among other applications not
so widespread figure mechanism design, kinematic modeling,
molecular modeling, and robot task specification.

A method is said to be general if it admits the formula-
tion of any geometric constraint problem and complete if it is
able to solve—or detect the unsolvability—of all the problems
whose formulation it admits. Kramer [10] proposes a geometric
constraint solver for open spatial kinematic chains and certain
families of closed ones that is neither complete nor general, spe-
cially in 3-D problems. Porta et al. [17] describe a complete and
general numeric algebraic method based on Cayley–Menger de-
terminants and branch-and-prune techniques. This method has
the shortcoming that it is not well suited for relational position-
ing, because the problem cannot be directly formulated in terms
of intuitive geometric constraints. Moreover, the form in which
solutions are given needs to be processed before being used in
a robot programming or teleoperation application.

This paper presents positioning mobile with respect to fixed
(PMF) [18], [19] a sequential geometric constraint solver for the
relational positioning of rigid objects in 3-D environments by
means of distance and angular constraints between points, lines,
and planes; PMF handles under-, well-, and overconstrained
(redundant and incompatible) problems. The solver has been
integrated in a framework for specifying offline-programmed
robot tasks and assisting the execution of teleoperated ones.

The solver can be classified as logic-based since it contains a
set of constraint rewriting rules that transform an input constraint
set into an equivalent set whose solution is known. PMF is based
on the linking matrix finder (LMF) solver [20], [21]. The most
relevant improvements over the initial work are the ability to
solve underconstrained problems, since it is often desirable to
restrict only partially the motion of a robot and to guide it using
the available degrees of freedom (DOFs); and the inclusion
as inputs of certain types of second-order distance constraints
(e.g., point–point and point–line distances), which considerably
broaden the family of solvable problems.

An important requirement in the design of the solver has
been that solution computation should be fast enough to be in-
cluded in high-frequency loops and updated when the geometry
of the problem changes (e.g., moving obstacles). Since there is
a compromise between completeness/generality and computa-
tional efficiency, it has been opted for a solver that is neither
complete nor general, but computationally very efficient, and
at the same time, capable of handling most practical problems
of the application domain. Such problems often turn out to be
those whose solutions can be pictured qualitatively—but not
quantitatively— by the user, so in most cases, the user is able
to naturally formulate the problem in a way that can be solved
by the system. On the other hand, CAD solvers [22] focus on
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Fig. 1. Sample constraint sets between a fixed (a) and a mobile object (b).
(c) Constraint Lm = Lf can be decomposed into the pure rotational and trans-
lational constraints Lm ‖ Lf and Pm ⊂ Lf , respectively. (d) Constraint set
{Pm = Pf , Qm = Qf } implies the rotational constraintKm ‖ Kf . (e) Con-
straint set {Pm = Kf , Qm = Mf , and Rm = Nf } cannot be handled by
the solver, but adding the additional redundant constraint Pm = Pf renders it
solvable.

completeness rather than on computational efficiency, because
solutions are seldom required to be updated at high refresh rates.

The PMF solver is described in Sections II–V. Sample prob-
lems are listed in Section VI. Performance and implementation
issues are covered in Section VII. Conclusions and future work
are finally presented in Section VIII.

II. SOLVER OVERVIEW

The problem addressed by PMF is that of finding all possible
configurations of a 3-D mobile object that satisfy a set of ge-
ometric constraints defined between the elements of the object
and those of its (fixed) environment. The objects are assumed
to be rigid and their positions known with respect to a fixed
coordinate system.

PMF accepts as input constraints distance (d) and angle (# )
relations between points, lines, and planes.1 Also, the particu-
lar cases of coincidence/contained (=/⊂), parallelism (‖), and
perpendicularity (⊥) relations are explicitly considered for com-
modity reasons, since they are used very often in practice.

The adopted notation for representing geometric entities
throughout this discussion is the following: uppercase bold let-
ters for points (P, Q), uppercase calligraphic letters for lines
(K, L), uppercase Greek letters for planes (Π,Σ), and lower-
case bold letters with a hat for unit vectors (d̂, û). Mobile (fixed)
elements are identified by the subscript m (f).

A constraint is considered purely translational if it can be
satisfied regardless of the orientation of the constrained object,
and analogously, it is considered purely rotational if it can be
satisfied regardless of the object’s translation.

1Although the supported geometric elements are planar, the objects they
belong to need not be polyhedral.

The solver takes advantage of two key facts, which will be
described in the following, as well as illustrated with simple
examples featuring the objects depicted in Fig. 1(a) and (b).

First, many geometric constraints restrict both rotational and
translational DOFs, but often they can be expressed in terms of
pure rotational and pure translational constraints without losing
their original meaning. For example, consider the lines Lm and
Lf in Fig. 1(a) and (b). The line–line coincidence constraint
Lm = Lf restricts all but one rotational and one translational
DOF [see Fig. 1(c)], and is equivalent to the line–line par-
allelism constraint Lm ‖ Lf , which is purely rotational, and
the point–line contained constraint Pm ⊂ Lf , which is purely
translational (where Pm is a support point of Lm ).

Second, the simultaneous satisfaction of two or more pure
translational constraints may give rise to an implicit rotational
constraint. In fact, it is possible to fully restrict an object —
rotations included—using exclusively translational constraints
(e.g., a Stewart platfom). Conversely, the simultaneous satisfac-
tion of any number of pure rotational constraints never gives rise
to implicit translational constraints. Now consider the set of two
point–point coincidence constraints {Pm = Pf , Qm = Qf }.
While the individual satisfaction of either constraint restricts
all of the mobile object’s translational DOFs, the simultaneous
satisfaction of both implies the line–line parallelism constraint
Km ‖ Kf , which additionally restricts two rotational DOFs,
yielding a solution with only one rotational DOF [see Fig. 1(d)].
Notice that the two constraints are compatible only if the dis-
tance between Pm and Qm is the same as the distance between
Pf and Qf , otherwise the problem will have no solution.

An important observation is that the map between sets of
geometric constraints and solutions is not injective, so there may
exist multiple constraint sets associated to the same solution. For
instance, the constraint set {Pm ⊂ Lf , Qm ⊂ Mf } yields the
same solution as the aforementioned example [see Fig. 1(d)].

The core idea behind the solver consists in formulating a re-
lational positioning problem in terms of a compact set of pure
rotational and translational constraints—which will be referred
to as fundamental constraints—and making all rotational con-
straints explicit. This permits separating the rotational compo-
nent of the problem so that it can be solved first using only the
rotational constraints. Then, the translational component corre-
sponding to each allowed rotation can be easily found using the
translational constraints. Each solution component is obtained
by matching the corresponding subset of constraints with a list
of handled scenarios.

This approach may fail for problems that cannot be reduced to
a form with known solution. However, this is not the usual case
in relational positioning, and when it appears, the user is notified
that the problem cannot be handled by the solver. Sometimes
unhandled problems can be restated in a solvable form, either by
adding additional redundant constraints or by using a different
constraint set that yields the same solution. For example, the
constraint set {Pm = Kf , Qm = Mf , Rm = Nf } cannot be
handled by the solver although a well-constrained solution exists
[see Fig. 1(e)]. However, if the additional redundant constraint
Pm = Pf is added to the problem, it becomes solvable by
PMF.
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Fig. 2. PMF solver solution process. CI represents the input constraint set,
CR and CT , respectively, represent the rotational and translational fundamental
constraint sets (CR im p l contains the implicit rotational constraints), and R, T ,
respectively, represent the rotational and translational components of solution.
Prime symbols indicate that the elements of a constraint set may have changed.

It is important to stress that the solver is only concerned on
satisfying a set of geometric constraints. If the problem being
solved models real objects, some of the solution configurations
may be physically impossible to realize because of collisions
between the involved objects, or because they lie outside the
workspace of the actuation system (e.g., a robot arm). Also, it
does not take into consideration issues such as geometric uncer-
tainty or the dynamics of the constrained objects. However, PMF
has been conceived with modularity in mind, so if required it
can be interfaced with other modules such as collision detectors
and robot simulators to filter out unfeasible configurations, and
with sensory systems and estimators that update the geometric
models as objects move or measurements are refined.

The solution process starts with the specification of the input
constraints by the user, and consists on three main steps: input
constraint decomposition, constraint combination, and solution
synthesis. A scheme of the process is shown in Fig. 2.

III. INPUT CONSTRAINT DECOMPOSITION

Input constraints have been selected with the aim of providing
an easy way to define the problem. Through input constraint
decomposition, an input constraint set CI is transformed into an
equivalent set of pure rotational and translational fundamental
constraints C = CR ∪ CT that contains fewer constraint types
and is easier to work with.

There are three fundamental translational constraints, which
express the distance between a point and another geometric

TABLE I
INPUT CONSTRAINT DECOMPOSITION

element (point, line, or plane)

d(Pa ,Pb) = p : point–point distance,

d(Pa ,Lb) = p : point–line distance,

d(Pa ,Πb) = 0 : point–plane coincidence,

and one fundamental rotational constraint, which expresses the
angle between two vectors:

# (ûa , ûb) = α : vector-vector angle.

Subindices “a” and “b” represent the object to which a geometric
element belongs. One object is always fixed, while the other is
mobile [e.g., d(Pm ,Pf ) = p, d(Pf ,Lm ) = p].

The details of input constraint decomposition are listed in Ta-
ble I. Input constraints that already are fundamental constraints
do not need to be decomposed. The particular cases of coinci-
dence/contained, parallelism, and perpendicularity are not ex-
plicitly shown in Table I, but can be obtained in a straightforward
manner by setting the appropriate constraint parameter value.
For line–line distance constraints, only the case that also en-
forces the lines to be parallel is considered, since the nonparallel
case cannot be represented in terms of the adopted fundamental
constraints.

IV. CONSTRAINT COMBINATION

In constraint combination, a set of rules defines a constraint
rewriting engine that recursively tests constraints in pairs with
the purpose of rewriting a set of fundamental constraints in
a compact and explicit form with known solution. The tests
verify constraint compatibility and redundancy, so ill-defined
cases are labeled as unsolvable while compatible but redun-
dant constraints are removed. Pairs of compatible constraints
are tried to be expressed more compactly with a single equiv-
alent constraint, or substituted by individually more restrictive,
but globally equivalent constraints. Rotational constraints im-
plicitly defined by pairs of translational ones are identified and
explicitly introduced. Constraint combination is applied sepa-
rately to CT and CR ′ , and in that order, so that implicit rotational
constraints are incorporated to CR before the combination tests
are performed on it (Fig. 2).

The constraint rewriting rules are obtained by applying the
following method to each pair of constraint types to be tested.
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TABLE II
COMPATIBILITY CONDITIONS FOR CONSTRAINT COMBINATION

1) Find the compatibility conditions that enable the two con-
straints to be satisfied simultaneously. They will depend
on up to four distance or angle parameters.

2) Create a rule that labels the problem as unsolvable if
the compatibility condition is not satisfied (conflicting
constraints).

3) Consider the compatibility conditions in its general form,
as well as at the limit cases (e.g., parallel elements, equal-
ity of a greater-or-equal-than condition) for all possible
combinations obtained by making the parameters equal to
zero.

4) If any of the aforementioned configurations can be repre-
sented in terms of a single fundamental constraint, create
a rule that substitutes the original pair with this single
constraint.

5) If any of the aforementioned configurations can be repre-
sented in terms of a pair of individually more restrictive
constraints, create a rule that substitutes the original pair
with this new one.

6) If the constraints being tested are translational and the
configuration reveals an implicit rotation, create a rule
that explicitly adds this constraint to CR .

This method fails to obtain new rules when the result of a
combination test cannot be expressed in terms of the adopted
fundamental constraints, or when more than two constraints
need to be simultaneously considered to extract it.

When a new constraint is added to a constraint set, it must also
be combined with the remaining constraints in the set, hence the
recursivity of this step.

Sometimes the simultaneous satisfaction of two constraints
yields a number of alternative possibilities. If each possible
alternative can be expressed as a fundamental constraint, the
current problem is branched into different problem instances,
one for each possible alternative. These new problem instances
are solved independently of each other. For example, the com-
bination of d(Pm ,Pf ) = 0 and d(Qm ,Lf ) = 0 [see Fig. 1(a)
and (b)] gives rise to two possible alternative constraints of the
form d(Qm ,Rf ) = 0, where Rf is one of the two points of
intersection of a sphere centered at Pf and the line Lf .

Table II lists all combination scenarios handled by the solver
indicating their corresponding compatibility conditions. For
brevity, the complete set of rules has been omitted from this
paper, but the interested reader can find them in [19]. Fig. 3

Fig. 3. Combination rules for two point–plane coincidence constraints
d(Pa , Πb ) = 0, d(Qa , Σb ) = 0. The compatibility condition is da ≥ db .
(a) (da < db ): incompatible constraints. Label problem as unsolvable.
(b) (Πb ‖ Σb ) and (da = db = 0): redundant constraints—remove one.
(c) (Πb ‖ Σb ) and (da #= 0) and (da ≥ db ≥ 0): add to CR the implicit rota-
tion # (ûa , ûb ) = α, where α = cos−1 (db /da ). (d) (Πb ⁄‖ Σb ) and (da = 0):
substitute both constraints with d(Pa ,Lb ) = 0. (e) (Πb ⁄‖ Σb ) and (da > 0):
leave constraints unchanged.

details the particular example of two point–plane coincidence
constraints.

The main reason why constraints involving more general
curves and surfaces [e.g., nonuniform rational B-spline
(NURBS), triangle meshes] have not been considered in the
solver is because the compatibility conditions needed for
constraint combination are not straightforward to obtain, and
also because particular solutions of these constraints are not
closed-form. More complex constraints could be integrated into
the solver and enforced individually, but they would probably
be impossible to combine according to the aforementioned
methodology.

V. SOLUTION SYNTHESIS

Solution synthesis (bottom part of Fig. 2) computes transfor-
mations that position the mobile object in a configuration that
simultaneously satisfies all the imposed geometric constraints.
This is a two-step process that takes advantage of the separa-
tion of fundamental constraints into pure rotational and pure
translational ones.
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First, the rotational component of the solution R is solved
using only the constraints in CR ′′ , where R maps the initial ori-
entation of the mobile object to a submanifold of the 3-D space
of rotations that satisfies all the rotational constraints. Then,
from a configuration that already satisfies R, the translational
component T is solved using the constraints in CT ′ , where T
maps the translation associated to an R-satisfying configura-
tion of the mobile object to a submanifold of the 3-D space of
translations that satisfies all the translational constraints. The di-
mension of the aforementioned submanifolds correspond to the
number of available DOFs each solution component has. Notice
that T depends on R, so changes in the rotational component of
the solution in general also affect the translational component.
Algorithm I summarizes the process.

Solutions are represented by a rigid transformation param-
eterized by as many parameters as available DOFs, so that a
sweep across the allowed parameters values will span the range
of reachable configurations. The solution to the particular case
of a well-constrained problem, which has no DOFs will be a con-
stant rigid transformation. A common representation for rigid
transformations are 4×4 matrices, where R and T take the form
of a 3×3 matrix and a 3×1 vector, respectively. A particular
solution P can be then written as

P =
[

R T

0 1

]
. (1)

Other rigid transformation representations may also be used.
For example, the current implementation of the solver uses unit
quaternions to represent rotations for numerical stability rea-
sons, but for simplicity, the present discussion will adhere to the
4 × 4 matrix notation.

If branching occurred during the constraint combination step,
Algorithm I must be applied to the fundamental constraint set C
associated to each branch. The resulting solutions are all equally
valid and satisfy the input constraints. However, a projection
operation can be performed to obtain which solution yields the
configuration that is closest (according to a suitably chosen
metric) to the initial configuration of the mobile object.

Fig. 4. Solution synthesis process: evaluation of R and T . a© Initial configu-
ration of the mobile object. b©R-satisfying configuratin. c© Final configuration.
It satisfies both R and T .

To exemplify the solution synthesis process, consider the
fixed and mobile objects depicted in Fig. 1(a) and (b), respec-
tively; and let the mobile object be restricted with a constraint
set that yields a solution such as the one depicted in Fig. 1(d).
The process is illustrated in Fig. 4, where all geometric elements
are represented in the fixed coordinate system o.

Solving R and applying it to the initial configuration of the
mobile object a© results in the R-satisfying configuration b©.
Then, T is solved for the current value of R (so that points
Pm and Pf coincide), that when applied to b© results in c©, a
configuration that satisfies both R and T .

In this case, T = Pf − R(Pm ), and a matrix representation
of the solution would have the form

P =
[

R Pf − R(Pm )
0 1

]
. (2)

In Section V-B, it will be shown that the general form of T is
very similar to the one presented before.

The rotational component of the solution is solved before the
translational one because rotations are origin-preserving trans-
formations, that is, when the orientation of an object changes,
all points except the coordinate system origin translate. On the
other hand, translations are orientation-preserving transforma-
tions, so when the position of an object changes, its orientation
remains unchanged. If the solution order is inverted so that the
mobile object is first translated to satisfy the translational con-
straints and then rotated to satisfy the rotational ones, it can be
observed that in the general case, the final configuration will no
longer satisfy the translational constraints.

A. Rotational Component

Table III lists the possible sets of rotational constraints with
their corresponding number of DOFs and solutions. After per-
forming CR ′ reduction, any set of rotational constraints can be
matched to one of these entries, so unmentioned cases have not
been included in the list not because they are unhandled, but
because they can be rewritten in a form that matches one of the
table entries.

The rotation R that must be applied to the mobile object for
four of the cases in Table III will be now discussed. The details
of the remaining two cases have been omitted because of their
length, but can be found in [19]. The trigonometric functions
sinα and cos α will be abbreviated as sα and cα , respectively.
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TABLE III
POSSIBLE SETS OF ROTATIONAL CONSTRAINTS

Fig. 5. Enforcement of two particular solutions of the rotational component.
(a) One vector–vector parallelism constraint # (ûm , ûf ) = 0. (b) One vector–
vector angle constraint # (ûm , ûf ) = α.

1) Two Parallelism Constraints # (ûm , ûf ) = 0, # (v̂m ,
v̂f ) = 0: This is a particular case of the rotation associated
to two pairs of independent unit vectors R(ûm , v̂m → ûf , v̂f ),
as explained in the Appendix.

2) One Parallelism Constraint # (ûm , ûf ) = 0: Let σ be the
angle between ûm and ûf , and ŵ = ûm × ûf , then the rotation
R(φ) is given by

R(φ) = R(ûf ,φ)R(ŵ,σ) (3)

where R(ûf ,φ) accounts for the free rotation about the direction
of ûf (expressed as an axis–angle pair) and R(ŵ,σ) is the fixed
rotation that places ûm parallel to ûf [see Fig. 5(a)].

3) One Angle Constraint # (ûm , ûf ) = α: Let σ be the an-
gle between ûm and ûf , and ŵ = ûm × ûf , then the rotation
R(φ, θ) is given by

R(φ, θ) = R(ûf ,φ)R(ŵ,σ − α)R(ûm , θ). (4)

R(ûm , θ) and R(ûf ,φ) account for the free rotations about
the directions of ûm and ûf , respectively, and R(ŵ,σ − α)
is the fixed rotation that places ûm at an angle of α with ûf .
Fig. 5(b) depicts the enforcement of this constraint.

4) No Rotational Constraints: The mobile object is able to
freely rotate in any direction. However, the rotation has been
parameterized according to the Yaw, Pitch, and Roll convention,
in which the rotation axis corresponds to those of the fixed
coordinate system

R(φ, θ,ψ) = R(k̂,ψ) R(̂j, θ) R(̂i,φ). (5)

B. Translational Component

Table IV lists the handled sets of translational constraints with
their associated number of DOFs. Basically, the handled cases
correspond to the three fundamental translational constraints—
considering separately the particular case when the distance
parameter equals zero—and some configurations considered
meaningful that cannot be expressed in terms of a single fun-

TABLE IV
HANDLED SETS OF TRANSLATIONAL CONSTRAINTS

Fig. 6. Two particular solutions of the translational component. (a) One point–
point distance constraint [d(Pm , Pf ) = p]. (b) Two point–plane coincidence
constraints [d(Pm , Σf ) = 0, d(Qm , Πf ) = 0].

damental constraint, but rather two, such as the one shown in
Fig. 3(e). Note that contrary to the rotational component solu-
tion, not all possible combinations of translational constraints
can be reduced to a form that matches an entry of Table IV.
All constraint sets that are not mentioned in the table but can
be rewritten through CT reduction in a form that matches one
of its entries will have a valid solution, otherwise they will be
considered unhandled.

The translation T that must be applied to an R-satisfying
mobile object has the general form

T = Sf − R(Sm ) (6)

where Sm and Sf belong to one of the submanifolds listed
in Table V. The form taken by the expression of T given in
(6) will now be explained in detail for five particular cases
of Table IV: the first three solutions are associated to single
constraints and the last two correspond to solutions defined by
pairs of constraints. In these examples, subindices “a” and “b”
have been substituted by “m” or “f” to explicitly identify the
mobile and fixed elements. In order to obtain the expressions
associated to the remaining cases, the same line of thought—
with minor differences—can be applied.

1) One Point–Point Coincidence Constraint d(Pm ,Pf ) =
0: Both Sm and Sf belong to point submanifolds, so (6)
becomes

T = Pf − R(Pm ). (7)

2) One Point–Point Distance Constraint d(Pm ,Pf ) = p:
The mobile point Pm is constrained to the surface of a sphere
with center Pf and radius p, as shown in Fig. 6(a), so Sm

belongs to a point submanifold and Sf belongs to a spherical
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TABLE V
PARAMETRIC REPRESENTATION OF TRANSLATIONAL SUBMANIFOLDS

submanifold:

T (α,β) = Pf + p(cαsβ î + sαsβ ĵ + cβ k̂)
︸ ︷︷ ︸

Sf

−R(Pm︸︷︷︸
Sm

). (8)

3) One Point–Line Coincidence Constraint d(Pf ,Lm ) = 0:
The mobile line Lm is constrained to contain the fixed point Pf

at all times, so Sm belongs to a line submanifold and Sf belongs
to a point submanifold:

T (λ) = Pf︸︷︷︸
Sf

−R(Pm + λd̂Lm︸ ︷︷ ︸
Sm

) (9)

where d̂Lm and Pm are the direction vector and a support point
of Lm , respectively.

4) One Point–Line Distance and One Point–Plane Coinci-
dence Constraints d(Pm ,Kf ) = p, d(Pm ,Πf ) = 0: The mo-
bile point Pm is constrained to an ellipse (or circle), so Sm

belongs to a point submanifold and Sf belongs to an elliptical
submanifold:

T (α) = Rf + p
[
cα d̂1 + (sα/sσf )d̂2

]

︸ ︷︷ ︸
Sf

−R(Pm︸︷︷︸
Sm

) (10)

where

Rf = Kf ∩ Πf

d̂1 = n̂Πf × d̂Kf

d̂2 = d̂1 × n̂Πf .

5) Two Point–Plane Coincidence Constraints d(Pm ,Σf ) =
0,d(Qm ,Πf ) = 0: To solve this case, the two constraints are
transformed into an equivalent pair of point–plane constraints
that share the same mobile point.

Stating (6) for the second constraint yields

T = Qf − R(Qm ) (11)

where Qf is a point contained in the planar submanifold asso-
ciated to Πf . Adding and subtracting Pm and rearranging, we
get

T = Qf − R(Qm + Pm − Pm ) (12)

T = [Qf − R(Qm − Pm ) ] − R(Pm ). (13)

By defining S′
f = Qf − R(Qm − Pm ), (13) becomes

T = S′
f − R(Pm ). (14)

Equation (14) is equivalent to the point–plane coincidence con-
straint d(Pm ,Υf ) = 0, where Υf is the plane parallel to Πf

that passes through S′
f .

The original constraint pair can now be expressed through
the equivalent d(Pm ,Σf ) = 0, d(Pm ,Υf ) = 0, which shares
the same mobile point, which in turn can be further sim-
plified into the case of one point–line coincidence constraint
d(Pm ,Lf ) = 0, whereLf = Σf ∩ Υf . Notice thatLf depends
on R and must be recomputed every time its value changes. The
solution is depicted in Fig. 6(b).

VI. SAMPLE PROBLEMS

This section presents two examples that illustrate how PMF
works and how it can be applied to its target applications.
The first example details the solution process for a sim-
ple problem and emphasizes the contribution of each step.
The second example consists of a simple assembly, and it
is shown how the same constraint set can be used to ex-
ecute the task in both offline-programmed and teleoperation
modes.

A. Simple Example

Consider one more time the fixed and mobile objects depicted
in Fig. 1(a) and (b), respectively. The mobile object is to be
positioned according to the input constraint set

CI = {Pm ⊂ Kf ,Pm ⊂ Lf ,Qm = Qf }

where Pm = [0 5 3]T , Qm = [0 7 3]T , Qf = [−2 0 3]T , and
Kf , Lf are the lines with direction vectors d̂Kf = [0 1 0]T ,
d̂Lf = [0 0 1]T , and share the support point Pf = [0 0 3]T .

Fig. 7 outlines the solution process for this problem, and
shows how constraint sets are affected by each step. The solu-
tion, depicted in Fig. 1(d), has one rotational DOF.

1) Input Constraint Decomposition: According to Table I,
the constraints in CI become

CT = {d(Pm ,Kf) = 0, d(Pm ,Lf) = 0, d(Qm ,Qf) = 0}

CR = ∅.

2) Constraint Combination:
a) The first two constraints share the same mobile point,

and since Kf ∩ Lf = Pf , they can be rewritten as
d(Pm ,Pf ) = 0, yielding

CT ′ = {d(Pm ,Pf ) = 0, d(Qm ,Qf ) = 0}.

b) Since d(Pm ,Qm ) = d(Pf ,Qf ) #= 0, the two constraints
in CT ′ imply the rotation # (ûm , ûf ) = 0, where ûm =
[0 1 0]T points in the direction of −−−−→PmQm and ûf =
[−1 0 0]T points in the direction of −−−−→Pf Qf

CR ′ = {# (ûm , ûf ) = 0}.

3) Solution Synthesis:
a) Rotational component: R is computed for one parallelism

constraint (Section V-A2) and has one DOF.
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Fig. 7. Solution process for a problem involving the objects from Fig. 1(a)
and (b).

Let ŵ = ûm × ûf = [0 0 1]T and σ = π/2 be the angle
between ûm and ûf , then

R(φ) = R(ûf ,φ)R(ŵ,σ)

R(φ) =




1 0 0
0 cφ sφ

0 −sφ cφ








0 −1 0
1 0 0
0 0 1





R(φ) =




0 −1 0
cφ 0 sφ

−sφ 0 cφ



 (15)

b) Translational component: CT ′ is matched to the most re-
strictive entry of Table IV; hence, T is computed for one
point–point coincidence constraint2 (Section V-B1), and
has no DOFs.

T = Pf − R(Pm )

T = [0 0 3]T − R[0 5 3]T . (16)

Particular instances of the solution can be found by setting
the DOF parameter. For example, for φ = 0, the rigid transfor-
mation P is obtained

P =





0 −1 0 5
1 0 0 0
0 0 1 0
0 0 0 1




. (17)

2Since CT ′ consists of two point–point coincidence constraints, either choice
is valid and will yield a correct result. In this particular case, d(Pm , Pf ) = 0
has been chosen.

Fig. 8. Assembly task consisting on positioning cover (a) with respect to base
(b) as shown in (c). (a) Cover (mobile object). (b) Base (fixed object). (c) Final
configuration.

Fig. 9. Sequence followed to accomplish the assembly. Robot gripper is han-
dling cover, but is not shown for clarity.

B. Assembly Task

Consider the objects cover and base, depicted in Fig. 8(a) and
(b), respectively. The task consists on securing cover (which
is being grasped by a robot arm) to base, as shown in Fig.
8(c). Notice that since cover features a spring-activated locking
mechanism, it must be positioned following the right sequence
of configurations rather than directly heading to its final state.
Consider now the following sequence of configurations for suc-
cessfully performing the task.

a) Position cover at an angle with respect to base ensuring
the objects do not collide [see Fig. 9(a)].

b) Lower cover until it makes contact with the rails on base’s
sides [see Fig. 9(b)].

c) Translate cover along the rails until the back of cover
makes contact with base [see Fig. 9(c)].

d) Rotate cover until the spring on its front locks [see Figs.
9(d) and 8(c)].

The constraint set CI = {Πm = Πf } restricts Πm to coin-
cide with Πf , reducing the DOFs of cover from six to three: one
rotation about n̂Πf —the normal of Πf —and two translations
perpendicular to n̂Πf [whose directions coincide with the hori-
zontal and vertical directions of Fig. 8(c)]. Now it will be shown
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Fig. 10. Teleoperated task where virtual forces are exerted on the haptic device
to maintain its end-effector contained in a plane (shown in dotted lines).

how the task can be executed in both offline-programmed and
teleoperated modes.

1) Offline-Programmed Task Specification: Configuration
a) is a contact-free situation and can be achieved by setting
appropriate initial values to the DOF parameters (position con-
trol in the DOF parameter space). The remaining configurations
can be reached by sequentially moving cover along each of
its DOFs. However, such configurations involve physical con-
tact between the objects, so contact states should be taken into
account.

If the robot that is executing the task has force-sensing ca-
pabilities, motion along each DOF direction can be not only
position-controlled, but also force-controlled. In such cases, in-
stead of attaining a position setpoint, motion along a DOF direc-
tion is carried out until a predefined force threshold is reached.
Configurations b) and c) can, respectively, be reached by trans-
lating cover along the vertical and horizontal translational DOFs
until contact is detected, and configuration d) can be reached by
actuating the rotational DOF until the final position is attained
(identified by a reaction torque). Since the object is moving
along its unrestricted directions, the trajectories that it describes
will always satisfy the imposed geometric constraint.

One important remark is that if the constraints are defined
symbolically (i.e., using references to the geometric entities
instead of their particular values at some instant in time), the
task need not be redefined if the initial configurations of cover
or base change, or if the value of a particular geometric measure
is updated by an (external) online sensory module. The solver
will automatically recompute the new solutions when necessary.
This enables changing the layout of the robot workcell with
minimal downtime and no task reprogramming.

2) Teleoperated Execution: Consider a teleoperation
scheme such as the one depicted in Fig 10. If the scheme is
bilateral, force/torque and probably visual feedback are sent to
the operator, which provide him/her with information concern-
ing the contact state of the objects. Also, haptic guidance can be
used to enforce the coincidence constraint between Πm and Πf

by generating virtual forces on the operator, so that he/she only
needs to concentrate on actuating the unrestricted directions.

By combining contact state information coming from the real-
time execution of the task with haptic guidance, the performance
of a teleoperated task can be improved greatly. Of course, the
precision with which geometric constraints are haptically en-

forced is highly dependent on the specific characteristics of the
haptic display and the guidance algorithm.

The generation of virtual forces requires translating the kine-
matic information provided by the solver into a dynamic model.
An early implementation of PMF was interfaced in [23] with a
bilateral teleoperation scheme where haptic guidance is imple-
mented by attaching a virtual spring–damper system between the
actual and desired positions of the haptic end-effector. This work
uses a PHANToM impedance haptic display, which has a fairly
large workspace but a limited range of exertable forces/torques.
Typical translational constraint following errors are in the order
of 10−3 m.

VII. PERFORMANCE AND IMPLEMENTATION ISSUES

A. Time Complexity

In the following, the time complexity of the methodology is
proven to be quadratic O(n2)—where n represents the number
of input constraints—by showing that the individual steps that
comprise the solution process are at most O(n2).

Input constraint decomposition has O(n) complexity because
the decomposition of one input constraint into fundamental ones
is a constant time operation that must be performed once for each
input constraint. Since the decomposition of an input constraint
produces at most one translational and one rotational fundamen-
tal constraint (Table I), the number of fundamental constraints
is upper bounded to n translational and n rotational ones.

Constraint combination has O(n2) complexity. Given the
combinatorial nature of this step, the maximum number of
combination tests—which are constant time operations—that
are performed on a problem instance is upper bounded by(n

2

)
= n(n − 1)/2. This bound is rarely reached because the

number of fundamental constraints usually decreases during
the constraint reduction steps. Additionally, since each geomet-
ric constraint restricts at least one DOF, the number of input
constraints for most practical problems—including those with
multiple redundant constraints—is usually small.

Solution synthesis is a constant time operation O(1).
Since multiple solutions are treated by the solver as multiple

problem instances, each solution branch has O(n2) complexity.
However, the way in which constraint combination has been
implemented is such that combination tests performed prior to
the branching operation need not be repeated.

B. Implementation

The current implementation of the PMF solver is written in
C++. Its performance has been measured on a desktop PC with
an Intel Pentium 4 processor running at 3.4 GHz. The solu-
tion times range from 0.05 ms for a simple problem with one
constraint and one solution to 1.5 ms for a fully constrained
problem with five constraints and 32 distinct solutions. In con-
trast, methods containing iterative processes are more sensitive
to singularities and degeneracies, and tend to have much greater
variations in their solution times. Comparatively, the examples
of [17] featuring one mobile object have solution time variations
of up to five orders of magnitude, as opposed to two for PMF.
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Fig. 11. Screenshot of the solver user interface.

Fig. 11 shows a screenshot of the solver user interface that
includes a 3-D model of the task (right) and a control panel
(left) that permits the graphical interactive definition of in-
put constraints displays information regarding the solutions of
the current problem, and permits moving the mobile object
along its current solution submanifold with a mouse/keyboard
or a haptic device. Two supplementary moving picture ex-
perts group (MPEG) videos that show how the solver inter-
face is used to define relational positioning problems and dis-
play its solutions have been included. They will be available at
http://ieeexplore.ieee.org.

VIII. CONCLUSION AND FUTURE WORK

A relational positioning methodology that serves as an inter-
face for flexibly and intuitively specifying offline-programmed
robot tasks, as well as for assisting the execution of teleoperated
tasks demanding constrained movements has been presented.

It was shown how an object positioning operation can be for-
mulated in terms of geometric constraints for restricting totally
or partially the movements of an object independently of its
initial configuration. As a means to find the solutions to such
a problem, PMF, a 3-D sequential geometric constraint solver,
has been proposed. The solver exploits the fact that in sets of
geometric constraints, the rotational component can often be
separated from the translational one and solved independently.
PMF can handle under-, well-, and overconstrained problems
with multiple solutions, and although it is not complete, the
solvable subset handles most of the problems a user would be
interested in. Solvable problems are those whose rotational part
can be expressed in terms of fundamental constraints, and that
after constraint combination (Section IV), the resulting con-
straint sets can be matched to one of the handled scenarios
(Section V). Incompatible problems are labeled as unsolvable
(ill-defined) when detected, and no best-fit solutions are at-
tempted. Issues such as collisions between objects, geometric
uncertainty, workspace of the actuation system, and dynamics
are not considered by the solver, but if necessary can be dealt
with by interfacing the solver with third-party modules.

It has been demonstrated that the solution process has
quadratic time complexity O(n2) for the number of input con-
straints, and experimental data show that the solution times of
the current implementation allow real-time interaction with a hu-
man operator and the inclusion of the solver in high-frequency
loops that require response times within the milliseconds order
of magnitude.

Future lines of work comprise extending the solver’s capa-
bilities for handling multiple mobile objects and interfacing it
with kinematics and path-planning modules to enable the spec-
ification and execution of more complex (multi)robot tasks.

APPENDIX

ROTATION DEFINED BY TWO PAIRS OF VECTORS

Given two pairs of independent unit vectors {û, v̂ } and
{ r̂, ŝ }, the rotation R(û, v̂ → r̂, ŝ) places û parallel to r̂ and
v̂ in the plane defined by r̂ and ŝ. If û · v̂ = r̂ · ŝ, then v̂ will
additionally be parallel to ŝ.

R(û, v̂ → r̂, ŝ) = [ r̂ ŝr t̂ ] [ û v̂u ŵ ]T (A1)

where {û, v̂u , ŵ} and {r̂, ŝr , t̂} are the orthonormal basis as-
sociated to {û, v̂} and {r̂, ŝ}, respectively.

Given two independent unit vectors û and v̂, the orthonormal
basis associated to them is {û, v̂u , ŵ}, where

v̂u =
v̂ − (û · v̂)û
|v̂ − (û · v̂)û| (A2)

ŵ = û × v̂u . (A3)
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