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Abstract

This paper describes a simultaneous localization and mgpggorithm for use in unstructured environments that fisotive
regardless of the geometric complexity of the environmEgratures are described using B-splines as modeling todlthenset of
control points defining their shape is used to form a com@ete compact description of the environment, thus makingasible
to use an extended Kalman filter based SLAM algorithm. Thishoekis the first known EKF-SLAM implementation capable of
describing general free-form features in a parametric rarifficient strategies for computing the relevant Jaguhigerform
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Extending the Limits of Feature-Based SLAM
With B-Splines

I. INTRODUCTION problems. In particular, attempting to interpret inforioat
_ using an incorrect geometric model is one of the major causes
One of the current key challenges of the simultaneous gt fajlure of many estimation algorithms. Some efforts have
calization and mapping (SLAM) problem, is the developmepeen made when circle features are available [13], but that i
of appropriate parameterizations to represent envirot®n stj|| 3 major simplification. Thus more generic represdatet
increasing complexity. While a substantial body of literat ot the environment can potentially improve the robustness,
exists in methods for representing unstructured enviransie effectiveness and reliability of the SLAM implementations
most of them are not suitable for use in one of the common 5 hybrid strategy consists of modeling the region sur-
frameworks developed during the past decades, as it is f@nding a point feature using a shape model in a coordinate
solution based on an extended Kalman filter (EKF). Fgfame attached to the feature [14], allowing the point fezgu
example, the use of occupancy grids [1], based on dividieg tha, to be updated while the shape models are only used to
environmentinto small cells of predefined size, and clgB®fl jycrease the information content of the observation. A full
them as occupied or not, and its many variants, would resgiframeterization which captures all the information alé
in an impracticably large state vector. The importance amg the observations, able to be updated in a statistically
effectiveness of these techniques is undeniable, but WeOBB onsistent manner, remains an interesting challenge.

a different approach to the problem. Recently, we presented a novel feature based solution to the
Much of the early SLAM work relied on simple pointsi . AM problem, based on the utilization of B-spline curves
features for describing the environment [2], [3], [4]. Whthis {5 represent the boundary between occupied and unoccupied
approach simplifies the formulation of the SLAM estimatorre(‘:]ions in complex environments [15]. B-splines provide
two main disadvantages arise when relying solely on thigturally compact descriptions for both straight and cdrve

representation. The first and obvious problem emerges whggbmetries, consisting of a set of control points definiregrth
the environment does not have sufficient structure to rQbusghape_ These points, grouped in a state vector, which cenvey
extract point features; for example in an underground mihe [ no angular information for the static elements of the maly fu
The second and more significant issue is the fact that onlyyascrine the environment. In [15], computationally effitie
small fraction of information available from popular sersso strategies for (a) initializing and extending the stateteedb)
such as laser range finders is exploited. Much of the data “F@\tmulating a suitable observation equation, and (c) etidn
do not correspond to the expected features are discarded. of appropriate Jacobians for easy implementation of EKF
A number of SLAM algorithms that do not use use a specifigquations, were introduced.
geometric model have recently emerged. Here, the completerhjs work extends those results presenting additionalrexpe
robot trajectory is present in the state vector, and the ramfental evidences, using both real and simulated data,ngaki
sensor information from different robot poses is processg@fl emphasis on the importance of some critical aspects: (i) a
to obtain an accurate relationship between these poses Hlidy of the impact of the defining elements of B-spline carve
Equivalent versions of fastSLAM that exploits Completaetas on the expected performance of the a|g0rithm' (||) provide
scans have also been presented [7], [8]. While these siategome general guidelines to adequately choose the parameter
have been SUCCGSSfU”y used to generate accurate vidiaiza involved in the Segmentation process, and (|||) a deep sonsi
of complex structures and detailed maps of the environmenisncy analysis, showing the limitations of the algorithrs, a
they can not exploit the inherent information gain ava#eibl occurs with any other EKF-SLAM implementation [16].
feature based SLAM, where map quality is increased due toThe paper is organized as follows. Section Il introduces
preCise mathematical description Of features, StOChii’!ftiIE- fundamental Concepts regarding the extense theory of B-
mation relating all of them is available, and the interpbéty  spline curves. Section Il shows how these powerful tools
of the map is increased. naturally fit into the EKF-SLAM framework. Finally, extensi

Several strategies for incorporating a larger fractionh&f t experimental results and conclusions are presented ifssct
information gathered by the sensors, using more complpxand V.

geometric primitives, have recently been reported. The use
of line segments [9], [10], [11], and polylines [12], while
promising, raise some issues related to the consistency of
the solution and require further work. While segment basedIn this section, some fundamental concepts of the B-splines
solutions have been successful in typical indoor enviramtse theory are presented. The tesplinerefers to a wide class of
the increasing presence of curved geometries, more popdlarctions that are used in a range of technical and scientific
every day in modern constructions, can create significaapplications, where interpolation or smoothing of noisyada

Il. BASIC THEORY OF SPLINES



in a flexible yet computationally efficient way is required. A
spline of degree: (orderx — 1) is a piecewise polynomial
curve; i.e. a curve composed by several polynomial pieces of
degreex. Their most common representation is based on the2)
linear combination of a special type of basis functions,vkmo

as B-spline basis functions. 3)
A. B-Splines Definition 4)
Letting s (¢) be the position vector alonga-dimensional
curve as a function of the parametee R, a spline curve of
order x, with control pointsx; € ®™ (i =0...n) and knot
vector= = {&,..., &4k} can be expressed as:
t) = Z XiBir (t) 1) 5)
=0

beings; . (t) the normalized B-spline basis functions of order
k. These functions are defined by the Cox-de Boor recursion
formulae [17], [18]:

if & <t<&u

1
Bia(t) = { 0 otherwise @

6)
and for allx > 1
(t—&) (Sirrn—t)
Bin(t)=———FBin-10)+——FBit1,n— 3
(0 Sitn—1—& 1) Ein—Eg1 0 ) @)
The knot vector= is any nondecreasing sequence of real
numbers § < &4 fori = 0,...,n + k — 1) and its 7)

structure can lie in two different categoriedamped when

the multiplicity of the extreme knot values is equal to the
orderx of the curve, andinclampedwvhen this does not occur
[17], [19]. When clamped knot vectors are used, first and last
control points are coincident, respectively, with the begig
and end of the spline curve, as Fig. 1 illustrates.

control points equals the order of the curve. This means,
for example, that a cubic B-spline requires at le4st
control points to be defined.

The curve generally follows the shape of the control
polygon.

Any affine transformation is applied to the curve by
applying it to the control polygon.

Each basis functiom; ,. (t) is a piecewise polynomial
of orderx with breakss;, .. ., & that vanishes outside
the interval(¢;, &4+) and is positive on the interior of
that interval:

Bin(t)>0 < & <t<&ix

(4)

As a consequence of property 4, the values ¢f) at a

given parameter locatiof < t < ;41 for somej €

{k —1,...,n} depends only om of the coefficients:
J

Z Xzﬂi,n (t)

i=j—r+1

s(t) ®)

When clamped knot vectors are used, the sum of all the
B-spline basis functions for any value of the parameter

tis 1:
> Biw (1)
=0

The derivative of a spline of order is a spline of one
orderx — 1. The control points of the derived function
can be obtained by differencing the original ones [18].

(6)

n

=s'(t)=(k—1)>

=0

ds (t)
dt

Xi — Xj—1

Civr—1— &

Bik—1(t) (7)

For further information and justification of these propesti
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Fig. 1. Examples of cubic splines (= 4) and their corresponding basis
functions usinga) a clampedknot vector E. : §0 =...=& < ... <
&6 = ... = &9), b) anunclampedknot vector E,, : < . < &9). Knots

locations are represented as circles and control pomtqmes The dashed
blue line is the spline control polygon, which joins all thentrol points.

d = Bx

B. Properties of Spline Curves

B-splines exhibit many interesting mathematical and geo-
metrical properties. For their special significance indaifing
discussions, some of them are enumerated here:

dj = ﬁo,ﬁ (tj)XO + ...

please see [17], [18], [19] and [20].

C. Curve Fitting

One of the greatest appeals of splines curves, is theityabili
for approximating noise-contaminated data. In this sacte
consider the problem of obtaining a spline curve that fits a
set of data pointsl;, j =0..
spline curve, then (1) must be satisfied:

.m. If a data point lies on the

+ﬁn,ﬁ(tj)xn, j=0m

This system of equations can be more compactly written as

d = [do d d, "
T
X = [ X0 X1 . Xn ]
ﬁO,N (tO) 511,/1 (tO) (8)
B = s 5
ﬁO,H (tm) ﬁn,n (tm)

Matrix B is usually referred to as thellocation matrix For

1) The maximum order of the curve equals the numbeach of its rows has at mostnon-null values (recall property
of control points. Equivalently, the minimum number o#). The parameter valug defines the position of each data



point d; along the curve, and can be approximated by thecreasing the number of necessary elements for describing
cumulated chord length between consecutive data points: this shape as compared to the cubic spline.
to = 0 In general, cubic splines offer a fairly good compromise
} (9) between mathematical complexity and geometric flexibility
ti = illds —daall, G >1 and are the most widely used in technical and scientific
being||-|| the euclidean norm. The total length of the curve igpplications. Most of the experimental results presentedis
paper will use cubic splines for modeling the environment.
/= Z lds — ds_1] (10) However, it will be shown how easily Iinear_ splines (oro!er 2)
can be used for constructing maps of environments with flat
features. The interested reader is referred to [21], [219)],[

which is taken as the maximum value of the knot vector.
where more information about curve fitting methods can be
When fitting noisy data acquired by a laser range finder, the

most general case occurs r< k < n+1 < m+ 1; the found.
problem is overspecified and a least squares solution can be
obtained using the pseudo inverse matrixBif [11. SOLVING THE SLAM PROBLEM WITH B-SPLINES
. In this section, all the procedures and formulae, necessary
x=[B"B] B'd=ad (11)  make the splines theory fit into the EKF-SLAM framework are

If the order of the spline curve is predefined, the numb@gScribed in detail. Firstly, a simple though effectiveraeg-
of control pointsn + 1 (or equivalently the number of knots(@tion mechanism is presented, followed by the descripion

n-+r-+1), and the parameter values along the curve are kno@ioPust method to perform the always delicate process af dat
as indicated in (9), then the basis functighs. (¢;) and hence association. Finally, suitable state and observation riscale
the matrixB can be obtained. developed, and the necessary Jacobians for applying an EKF

In BS-SLAM, clamped knot vectors are generated taking tipé"SEd S_LAM algorithm, and building the map as new areas of
total length of the curvé, and defining a knot spacingwhich the environment are explored, are presented.
depends on the complexity of the environment. Recall that
knots are the joints of the individual polynomial pieces irgp A. Laser Scan Segmentation

is composed of, so complex environments containing objectsthe most commonly exterioceptive sensor used in mobile
with high curvatures need a small spacing (high knot desityohotics, for its properties of accuracy, speed and reisoiut
while straight features can be described properly usingdon is the |aser range-finder. This sensor provides for eachrobse
polynomial pieces (lower knot density). vation a set ofn data pointsd; € ®? (bounding the problem

To show the effects of both the curve order and the kng§ 3 2D scenario). In this section, the necessary proceduores
spacing on the quality of the fitting, we performed experitaenextracting a set of splines representing the detected gdysi
with a simulated static robot in front of a curved wall. Thigpjects are presented.
unique feature was described by the polar equation: The main difference between the SLAM methodology pre-

2=5+0.5-sin (5¢) (12) _sented in this paper, _and traditionf';l_l feature-based dhgos,

is that we are not relying on a specific geometry to be detected

wherez is the distance in meters from the curve to the originWe attempt to describe the environment as accurately as
andy is the polar angle. The simulated range-bearing sengmssible, making no assumptions or dangerous simplificsitio
had a forward-facing80° field-of-view and maximum range This segmentation methodology is based on the analysis of
of 8 meters. For each measure across the angular rangehefrelative positions of two consecutive laser data poives
the sensor, with a resolution af synthetic noise with normal define a set ofn — 1 vectors connecting the raw data (see Fig.
distribution NV (0, o, = 5mm) was added to the ideal measurd):
computed using (12). pi=d; —dj;_; (13)

Fig. 2 shows the effect of varying the knot spacing used
in the data fitting with a cubic spline. For each experiment,
the average value of the mean squared error (MSE) over 50 || < mag < cos (i) > €0 (Amaz) (14)
Monte Carlo experiments was computed. The residuals are the maz (|pi], Ipisal) < 7 min (|pill, Ipesa ) (15)
differences between the real distance from the sensor to the Pill s [IPe+ll) = 1 Pill s [IPi+1
wall and the distance from the sensor to the obtained splineTypically, amnqe, € [0,7/4] andn € [1.5,2] are fairly
for the same laser beam. It is clear that, as the numbergafod values. When a set ohpr consecutive data points
polynomial pieces increases, the approximation is better. accomplish with both previous relationships, they are mssl

Fig. 3 shows similar experiments for different orders of thas belonging to the same feature, and a fitting process is
spline used in the fitting process. Here the knot spacing performed as described in section II-C. Additional resiits
constant f = 2.92 m). The average MSE over 50 runs of aan eventually be imposed, as demanding a minimum number
Monte Carlo simulation is clearly smaller for the cubic spli of data points to be fitted, or a minimum total length for the
given a fixed knot density. Better results could be obtaimed fobtained curve. This two last additional restrictions diyua
the quadric spline by decreasing the knot density. Howdwer, become indispensable for rejecting dynamic objects, aplpgo
each additional knot a new control point should be introdiyceavoiding their inclusion in the map.

Then, the following comparisons are performed:
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Fig. 3. Fitting of noisy data with a) cubic, b) quadratic andicear B-splines.

Fig. 4.a illustrates the process with a laser sample oldaine « One of the end points of the observed spline is considered
from a real data set. In this case, a total number of 4 (pointa)
features have been detected. Note thatand F, would be o The closest point on the map spline to the paints
certainly difficult to describe with traditional feature swal calculated (poinb)
map representations, as segments or even circles. Fig. 4.b If b is one of the end points of the map spline, then, the
and Fig. 4.c show the effects of choosing incorrect values closest point tob on the observed spline is calculated
for a,q.- High values of this angular threshold produce the (pointc).
incorrect identification of important locations, such asneus, o The process is repeated using as starting point the other
whereas too small values produce excessive segmentatidn, a extreme of the observed spline (poidtin the picture,
the wasting of many data points that are not assigned to any which is associated with poir).

feature. Once checked the last final conditions in Fig. 6
(avoiding, for example, matching an observation with
B. Data Association With Splines the hidden side of a wall), the association is estab-
At each sampling time, a new set of splines is obtaindighed. At the end of this process, not only correspon-
as described before, being necessary to establish a cofleat pairs of points(c = s, 1 (tini),b = sm,1 (tini)) and
spondence between th® features contained in the map(d = so1 (ufin) € =sm1(trin)) are obtained, but also a
(Sm.1,---,Sm.n), and theN, features detected by the robotcorrespondence between the map spline parameded the
(So.1s--->S0.N,)- observed spline parameter This information is very useful
Possibly the main drawback of using splines as modelinghen a spline extension is required, and for the observation
tool, is that control points are not observable. For any mjivenodel we propose.
geometry, there are infinite ways of describing its shapeThe described data association process, though quiteesimpl
depending on the chosen knot vector and the particular agsd based only upon euclidean distance metric, has pertborme
of the feature detected by the sensors. very robustly in our experiments.
The proposed matching process is described with the help of
Fig. 5 and the pseudocode in Fig. 6. First, the distances frém The State Model
the control points of each of the detected splines to therabnt The state of the system is composed by the robot pose (the
points of the splines contained in the map are calculategh (manly non-static element) and all the map features, which are
can be simplified choosing only features that are close toodeled as B-spline curves. When a spline curve is expressed
the robot position). This way, couples of matching candidatas linear combination of B-splines, its state can be desdrib
are identified by simple calculation of the euclidean diséan by the positions of its control points. Remember from sectio
between their control points. A distance threshold of hiadf t Il that a spline is defined by both the control points and the
knot spacing d..incp = p/2) is enough for this preliminary knot vector, but this last element is considered fixed, ddfine
association. during the feature initialization stage, and only modifielaen
If a spline is close enough to a map feature, then tihe element is enlarged, as will be described in sectiof.lll-
is necessary to obtain a matching between their points, afkeferring all the positions and orientations to a global
depicted in Fig. 5.b. The process is as follows: reference frame{uw,vy }, and letting the robot be the
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errors due to excessively small or large valuesdoyqq

’ sm,l (t)

Fig. 5. Example of data association procegsComparison of control points

positions andb) parameters correspondence.

first feature in the mapkH,) the following expressions fully

describe the state of the system at a certain time

T
XFy = Xp = [Irvyra ¢r]
XF; = Xs; = [:Ei,07 ey Timgy Yi,05 0 - -
i=1,....,N
and finally
_ [T T 71T
X = [Xr,xsl,...,st}

9 yz,n7

]T

(16)
(17)

(18)

for (i=1—-N,) % for all observations
forj=1—-Nm) % for all (close) map features
if (min(dist(Xo', Xni),) < Omincp)
% features are close (control points comparison)
% Initial points matching
Ui = first(E,,); % first knot of s, i(u)
Sm,(fini) = Nearest in s, (1) to S, (Uini);
if ((tni == first@m,) || (i == last(Em,)))
So,{Uni) = nearest in s, (u) 10 Sm,(fin);
end;
% final points matching
Unin = last(Z,,); % last knot of s,,(u)
S j(fin) = nearest in sy (1) to So (Uin);
if ((tni == first(Em,)) || (tni == last(Em,)))
So,{(Usin) = nearest in s, (U) t0 Sy, (in);
end;
% final check:
it ((dist(So{Uini), Sm,f(tini)) < Omatcn) &&
(diSt(so,r(Umi)v Sm,/(tim)) < dmatch) &&
(tfin > tim) && (ufin > |-Jini))

% Uini update

% usn update

CORRECT MATCHING!
end;
end; % end if proximity
end; % end for j

end; % end for i

Fig. 6. Pseudocode for data association.

new areas of the environment are explored, as we will see
further on. The state of the system is assumed to follow a
normal random distribution with mean value

% (klk) = [ %, (k[k) %, (K[K) X5y (K[E) ] (29)
and coavariance matrix
P, (klk) Py, (k[k) Py (k[k)
P317‘ (k|k) P5152 (k|k) e PSlsN (klk)
P (k|k)= : : ' : (20)
Py, (kIE) Py, (K[E) ... Poyay ([K)

D. The Observation Model

Using an Extended Kalman Filter for solving the SLAM
problem requires an observation model; i.e. some expmssio
which allows to predict the measurements that are likely to
be obtained by the robot sensors given the robot pose and the
current knowledge of the environment. As mentioned before,
control points of map splines are not observable.

However, it is still possible to predict every single laser
measurement for each position of the laser beam across
its angular range. This way, the problem is reduced to the
calculation of the intersection of the straight line defirgd
a laser beam (for each angular positipnwith the splines
contained in the map.

Unfortunately, calculating the intersection of a straitjhe
with a parametric curve, in the form(t) = [s; (t), sy OB
is not suitable for an explicit mathematical formulatiorhi§
problem is known in the literature aay tracing [22], and is

In the previous equationsy is the number of map static Schematically depicted in Fig. 7.

elements, defined each of them hy + 1 control points.

In BS-SLAM, the predicted measurement is calculated

Note that the number of control points for each of the splinédaking use of the following two elements:
contained in the map is not bound to be fixed. Splines can bes Property 3 in section 1I-B, which states that any affine

prolonged, their knot vectors can be extended and, therefor
new control points can eventually be inserted in the map when

transformation can be applied to a spline curve by apply-
ing it to its control points.



a) b) Similarly, making use of property 6, (1) and (21), we obtain:

expected measure s (x , t) o
: \/nm 5 (%0 oh sinpu
A  and Rotation ) = —cosp— m (25)
o _—E + of control points Tr nin—H
obtained measure 3! :
S | oh _ cos|i
N o * = —sinud (26)
Sk , t yr tan (7 — )
> oh z
s j T (27)
| u, 0¢; tan (1 — p)
BN "N
1 % 3 \ These formulas will allow the efficient calculation of the
1 2, =5, (X,) 3 relevant Jacobians in the following sections.

Fig. 7. Observation model. The expected intersection oh daser beam E, Applying the EKF
across the angular range of the sensor with the map splinenypwed

expressing the map spline (a) in they, v, } reference frame (b). In this section, all previously obtained results are coratlin
in the working frame of the Extended Kalman Filter [2], al-
lowing the incremental building of the map of an environment
. The Newton-Raphson method, for calculating the roowhere all features are modeled using cubic splines.
of a function. 1) Kalman Filter Prediction:Between the times andk+1

The first step is to define an orthonormal reference frarrt'lrée robot makes a relative movement, given by the stochastic

{u,,v,}, centered in the robot reference frafwe,, v, } and variable

with u, defined by the laser beam direction and orientation uk+1)~N@k+1),Q(k+1)) (28)
(see Fig. 7depicting an arbitrary laser beam and its inter-

section with a spline curve that needs to be computed). LetUnder the hypothesis that the only moving object in the
§(Xi (x4,%,),t) be the position vector along a spline curvenap is the robot, the a priori estimation of the state at time
expressed in such a reference system (we are making herg 1 is given by:

explicit the functional dependency between a spline and its

control points). The relationship between control poigts= X, (k+1]k) = £ (% (klk),a(k+1))  (29)
[zs,1:]" andx; = [z;,5:])", i =0...n, is given by: %, (k + 1]k) s, (k|k) (30)
_ . _ wheref,. is the motion model, which depends on the mobile
[ i ] = { oSty stnlly } [ Lo b ] (21) platform being used, and its covariance:
Ui —Sinply  COSiiy Yi — Yr

h is th le of th dered | b i th P(k+1lk)=F,(k+1)P (klk)FT (k+ 1)+
where 1, is the angle of the considered laser beam in the T
global reference frame. +F.(k+1)Q(k+1)F, (k+1)  (31)

In this context, the measurement predictipgn= h (x;, x,) The Jacobian matrices are
is given by s, (Z; (x;,x,),t*), wheret* is the value of the

parameter that makess, (g; (xi,x,),t*) = 0. ngj i R

Despite the lack of an explicit observation model, it is xT(k(‘)k)’u(kH) I
possible to compute its derivatives with respect to theestat ~ o (F+1)= _ e (32)
in an approximate way. Once calculated the vaftiavhich :
makess, (t*) = 0, the expected measurement in the nearness L 0 0 ... Iny
of this parameter location, assuming small perturbatiorke i % . .

. N . u %, (k|k),a(k+1)
state vector, can be approximated by (subingdes omitted
in the following equations): F,(k+1)= ) (33)
0

h(X“XT):gI (961 (X“Xr),t*—f:} (%z (Xiaxr) a;{)) (22) L
sy (8 (%3, %) ,t) 2) Kalman Filter Update: Once obtained the expected

measurements for each of the laser beams positions of an

Derivating with respect to the control points positionsd@nypservation associated with a map spline, the innovation
making use of (1) and (21) we can write [15]: covariance matrix is given by [2]:

o , S(k+1)=Hx(k+1)P(k+1k)HL (k+1)+R(k+1)

_ * stnp (34)

= ik (T cospp + —— 23 . . . S
Oz; B (£7) [ a tan (n — u)] (23) whereR is the sensor covariance matrix, and the Jacobian is:

oh

wo | cospL
o ﬁi,k(t)[sznﬂ_itan(n_u)} (24) Hy(k+1)= |7 0...0 22 0...0 (35)




In the previous equation, the ter§t“— is calculated making

use of (25), (26) and (27), ang; is calculated from (23) I, 0 ... 0 0
and (24). The gain matrix is calculated as follows: o I, ... 0 0
Wk+1)=Pk+1k)H (k+1)S™ (k+1) (36) Gx=| = " 1 |,Gg= : (44)
0 0 ..1, 0
Finally, the state estimation and its covariance are update %:ni1 g 0 985y 41
according to: _ &xr bz
with
X (k+1k+1)=% (k+1|k)+W (k+1)v (k+1) (37) _ Lo . i}
P (k+1|k+1)=[I-W (k+1)H, (k+1)] P (k+1|k)(38) ® I
with the innovation calculated as: 3%;]“1 _ 1001_ Zprq SIN [l g (45)
v(k+1)=z(k+1)—z(k+1[k) (39) Xr Zp COS Hp
® | :
F. Map Enlargement L 01 Zpqsinpipeq |
The stochastic map is incrementally built in two different CoStip - 0
ways: adding new objects, and extending objects already @ : . :
contained in the map. In this section, algorithms for both 08sn i1 0 ... COSlptq
initializing new objects, and prolonging existing featras 9z sinpiy ... 0 (46)
new areas are explored are described in detail. P
1) Adding New Obijects to the MapObservations that ' o
cannot satisfy the association procedure described ifosect L 0 ...sinppig

[1I-B are considered as a newly discovered features, and the?) Extending Map ObjectsFrequently, observations are
splines defining their shapes must be added to the maply partially associated with a map feature (as in Fig. .5.b)
Given a map containingV static features, and a set ofThis means that a new unexplored part of a map object is being
measurements = {z;,i = p...p + ¢} obtained for the laser detected and, consequently, this spline must be extend&d. T
angular positions in the robot reference frame (see Fig. foy instance the situation displayed in Fig. 8, where jhé
corresponding to a new featui€y,, the augmented statemap spline has been partially associated with an observatio

vector can be computed as: and the information contained in a new setmf+ 1 data
points
X = X, p
x'=g(x,z) & xi =x, 4g=1,...,N (40) d; _[dy]_{xriz@f)sﬂlz]’ i=q,...,q+m (47)
X?N+1 = Bsni1 (xhz) Yr T 24 SIN [y

. must be integrated into the map feature. The extended state
This means that the fact of adding a new object does NQiior will be:

change the current map structure (the robot pose and the con- B
trol points of theN existing features). Functiog, ,, (x,,2z) . Xg - X .,
is the fitting function of the;+ 1 new data points as described x° = ge (x,2) & oo = Xy 1 %j (48)
in section II-C. This way, we can obtain the control points of Xs; = Bs, (xr,%;,2)

the new feature as a linear functioin of the data points aed th Functiongg_ (x;,x;,z) is constructed following a similar

robot pose. scheme to the one used in the data fitting process.
INJFLO | [ L + Zp cos ((br + Tp) 2) éj E,q ﬁx ag am b) ii éx :éw :E.»m :E.m
: =& (42) &, 0 90
: int hral E.m §
TN+1,nn | | T + Zpyq COS(Dr + Tpig) Pl ;

1 i i g =k, = & =8 =5 =E,
YN+1,0 Yr + Zp S ((br + ’Tp) & é{ £ =¢, . 0 1 =52
--- noisy data to be integrated ~ ® parameter correspondence oknot
: = : (42)
YN+1ny | | Yr + Zptqsin (¢ + Tp+q) Fig. 8. Map spline extension with new data after Kalman filipdate. a)

The original splines; (t) needs to be unclamped and last 3 control points are

Iaced aIIowmg the insertion of the new data in the redéel knot vector.
The new covariance matrix for the auQmented state VGCE(? A new knot&; 1 is inserted at the end of the extended cusye{t ), which

is: is defined using a clamped knot vector.

P® = GxPG! + G,RGT (43) In [19] an iterative unclamping algorithm is proposed, whic
is successfully applied in [23] with the goal of extending-a B
and the Jacobian& ag andG, = 6g: spline curve to a single target points, inserting one aoloki



control point and one additional knot for each extensiont Ou This way, system (8) is written for the new data points,
problem is to extend a map spline given a new set of measuedended with the unclamping equations 49, 50, and/or 51,
data points, and maintaining the strictly necessary numbs, and its least-squares solution provides a matrix-famear

of new control points bounded. The combination of the umelationship between the old control poistsand the sampled
clamping algorithm with the approximation scheme previpusdatad;, and the new control pointg$. For example, for a
proposed, makes possible to extend the map features as night-extension we can obtain:

measurements are obtained. Given a spline curve, defined by a
set of control pointx; and clamped knot vector in the form:

€

Eilop=...=&61<& <. <& <1 = =Euin 5.0
— .
K K
the unclamping algorithm proposed in [19] calculates th& ne TG i 4p

control points corresponding to the unclamped knot vectors

Erifoz---:&flS&S---anﬁf_mrlS---Sf_mrn
—_——
K
Elifoﬁ- Sfa—lanﬁ---§§n§§n+1=---:§n+n

K

The particularization of the iterative algorithm for a give

&z Y
dq dq
: e 5
dr Y50 av
— ée qtm , . — ée qtm
3,0 e Yj,0
Yjn+p -
L Lj,n; | L Yin; J

P° = GEPGLT + GERGET

(53)

where ®¢ is a constant matrix, which depends only on the
configuration of the new knot vector. The new covariance
matrix after extending thg-th spline is:

(54)

spline order, permits to obtain linear relationships bevthe where the involved Jacobiass, = %ixe andGg¢ = %i: have
old and new control points values. The trivial case occurs fthe following appearance:

linear splines (ordek = 2). Here, the control points of the

. I 0 0 0
unclamped curved remain unchanged. 6 I 0 0 8
Here we show the adaptation of the algorithm for cubic s
splines, but similar expressions can be obtain for otheerstd : :
if desired. The right-unclamping algorithm (on the side-cor Gx = | &, o8, o |Gz= |28, | (59)
responding to higher values for the paramefeof a cubic Oxr 0% 0z
spline (orderx = 4, converting the knot vectdE into =,., and o : Lo 5
obtaining the new control points L0 O 0 i . | 0 |
X' =-T2 X, o+——%Xn 1 ~
n n n 73’7%‘2 s . X (49) r 10 _Zq sin Mq
R e o "
being ) ) ) 10 —Zg4m Sin fig4m Pe 0|0
vl = fitl g I = 10 0) 98, | |00 0 9gs, | |1, |0
51+]+1_fz Vi axr - 01 Zp cos Mp ) axsj - @5 0 0
Similar results can be obtained when converting a clamped .. 0 | L,
knot vector= into a left-unclamped ong;: P 0 1 ;
Zptq S Hptq
Q2 Q)
x}) = ﬁxo - (w—§ + w—é’) x1 + Q30 xa 00 0 ]
x} = X1~ 0Ix (51) and i
xé:xi, 1=2,...,mn COS g - - - 0
with - ) pe| :
J— _Ceoi—bign J_ 17w 0 cos
Wi = g e, and @ = (52) dge . /éq+m
J
These results can be combined with the methodology pro- o9z sin i, 0
posed in section II-C for obtaining new splines as new data is :
acquired, being aware of the following considerations: d° 0 o
« New data points must be associated with the existing 0 . Sm%‘”m

parameterization of the map spline. This relation can be
obtained from the data association stage.
The knot vector needs to be unclamped and might need to

IV. EXPERIMENTAL RESULTS

be extended with additional knots in order to make room Several experiments have been performed with both real
for the new span being added. The number of new knaiad simulated data in order to validate the methodologids an
is chosen taking into account the specified knot spacirggorithms presented in this paper. In all the experimehts,

and the final length of the curve.

following motion model has been used:



a) 25m

b)‘

a=31m
b=25m

6, =0.001+0.1Ax, m.

6, =0.001+0.1Ay, m.
G, =0.02+0.1A¢, rad.

6, =0.001+0.1Ax, m.
c,=0.001+0.1Ay, m.
6, =0.02+0.1A¢, rad.

) | 0.16
El 4im : :

| | | 0.12
****** ) [ e

G, =0.001+0.05Ax, m.
G, =0.001+0.05Ay, m.
6, =0.02+0.1A¢, rad.

o
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Fig. 9. Synthetic environments for consistency experisient
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Fig. 11. Information gain in heading for a stationary vehicThe estimated
Trktllk = Trklk T Ax,.cos (¢T7k|k) — Ay,sin (¢T7k‘k) standard deviatiow, decreases after several updates. The results show the
) average values for 50 Monte Carlo simulations, for thredewdft inicial
Yrt 1)k = Yrklk + Azrsin (¢ px) + Ayrcos (dr k) values.

Grkvilk = Prpjk + Ay

vehicle making successive observations of this envirotmen
its true uncertainty may never decrease.

It is well known that one of the main limitations of the Fig. 11 shows the results of this experiment, using differen
EKF solution to the SLAM problem is the inconsistency ofnitial values for the heading typical deviation of the robo
the algorithm due to linearization errors [24], that cardiéa (o, (0/0) = 0.01rad., o4 (0]0) = 0.05rad., ando, (0]0) =
catastrophic failure when the true uncertainty of the risbot.2rad.). The graphic shows the mean result for 50 runs of a
orientation exceeds a limit [16]. The source and factors ®fonte Carlo simulation for each initial value. For each ¢ase
inconsistency when landmarks convey angular informatiahe heading standard deviation shows an immediate abrupt
have also been thoroughly studied, as it is the case wheninddecrease, and the larger initial uncertainties tend to yred
walls are modeled as segments [25]. the smallest final estimations.

In this section, several experiments are performed showing3) Motecarlo tests of filter consitencyfhe experimental
the limitations of BS-SLAM from the point of view of the results in Fig. 10 suggest that the splines extension hag som
filter consistency. impact on the consistency properties of the algorithm. This

1) Consistency of BS-SLAMEor consistency experiments,section analyzes this effect using an environment of theesha
three synthetic environments have been generated combingiepicted in Fig. 9.b, fo =14 m, b= 10 m, 1 = 4 m, and
both straight and curved features (Fig. 9). A simulated feobi-2 = 2 m. The process noise standard deviations age=
robot performs a double loop in each of these environmengs; 0.1Az mm, o, = 5+0.1Ay mm, ando, = 0.02+0.1A¢
and odometry and laser measurements are contaminated \id., and the typical deviation of a laser range finder with a
gaussian noise with mean 0 and covariances detailed in Figfd&ward 180° field of view and maximum range of 8 meters
In all cases laser sensor is simulated with a maximum ranger; = 5 mm.
of 8 m. When the true state of the vehicle. (k) is known, the

Results of these simulations are displayed in Fig. 10. Kbrmalized estimation error squared (NEES) can be used to

experiments E1.A, E2.A and E3.A map splines are prograsharacterize the filter performance [16]:
sively extended as new areas of the environment are explored

while in experiments E1.B, E2.B and E3.B splines are not (k) = (x, (k) — X, (k|k)T P (K|K) (x, (k) — %, (K|K))
extended, and new features are added to the stochastic map (56)
when no matching is successful. It can be clearly seen howThe average NEES ovéy Monte Carlo simulations, under
extra simplifications introduced during the extension pssc the hypotheses of a consistent and approximately linear-
produce a much earlier appearance of inconsistency, bletng Gaussian filter, is a2 distribution withdim (x, (k)) degrees
filter optimistic; i.e. the real location uncertainty is gter than of freedom. Hence, the average valueegk) tends towards
the estimated. the dimension of the state (3, considering the robot posg). F

2) One symptom of inconsistency: excessive informati@@ shows the average results for these experiments after 50
gain: As Bailey et al. pointed out in [16], one symptom of Monte Carlo runs. Th&5% probability concentration region
inconsistency is the excessive information gain, which @sakis bounded by the interval [2.36, 3.72].
any EKF-SLAM implementation to become optimistic after a Fig. 12.a shows the results when splines are not extended.
certain period of time (the estimated covariance is lesstha Fig. 12.a shows the results when splines are not extended
true covariance). To analyze this effect in BS-SLAM, a statiand an inflated sensor covariance is used, multiplying by a
robot has been placed in the curved environment defined fagtor of 3 matrixR in (34), and Fig. 12.c shows the results
(12) that can be seen in Figs. 2 and 3. The observation noigeen splines are extended and the true mdaRixs used. In
is o, = bmm for the laser distance readings. Having a statal the cases the filter become optimistic when 50 samples

A. Simulation Experiments
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Fig. 10. Consistency experiments results. Left column shthe simulated environments (black line) and the obtainagsnfmagenta line), along with the
odometry, real and filtered robot trajectories. For eactegrpent, the central graphics show consistency resultsdioot position and orientation with-2c
bounding limits. All linear dimensions are in meters, andwar dimensions in radians.

have been processed, and the fact of raising the covariance
of the observation model does not ameliorate the result. The
appearance of inconsistency is even more abrupt when spline

are extended.

B. Experiments With Real Data

Several experiments have been carried out with data ob- .
tained from real environments. Fig. 13 shows a map rep- [ S |, I T
resenting an environment with predominantly flat features 0 A RN ’
(segments), which are modeled using linear splines (order !

k = 2). The map contains 83 linear splines (166 control '
points). An alternative map, using cubic splines can be doun
in [15] (in that case 81 splines defined by 332 control poin]:slg. 13

were necessary to describe the environment).

204
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Universidad Politécnica de Madrid.

Fig. 14 depicts the map of a bigger and more complex
environment with a mixture of both straight and curved
features. In this case 461 control points defining a total pfoposed methodology, which allows the exploitation of the
96 cubic splines are necessary. In experiments of Fig. 13 amdjority of the rich information provided by a laser range
Fig. 14, a B21r robot with a SICK laser was used for th&nder, the map in Fig. 15 is provided. This map shows the
data acquisition with a sampling frequency of 5 Hz. A knanterior of the Intel Research Lab in Seattle. The data sat wa

spacing ofp = 2 m. was used for knot vectors generationobtained from the Robotics Data Set Repository [26] (thanks

Map of a fair held at the School of Industrial Engiireg of the

Please, note that no geometric constraints have been useddro Dieter Fox for providing this data). It is built usinglgn
the localization method,; i.e. the only feature in the stastica

the map building process.

When building large maps, computational cost (quadraticap is the robot, and features are added to the map with

with the size of the environment) arises as an unavoidaldero uncertainty. The low cumulated localization errooa
problem. With the aim of demonstrating the accuracy of thhe good results obtained. An alternative representatsimgu
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Fig. 12. Monte Carlo experiments for consistency (50 rumbg first column displays the mean localization erroras,, 20, and204 (linear dimensions
are in meters and angular dimensions in radians). The secolndhn is the NEES and the third column the Mean Squared .EajoNo extensions are
performed. b) No extensions are performed and sensor moisélated by a factor of 3 in the filter. d) Extensions are penfed.

occupancy grid maps can be found in [7]. Control points contained in the stochastic map incrembntal
We want to call the attention of the reader to the detadincapsulate all the uncertainties conveyed in the odometry
view in Fig. 15. The fact of using a fixed degree for the splinend laser sensor readings. Finally, this new representatio
curves, reduces the performance of the method increassunstitutes a big step forward compared to current SLAM
the strictly necessary density of control points for ddsng techniques based on geometric maps: where no other feature
simple geometries as segments. The minimum number lifsed algorithm could the mathematical interpretation and
control points for a spline of degreeis preciselyx. We are reasoning over the map features, regardless of their slimpe,
using in this map only cubic splines, but it is clear that fonow possible once they are described as parametric fursction

the correct description of flat features a lower degree=(2)  oyr current research involves further extension of thesdea
should suffice, as occurs in the map in Fig. 10. Videos of ﬂﬂﬁesented in this paper on the following topics:
experiments can be downloaded from [27].
« Improvement of segmentation strategies, developing more
V. CONCLUSION sophisticated clustering techniques, and enhancing the
A new methodology for simultaneous localization and map- detection and isolation of features, previously to the eurv
ping in complex environments with a mixture of flat and fitting process.
curved geometries has been described and experimentally Intelligent control points selection, making the most of
tested. The power and computational efficiency of spline spline management techniques: degree elevation, degree
curves, has been used in an EKF-SLAM framework allow-  reduction, knot insertion and knot deletion. The aim is to
ing the representation of complex structures in a parametri  use only the strictly necessary degree for correct features
way. BS-SLAM provides a set of simple and easily pro- description, deleting unnecessary knots and introducing
grammable matrix-form expressions, allowing a successful new ones when a shape refinement is necessary.
symbiosis between EKF-SLAM and B-splines theory. When « Exploitation of the parametric feature representation in
simple descriptions of the environment are insufficient or the data association process.
unfeasible, any other SLAM algorithm could benefit from this « Finally, we believe that techniques and concepts pre-
new representation. sented here could find a natural extension to a 3D
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