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Abstract—We present a robot localization system using which is analogous to how humans deal with spatial informa-
biologically-inspired vision. Our system models two extesively tion, allows for a compact and accurate representation.
studied human visual capabilities: (1) extracting the “gi$" of
a scene to produce a coarse localization hypothesis, and (2)
refining it by locating salient landmark points in the scene.
Gist is computed here as a holistic statistical signature ofhe
image, yielding abstract scene classification and layout.aency
is computed as a measure of interest at every image location, o o o
efficiently directing the time-consuming landmark identification Existing vision-based localization systems can be catego-
process towards the most likely candidate locations in themiage. rized along several lines. The first one is according to image

The gist features and salient regions are then further procssed vjew types, where some systems use ground-view images [5],
using a Monte-Carlo localization algorithm to allow the robot [6] and others use omni-directional images [7], [8]. Anathe

to generate its position. We test the system in three differa RO . L
outdoor environments — building complex (38.4x54.86m area categorization is according to localization goal, suchasal

13966 testing images), vegetation-filled park (82.3x10®m area, Metric location [9] or a coarser place or room number [7]. Yet
26397 testing images), and open-field park (137.16x178.3%area, another grouping is according to whether or not the system
34711 testing images) — each with its own challenges. The®m® s provided with a map, or must build one as it locates itself
is able to localize, on average, within 0.98, 2.63, and 3.46m (SLAM) [10], [11]
respectively, even with multiple kidnapped-robot instanes. ’ '

A. Traditional Vision-Based Localization

) ) N One additional categorization to consider comes from the

Index Terms—Gist of a scene, saliency, scene recognition, i nerspective, which classifies systems accordingsioar
computational neuroscience, image classification, imagéasistics,
landmark recognition, robot vision, robot localization. feature type: local and global features. Local featuresamn-
puted over a limited area of the image, whereas global featur
pool information over the entire image, e.g., into histogsa
Before analyzing various approaches, which by no means is
HE problem of localization is central to endowing mobileyhaustive, it should be pointed out that, like other vision
machines with intelligence. Range sensors such as sop@blems, any localization and landmark recognition syste

and ladar [1], [2] are particularly effective indoors duemany  faces the general issues of occlusion, dynamic background,
structural regularities such as flat walls and narrow comsd |ighting, and viewpoint changes.

In the outd_oors, these sensors becor.n.e less robust given aJ& popular starting point for local features are SIFT key-
thellprhotrurflons a}nd surface |rreglflqr|t|(|es [3]'_ For e.xaenpl oints [12]. There have been a number of systems that utilize
a slig t change in pose can result In 1argé Jumps In Tand§eT featyres [5], [13] in recent years for object recogmiti
reading because_of tree trunks, moving br_anches, and Iea\f?egcause they can work in the presence of occlusion and
GPS, couplgd with other sensors or by itself [4], has_al me viewpoint changes. Other examples of local features
been extensively used. However, GPS may not be applicaBle g)rr [14] and GLOH [15]. Some systems [16], [17]
in environments where there is no satellite visibility, lsus extend their scope of locality by matching image regions to

upderwater, In caves, |nd(?ors, or ?n II\/Iarsl: In. thoszdgfc?gcognize a location. At this level of representation, tregan
vision, our main perceptual system for localization, s hurdle lies in achieving reliable segmentation and in rdgus

a\\//l\;:\bflg al(;ernafut\)/e. ditional vision localizati hni characterizing individual regions. This is especiallyfidiflt

e first escrl etrg Itional vision localization teChne8S i, nconstrained environments such as a park full of trees

background information to better demonstrate the advastag L
Global feature methods usually rely on comparing image

of using biological approaches. In section I-B, we thenantr statistics for color [7], [8], textures [6], or a combinatiaf
duce a robust biologically plausible vision system thataon both [18], [19]. Holistic approaches, which do not have a

rently observes a scene from two contrasting perspectiies: i ; i tial inf Hortuf
rough overall layout (using gist) and detailed recognitiory segmentation stage, may sacrilice spatial informatio fea
location). Yet, some systems [6], [18] try to recover crude

on select globally conspicuous locations (using salienby) . . . . . )
addition, section I-C describes how using topological m(,j‘p%patlal information by using a predefined grid and computing

global statistics within each grid tile. These methods are
C. Siagian and L. Itti are with the University of Southern i@ahia, Depart- limited, for the most part, to recognizing places (e.g. redm
ments of Computer Science, Psychology, and Neurosciernogrdtn, Hedco g building, as opposed to exact metric geographical Iona)io
Neuroscience Building - Room 30A, 3641 Watt Way, Los Angetsalifornia, b ith alobal f it is hard ded h
90089-2520. Correspondence should be addressed to s@agmedu. ecause with global features, it Is harder to deduce a change
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I. INTRODUCTION
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B. Biologically Plausible Scene Recognition " Y \
» ) 3 M, Dorsal Pathway

Today, with many available studies in human vision, there is * . “Motor Low Level B
a unigue opportunity to develop systems that take inspinati k¢ | Navigation
from neuroscience and bring a new perspective in solving . ]
vision-based robot localization. For example, even in thitgail SEE N IR
viewing of a scene, the human visual processing Systelfefontallcortex . | : Visual

already guides its attention to visually interesting regio | | Localization
within the field of view. This extensively studied early ceer and
of analysis [20]-[23] is commonly regarded as perceptual| Navigation
saliency. Saliency-based or “bottom-up” guidance of aiben //
highlights a limited number of possible points of interast i /
an image, which would be useful [24] in selecting landmark
that are most reliable in a particular environment (a chal
lenging problem in itself). Moreover, by focusing on spexifi
sub-regions and not the whole image, the matching proces:
becomes more flexible and less computationally expensive.
Concurrent with the mechanisms of saliency, humans alsig. 1. A sketch of the full system with each sub-system [tejg: onto
exhibit the ability to rapidly summarize the “gist” of a seen anatomical locations that may putatively play similar sole human vision.
[25]-[27] in less than 100ms. Human subjects are able to

consistently answer detailed inquiries such as the presehc thei di on th t in the Ventral Path
an animal in a scene [28], [29], general semantic classificat €lr surroundings. ©n the contrary, in the ventral Fathway

(indoors vs. outdoors, room types: kitchen, office, etcdl arf’ the “what” visual processing stream (Inferior Te_mporal
rough visual feature distributions such as colorful vs.ygracort_ex)' the_ low-level feature—d(_atector responses arebioed
scale images or several large masses vs. many small objé%t¥'eld a gist vector as a concise global synopsis of theescen
in a scene [30], [31]. It is reported that gist computatioreg/m as a whole. _BOth pa’ghyvays end up at the pre-frontal cortex
occur in brain regions which respond to “places”, that igfer where conscious decisions and motor commands are formed.

scenes that are notable by their spatial layout [32] as (mpogn tf_us baper, we concentrat.e mostly on the biologically-
to objects or faces. In addition, gist perception is affédig inspired localization computations of the ventral pathway
spectral contents and color diagnosticity [33], which o

the implementation of models such as [34], [35]. C. Topological Maps

In spite of how contrasting saliency and gist are, both In addition to biological vision, our utilization of topagical
modules rely on raw features that come from the same area, thgps also draws from various human experiments. A topolog-
early visual cortex. Furthermore, the idea that gist angsay jcal map [38], [39], which refers to a graph annotation of an
are computed in parallel is demonstrated in a study in whighvironment, assigns nodes to particular places and edges a
human subjects are able to simultaneously discriminatellsap paths if direct passage between pairs of places (end-neses)
presented natural scenes in the peripheral view while beiRg. One of the distinct ways humans manage spatial knowledg
involved in a visual discrimination task in the foveal views by relying more on topological information than metric.
[36]. From an engineering perspective it is an effectivately That is, although humans cannot estimate precise distances
to analyze a scene from opposite coarseness levels, a highdirections [40], they can draw a detailed and hierardhica
level, image-global layout (corresponding to gist) ancadetl topological (or cognitive) map to describe their enviromise
pixel-wise analysis (saliency). Also, note that, whileiaty [41]. Nevertheless, approximate metric information isll sti
models primarily utilize local features [23], gist featarare deducible and is quite useful. In addition, the amount of
almost exclusively holistic [6], [18], [33]. Our presentewdel added information is not a heavy burden (in terms of updating
(figure 1) seeks to employ the two complementary concepiad querying) for the system, because of the concise nature
of biological vision, implemented faithfully and efficiéntto of a basic graph organization. This is in sharp contrast to
produce a critical capability such as localization. a more traditional metric grid map in robotics localization

After early preprocessing at both retina and LGN (figure 1)iterature [1], [9], where every area in the map is specified
the visual stimuli arrive at Visual Cortex (cortical visusmleas for occupancy, as opposed to being assumed untraversable if
V1, V2, V4, and MT) for low-level feature extractions whichnot specified as places or paths.
are then fed to saliency and gist modules. Along the Dorsalln our system, as well as a number of others [38], [42],
Pathway or “where” visual processing stream [37] (posteriove use an augmented topological map with directed edges.
parietal cortex), the saliency module builds a saliency mage map has an origin and a rectangular boundary, and each
through the use of spatial competition of low-level feattge node has a Cartesian coordinate. In addition, each edge has a
sponses throughout the visual field. This competition s#sn cost, which is set to the distance between the corresponding
locations which, at first, may produce strong local featwe rend-nodes. This way the system benefits from the compact
sponses but resemble their neighboring locations. Coelers representation of a graph while preserving the importaritime
the competition strengthens points which are distinct fromformation of the environment. The robot state (positionl a
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Fig. 2. Diagram for the Vision Localization System. From aptit image the system extracts low-level features congisif center-surround color, intensity,
and orientation that are computed in separate channely. iteethen further processed to produce gist features aighsatgions. We then compare them
with previously obtained environment visual informatidrhe results are used to estimate the robot's location.

viewing direction) is represented by a point which can lie odemonstrate its lighting invariance. In addition, we alesett

a node or an edge. the individual modules within the system — salient region
It should be noted that various parts of our system, suckcognition (a local-feature system) and gist-based inaibdn

as the localization module (we use a standard probabilistie to gauge their contributions to the end result.

approach [1], [9], [10]) may not be biologically plausible. The localization system (illustrated in figure 2) is divided

This is why we simply claim that the system is biologicallynto 3 stages: feature extraction, recognition, and laein.

inspired. Our philosophy is that although we are committethe first takes a camera image and outputs gist features and

to studying biological systems (human vision in partichlarsalient regions. In the next stage, we compare them with

we also would like to build systems that are useful in the realemorized environment visual information. These matches a

world now. We see this dual intention as a two-way streahput to the localization stage to decide where the robot is.

where engineering ideas can help bring inspiration to é&pla The term salient region refers to a conspicuous area in an in-

scientific phenomena, not just the other way around in bugidi put image depicting an easily detected part of the envirarime

neuromorphic robots. An ideal salient region is one that is persistently obsefueah
different points of view and at different times of the day. A
Il. DESIGNAND IMPLEMENTATION salient region does not have to isolate a single object rfofte

In this paper we describe our biologically inspired visiotimes it is part of an object or a jumbled set of objects), 4t ju
localization system. We have reported in [18] our gist-blaséas to be a consistent point of interest in the real world hi® t
place recognition system, which is only a part of the pr@gﬂ;ntend, the set of salient regions that portray the same point of
system. We define the gist features as a low-dimensiorlierest are grouped together and the set is called a latkdmar
vector (compared to raw image pixel array) that represen-fgus, a salient region can be considered as an evidence of
a scene and can be acquired over very short time fram@slandmark and “to match a salient region with a landmark,”
Place classification based on gist then becomes possibléngans to match a region with the landmark’s saved regions. It
and when the vector can be reliably classified as belongiiggalso important to note that the process of discoverinigisal
to a given place. In the presented system, we also utiliz&pions is done using biological computations, but the gsec
salient landmarks obtained from the attention system tagefiof region matching is not. We use SIFT keypoints [12] because
the place estimation to a more accurate metric localizatiofiey are the current gold standard for pattern recognition.
Previously [43], we reported a preliminary result. Hereg th  Within the augmented topological map we group an area
original contribution is explaining the system in more detain the environment as a segment. A segment is an ordered
(especially the salient landmark acquisition and recagmjt list of edges with one edge connected to the next to form
and, more importantly, rigorously testing it in multipleath a continuous path. This grouping is motivated by the fact
lenging outdoor environments at various times of the day tbat views/layout in one path-segment are coarsely similar
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An example is the selected three-edge segment (highlight — -
in green) in the map in figure 2. Geographically speakingd % :
a segment is usually a portion of a hallway, path, or roa e
interrupted by a crossing or a physical barrier at both ends f 10R Mask
a natural delineation. The term segment is roughly equiale
to the generic term “place” for place recognition systems
(mentioned in section I-A), which refer to a general vigynitf
an environment. With this, the robot location can be noted @§ 3. A salient region is extracted from the center-sunbmap that gives
both Cartesian coordinate;, y) or a pair of segment numberrise to it. We use a shape estimator algorithm to create amegfinterest
snum and the fraction of length traveled (between 0.0 to 1.(?)'?%) ;g'”lgﬁ‘g and use inhibition-of-return (IOR) in the saicy map to find
along the pathitrav. glons.
In the following sub-sections we will describe the details o

each of the three stages in its order of operation. The system then creates a bounding box around the seg-
. _ : . mented region. Initially, we fit a box in a straight-forward
A. Feature extraction: Gist and Salient Regions manner: fir?d smaIIest—ysized rectangle that fits gll conmkcte
The shared raw low-level features (which emulate the ongfkels. The system then adjusts the size to between 35% and
found in the visual cortex) for gist [18] and saliency [22]50% in both the image width and height, if it is not yet within
[44] models are filter outputs computed in color, intensit¢he range. This is because small regions are hard to reagniz
and orientation channels. Within them, there are sub-cblanngng overly large ones take too long to match. In addition,
to account for sub-categories: color opponencies (in colffe system also creates an inhibition-of-return (IOR) miask
channel), degree orientation (orientation channel),nisity syppress that part of the saliency map to move to subsequent
opponency (intensity channel). Each sub-channel has & nifgyions. This is done by blurring the region with a Gaussian
scale pyramidal representation of filter outputs. Withittea fiiter to produce a tapering effect at the mask’s border. Also
SUb'Channel, the model performs center-surround OpmtIQf a hew region Over|aps any previous regions by more than
(commonly found in biological-vision which compares imggos, it is discarded but is still suppressed.
age values in center-location to their neighboring surtbun e continue until 1 of 3 exit conditions occur: unsegmented
locations) between filter output maps at different scales jﬁqage area is below 50%, number of regions processed is
the pyramid. These center-surround maps (also calledrieaty and the saliency map value of the next point is lower
maps) are then fed into both gist and saliency modules.  than 5% of the first (most salient). We limit the regions to
1) Gist Feature Extraction:The gist model [18] computes 5 pecause, from experiments, subsequent regions have a much
average values (biologically plausible accumulation @peroyer likelihood of being repeatable in testing. Figure sk
tions) from 4-by-4 grid sub-regions of the feature mapsufég extraction of 5 regions. There are reasons why multiplecresi
2 illustrates gist extraction on an intensity feature mag. Byer image is better. First, additional perception (there ar
doing so, we encode information from various visual domaifgany salient entities within the field of view) contributesa
with a small number of values, while still taking into accounmgre accurate localization, given the possibility of osobn
coarse spatial information. The raw gist feature dimen$on;, gn image. Second, the first region may be coincidental
544: 34 feature maps (from all sub-channel center-surroupgl 5 distraction. In figure 4, the first one returned is a ray
combinations) times 16 regions per map. _ of sunshine hitting a building. Although from the saliency
2) Salient Region Selection and Segmentatibine saliency nerspective, it is correct, it is not a good location cue. The

model [22], on the other hand, uses the feature maps to deiggtong region is better because it depicts details of aibgild
conspicuity regions in each channel. It first performs adme

combination (simple unweighted pixel-wise addition) begn _ _ »
feature maps within each channel to produce conspicuitysmap S€gment and Salient Region Recognition
(one per channel). The model then combines the maps througfhis stage attempts to match the visual stimuli (salient
winner-take-all mechanisms, which emphasize locatioms thregions and gist features) with stored environment infdroma
substantially differ from their neighbors, to yield a sally The results are then used to localize at the next stage. The
map. We then further process the saliency map to produceystem acquires the information through two training steps
set of salient regions (figure 3). building a landmark database and training a segment ckassifi
The system starts at the pixel location of the saliency mapising gist features. The procedure involves a guided tsaver
highest value. To extract a region that includes the poimst, vof the robot through all the paths in the map. As the robot
use a shape estimator algorithm [45] (region growing witmoves about the environment, we store the salient regions
adaptive thresholding) to segment the feature map thasgifeund along with the corresponding robot locations whery the
rise to it. To find the appropriate feature map, we compaege discovered. We perform the traversal several times for
the values of the conspicuity maps at the salient locatiah aample lighting coverage. At the same time, we also store the
select the channel with the highest value (this is the wignirgist features from each input frame for segment classifoati
channel). Within the winning channel, we compare values @haining. To determine how many segments to classify, we
the same location for all the feature maps. The one with tiggoup the edges according to view similarity by a human
highest value is the winning center-surround map. operator estimation. The operator uses a simple heursgtct
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Salient Region 0 Salient Region 1 Salient Region 2 Salient Region 3 Salient Region 4

Fig. 4. Process of obtaining multiple salient regions frorfraame, where the IOR mask (last row) dictates the shift ierdaibn of the system to different
parts of the image.

a new segment and stop the previous one when an abrup?) Salient Region Recognitionn order to recall the stored
visual change occurs. This is usually because an inteosectsalient regions we have to find a robust way to recognize
is reached and the robot is turning in place to another doect them. We use two sets of signatures: SIFT keypoints [12]
The following sub-sections describe the run-time matchirand salient feature vector. We employ a straight-forwadrS|
process, and formulate the output for our back-end Montecognition system [12] (using all the suggested pararmmeter
Carlo localization (MCL) module [1], [9], [10]. Within the and thresholds) but consider only regions that have mone tha
MCL framework, we need to provide observation models t6 keypoints to ensure that the match is not a coincidence.
weight the likelihood of a particular observation to occor i A salient feature vector [43] is a set of values taken from a
a given state. The system observes two types of evidenbeby-5 window centered at the salient point location (yello
segment classification and matched salient regions. disk in figure 5) of a regiorsreg. These normalized values
1) Segment Classificationthe segment estimator is imple-(between 0.0 to 1.0) come from the sub-channels’ featuresmap
mented as a 3-layer neural network classifier trained usiag §22], [44] for all channels (color, intensity, and orieritat). In
back-propagation algorithm on gist features that haveadlye total, there are 1050 features (7 sub-channels times 6réeatu
undergone PCA/ICA dimension reduction [18]. One of thmaps times 5x5 locations). Because the feature maps are
main reasons why the classifier succeeds is because of pheduced in the previous feature extraction step (sectidy),|
decision to group edges into segments. It would have beeven though they are computed over the entire image for each
difficult to train an edge-classifier using coarse featuils | visual domain, from the salient feature vector perspectivey
gist as adjacent edges that are part of the same segmenusuaime at almost no computational cost.
are moving toward the same general direction and thus tendlo compare salient feature vectors from two salient regions
to share a lot of the background scene. Each segment in titeg: andsregs, we factor in both feature similarity f Sim
environment has an associated classifier output node and (@guation 2) and salient point location proximityf Prox
output potential is the likelihood that the scene belongh#&n (equation 3). The former is based on the Euclidian-distance
segment, stored in a vectcn;r to be used as an observatiorin feature space:
where

Ny
\/Zi:{ (sregy,i — sregaq)?

zp={ svaly; } j=1.. Nsegment @ sfSim(sregr, sregs) = 1— ~
sf

with sval, ; being the segment likelihood value for time (2)
and segmenj is one of Nycgment SEgMENtS. N,y is the total number of salient features. For a match to
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be confirmed, the feature similarity has to be above .75 out.. N at timet and N being the number of particles. Each
of the maximal 1.0. The location proximityf Prox, on the particle (possible robot location) ; is composed of a segment
other hand, is the Euclidian distance in pixel units (deddy numbersnum and percentage of length travelégtav along
the functiondist), normalized by the image diagonal lengththe segment edges, ; = {snum,;, ltrav,;}. Each particle

has a weightw, ;, which is proportional to the likelihood of
dist(sregr, sregs) observing incoming data modeled by the segment and salient
region observation model (explained in sections 1I-C2 and

h » h hreshold for the di ) IOI-C3 below, respectively). Note that the segment obs@mat
The positive match score threshold for the distance is 95% 5 hjied pefore salient region observation because segme

(v_vithin 50./0 of input image dia_gor_1a|). Note that the proximity,iimation can be calculated almost instantaneously wihde
distance is measured after alignisgeg, andsregs t0gether, g jjon region matching is much slower. We have not tried it,
which is after a p.osr[_lve SIFT match is ascertamgd (Obserﬁﬁt, if the order of application is reversed, we believe that
the_ fused image in figure ,5)' The SIFT recognltlon modulme results would be similar given that the observations are
estimates a planar (translational and rotational) tramséion integrated over time. From experiments, — 100 suffices
matrix [12] that characterizes the alignment. In shortiis ¢y simplified localization domain V\;here a hallway is
ual reference-test keypoint pairs are first compared baged r%presented by an edge and not a two dimensional space. We
the descriptor's similarity. Each matched pair then “vbties tried N as high as 1000 with unnoticeable performance or
possiple 2D aff_ine _transforms (there is no explicit no_tion Oéomputation speed change. Wit — 50 the performance

an object location in 3D space) that relate the two IMag&garts to degrade, namely in kidnapped robot instances. We

An outlier gllmlnatlon IS performed using th? _most _"k6|yestimate the location belieBel(S;) by recursively updating
transform given all matches. Using the remaining pairs, sterior p(S,|=",u") — = being an evidence and, the
compute a final affine transform. With this matrix, the syste otion measure’ment using [46]:

can check the alignment disparity between the two regions
salient point location.

sfProx(sregr,sregs) = 1—
lDiagonal

Bel(Sy) = p(Si 2", u") (5)
Input Image Match Procedure
T = ™ = ap(zt|St)/ p(St[St—1,us)Bel(Si—1) dSi—1

Fused Image

We first compute p(S¢|Si—1,u:) (called the predic-
tion/proposal phase) to take robot movement into account
by applying the motion model to the particles. Afterwards,
p(2:|St) is computed in the update phase to incorporate the
visual information by applying the observation models —
segment estimation; (egn. 1) and matched salient regions
= / z;’ (egn. 4) — to each particle for weighted resampling steps.
o 5. Matchi o salient reai - The following algorithm shows the order in which the system
.5, Matcing process o o saent regons using HETSEIRONS. computes belief estimatiofi(s;) at each time step
taken at the salient point (drawn as the yellow disk). Thediindicate the 1) apply motion model te5,_; to createS,

correspondences that are found. The fused image is addeubto that we 2) app|y segment observation modeISé) to createS”
also estimate the pose change between the pair. t

Landmark Database

== - In

3) if (M; > 0)
Once the incoming salient regions are compared with the @ apply salient region observation model £ to
landmark database, the successful matches (ones which pass yield S,
both salient feature vector and SIFT match thresholds de- b) elseS; = S, / L
scribed above) are denoted as observationwhere Here, we specify two intermediate states: and S, . S,
is the belief state after the motion model is applied to the
z, ={ omatchyy }, k=1 ..M, 4) particles.S; is the state after the segment observation (first

) ) ._step of update phasg(z:]S:)) is subsequently applied to
with omatchy . being thek-th matched database salienly “geqment observation application is done by weighted
region at t|met. M, denotes the tota!_number of pos't'veresampling using likelihood functiom(zﬂx;i) (equation 6
matches at time. Not_e that the recpgnl_tlc_)n modgle may _nobelow) as weights. This function denotes the likelihood tha
produce an observation for every timgit is possible that it segment estimatiom; is observed at Iocatiom; .. Afterwards,

finds no matches); = 0. the salient region observation model (second step of update
o phasep(z:|S:)) is applied to the belief stat§, to produce
C. Monte-Carlo Localization St. This is done with weighted resampling using the likelihood

We estimate robot position by implementing Monte-CarIﬁJnCtionp(z;/Isc;:l-) (equation 7 below) as weights, representing
Localization (MCL) which utilizes Sampling Importance Rethe likelihood that salient region matefj is found atz; .
sampling (SIR) [1], [9], [10]. We formulate the location kel 1) Motion Model: The system employs a straightforward
stateS; as a set of weighted particleS; = {z;;, w;;} ¢ = motion model to each particle;_lji in S;_1 by moving it
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Fig. 6. A snapshot of the system test-run. Top-left (maindden contains the salient region windows. Green window meagiatabase match, while red is
not found. A salient region match is displayed next to thermaiage. Below the main image is the segment estimation veeidved from gist (there are 9

possible segments in the environment). The middle image@sthe robot state onto the map: cyan disks are the mtithe yellow disks are the location
of the matched database salient region, the blue disk (theercef the blue circle, here partially covered by a yellowldiis the most likely location. The

radius of the blue circle is equivalent to five feet. The rigitst histogram is the number of particles at each of the Siplessegments. The robot believes
that it is towards the end of the first segment, which is carvéthin a few feet.

with the distance traveled (odometry reading plus noise to

account for uncertainties such as wheel slippage. We model o Svalt,snum;i
this by drawing a particler:; , from a Gaussian probability plaler;) = ZJ_Vsegmm
densnyp(xt ;lu, -1 .:), where the mean is the robot location =1

in the absence of noise and standard deviation of .1ft (aboutere, the likelihood that a partlclest . observesz, is
1/6th of a typical single step). The latter controls the levgroportional to the percentage of estimation value of the
of noise in the robot movement measurement. From otobot's segment locationsval, snum!, | OVer the total esti-
experiments, we find that this number does not affect the epfhtion value (first term) times the robot segment location
result as much because the neighborhood of particles a@unghlue (second term). The rationale for the first term is to
converged location (observe the belief map in figure 6) igdar measure the segment’s dominance with respect to all values
enough that motion error in any direction is well covered. in the vector; the more dominant the more sure we are that

In the procedure, the distribution spawns a new location e segment estimation is correctly predicting the patcl

only changing the length travelddrav portion of a particle Segment location. The second term preserves the ratio of the
. It is then checked for validity with respect to the map a&bot segment location value with respect to maximum value

ltmv has a range of 0.0 to 1.0. If the value is below 0.0, the¥f 1.0 so that we can make a distinction of confidence level
the robot has moved back to a previous segment in the ps2hthe segment estimation prediction. Note that the liaith
while if it is above 1.0, the robot has moved to a subsequefiction only makes use of the segmentum, , information
segment. We take care of these situations by changing fhem partlclext ,» while ltmvt ; is left unused as the precise
segmentnum and normalizing the excess distance (from thi@cation of the robot within the segment does not have any
end of original segment) to produce a correspondingv. effect on segment estimation.
If the original segment ends in an intersection with mudtipl 3) Salient-Region-Recognition Observation Modkl:this
continuing segments, we simply select one randomly. If roodel we want to measure the likelihood of simultaneously
other segment extends the path, we just resample. observing the matched salient regions given that the rabot i

2) Segment-Estimation Observation Mod&his model es- at”a given location. We weigh each particig; in 5, with

timates the likelihood that the gist feature-based segrestit  “ti — p(z |z,;) for resampling (with added 20% random

mation correctly predicts the assumed robot location. So, \@msebalsokto combat populatlrc])n delgeneracy) to createfbeli
weigh each location partlclﬁt ;in S, with w, P= p(zt|xt i ++1 by taking into account the salient region matchgs

for resampling (with added 10 percent random particles H)S'ng

avoid the well known population degeneration problem in M,

Monte Carlo methods) to create bgliéﬁ. We take into oz |z, ;) = Hp(omatcht,klz;,i) 7)
account the segment-estimation vectpby using: ' Pt ’

* sval, / (6)
,snumy,
svaly :
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Fig. 7. Examples of images in each of the nine segments (wittesponding label) of ACB (first row), AnFpark (second rowhd FDFpark (third row)

Given that each salient-region match observation is ime take out the salient feature vector from the region signeat
dependent, we simply multiply each of them to calculat® end up with only SIFT features. Also, in [47] we have
the total likelihood. The probability of an individual matc compared our gist system with other place recognition syste
p(omatcht)k|x;:i) is modeled by a Gaussian with the standarand found that the results are comparable. Thus, the gigt-on
deviation o set to 5% of the environment map’s diagonalocalization comparison may also be indicative of what plac
The likelihood value is the probability of drawing a lengthrecognition systems can do in a metric localization task.

longer than the distance between the particle and the tati The visual data is gathered using an 8mm handheld cam-
where the matched database salient region is acquiredcorder carried by a person. There is no camera calibration or
is set proportional to the map diagonal to reflect how thens distortion correction which may help in salient region
larger the environment, the higher the level of uncertaifitle  matching. Because the data is recorded at approximately
added noise is twice that of segment observation because ¢Bfistant speed and we record clips for individual segments
salient region observation probability density is muchroaer  separately, we use interpolation to come up with the ground-
and we find that 20% keeps the particle population diverggith location. Also, the map (edge lengths and node lonajio
enough to allow for dispersion and correct re-convergengecurrently constructed manually. With this, we calcultite

in a kidnapped robot event. Also, although the SIFT angalking velocity using the distance of a particular pathidiad
salient feature vector matching scores (explained in sectipy the amount of time it took for the person to traverse it
II-B2 above) are available for weights, we do not use thefjyentical to the clip duration). We can place the locatidn o
in the likelihood function directly. These matching scorefhe start and end of the clip because they are prespecified.
were thresholded to come up with the positive salient regiqrpr the frame locations in between, we assume a uniform
matches we are now considering in this section. We @@pture interval to advance the person’s location propémly
not reason with match quality because the thresholds alogifexperiments, a denoted error signifies a measured diftar

eliminate most false positives. (in feet) between the robot belief and this generated ground
Figure 6 illustrates how the system works together. truth location. To roughly mimic odometry noise such as
slippage, we add zero-mean Gaussian noise with a standard
[1l. TESTING AND RESULTS deviation 1/6 the average walking speed for each site.

We test the system at 3 sites (each has 9 segments) omhe main issue in collecting training samples is filming time
campus with examp|e scenes of each occupying a row of figlﬁ@ection that includes all Ilghtlng conditions. BecaLigthng
7. The same data is used to test the gist model [18] in segm&p@ce is hard to gauge, we perform trial-and-error to come up
classification. In this work we localize to a coordinate kima With the times of day (up to 6 per day): from the brightest
within the map. The first site is the 38.4x54.86m Ahmansdfioon time) to the darkest (early evening). Note that 10 of
Center for Biological Research (ACB) building complex ¢firs12 of the testing clips are taken at a different date than the
row of figure 7). Most of the surroundings are flat walls witiraining clips. As for the two other clips, the testing datasw
little texture. The second site (second row) is a 82.3x189.7 recorded in the early evening (dark lighting) while traigin
area comprising two adjoining parks full of trees: Assceiatdata was taken near noon (bright lighting). In all, there are
and Founders park (AnF). The third testing (third row) site 26,368 training and 13,966 testing frames for the ACB cite,
the Frederick. D. Fagg park (FDF), a 137.16x178.31m op&§,291 training and 26,387 testing frames for the AnF site,
area where |arge portions of the scenes are the Sky and 82,747 training and 34,711 testing frames for the FDF

We also compare our system, which employs both locsite.
features (SIFT keypoints within salient regions and salien Currently, we test the system offline on a 16-core 2.6GHz
feature vector at the salient point) as well as global (gisthachine, operating on 160x120 images. We time individual
features with two systems that use only salient regions tyr orsub-modules and find that the slowest part by far is the dalien
gist features. The back-end Monte-Carlo localization néeslu region recognition process (3 seconds on average). This is i
in all three instances are identical. For the SIFT-only eyst spite of a parallel search implementation using 16 dispaich
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threads that compare input regions with different parts &. Experiment 2: Associates and Founders Park (AnF)
the landmark database. The gist and saliency computation
time (also implemented in parallel where each sub-channel i e AN
has its own thread) is about 20ms. In addition, the saliel il e =
‘;J u' .'I. Pl ‘
| El‘il§ z:luulll @ w

region acquisition (windowing) takes 10ms, while the segime;. _
estimation takes less than 1ms. The back end localizaseli it
takes less than 1ms as it only uses 100 particles.

A. Experiment 1: Ahmanson Center for Biological Researd oo A
ot o

(ACB)

Fig. 9. Lighting conditions used for testing at Associatel &ounders park
(AnF). Clockwise from top left: overcast (trial 1), earlyening (trial 2), noon
(trial 4), and mid-afternoon (trial 3)

We compare experiment 1 results with, conceivably, a more
difficult vegetation-dominated site (scenes shown in tlvesd
row of figure 7) that also has longer paths (about twice
the lengths of ACB segments). Figure 9 shows four lighting
Fig. 8. Lighting conditions used for testing at Ahmanson @efor Biology ~ CONditions tested: overcast (trial 1), early evening wights
(ACB). Clockwise from top left: late afternoon (trial 1), baevening (trial  already turned on (2), mid-afternoon (3), and noon (4). As
2), noon (trial 4) , and mid-afternoon (trial 3) we can see in the images, there are fewer rigid structures and
ge few object that exist in the environment (lamp posts and
%@ches) tend to look small with respect to the image size.
io, objects can either be taken away (e.g. the bench in the
éop right image in figure 9) or added such as service vehicles
parked or a large storage box placed in the park for a day. In
addition, whole scene matching using local features woeld b
hard because the tree leaves produce high numbers of random
r1'1exture-like patterns that significantly contaminate thecpss.
The results (table 1) reveal an overall error of 2.63m

This experiment site is chosen to investigate what t
system can achieve in a rigid and less spacious man-m
environment. Each segment (scenes displayed in first row
figure 7) is a straight line and part of a hallway. Figur
8 depicts different lighting conditions that are testedela
afternoon (trial 1), early evening with the lights alreadyrted
on (2), mid-afternoon (3), and noon (4).

Table | shows the result with an overall error of 0.98m |

general, the error is uniformly distributed across segmen t with noticeablv hiah ‘ di v betw
although spikes in segments 2 and 5 are clearly visible. T gt with noticeably nigher performance disparity between

error rate for segment 2, which comes from trials 1, 2 arﬁfgments. The errors are also different across trials fachvh
' ' segment produces high displacements. On average (last col-

4, occurred because the identified salient regions (mahdy t f th ble) thouah. all h hi |
textured white building and its entrance door in figure 8)atre umn OBt t\?v ta ?) } otl;]g & Z%gments b i\\:ve rOL:Ede equa
the end of the hallway and they do not change sizes as m (RS- between nas, the error difference between n
even after a 3m robot displacement. It is also the case for _tmg _trlals (3 and 4) and the b.”gh.t lighting tr|aI§ (1ad)
error spike in segment 5 for trial 4, as the system latches tdsa5|gn|f|cant. It seems that low lighting, or more importgnt

pIe | g ! y the lack of unpredictable and ephemeral sunlight (obsdree t

water tower (fifth image of the first row of figure 7). ; ) . :
The errors in segment 5 from trials 3 and 4 (bright Iighting?ras_S in the bottom two images of figure 9), allows for uniform
ighting and better correlation between training and testi

partially originate from the camera’s exposure controt thas Inth 4. althouah th | h .
to properly normalize the range of frames with wide intey\sitruns_' n t_ eend, ait oug the resu s are worse than expatim
contrast (the scenes are comprised of very bright sky arid d it is quite an accomplishment given the challenges ptegen

y the scenes and no by-hand calibration is done in moving

buildings) and it ends up darkening the building for a fe he fi X h q
seconds — something to consider when selecting a camera' t" the first environment to the second.

film outdoor scenes. During this time, the segment estimator ) )

produces incorrect values and the SIFT module is unable o Experiment 3: Frederick D. Fagg park (FDF)

recognize any regions in the image, which throws off the tobo The third site is the Frederick D. Fagg park, an open area
belief completely. It seems that for the system to fail, alitp used to assess the system’s response on sparser scergks (thir
(saliency, SIFT, and gist matching) have to fail. row of figure 7) and in an even larger environment (the
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TABLE |
AHMANSON CENTER FORBIOLOGY EXPERIMENTAL RESULTS
Trial 1 Trial 2 Trial 3 Trial 4 Total

Segment|| number | error | number| error | number| error | number | error | number| error
frames| (m) | frames| (m) | frames| (m) | frames| (m) | frames| (m)

1 387 | 0.96 410 | 1.02 388 | 0.73 411 | 0.75 1596 | 0.87

2 440 | 1.87 436 | 2.87 461 | 0.70 438 | 1.66 1775 | 1.76

3 465 | 1.06 485 | 0.69 463 | 0.89 474 | 1.35 1887 | 1.00

4 359 | 0.99 321 | 0.96 305 | 1.00 249 | 0.98 1234 | 0.98

5 307 | 1.17 337 | 0.62 321 | 1.77 319 | 1.96 1284 | 1.37

6 556 | 0.60 495 | 1.15 534 | 0.75 502 | 0.56 2087 | 0.76

7 438 | 0.48 445 | 0.60 398 | 0.85 400 | 0.82 1681 | 0.68

8 290 | 0.59 247 | 1.14 274 | 0.77 288 | 0.88 1099 | 0.83

9 341 | 0.66 373 | 0.50 313 | 0.60 296 | 0.59 1323 | 0.59

| Total || 3583 | 0.93 | 3549 | 1.08 | 3457 | 0.87 | 3377 | 1.06 | 13966 | 0.98 |
TABLE I
ASSOCIATE ANDFOUNDERSPARK EXPERIMENTAL RESULTS
Trial 1 Trial 2 Trial 3 Trial 4 Total

Segment|| number | error | number| error | number| error | number | error | number| error
frames| (m) | frames| (m) | frames| (m) | frames| (m) | frames| (m)

1 698 | 1.21 802 | 1.88 891 | 4.19 746 | 1.76 3137 | 2.36

2 570 | 2.40 328 | 1.90 474 | 5.76 474 | 1.90 1846 | 3.05

3 865 | 1.61 977 | 3.32 968 | 2.01 963 | 4.65 3773 | 2.93

4 488 | 3.20 597 | 1.73 688 | 1.57 632 | 2.85 2405 | 2.28

5 617 | 3.34 770 | 1.33 774 | 1.70 777 | 3.36 2938 | 2.39

6 1001 | 1.55 1122 | 1.80 1003 | 3.28 1098 | 3.38 4224 | 2.50

7 422 | 1.09 570 | 4.01 561 | 2.45 399 | 2.80 1952 | 2.68

8 598 | 2.52 692 | 3.11 797 | 2.21 768 | 1.68 2855 | 2.35

9 747 | 2.14 809 | 1.66 862 | 3.54 849 | 5.04 3267 | 3.14

| Total || 6006 | 2.06 | 6667 | 2.29 | 7018 | 2.89 | 6706 | 3.21 | 26397 | 2.63 |

segments are about 50% longer than the ones in the AnFrable Ill shows the results, listing an overall error of 36
experiment, three times that of ACB). Figure 10 represdmds tworse than the other two sites. It seems that an increase in
4 lighting conditions tested: late afternoon (trial 1), ewvey environment size affects the results. However, the morectlir

(2), noon (3), and mid-afternoon (4). cause is scale. Currently, the system uses the location efevh
the matched database salient region is found as a hypothesis
of where the robot currently is. Because the SIFT module can
perform scale-invariant matching (with the scale ratiduded

as part of the result), the system limits the matching-scale
threshold to between 2/3 and 3/2. This is not entirely eiffect

as a scale ratio of 0.8 (the region found is smaller than the
one matched in the database) can translate to a geographical
difference of 5m. This is because, in this environment, far
away buildings are salient and, as the robot moves toward
them, their appearance hardly changes. Thus, althougk thes
are stable localization cues, they are not good for finengici
location pin-pointing. We would need closex (3m away)
regions.

One encouraging point is that the system seems to be able to
cope with a variety of lighting conditions. The results aettéer
than the preliminary results [43] because of better ligitin
coverage in training despite the fact that training andinigst
Fig. 10. Lighting Conditions use for Testing at FrederickAagg park (FDF). are done on separate days. In this site, for example, we have

Clockwise from top left: late afternoon (trial 1), eveningidl 2), noon (trial dark (trial 1 and 2) and bright (trials 3 and 4) conditionsgev
4), and middle of afternoon (trial 3). with long shadows cast on the field (trial 4 scene in figure 10).
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TABLE Il
FREDERICKD. FAGG PARK EXPERIMENTAL RESULTS
Trial 1 Trial 2 Trial 3 Trial 4 Total
Segment|| number | error | number| error | number| error | number | error | number| error
frames| (m) | frames| (m) | frames| (m) | frames| (m) | frames| (m)
1 881 | 1.44 670 | 1.98 847 | 2.88 953 | 1.41 3351 | 1.90
2 788 | 6.57 740 | 4.92 797 | 2.30 878 | 3.99 3203 | 4.42
3 858 | 3.45 696 | 4.12 922 | 1.49 870 | 2.14 3346 | 2.71
4 837 | 4.54 740 | 4.28 837 | 1.97 821 | 4.59 3235 | 3.83
5 831 | 3.42 748 | 3.78 694 | 4.69 854 | 3.03 3127 | 3.68
6 1680 | 5.52 1565 | 3.84 1712 | 3.24 1672 | 3.79 6629 | 4.10
7 1037 | 3.44 923 | 2.97 857 | 3.34 894 | 3.35 3711 | 3.28
8 1172 | 4.94 1211 | 3.22 1355 | 2.19 1270 | 3.36 5008 | 3.38
9 739 | 3.03 825 | 2.73 794 | 3.67 743 | 3.75 3101 | 3.29
| Total || 8823 | 4.18 | 8118 | 3.54 | 8815 | 2.82 | 8955 | 3.29 | 34711 | 3.46 |
TABLE IV

MODEL COMPARISONEXPERIMENTAL RESULTS

ACB AnF FDF
System Trial 1 | Trial 2 | Trial 3 | Trial 4 Trial 1 | Trial 2 | Trial 3 | Trial 4 Trial 1 | Trial 2 | Trial 3 | Trial 4
err. (m) | err. (m) | err. (m) | err. (m) || err. (m) | err. (m) | err. (m) | err. (m) || err. (m) | err. (m) | err. (M) | err. (M)

gist 7.81 7.37 9.12 6.09 13.09 18.24 20.12 14.28 23.96 26.12 24.46 27.25

SIFT 1.60 1.69 1.92 1.67 2.70 2.99 3.46 3.70 4.58 4.96 3.89 4.73

bio-system 0.93 1.08 0.87 1.06 2.06 2.29 2.89 3.21 4.18 3.54 2.82 3.29
D. Experiment 4: Sub-module Analysis By the same token, we also use the salient feature vector as

Table IV shows a comparison of systems that use on"f’y? initial comparison (if the salient feature vector betwee

local features (SIFT), only global features (gist featjresd reference and t_est region differs significantly, there is_naed
the presented bio-system, which uses both global and IofQ SIFT matching). In [48] we showed that the technique cuts
features. The gist-only system cannot localize to the metGOWn search time by at least 87%, a speed up of 8.
level because it can only pin-point location to the segment
level and some segments have lengths that are more than 100 IV. DISCUSSIONS ANDCONCLUSION
feet. The SIFT-only system, on the other hand, is close toWe introduced new ideas in vision localization which have
the presented system. However, there is a clear improvemprdven to be beneficial in our testing. The first is the use
between the two. In the ACB site, the improvement is 42.53%f complementary gist and saliency features, implemented
from 1.72m in SIFT-only to 0.98m in our system, (one-sideith parallel using shared raw feature channels (color, inten
t-test ¢(27930) = —27.3134, p < 0.01), while the AnF site sity, orientation), as study of human visual cortex suggest
is 18.65%, from 3.23m to 2.63m (one-sided t-t§$2792) = Through the saliency model, the system automatically selec
—15.5403, p < 0.01), and the FDF site is 23.74% from 4.53npersistently salient regions as localization cues. Bexdhs
to 3.46m (one-sided t-te${69420) = —32.3395, p < 0.01). system does not perform whole-scene matching (only re§jions
On several occasions, the SIFT-only system completely mtke process is more efficient in the number of SIFT keypoints
placed the robot. In our system, whenever the salient regioompared. Also, the gist features, which come with salieatcy
(SIFT and salient feature vector) matching is incorrecg thalmost no computation cost, approximate the image layadit an
gist observation model is available to correct mistakes. provide segment estimation. The system then performs multi
contrast, the SIFT-only system can only make a decisidevel localization by using both as MCL observations. Many
from one recognition module. Additionally, in kidnappedod scene-based methods [6]-[8] that are limited to recoggizin
situations (we inserted 4 instances per run for ACB and Anplaces indicate that their results can be used as a filter for
and 5 for FDF, about once every several thousand framesjore accurate metric localization using finer yet more viglat
the presented system is faster to correctly relocalize imxalocal features. Our system is the implementation of such an
it receives twice the amount of observations (both global arxtension.
local) as the SIFT only system. Currently, segment estimation is used for both localizatio
The search time for the SIFT-only model is also muchnd match ordering; we compare input regions with database
longer than our system. In our system, we use the gist featutl@ndmarks from the most likely segments first. Because mbot
(segment estimation) not only as an observation model, kare real-time systems, it is a given that the database seadsh
also as a context information for order of comparison betweafter the first match is found; the system does not have time to
input and stored salient regions. That is, we compare thensider all positive matches to find the best. Therefore, th
database salient regions from the most likely segment firstdering indirectly influences the salient region recoignit
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step. This method of utilization of multiple experts, whiish [13]
in the spirit of hierarchical recognition, has been show@][4
[50] to speed up the database search process. [14]

As for performance benchmark, to the best of our knowl-
edge, we have not seen other systems tested in multiple
outdoor environments localizing to coordinate level. AD30
ICCV Vision contest [51], teams have to localize from a
database of GPS-coordinates-tagged street-level pragbgr [16]
of a stretch (1 city block) of urban street. The winner [52]
returns 9/22 answers within 4 meters of the actual locationz]
Most purely vision-based systems are tested indoors arudtrep
just the recognition rate (whether the current view is cctitye
matched with stored images), not the location.

One issue to discuss is the system’s readiness for au-
tonomous localization and navigation. With the currentipet
testing is done uni-directionally: all images are takenmnfro
the same perspective, the middle of the road. In autonomaded
control using lane following, a bit of swerving may occur. W?21]
may need to consider training the system on a multidireetion
data set. However, recording from every perspective in t#2]
environment may put the recognition systems, both segment
classification and salient region recognition, past themits. 23
A workable compromise would be to have the camera pan left
to right (up to45°) while the robot is on the road. We canl24]
also add, in each of the stored salient regions, where thi rqa;,
should be with respect to it, to aid road recognition.
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