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Abstract—We present a scalable approach to dynamically allo-
cating a swarm of homogeneous robots to multiple tasks, which are
to be performed in parallel, following a desired distribution. We
employ a decentralized strategy that requires no communication
among robots. It is based on the development of a continuous ab-
straction of the swarm obtained by modeling population fractions
and defining the task allocation problem as the selection of rates of
robot ingress and egress to and from each task. These rates are used
to determine probabilities that define stochastic control policies for
individual robots, which, in turn, produce the desired collective be-
havior. We address the problem of computing rates to achieve fast
redistribution of the swarm subject to constraint(s) on switching
between tasks at equilibrium. We present several formulations of
this optimization problem that vary in the precedence constraints
between tasks and in their dependence on the initial robot distribu-
tion. We use each formulation to optimize the rates for a scenario
with four tasks and compare the resulting control policies using a
simulation in which 250 robots redistribute themselves among four
buildings to survey the perimeters.

Index Terms—Distributed control, Markov processes, optimiza-
tion, stochastic systems, swarm robotics, task allocation.

I. INTRODUCTION

ADVANCES in embedded processor, sensor, and actuation
technology are paving the way for the development of

“swarms” of robots numbered in the hundreds or thousands.
We present a strategy for reallocating a swarm of homogeneous
robots among a set of tasks that are to be performed in parallel,
continuously, and independently of one another. For instance,
each task could be an activity at a physical site such as build-
ing surveillance, environmental monitoring, construction, or a
search-and-rescue operation. The objective for the robots is to
autonomously redistribute as quickly and efficiently as possible
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in a way that causes the steady-state populations at the tasks to
follow a predefined distribution.

This is an instance of the single-task robot, multi-robot task
problem (ST-MR) [1], where the goal is to assign teams of robots
to tasks in a way that maximizes the system’s performance. This
is known as the coalition formation problem when applied to
software agents. Tractable approaches to this problem, which
is NP-hard, rely on extensive agent cooperation that is not eas-
ily implemented in robot systems since communication can be
costly and unreliable, and resources are not transferrable [2]. The
algorithm in [3] was adapted to the multirobot domain in [4],
but robots must compute all possible coalitions and agree on the
best ones, and coalition sizes are limited. The ST-MR problem
has recently been addressed with market-based techniques, al-
though allocation strategies for robots have mostly considered
the problem of assigning a single robot to each task [2]. Market-
based approaches [5] require robots to execute complex bidding
schemes based on perceived costs and utilities, and the compu-
tation and communication requirements often scale poorly as
the number of robots and tasks increases.

These algorithms are not suitable for the large-scale systems
that we consider. If tasks are at different sites, communication
between all robots may not be possible due to interference, ob-
struction, or power limitations, or it may be too risky, as in
military applications. Also, the bandwidth becomes a limiting
factor in communication as population size increases. In light of
these issues, we propose a strategy that does not use inter-robot
communication. We do, however, assume that a central con-
troller broadcasts information about tasks and task transitions
without dictating the actions of individual robots.

Our strategy should be readily implementable on robots with
limited onboard resources, scalable in the number of robots and
tasks, and robust to changes in the population. These proper-
ties are inherent in decentralized approaches [6]–[8] that are
inspired by the self-organized behavior of social insects such
as ants [9]. In these approaches, robots switch between simple
behaviors based on environmental stimuli and interactions with
other robots. We adopt this distributed paradigm using stochas-
tic switching between tasks. We note that the potential-based
algorithm in [10] is also scalable, but it is designed for tasks
that are depleted and does not address the problem of allocating
robots as quickly as possible.

Recent work on decentralized control for task allocation
has focused on abstracting the physical system to an accurate
macroscopic model [11], [12]. Identical robot controllers are
defined with stochastic state transitions, and they are averaged
to obtain a set of differential or difference equations. System
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performance is studied by running the model, which is vali-
dated through simulations, under many different conditions. We
use a controller synthesis approach that is less computationally
expensive and gives theoretical guarantees on performance. We
model the swarm as a set of differential equations in which the
variables are continuous population fractions at tasks. We then
use standard analysis and optimization tools to design the model
parameters so that the swarm macroscopically displays rapid,
efficient deployment to the desired distribution. We use these
parameters to define rates of switching between tasks that can
be realized on individual robots, which collectively display the
properties of the continuous model.

We first used this approach to design ant-inspired behaviors
that cause robots to converge to the better of two sites [13] or
split between two sites in a specified ratio [14]. We extended our
methodology to the distribution of a swarm among tasks at many
sites [15] and introduced quorum-based stochastic control poli-
cies [16]. In the present paper, we focus on optimizing the rates
at which robots switch between tasks for fast convergence to the
desired distribution subject to a constraint(s) on idle transitions
at equilibrium. We began this investigation in [17], in which we
accounted for transition times within the differential equation
framework. Here, we present several new optimization methods
and compare them using a four-site surveillance scenario.

II. CONTINUOUS MODELS

A. Definitions and Assumptions

Consider a population of N robots to be allocated among
M tasks. We denote the number of robots performing task
i ∈ {1, . . . , M} at time t by ni(t), a nonnegative integer, and
the desired number of robots for task i by nd

i , a positive
integer. The population fraction performing task i at time t
is xi(t) = ni(t)/N , and the vector of population fractions is
x(t) = [x1(t), . . . , xM (t)]T . The target distribution is the set of
desired population fractions for each task, xd = [xd

1 , . . . , x
d
M ]T ,

where xd
i = nd

i /N . A specification in terms of fractions rather
than integers is practical for scaling, as well as for applications
in which losses of robots are common.

The precedence constraints between tasks can be modeled
using a directed graph G = (V, E), where V , the set of M ver-
tices, represents tasks {1, . . . , M} and E , the set of NE edges,
represents possible transitions between tasks. Tasks i and j are
adjacent, denoted by writing i ∼ j, if a robot that is working on
task i can switch to task j. We denote this relation by the ordered
pair (i, j) ∈ V × V , with the set E = {(i, j) ∈ V × V|i ∼ j}.
For example, if each task i is an activity at a physical site i,
then G models the site interconnection topology: V is the set of
M sites, and each edge (i, j) represents a one-way route that
robots can travel from i to j. If there are P possible routes from
i to j, then they are represented by distinct edges (i, j)m , where
m = 1, . . . , P .

We require G to be strongly connected, which means that a
directed path exists between any pair of distinct vertices. This
facilitates redistribution by allowing the robots to perform any
task starting from any other task; no task acts as a source or a
sink. We also consider the case of a fully connected graph, in

which every vertex is adjacent to every other vertex. This allows
robots to switch directly from one task to another, rather than
working on a sequence of intermediate tasks first.

We consider x(t) to represent the distribution of the state of
a Markov process on G, for which V is the state space and E
is the set of possible transitions. Every edge (i, j) is assigned
a constant positive transition rate kij , the probability per unit
time for one robot at task i to switch to task j. These rates
define stochastic transition rules: the robots are programmed to
switch from task i to j with probability kij δt at each time step
δt. The number of transitions between tasks i and j in time ∆t
has a Poisson distribution with parameter kij∆t. Our objective
is to compute kij that cause the robots to quickly redistribute
among the tasks in order to occupy them in the population ratios
dictated by xd . The use of constant kij is necessary to abstract
the system to a linear continuous model (see Sections II-B and
II-C), which is used to design the kij via optimization techniques
(see Section III).

We assume that a central controller determines xd , computes
the rates kij , and broadcasts the rates to the robots. The robots
have complete knowledge of G and the tasks to perform; this
information can be preprogrammed and updated via a broadcast
if the tasks change. The robots must also be capable of executing
the tasks and transitions. For instance, if the tasks are at different
sites, the robots must be able to localize themselves in their
environment and navigate safely between sites.

B. Base Model

The swarm can be modeled as a function of the rates kij by
representing it in terms of the continuous quantity x(t). In the
limit N → ∞, the physical system of individual robots can be
abstracted to the following linear ordinary differential equation
(ODE) model according to the theoretical justification given
in [18]:

ẋi(t) =
∑

∀j |(j,i)∈E
kjixj (t) −

∑
∀j |(i,j )∈E

kijxi(t) (1)

where i = 1, . . . , M . If there are P edges from i to j, each with
rate kij,m , where m ∈ {1, . . . , P}, then kij =

∑P
m=1 kij,m .

We define the flux from task i to j at time t as kijxi(t), the
fraction of robots per unit time that are leaving i to switch to
j. Hence, model (1) quantifies the rate of change of population
fraction xi(t) as the difference between the total influx and total
outflux of robots at task i. The model captures this effect in a
simple way by representing robots as switching instantaneously
from one task to another, ignoring the time that robots take
to effect transitions. Because the kij are constant, robots still
switch between tasks at equilibrium, when the net flux through
each task is zero. This contributes to system robustness since the
population at each task, which may be depleted by breakdowns,
is constantly replenished. The persistent switching may also
serve a useful function, such as patrolling or sampling between
sites.

Since the number of robots is conserved, system (1) is subject
to the constraint

1T x = 1. (2)

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 30, 2009 at 13:16 from IEEE Xplore.  Restrictions apply. 



BERMAN et al.: OPTIMIZED STOCHASTIC POLICIES FOR TASK ALLOCATION IN SWARMS OF ROBOTS 929

System (1) can be equivalently written as the linear model

ẋ = −Kx (3)

where K ∈ R
M ×M is a matrix with the properties

KT 1 = 0 (4)

Kij ≤ 0 ∀(i, j) ∈ E . (5)

These two properties result in the following matrix structure:

Kij =




−kji , if i �= j, (j, i) ∈ E
0, if i �= j, (j, i) /∈ E∑

(i,l)∈E kil , if i = j.

(6)

Theorem 1: If the graph G is strongly connected, then system
(3) subject to (2) has a unique, stable equilibrium.

Proof: Since G is strongly connected, the rank of K is M − 1
[19]. The null space of K, xn , is therefore one-dimensional.
This null space is intersected by the (M − 1)-dimensional hy-
perplane described by constraint (2). Thus, system (3) sub-
ject to (2) has a unique equilibrium point, which we call
x̄n = [x̄n

1 , . . . , x̄n
M ]T .

Now consider the matrix T = tI − K, where t > 0 and
I ∈ R

M ×M is the identity matrix. Choose t large enough such
that T is a nonnegative matrix. Since G is strongly connected,
the matrix −K and, therefore, T are irreducible. Because
T is nonnegative and irreducible, by the Perron–Frobenius
theorem T has a real, positive, simple eigenvalue λm (T) such
that all other eigenvalues of T, λ(T), satisfy |λ(T)| < λm (T).
This eigenvalue also satisfies the inequalities minj

∑M
i=1 Tij ≤

λm (T) ≤ maxj

∑M
i=1 Tij [19]. Since the columns of K sum to

0, both sides of these inequalities are t; therefore, λm (T) = t.
Note that λ(T) = λ(−K) + t. Thus, the eigenvalue of −K cor-
responding to λm (T) is 0, and all other eigenvalues of −K
satisfy |λ(−K) + t| < t. It follows that −K has a simple zero
eigenvalue and all its other eigenvalues satisfy Re(λ(−K)) < 0.
Therefore, the equilibrium point x̄n is stable. �

Theorem 1 proves that system (3) subject to (2) always con-
verges to a single equilibrium x̄n , which represents the steady-
state distribution of population fractions among the M tasks.
Hence, we can achieve the target robot distribution xd from any
initial distribution x0 by specifying that x̄n = xd through the
following constraint on K:

Kxd = 0. (7)

When the kij are chosen such that the correspondingK matrix
satisfies constraint (7), a swarm of robots that use the kij as
stochastic transition rules will redistribute from any x0 to xd .
In practice, this redistribution must take place in a reasonably
short amount of time. Since (3) is a linear system, the rate of
convergence of x to xd is governed by the real parts of the
eigenvalues of K, which are positive homogenous functions
of the kij [20]. Thus, the rate of redistribution can be made
arbitrarily fast by using high kij .

However, in actual robotic systems, there is often a substantial
cost to using high kij . At equilibrium, the probability that any
robot performing task i will start switching to task j in time step

δt is kijn
d
i δt. Thus, raising kij increases the equilibrium “traf-

fic” of robots transitioning between tasks i and j. This switching
expends power; for instance, if the tasks are at different loca-
tions, the robots must travel between them and may experience
delays due to congestion along the route.

Thus, when choosing the kij , we are faced with a tradeoff be-
tween rapid convergence to xd and long-term system efficiency,
i.e., few idle transitions between tasks once xd is achieved. In
light of this tradeoff, we frame our objective as the design of
an optimal transition rate matrix K that maximizes the conver-
gence rate of system (3) to xd subject to one of two possible
constraints on task transitions at equilibrium. The first is a limit
on the total equilibrium flux of robots switching between tasks:∑

(i,j )∈E
kijx

d
i ≤ ctot . (8)

This constraint does not dictate how the transitioning pop-
ulation is distributed among edges. An alternative constraint
achieves this with a set of limits on the equilibrium flux be-
tween each pair of adjacent tasks:

kijx
d
i ≤ cij , (i, j) ∈ E . (9)

C. Time-Delayed Model

As mentioned previously, model (3) does not account for the
fact that, in reality, the influx of robots to task j from task i is
delayed by the time taken to switch between the tasks, τij . If
we assume a constant transition time τij for each edge (i, j),
this effect can be included by rewriting equation (1) as a delay
differential equation (DDE) given by

ẋi(t) =
∑

∀j |(j,i)∈E
kjixj (t − τji) −

∑
∀j |(i,j )∈E

kijxi(t) (10)

where i = 1, . . . ,M . Due to the finite τij , there will be robots
in the process of switching between tasks; thus,

∑M
i=1 xi(t) <

1 for t > 0. Let nij (t) be the number of robots in transition
from task i to j at time t and yij (t) = nij (t)/N . Then, the
conservation equation for this system is

M∑
i=1

xi(t) +
M∑
i=1

∑
∀j |(i,j )∈E

yij (t) = 1. (11)

In practice, robots will complete a transition in different
amounts of time, and therefore model (10) can be made more
realistic by defining the τij as random variables, Tij . In the case
where robots effect transitions by traveling between sites, varia-
tions in τij can arise from changes in navigation patterns caused
by collision avoidance, congestion, and localization errors. For
this case, we can estimate a reasonable form for the probability
density of the Tij from an analogous scenario in which vehicles
deliver items along roads to different sites. Vehicle inter-site
travel times have been modeled as having an Erlang distribu-
tion to capture the fact that the times have positive, minimum
possible values and a small probability of being large due to
accidents, breakdowns, and low energy, as well as the tendency
of their distributions to be skewed toward larger values [21]. We
assume that each Tij follows this distribution with parameters
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Fig. 1. Labeled edge (i, j) = (1, 2) that consists of (a) the real tasks,
corresponding to model (1), and (b) both real and virtual tasks (for ω12 = 2),
corresponding to model (13).

ωij ∈ Z
+ and θij ∈ R

+ :

g(t;ωij , θij ) =
θ

ωi j

ij tωi j −1

(ωij − 1)!
e−θi j t . (12)

In practice, the parameters are estimated by fitting empirical
transition time data to density (12).

Under this assumption, the DDE model (10) can be trans-
formed into an equivalent ODE model of the form (1), which
allows us to optimize the rates kij using the methods that we
have developed for this type of model. We use the fact that
Tij has the same distribution as the sum of ωij independent
random variables, T1 , . . . , Tωi j

, with a common distribution
f(t; θij ) = θij e

−θi j t [22]. Each of the variables represents a
portion of the transition time between tasks i and j. To model
these portions of the transition, we define a directed path com-
posed of a sequence of virtual tasks, u = 1, . . . , ωij , between the
real tasks i and j. Assume that robots transition instantaneously
from virtual task u to u + 1, which is task j when u = ωij , at
a constant probability per unit time, θij . It follows that f(t; θij )
is the distribution of the time that a robot spends doing virtual
task u, and therefore we can define Tu , u ∈ {1, . . . , ωij} as this
task execution time.

We denote the population fraction that is doing virtual task u

along edge (i, j) by y
(u)
ij . Then,

∑ωi j

u=1 y
(u)
ij represents yij , the

fraction of robots in transition from task i to task j. Fig. 1 illus-
trates how an edge from model (1) is expanded with two virtual
states y

(u)
ij . As in Section II-B, the dynamics of the population

fractions at all real and virtual tasks in the expanded system can
be written as a set of linear ODE’s given by

ẋi(t) =
∑

j |(j,i)∈E
θjiy

(ωj i )
j i (t) −

∑
j |(i,j )∈E

kijxi(t)

ẏ
(1)
ij (t) = kijxi(t) − θij y

(1)
ij (t)

ẏ
(m )
ij (t) = θij

(
y

(m−1)
ij (t) − y

(m )
ij (t)

)
m = 2, . . . , ωij (13)

where i = 1, . . . , M , and (i, j) ∈ E .
We now show that this more realistic model converges to a

designable target distribution from any initial distribution.
Theorem 2: If the graph G is strongly connected, then system

(10) subject to (11) with each τij distributed according to density
(12) has a unique, stable equilibrium.

Proof: We prove this for the equivalent ODE model (13) sub-
ject to (11), where yij =

∑ωi j

u=1 y
(u)
ij . Let y be the vector of y

(u)
ij ,

where u = 1, . . . , ωij , (i, j) ∈ E . The system state vector is then

z = [x y]T . We interpret each component of z as the popula-
tion fraction at task i ∈ {1, . . . , M ′}, where M ′ is the sum of
all real and virtual tasks. The interconnection topology of these
tasks can be modeled as a directed graph G′ = (V′, E′), where
V′ = {1, . . . ,M ′} and E′ = {(i, j) ∈ V′ × V′|i ∼ j}. Since G
is strongly connected, so is G′.

Each component of z evolves according to the ODE

żi(t) =
∑

j |(j,i)∈E′

k̂j izj (t) −
∑

j |(i,j )∈E′

k̂ij zi(t) (14)

where each k̂ij is defined by the corresponding coefficient in
model (13). The system of equations for all M ′ tasks can be
written in the same form as the linear model (3) using an ex-
panded transition rate matrix K̂, and the conservation constraint
(11) can be written as 1T z = 1. Since the system can be repre-
sented in the same form as system (3) subject to (2), Theorem
1 can now be applied to show that there is a unique, stable
equilibrium. �

Remark 1: At equilibrium, the incoming and the outgoing
flux at each virtual task along the path from task i to j is kijxi ,
and therefore, model (13) contains the system Kx = 0. Thus,
xn in zn , the null space of K̂, is the same as the null space of
K in the corresponding model (3) that ignores transition times.
This shows that the ratio between the equilibrium populations
at any two real tasks is the same in both models. However, the
equilibrium populations x̄n

i ≡ xd
i in model (3) are higher than

those in model (13) because the conservation constraint for the
latter model accounts for robots in transition.

Remark 2: The modeling approach in this section can still
be applied when the distribution of Tij is complicated (e.g.,
multimodal) by approximating it as a combination of Erlang
distributions; this is a topic for future work.

III. DESIGN OF OPTIMAL TRANSITION RATE MATRIX K

We consider the task of redeploying a swarm modeled as
system (3) from an initial distribution x0 to a target distribution
xd . As described in Section II-B, we want to select the rates kij

in a way that balances fast convergence to xd with long-term
efficiency to conserve power. To this end, we compute the matrix
K as the solution to an optimization problem that maximizes
a measure of the convergence rate of system (3) to xd subject
to constraint (8) or (9) on idle transitions at equilibrium. We
quantify the degree of convergence to xd by the fraction of
misplaced robots,

µ(x) = ‖x − xd‖2 . (15)

We say that one system converges faster than another if it
takes less time tf for µ(x) to decrease to some small fraction f ,
such as 0.1, of its initial value µ(x0).

We formulate several versions of this optimization problem,
which are summarized in Table I (FC = fully connected, ROC =
rate of convergence). Each version is tailored to an application
with a particular combination of properties. The graph G will be
fully connected, in addition to strongly connected, if there are
no physical or logical constraints on the flow of robots between
pairs of tasks, such as a path in a disaster area that is only wide
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TABLE I
K OPTIMIZATION PROBLEMS

enough for robots to travel in one direction. In addition, it may
be possible to obtain x0 , for instance by identifying robots in
an image from an aerial camera.

Problem P3 is solved using a stochastic optimization method
that directly minimizes convergence time. The resulting sys-
tem is used as a baseline to compare the systems computed
by the other problems, which manipulate convergence time by
maximizing functions of the eigenvalues of K using linear or
semidefinite programs. Since these types of programs can be
solved with methods that have polynomial complexity in the
worst case [23], we can efficiently compute the M × M matrix
K for large M . Thus, our allocation approach scales well with
the number of tasks.

Our K design methods can also be applied to the more realis-
tic model (10) with Erlang-distributed τij when it is expressed
as an equivalent linear model (13), as in [17].

A. Maximizing the Asymptotic Rate of Convergence

If G is strongly connected, but not necessarily fully con-
nected, and x0 is unknown, we can designate the asymptotic
rate of convergence of system (3) to xd as the quantity to
maximize. Let λi(K) signify the eigenvalue of K with the
ith smallest real part of all the eigenvalues. By Theorem 1,
λ1(K) = 0 and λi(K) > 0 for i = 2, . . . ,M . Thus, the asymp-
totic rate of convergence is governed by Re(λ2(K)). Noting
that K is usually not symmetric, we first find a symmetric ma-
trix S such that λ2(S) ≤ Re(λ2(K)). We replace the objective
function Re(λ2(K)) by λ2(S). We can write this problem as a
semidefinite program with a linear matrix inequality that arises
from a variational characterization of λ2(S).

Theorem 3: Define Π = diag(xd), which is invertible since
xd > 0. Let K be a matrix with the structure in (6). Define the
matrices

N = 1
2 (ΠKT + KΠ) (16)

K̃ = Π−1/2KΠ1/2

S = 1
2 (K̃ + K̃T ) = Π−1/2NΠ−1/2 . (17)

Then, λ2(S) ≤ Re(λ2(K)).1

Denote the vector of all kij by k ∈ R
M 2 −M , which is the

optimization variable. Both constraints on transitions can be
written in the form f(k) ≤ 1, where f : R

M 2 −M → R is defined

1Proofs for the theorems in this section can be found in Appendix A.

as ftot for constraint (8) and find for constraint (9):

ftot(k) =
∑

(i,j )∈E
kijx

d
i , find(k) = max

(i,j )∈E

(
kijx

d
i

cij

)
. (18)

Now, we can state the optimization problem as follows: max-
imize λ2(S) subject to f(k) ≤ 1, k ≥ 0. We use an alternate
formulation [20]: minimize f(k) subject to λ2(S) ≥ 1, k ≥ 0.
The vector q = [(xd

1 )
1/2 , . . . , (xd

M )1/2 ]T is the eigenvector of
Π−1/2NΠ−1/2 corresponding to the zero eigenvalue. From
equation (17) and the characterization of eigenvalues in [24],
the constraint λ2(S) ≥ 1 can be expressed as

λ2(S)= inf
‖x‖=1
xT q=0

xT Π−1/2NΠ−1/2x ≥ inf
‖x‖=1
xT q=0

xT (I − qqT )x.

(19)
The problem can now be posed as problem P1, in which the

linear matrix inequality comes from (19).

[P1] minimize f(k)

subject to Π−1/2NΠ−1/2 � I − qqT , k ≥ 0.

Denote the optimized vector of rates by k∗. If constraint (8) is
used, then we can achieve the maximum total flux by multiplying
k∗ by ctot/ftot(k∗). If constraint (9) is used, we can achieve the
maximum flux for each edge by dividing k∗ by find(k∗).

For a strongly connected, but not necessarily fully connected,
graph with bidirectional edges, which means that (i, j) ∈ E if
and only if (j, i) ∈ E , we explore the advantage of having a
reversible Markov process, which is defined by the detailed
balance equations:

kijx
d
i = kjix

d
j ∀(i, j) ∈ E . (20)

Suppose that G has bidirectional edges and that the two edges
between each pair of adjacent tasks have equal flux capacities.
For example, robots may travel between sites along identical
parallel roads, similar to a two-way highway. Then, by condi-
tion (20), the Markov process on G is reversible. We adapt the
problem of maximizing the asymptotic rate of convergence to
this special case and call it problem P1R .

For constraint (8): Condition (20) implies that KΠ = ΠKT ,
and therefore, N = KΠ in equation (16). Substitute KΠ for N
in problem P1 (with f = ftot). Since K = NΠ−1 , K is similar
to S, so the constraint λ2(S) ≥ 1 becomes λ2(K) ≥ 1. Thus,
the problem constrains Re(λ2(K)) directly instead of a lower
bound on this value.

For constraint (9): We can maximize all the nonzero eigen-
values of K by setting each transition rate to its maximum value
subject to condition (20) and constraint (9):

kij = (1/xd
i )min(cij , cji), (i, j) ∈ E .

This is evident by using the Courant–Fischer min–max theo-
rem [24] to express each nonzero eigenvalue of S, and therefore
of K, in terms of a quadratic form x∗Sx (x∗ is the conjugate
transpose of x), which is equal to∑

(i,j )∈E
kijx

d
i aij āij , aij = xi(xd

i )
−1/2 − xj (xd

j )
−1/2

where āij is the complex conjugate of aij .
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B. Maximizing the Overall Convergence Rate

The asymptotic rate of convergence only dictates the long-
term system behavior. If G is fully connected and x0 is
unknown, we can speed convergence of the faster modes
by maximizing a measure of the overall convergence rate,
which is a function of all the nonzero eigenvalues of K,
Λ(K) = [λ2(K), . . . , λM (K)]. We define the quantity to be
maximized as 1T Λ, which weights each eigenvalue equally.
We use equations (4) and (7) to write k as a linear function
of v ≡ [Λ(K) 0]T ∈ R

M 2 −M . This allows us to formulate the
optimization problem as a linear program with optimization
variable v and objective function 1T v.

Let K be a matrix that satisfies (4), which sets M constraints
on the M 2 entries of K, and (7), which sets M − 1 constraints.
We now define the remaining (M − 1)2 constraints on K in
terms of the variable Λ(K). Since no extra constraints can be
applied, no kij may be set to zero, which is why G must be fully
connected.

Construct an orthonormal basis set in R
M ,D = {d1 ,

d2 , . . . ,dM −1 ,xd/‖xd‖}. Define a matrix in R
M ×M as

A = [d1 , . . . ,dM −1 ,1]T ≡ [ÃT | 1]. (21)

Since 1T xd = 1 by (2), 1 has a nonzero component in the
direction of xd , and therefore the rows of A are linearly inde-
pendent. Thus, A is invertible. Let B = A−1 . Then

B =
[
ÃT | xd

] [
I 0

−1T ÃT 1

]
≡

[
B̃ | xd

]
.

Define C ∈ R
(M −1)×(M −1) as follows for some fixed Ã:

C = ÃKB̃. (22)

Also define Ĉ ∈ R
M ×M as C augmented with an added row

of zeros and an added column of zeros.
Theorem 4: A matrix K can be expressed as K = BĈA if

and only if it satisfies (4) and (7).
From this result, K is similar to Ĉ, and therefore the eigen-

values of C are Λ(K). Thus, we can define C as

C ≡ diag(Λ(K)). (23)

Now reformulate (7) as Fk = 0, where F ∈ R
M ×(M 2 −M ) ,

and (22) with C determined by (23) as Gk = g, where G ∈
R

(M −1)2 ×(M 2 −M ) and g = [Λ(K) 0]T ∈ R
(M −1)2

. Define F̃
as any M − 1 rows of F. Then, k can be written as

k = [G F̃]−T [gT 0]T ≡ H−1v. (24)

Using definition (24) for k, constraints (8) and (9) are

rT H−1v ≤ ctot , H−1v ≤ c (25)

where the entries of r ∈ R
M 2 −M are xd

i , and the entries of
c ∈ R

M 2 −M are cij /xd
i . In addition, property (5) is

H−1v ≥ 0. (26)

Note that while this property is not needed to prove
Theorem 4, it is required to produce a valid K. The optimization
problem can now be posed as problem P2.

[P2] Maximize 1T v subject to vi = 0 for i = M, . . . ,
M 2 − M , (26), and one of the constraints in (25).

C. Maximizing the Convergence Rate for a Specified x0

IfG is strongly connected, but not necessarily fully connected,
and x0 is known, we can use a stochastic optimization method to
directly minimize the time to converge from x0 , which is quan-
tified by tf . We implement problem P3 below using Metropolis
optimization [25] with k as the variable. We chose this method
for its simplicity and for the fact that it yields reasonable im-
provements in tf with moderate computing resources.

[P3] Minimize tf subject to (4), (5), (7), and constraint (8)
or (9).

Implementation: At each iteration, k is perturbed by a random
vector such that the resulting K matrix satisfies (4), (5), and (7).
k is then scaled as in problem P1 to satisfy constraint (8) or (9)
while maximizing flux capacity. The resulting K is decomposed
into its normalized eigenvectors and eigenvalues, system (3) is
mapped into the space spanned by the normalized eigenvectors,
and the appropriate transformation is applied to compute x(t)
using exp(t diag([Λ(K) 0])). Since the system is stable accord-
ing to Theorem 1, µ(x) always decreases monotonically with
time, and therefore a Newton scheme can be used to calculate tf .

If G is fully connected and x0 is known, then K can be com-
puted such that ∆ ≡ xd − x0 is one of its eigenvectors with
eigenvalue λ > 0. By maximizing λ, we maximize the conver-
gence rate along the vector from x0 to xd , which is the most
direct route in R

M to the target distribution. We use the decom-
position of K from Theorem 4 to formulate the optimization
problem as a linear program that maximizes λ.

Theorem 5: Let K be a matrix that satisfies (4) and (7); then,
by Theorem 4, K = BĈA. Let d1 = d in definition (21), where

d = ∆′/‖∆′‖, ∆′ = ∆ −
(
xdT

∆/‖xd‖2
)
xd . (27)

Then, K∆ = λ∆ if and only if C from (22) is defined as

C = [c | C̃], cT = [λ 0] (28)

where λ and C̃ are unconstrained.
We can now pose the optimization problem as problem P4,

in which property (5) and constraints (8) and (9) are defined in
terms of the entries of BĈA, with d1 = d and C defined by
(28). The optimization variables are λ and C̃.

[P4] Maximize λ subject to (5) and constraint (8) or (9).

IV. RESULTS

A. Effect of Connectivity of G on Asymptotic Convergence Rate

As a preliminary study, we investigated the effect of the con-
nectivity of G on λ2(K) for several strongly connected, directed
graphs on three tasks, which are labeled in Fig. 2. We used prob-
lem P1R to compute K for graph α with reversibility condition
(20) and problem P1 to compute K for graph α without this con-
dition and for all other graphs. We modeled each edge in a graph
as providing one unit of equilibrium flux capacity by defining
cij = 1 for all (i, j) ∈ E in constraint (9) and ctot = NE in con-
straint (8). The target distribution was xd

1 = 0.2, xd
2 = 0.3, and

xd
3 = 0.5.
Table II gives the resulting λ2(K) of each graph for both con-

straints, with column 2 indicating whether condition (20) was
imposed or not. The fully connected graph α yields the fastest
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Fig. 2. Graphs on three tasks.

TABLE II
COMPARISON OF λ2 (K) FOR GRAPHS ON THREE TASKS

Fig. 3. Robot activities in the simulation. Numbers in brackets are related
references for the stochastic simulation algorithm and motion controllers (see
Appendix B).

convergence, which is expected since robots can switch from
any task directly to any other task. Each removal of an edge
from graph α lowers λ2(K), except in the case of constraint
(9) applied to the three-edge cycle δ. This is because the opti-
mization problem maximized the flux capacity for each edge of
graph δ (and did not for β and γ), which offset the stricter limits
on task switching than in the other graphs.

B. Comparison of K for Surveillance Simulation

To demonstrate our approach on a realistic application, we
simulated a scenario in which each task is the surveillance of
one of four buildings in the University of Pennsylvania campus.
Robots execute the tasks by monitoring the building perimeters,
and they effect task transitions by traveling between buildings.
We assume that robots can localize themselves in the campus
and sense neighboring robots to avoid collisions. Appendix B
describes our simulation methodology in detail, including the
motion controllers for perimeter tracking and navigation that are
used to implement surveillance behavior and inter-site travel,
respectively. Fig. 3 illustrates the integration of switching initia-
tions, perimeter surveillance, and navigation in the simulation.

The buildings to be monitored are highlighted in light dashed
lines in Fig. 4, which also shows the cell decomposition used for
navigation (see Appendix B). Two different graphs G, shown in
Fig. 5, were defined on these buildings. The swarm consists of
250 homogeneous robots and is initially split equally between
buildings 3 and 4. The robots must redistribute to achieve the
target population fractions xd

1 = 0.1, xd
2 = 0.4, xd

3 = 0.2, and
xd

4 = 0.3.

Fig. 4. Cell decomposition of the free space used for navigation.

Fig. 5. Numbering and connectivity of surveyed buildings for (a) a strongly
connected, but not fully connected, graph and (b) a fully connected graph.

Fig. 6. Snapshots of a run using k from problem P1 with constraint (9). The
red robots (�) are not engaged in a transition, and the orange robots (∗) are
committed to travel to another site or are in the process of traveling.

We compared the system convergence to xd for different sets
of transition ratesk, each computed from one of the optimization
problems discussed in Section III. Problems P1 and P3 were
used to compute rates for the system with graph Fig. 5(a), and
problems P1R , P2, P3, and P4 were used for the system with
graph Fig. 5(b). The snapshots in Fig. 6 illustrate the robot
redistribution for one trial.

The following discussion summarizes several key points from
the simulation results.
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Fig. 7. DDE and stochastic simulations using k from problem P1 with con-
straint (9). Stochastic plots show the average over 40 runs ± standard deviation.

Fig. 8. Distance from equilibrium for stochastic simulations using graph
Fig. 5(a) with (a) constraint (8) and (b) constraint (9). Each plot is an aver-
age over 40 runs that use k from the problem labeled in the legend. The bold
number to the right of each legend entry is the equilibrium traveler fraction
averaged over 1000 data points of the corresponding plot.

1) Agreement Between Continuous and Stochastic Models:
Our top–down methodology relies on the principle that the rates
kij designed for the continuous model (3) will produce similar
system performance when used as stochastic transition proba-
bilities by individual robots. In Fig. 7, we compare performance
in terms of ‖x − xd‖1 for 40 stochastic simulation runs and the
continuous DDE model (10) with the same k. Each time delay
τij in the DDE model was estimated as the average of 750–850
robot travel times at equilibrium from site i to j. These times
were collected from a stochastic simulation using the site graph
Fig. 5(b). The stochastic runs average to a plot that is close
to the DDE plot and display little variability; if the number of
robots were to approach infinity, the standard deviations would
decrease to zero. The similarity in performance of the continu-
ous and stochastic models verifies the validity of our top–down
methodology.

2) Tradeoff Between Convergence Rate and Equilibrium
Traffic: Figs. 8 and 9 compare system performance for different
k in terms of the distance from equilibrium,

ν(x,y) = ‖x − xd‖1 − 1T y. (29)

Fig. 9. Same quantities as in Fig. 8 for runs using graph Fig. 5(b).

This quantity decreases to zero at equilibrium because then
the fraction of travelers 1T y accounts entirely for all the dis-
crepancies |xi − xd

i |, i = 1, . . . ,M . Each plot is an average
over 40 stochastic simulation runs, and the bold numbers beside
the legends are the average traveler fractions at equilibrium for
each k. (Standard deviations are not shown to avoid cluttering
the figures; the maximum standard deviation over all plots is
0.078.) The data in these figures verify that there is a tradeoff
between rapid convergence to equilibrium and the number of
idle transitions between sites at equilibrium. For instance, the
runs in Fig. 8(b) are the slowest to converge, and they yield the
lowest equilibrium traffic fractions. It is notable that this tradeoff
can occur to different degrees depending on the flux constraint
(8) or (9). The P2 plot converges slightly faster in Fig. 9(b) than
in Fig. 9(a), but it has a lower equilibrium traffic fraction.

3) Faster Convergence With Increased Site Connectivity:
Figs. 8 and 9 show that for both flux constraints, the runs for
graph Fig. 5(b) converge faster to equilibrium than those for
graph Fig. 5(a). This is due to the difference in allowable path-
ways between the initial and final distributions. In Fig. 5(b),
robots can travel directly from sites 3 and 4 to sites 1 and 2,
while in Fig. 5(a), they can only reach sites 1 and 2 via the
path 3 → 4 → 1 → 2, which prolongs the redistribution pro-
cess. The greater number of edges in Fig. 5(b) also reduces the
impact on convergence of limiting each edge’s flux capacity.
The range of convergence times to equilibrium for Fig. 5(b) are
similar for both constraints, while the convergence times for
Fig. 5(a) increase significantly when constraint (9) is applied.

4) Limits on Edge Flux Capacities Eliminate the Advantage
of Knowing x0 : Since k produced by problems P3 and P4 are
optimized for a specific x0 , it seems likely that for any given
x0 , the P3 and P4 runs will converge at least as fast as the
runs corresponding to other problems, which optimize k for the
entire domain of x0 . As Figs. 8(a) and 9(a) show, this is true if
constraint (8) is used. This is because the flux capacity can be
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distributed among edges in any way as long as the total capacity
does not exceed a limit. However, when constraint (9) is used,
limits are placed on edges that, if left unconstrained, would be
allocated a higher flux capacity to redistribute robots from x0

to xd . The problems that are independent of x0 are more robust
to these limitations; their corresponding runs converge as fast
as the runs that rely on x0 or outperform them.

5) K From Convex Optimization is Competitive Compared to
K From Stochastic Optimization: The fastest-converging runs
that use k from problems P1, P1R , P2, and P4 attain equilib-
rium at least as quickly as the corresponding runs that use k from
problem P3. Hence, we can use efficient convex optimization
techniques to compute a k that yields the same system perfor-
mance as a k from a much more time-consuming stochastic
optimization approach.2 This facilitates the quick computation
of k in real-time task allocation scenarios.

V. CONCLUSION

We have presented an approach to redistributing a swarm of
robots among multiple tasks that can be optimized for fast con-
vergence to a target distribution subject to a constraint(s) on idle
transitions at equilibrium. Our methodology is based on model-
ing the swarm as a set of continuous linear ODE’s and optimizing
the transition rates in this model. We can account for realistic
distributions of transition times within the framework of the lin-
ear ODE abstraction by augmenting the network of tasks with
virtual tasks that represent the progress of transitioning robots.
The optimized rates comprise a list of NE transition probabilities
per unit time for individual robots to switch between tasks, and
they are independent of the swarm size. The collective behav-
ior that arises from individual robots switching stochastically
between tasks follows the continuous model prediction. In this
way, we synthesize decentralized robot controllers that can be
computed a priori, do not require inter-robot communication,
and have provable guarantees on performance. A possible ex-
tension of this study is the design of a time-dependent transition
rate matrix K(t) that causes the swarm to redistribute according
to a trajectory of desired configurations, xd(t). Other extensions
include the introduction of communication between robots and
the use of nonlinear models to represent robot interactions.

APPENDIX A

PROOFS FOR SECTION III

A. Proof of Theorem 3

Define a convex, symmetric function h : R
M → R as

h(x) = −min{xi + xj}, i, j ∈ {1, . . . , M}. (30)

Let λ(A) be the vector of the eigenvalues of a matrix A. By
[26, Th. 16.4], since h is convex and symmetric, h(Re(λ(K)))
is the infimum of h((1/2)λ(M + MT )) over all matrices M

2On a standard 2-GHz laptop, one Metropolis optimization run used for
graph Fig. 5(b) took about 15 min for t0 .1 to decrease slowly enough with each
iteration for K to be deemed close enough to optimal, while all the convex
optimization programs computed an optimal K in less than a second.

similar to K. Thus, since K̃ is similar to K,

h(Re(λ(K))) ≤ h( 1
2 λ(K̃ + K̃T )) = h(λ(S)) (31)

where the equality on the right comes from (17).
Now, we evaluate both sides of the inequality in (31). By

Theorem 1, h(Re(λ(K))) = −Re(λ2(K)). We observe that
λ(S) = Re(λ(S)) because S is symmetric. We now show that
S is positive semidefinite, denoted by S � 0, which implies
that h(λ(S)) = −λ2(S) and hence reduces (31) to the inequal-
ity λ2(S) ≤ Re(λ2(K)). By (17), S � 0 if N � 0. Since G
is strongly connected, λ2(N) > 0 (see [27, Lemma 10]). Us-
ing property (4) and constraint (7), N1 = (1/2)(ΠKT 1 +
Kxd) = 0, and therefore λ1(N) = 0 with corresponding eigen-
vector 1. Thus, N � 0.

B. Proof of Theorem 4

K is similar to P ≡ MKN, where M, P ∈ R
M ×M and

N = M−1 . Subdivide M as [M̃T | m]T and N as [Ñ | n],
where m,n ∈ R

M ×1 . Then

MN =
[

M̃Ñ M̃n

mT Ñ mT n

]
= I (32)

MKN =
[

M̃KÑ M̃Kn

mT KÑ mT Kn

]
= P. (33)

Choose an N with n = xd . It follows from (32) that mT xd =
1, which by (2) implies that m = 1.

Suppose that K satisfies (4) and (7). Since m = 1 and n =
xd , these constraints applied to (33) make both the last row and
last column of P equal to 0. To satisfy M̃n = M̃xd = 0 in
(32), M̃ can be set to Ã. Then, M = A, N = B, and P = Ĉ;
therefore, it follows that K = BĈA.

Now suppose that K = BĈA. Since ĈAxd = 0 and
1T BĈ = 0, K satisfies (4) and (7).

C. Proof of Theorem 5

Suppose that K∆ = λ∆. Then

K∆ = BĈA∆ = λ∆ ⇒ ĈA∆ = λA∆. (34)

Using (27) for d1 and the orthonormality of the di ,

dT
i ∆ = ‖∆′‖dT

i d1 +
(
xdT

∆/‖xd‖2
)
dT

i xd = 0 (35)

for i = 2, . . . , M − 1. From this equation and the fact that
1T ∆ = 0 by constraint (2), A∆ = [dT

1 ∆ | 0]T . Thus, (34) is
true if and only if C is defined as in (28).

APPENDIX B

SIMULATION METHODOLOGY

The continuous DDE model (10) was numerically integrated
using the Runge–Kutta method. Gillespie’s direct method [28]
was used to perform a stochastic simulation of the system that is
represented deterministically by the DDE model. This method
simulates a sequence of robot transition events and their initia-
tion times using the transition rates kij . Each event is identified
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with the commitment of a robot to travel to another site. A
transition from building i to building j is assigned to a ran-
dom robot on the perimeter of i. This robot continues to track
the perimeter until it reaches the exit for edge (i, j), at which
point it begins navigating to the entrance on j. For more details,
see [13] and [16].

To simulate perimeter tracking and navigation, we repre-
sented each robot k as a planar agent governed by a kinematic
model q̇k = uk , where qk ∈ R

2 denotes the robot’s (x, y) co-
ordinates and uk ∈ R

2 is a control input.
Suppose that the boundary of a building m is parameterized by

a vector s(s) ∈ R
2 that maps arc length s to (x, y) coordinates.

A robot k monitoring the perimeter of m moves in the direction
of a unit vector tangent to this boundary, n̂m (s) ∈ R

2 . To cre-
ate an approximately uniform distribution of robots around the
perimeter, we specify that the robot k slows down by a fraction
ζ of its nominal speed vp if its distance qkl from the robot l in
front of it is less than pm /nm , where pm is the perimeter length
and nm is the site population. The robot kinematics are then
defined as

q̇k = (1 − σ(qkl , pm , nm )ζ)vp n̂m (qk )

where σ(qkl , pm , nm ) = 1 if qkl < pm /nm and 0 otherwise.
To implement inter-site navigation, we first decomposed the

free space into a tessellation of convex cells. Each edge (i, j)
was defined as a sequence of cells to be traversed by robots
moving from an exit point on the perimeter of building i to an
entry point on the perimeter of j. Dijkstra’s algorithm was used
a priori to compute the sequence with the shortest cumulative
distance between cell centroids, starting from the cell adjacent
to the exit at i and ending at the cell adjacent to the entrance at
j. The robots are provided with the cell sequence corresponding
to each edge.

Define Nk as the set of robots within the sensing radius ρ of
robot k. The robot kinematics for navigation are

q̇k = vn (ng (qk ) + na(qk ,Nk ))/‖ng (qk ) + na(qk ,Nk )‖
where vector ng (qk ) is computed from local potential functions
to ensure arrival at the goal cell [29], and vector na(qk ,Nk ) is
computed from repulsive potential functions to achieve inter-
robot collision avoidance.

Suppose that qk is in cell c. Let n̂c
e be the unit vector pointing

out of c orthogonal to its exit facet. Let n̂c
f1

, n̂c
f2

be unit vectors
pointing into c orthogonal to each facet adjacent to the exit facet,
and define dk1 and dk2 as the distance from robot k to each of
these facets. Also, define η, υ, κ > 0. Then

ng (qk ) = ηn̂c
e + υ(1/dκ

k1 n̂
c
f1

+ 1/dκ
k2 n̂

c
f2

).

In the last cell in the sequence, this vector is replaced with
one pointing from qk to the perimeter entrance point.

Let qkl = ‖qkl‖ = ‖qk − ql‖ and ξ > 0. Define a sum of
vectors that point away from each neighboring robot,

nn (qk ,Nk ) =
∑
l∈Nk

− 1
ξ2q2

kl

(
2 ln (ξqkl) −

1
ξqkl

)
qkl .

This is derived from the example potential function given
in [30], with the added parameter ξ that, when lowered, increases

the range of repulsion between robots. Finally,

na(qk ,Nk ) = nn (qk ,Nk )‖ng (qk )‖/‖nn (qk ,Nk )‖.

We set the sensing radius ρ to 46 m, which is within the
capabilities of some laser range finders. The navigation speed vn

was set to 1.3 m/s, which is attainable by some mobile robots that
are particularly suited to surveillance tasks, such as PatrolBot
and Seekur. The perimeter surveillance speed vp was set to be
4.5 times slower.

In the optimization problems, the total equilibrium flux ca-
pacity ctot for all possible edges (see graph Fig. 5(b)) was set
to 0.175 robots/s and distributed among the edges in propor-
tion to the cumulative distance between the centroids of their
associated cells.
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