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Abstract—This paper presents a general and systematic 

approach for formulating the dimensionally homogeneous 

Jacobian, an important issue for the dexterity evaluation and 

dimensional synthesis of f-DOF (f ≤6) parallel manipulators 

having mixed rotational and translational movement capabilities. 

Utilizing f independent coordinates to describe the specified 

motion types of the platform, the f×f dimensionally homogeneous 

Jacobian is derived directly from the generalized Jacobian 

provided that the manipulator has only one type of actuator. The 

condition number of the new Jacobian is then employed to 

evaluate the dexterity of two typical 3-DOF parallel manipulators 

as an illustration of the effectiveness of this approach. 

 

Index Terms—Parallel manipulators, dimensionally 

homogeneous Jacobian 

 

I. INTRODUCTION 

he Jacobian, conventionally defined as the linear map 

between actuator rates in the joint space and velocity twist 

in the operation space, plays an important role in kinematic 

performance evaluation and optimization of manipulators 

having different architectures. For those manipulators having 

coupled translational and rotational movement capabilities, it 

has been recognized that the algebraic characteristics such as 

condition number, maximum/minimum singular values, etc. of 

the Jacobian vary with the scaling due to the inconsistency in 

physical units of its terms. This may cause a serious problem 

[1-3] when they are employed as the conditioning indices in 

kinematic performance evaluation and design optimization. 

Therefore, it is critically important to formulate dimensionally 

homogeneous Jacobians in which all entries have the same 

physical units.  

A review of the existing literature shows that two methods 

might be employed to formulate a dimensionally homogeneous 
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Jacobian. One way is the length-based method that adopts a 

“characteristic/natural length” to normalize all translational 

elements in the Jacobian subject to isotropic constraints [4-10]. 

Design optimizations are then based on the condition number of 

the dimensionally homogeneous Jacobian being minimized. 

This method is suited to the design of an isotropic manipulator 

because the characteristic/natural length varies with the system 

configurations. A more practical approach is to use the 

point-based method to achieve a dimensionally homogeneous 

Jacobian by linking the actuator rates with the linear velocities 

at several points on the end-effector provided that all actuators 

are of identical type. Research along this track can be traced 

back to the early work [11] dealing with the optimum design 

problem of planar and spatial serial manipulators. The idea was 

then extended to 6-DOF parallel manipulators, resulting in a 

6 9  dimensionally homogeneous Jacobian [12-14]. More 

recently, using a 3-PRS or 3-RPS mechanism as an example, the 

point-based method was taken further to formulate the f f  

dimensionally homogeneous Jacobian of f-DOF parallel 

manipulators [15, 16]. However, this method suffers from a 

rather heavy computational burden as partial derivatives have to 

be established on a case-by-case basis.  

Drawing on the needs for kinematic performance evaluation 

and optimization, this paper presents a general and systematic 

computational approach for obtaining the f f  dimensionally 

homogeneous Jacobian of f-DOF parallel manipulators (f  6). 

The method is implemented in two steps: (1) formulating the 

linear map between the joint rates and velocity twist using the 

generalized Jacobian [17]; (2) generating a linear map between 

the velocity twist and f linear velocities at a set of selected 

points on the end-effector provided that the manipulator has 

only one type of actuator. On the basis of this new Jacobian, a 

condition number is then used to evaluate the dexterity of two 

3-DOF parallel manipulators having coupled translational and 

rotational motion capabilities.  

 

II. FORMULATION OF THE GENERALIZED JACOBIAN 

This section briefly reviews the formulation process of the 

generalized Jacobian [17] of a parallel manipulator having 

f-DOF ( 2 6f ). Without loss of generality, assume that the 

manipulator is composed of l ( 1f l f ) limbs connecting 

the platform with the base, each essentially containing in  
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( 1,2, ,i l ) 1-DOF joints with at most one of them actuated. 

Thus, two families of parallel manipulators can be taken into 

account. The first family covers fully parallel manipulators 

having f constrained active limbs ( 6in  for all limbs). The 

second family comprises those having f unconstrained active 

limbs (i.e. 6in  for each of these f limbs) plus one properly 

constrained passive limb. For convenience, the properly 

constrained passive limb is always designated by 1l f . Any 

other parallel manipulators not belonging to these two families 

can be dealt with in a manner similar to that used below. 

On the one hand, the set of continuous motions of the 

platform forms a Lie group SE(3) [18]. 

3SE 3 SO 3 , 4,
0 1

GL
R r

R r   (1) 

where r is the position vector of the origin of the platform in the 

fixed body frame 0R  and R  is the orientation matrix of 

0R  with respect to the reference frame R . At any point in 

SE(3), the Lie algebra of SE(3) is a 6-dimentional vector space 

and can be expressed as  

3se 3 so 3 ,
0 0

α r
α r        (2) 

where δr  is the variation of r  and δα  is a skew-symmetric 

matrix with its entries representing the angular variation of the 

platform. Note that se(3) has a “variational” rather than 

“differential” structure of SE(3) so as to encompass a broader 

sense of the first order kinematics in terms of velocity, pose 

error and deflection. Note that se(3) is isomorphic to 6  via the 

mapping 

T
T T 6

0 0
t

δ δ
δ δ

α r
r α$                (3) 

Since t$  has a form of twist in screw theory and thus se(3) is 

referred to as the twist space, denoted T  for symbolic 

consistency in the later use.  

On the other hand, the set of wrenches exerted on the 

platform forms a 6-dimensional vector space W known as the  

wrench space with 
T

T T
w f τ$  being its elements, where 

f and τ  are the applied force and moment exerted on the 

platform. T andW  are a pair of dual spaces known as the 

tangent space and cotangent space of SE(3), respectively [18] 

It has been shown [17] that for an f-DOF parallel manipulator, 

T  can uniquely be decomposed into a pair of complementary 

subspaces, i.e., an f dimensional subspace aT  and a 6-f 

dimensional subspace cT , associated respectively with the 

permitted and restricted instantaneous motions of the platform, 

and thus known as the twist subspaces of permissions and 

restrictions. Correspondingly, W can be decomposed into a 

pair of complementary subspaces, i.e. an f dimensional subspace 

aW  and a 6-f dimensional subspace cW , associated respectively 

with actuation and constraint wrenches exerted on the platform 

by the limbs, and thus known as the wrench subspaces of 

actuations and constraints.  

Note that t$  and w$  are expressed in the form of axis- 

coordinate and ray-coordinate, the virtual work done by w$ on 

t$  can be represented by the inner product that is equivalent to 

the reciprocal product defined in screw theory [20-22]. 

, = ,  +

, , , ,

w t wa wc ta tc

wa ta wc tc wa tc wc ta

δW $ $ $ $ $ $

$ $ $ $ $ $ $ $
   (4) 

It has been proved [17] that , , 0wa tc wc ta$ $ $ $ , 

,wa ta aδ$ $  and ,wc tc cδ$ $  as wa$  ( wc$ )  does not do work 

on tc$  ( ta$ ),  and wa$  ( wc$ )  does work on ta$  ( tc$ ). Thus, the 

following relationships hold: 

Orthogonality: a cW T ,  c aW T                   (5a) 

Duality: *
a aW T ,  *

c cW T                    (5b) 

Let , , ,
ˆ

ata j i a i$ T , , , ,
ˆ

awa k i a i$ W  ( , 1,2, ,a a ij k n ) and , , ,
ˆ

ctc j i c i$ T ,  

, , ,
ˆ

cwc k i c i$ W  ( , 1,2, ,6c c ij k n ) be the basis elements of the 

four vector subspaces associated with the ith limb. The twist of 

the platform can then be represented by a linear combination of 

the basis elements of ,a iT  and ,c iT  ( 1,2, ,i l )because all 

limbs share the same platform 

, ,

6

, , , , , , , ,

1 1

ˆ ˆ
i i

a a c c

a c

t ta tc ta i tc i

n n

a j i ta j i c j i tc j i

j j

δρ δρ

$ $ $ $ $

$ $
         (6) 

where , ,
ˆ

ata j i$  and , ,aa j iδρ  ( , ,
ˆ

ctc j i$  and , ,cc j iδρ ) are the thaj  

( thcj ) unit screw of permissions (restrictions) and its intensity. 

In screw theory, , ,
ˆ

ata j i$  is none other than the unit screw of the 

thaj  1-DOF joint within the ith limb having connectivity of 

6in  [22].  

In velocity analysis where merely the ideal motions of the 

platform are considered, it gives
T

T T
t ta v ω$ $ , 

, , , ,a aa j i a j iδρ q  and , , 0
cc j iδρ  such that 

6

, , , , , ,

1 1

ˆ ˆ0
i i

a a c

a c

n n

t a j i ta j i tc j i

j j

q$ $ $                  (7) 

where v  and ω  are the linear velocity of the reference point on 

the platform and angular velocity of the platform, and , ,aa j iq  is 

the rate of the thaj  1-DOF joint in the ith limb. 
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Let , ,
ˆ

kwa g k$  be the unit wrench of actuations associated with 

the actuated joint, which is labelled kg in the kth ( 1,2, ,k f ) 

limb. Note that , ,
ˆ

kwa g k$  is dual to , ,
ˆ

kta g k$  but orthogonal to 

, ,
ˆ

ata j k$  ( 1,2, ,a kj n , a kj g ) in accordance with the 

properties given in Eq.(5). Similarly, let , ,
ˆ

cwc k i$  be the thck  

unit wrench of constraints in the ith limb. Also, note that , ,
ˆ

cwc k i$  

is orthogonal to , ,
ˆ

ata j i$  ( 1,2, ,a ij n ). Thus, taking the inner 

product on both sides of Eq.(7) with , ,
ˆ

kwa g k$  and , ,
ˆ

cwc k i$ , 

respectively, results in  

tJ q$                                     (8) 

a

c

J
J

J
= , 

1 1 1

2 2 2

T T
, ,1 , ,1 , ,1

T T
, ,2 , .2 , ,2

T T
, , , , , ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
f f f

wa g wa g ta g

wa g wa g ta g
a

wa g f wa g f ta g f

J

$ $ $

$ $ $

$ $ $

, 

,1

,2

,

c

c

c

c l

J

J
J

J

 

T T
,1, ,1, ,1,

T T
,2, ,2, ,2,

,

T T
,6 , ,6 , ,6 ,

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
i i i

wc i wc i tc i

wc i wc i tc i
c i

wc n i wc n i tc n i

J

$ $ $

$ $ $

$ $ $

, 
aq

q =
0

, 

1

2

, ,1

, ,2

, ,f

a g

a g

a

a g f

q

q

q

q  

where J  is an 
1

6 6
l

ii
f n matrix known as the 

generalized Jacobian of f-DOF parallel manipulators, which 

has a broader sense than the overall Jacobian developed by 

other means in the existing literature [23]. With the aid of Eq.(8), 

the formulation of f f  dimensionally homogeneous 

Jacobian of parallel manipulators will be discussed in next 

section.  

 

III. FORMULATION OF THE f f  DIMENSIONALLY 

HOMOGENEOUS JACOBIAN 

Theoretically, the translations of three non-collinear points 

on a rigid body are sufficient to uniquely identify the motion of 

the body in terms of translation and rotation. Hence, on the basis 

of the generalized Jacobian given in Eq.(8), a computational 

scheme to formulate the f f  dimensionally homogeneous 

Jacobians of f-DOF parallel manipulators is proposed as follow.  

Firstly, place a reference frame R  at a point O  on the base 

and a body fixed frame 0R  on the platform at a point O . 

Also, set an instantaneous reference frame R  with its origin 

at point O  while its three orthogonal axes remain parallel to 

those of R  as shown in Fig.1. Secondly, express the velocity 

iv  at point iP  on the platform in terms of velocity v  at point 

O  and angular velocity ω  of the platform, i.e. 

i iv v ω p                                  (9) 

Expressing all vectors in R with ip  the position vector 

pointing from O  to iP , place a set of axes at point iP  and let 

,i je  be the unit vector along the jth such axis. Then, taking the 

dot product on both sides of Eq.(14) with ,i je  leads to  

0

T T
, , 0 Ad R

R
i j i j tg

v $ $                              (10) 

, 0

, 0
0 , 0

i j

i j
i i j

e

p e
$ , 

0

Ad R

Rg

R

R

0

0
 

where 
T

, 0 ,i j i je R e  and T
0i ip R p  are the vectors of ,i je  

and ip  evaluated in 0R  with R  being the orientation matrix 

of 0R  with respect to R ( R ); , 0i j$  is a unit wrench of 

zero pitch measured in 0R , representing a unit force along 

,i je  at point iP . 

In order to fully describe the different motion types of 

parallel manipulators having coupled DOF, it is necessary to 

select a set of appropriate points on the platform and specify the 

relevant axes along which the dot product is taken. Although 

taking three distinct and non-collinear points on the platform is 

sufficient to identify its pose, a practical generic way to do this 

is to take 5 points as the candidates: e.g., the 4 vertices of a 

triangular pyramid (tetrahedron) having an equilateral base and 

Fig.2.  Points and axes arrangements on a tetrahedron 

0O P

3,10e

1P

2P

3P

4P

1
1,10e

1,20e

4,10e
4,20e

10p

3,20e

2,20e

2,10e

30p

20p

40p

0x
0y

0z

Fig.1.  Frame settings on the platform 

0R R

R

iP

O

O

, ,i j i jv e

ip

Platform 

iv

v
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three identical isosceles faces plus the centre of its base for 

providing axial symmetries and easier implementation. For this 

arrangement of points, assume that point O  is the centre of the 

base equilateral triangle lying in the 0 0x y  plane of 0R , 

taken to be the plane containing the centres of joints connected 

with the platform. In this way, it is sufficient to choose two 

orthogonal axes at each vertex such that ,10 ,20i ie e , ,10 0i ie p  

and ,20 0i ie p  ( 1,2,3,4i ) as shown in Fig.2. Thus,  

T

,10 sin cos 0i i ie , 
T

,20 0 0 1ie   

T

0 cos sin 0i i ipP , for 1,2,3i  

T

4,10 1 0 0e , 
T

4,20 0 1 0e , 
T

40 0 0 1pp   

where i  is the position angle of ip  ( 1,2,3i ) lying in 

the 0 0x y  plane;  p is the height of the tetrahedron which is 

equal to the circumscribing radius of the base.  And at point O   

T

0,10 1 0 0e , 
T

0,20 0 1 0e , 
T

0,30 0 0 1e   

Rewrite Eq.(10) in matrix form 

 
0

T
0Ad R

R
p p tg

v J $                             (11) 

where 

T

0 0,10 0,20 4,20pJ $ $ $ , 
T

0,1 0,2 4,2p v v vv  

0pJ  is an 11 6  matrix (i.e., two for each , 0i je  with 

1,2,3,4i , 1,2j  and three more for 0, 0je  with 1,2,3j ). 

For an f-DOF parallel manipulator with a specified motion type, 

any f  linearly independent row vectors of 0pJ  can be selected 

to form an 6f  matrix 0paJ . Thus, the linear map 

6: f
t paL v$  can be obtained 

 pa pa aJ v q ,
0

1
1

T T T
0Ad R

R
pa pa ag

J J J J J         (12) 

where paJ  is an f f  matrix known as the dimensionally 

homogeneous Jacobian of f-DOF parallel manipulators. It is 

easy to see that 0paJ  depends only upon 0ip  and , 0i je . 

Therefore, the computational burden to formulate the 

dimensionally homogeneous Jacobian can be reduced 

dramatically once the generalized Jacobian has been made 

available using the approach given in Section II. It should be 

noted that the choice of f  linearly independent row vectors of 

0paJ  is not unique. In order to solve this problem 0paJ can be 

formulated by either of two ways. By setting 1p  one way is 

to choose 0paJ  of which the minimum singular value takes the 

maximum value. Although this is a systematic approach, it is 

rather time consuming. By utilizing the 3-2-1 positioning 

principle in the jig design, a more straightforward way is to 

select f , 0i j$ that enable to describe the prescribed motion type 

of the platform, and to achieve the highest feasible degree of 

axial symmetry. For example, it is very natural to select  0,10$ , 

0,20$ , 4,10$ and 4,20$  to formulate 0paJ of a 2R2T parallel 

manipulator in terms of two translations along and two rotations 

about the 0x  and 0y axes. On this basis, Table I enumerates 

suitable 0paJ  for a number of 3~6 DOF parallel manipulators 

TABLE I   

ENUMERATION OF MOTION TYPES FOR 3~6 DOF PARALLEL MANIPULATORS 

Motion types Descriptions 0paJ   

3R3T 

3 rotations about the x, y and z axes or three 

axes not consecutively parallel and 

3 translations along the x, y and z axes 

T

0 1,10 1,20 2,10 2,20 3,10 3,20paJ $ $ $ $ $ $  

3R2T 

3 rotations about the x, y and z axes or three 

axes not consecutively parallel and 

2 translations along the x and y axes 

T

0 1,10 2,10 3,10 4,10 4,20paJ $ $ $ $ $  

2R3T 

2 rotations about the x, y axes or two axes not 

consecutively parallel and 

3 translations along the x, y and z axes 

T

0 1,20 2,20 3,20 4,10 4,20paJ $ $ $ $ $  

2R2T 

2 rotations about the x and y axes or two axes 

not consecutively parallel and  

2 translations along the x and y axes 

T

0 0,10 0,20 4,10 4,20paJ $ $ $ $  

1R3T 
1 rotation about the z axis and 

3 translations along the x, y and z axes 

T

0 0,30 1,10 2,10 3,10paJ $ $ $ $  

2R1T 

2 rotations about the x and y axis or two axes 

not consecutively parallel and 

1 translation along the z axis 

T

0 1,20 2,20 3,20paJ $ $ $  

1R2T 
1 rotation about the z axis and 

2 translations along the x and y axes 

T

0 1,10 2,10 3,10paJ $ $ $  

    R---Rotation, T---Translation 



 5 

having coupled DOF. It can be seen that for each case the 

selected f linearly dependent wrenches relate to no more than 3 

points out of 5 candidates. 

There are some 3-DOF non-overconstrained parallel 

manipulators having coupled DOF for which the dimensionally 

homogeneous Jacobian can directly be generated if either the 

translational or the rotational components in t$ can be taken as 

the independent coordinates. The 3-DOF module within the 

Tricept robot [24] is a typical example of this condition. For 

such cases, Eq.(8) is rewritten in a partitioned form as 

vv v a

v

J J v q

J J ω 0
                        (13) 

and then if, for example, the linear velocity of point O  is taken 

as the independent coordinates,  

pa aJ v q , 
1

pa vv v vJ J J J J              (14) 

IV. EXAMPLES 

The dexterity analyses of two typical parallel mechanisms are 

carried out using Eq.(12) or (14) developed in Section III to 

illustrate the effectiveness of the proposed approach. 

A. 3-RPS parallel mechanism 

As shown in Fig.3, the 3-RPS parallel mechanism consists of 

a base, a platform, and three identical limbs, each connecting 

the base with the platform in sequence by a revolute joint R, an 

actuated prismatic joint P, and a spherical joint S. Therefore, 

5in ( 1,2,3i ). The unit screws of permissions, ,ata j i,$̂  

( 1,2, ,5aj ), in the ith limb can be obtained by 

2 1,

1,

1,

i i i i

ta i

i

q ,

,

a s s
ˆ

s
$ , 

2,

2,

i

ta i,

s
$̂

0
 

3,

3,
3,

i i

ta i
i

,

a s
ˆ

s
$ , 

4,

4,
4,

i i

ta i
i

,

a s
ˆ

s
$ , 

5,

5,
5,

i i

ta i
i

,

a s
ˆ

s
$  (15) 

where ,aj is  is a unit vector along the thaj  1-DOF joint of the 

ith limb; i iO Aa  and 2i i i iq B A,s . The joint axes are 

arranged such that 1, 2,i is s ; 3,is , 4,is and 5,is  are coincident 

with three rotational axes of the spherical joint, with 3, 2,i is s . 

Utilizing the properties given in Eq.(5) , the unit wrench of 

constraints (actuations) 1,wc i,$̂  ( ,2,
ˆ

wa i$ ) and the unit screw of 

restrictions ,1,
ˆ

tc i$  ( 1,2,3i ) can sequentially be determined by 

the observation method [22].  

1,

,1,
1,

i

wc i
i i

s
ˆ

a s
$  

 
2,

,2,
2,

ˆ i

wa i
i i

s

a s
$ , 

2, 1,

,1,

1,

ˆ i i i i

tc i

i

qa s n

n
$      (16) 

where 1, 2, 1,i i in s s . Substituting Eqs.(19) and (20) into 

Eq.(8), results in the generalized Jacobian of the 3-RPS 

mechanism. 

a

c

J
J

J
=                                   (17)  

Table II   

DIMENSIONS OF A 3-RPS PARALLEL MECHANISM (UNIT: mm) 

a b qi0  

250  312.5  540  

iO A a ; iOB b ; qi0 is the initial length of the ith prismatic joint 

(i=1,2,3). 

 

Fig.3.  Schematic diagram of a 3-RPS mechanism 
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Fig.4.  Distribution of k(Jpa) of the 3-RPS mechanism 
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TT
2 1 1 2 1

TT
2 2 2 2 2

TT
2 3 3 2 3

a

, ,

, ,

, ,

s a s

J s a s

s a s

,

TT
1 1 1 1 1 1 1

TT
1 2 2 2 1 2 2

TT
1 3 3 3 1 3 3

c

q q

q q

q q

, ,

, ,

, ,

s a s

J s a s

s a s

 

Considering the mechanism to have three degrees of freedom 

in terms of one translation and two rotations which then produce 

other parasitic motions, 0paJ  can be formulated by selecting 

,2iv along the ,20ie  at point iP ( iA ) ( 1,2,3i ) as the three 

independent coordinates, i.e. 

T

0 1,20 2,20 3,20paJ $ $ $                      (18) 

where 

,20

,20
0 ,20

i

i
i i

e

a e
$ , 

T

,20 0 0 1ie  

T

0 cos sin 0i i iaa , 
11 2

1
6 3

i i , 1,2,3i  

The orientation matrix R  of 0R  with respect to R  ( R ) 

can be generated by 

c c s c s c s s c c s s

s c c c s s s c c c c s

s s s c c

R     (19) 

where ,  and  are three Euler angles of precession, 

nutation and body rotation, respectively, with ; “s” and 

“c” denote sine and cosine functions. Thus, substituting 

Eqs.(17)-(19) into Eq.(12) finally results in a 3 3  

dimensionally homogeneous Jacobian paJ .  

As an illustration, consider a 3-RPS parallel mechanism 

having the geometric parameters given in Table II, a rotational 

capability of 40  throughout 0 360~  and a 

translational capability of 200 mm from z=536.4 mm to z=736.4 

mm. Fig.4 plots the condition number of paJ , paJ , 

evaluated throughout the entire task workspace. It can be seen 

that for a given z-coordinate of O , paJ  takes a maximum 

value at 40  when 0  120  240, , ; its minimum value 

occurs at 0 . It shows that the kinematic performance can 

be improved slightly by increasing the distance between O  

and O  within the given range of the stroke. 

B. 3-UPS&UP parallel mechanism 

Fig.5 shows the schematic diagram of the 3-UPS&UP 

parallel mechanism which forms the main body of the Tricept 

robot [24]. The mechanism is composed of three identical 

unconstrained active UPS limbs and one properly constrained 

passive UP limb. Each UPS limb connects the base to the 

platform in sequence by a universal joint, an actuated prismatic 

joint, and a spherical joint, while the UP limb connects the base 

to the platform by a universal joint followed by a prismatic joint. 

Therefore, 6in  ( 1,2,3i ) for the UPS limb and 4 3n for 

the UP limb. 

The bases of four vector subspaces of the ith UPS limb and 

UP limb are given in an extensive analysis of this system [17], 

so its generalized Jacobian is easily formulated. For this 

particular case the three components of the linear velocity, v , 

of point O  can be taken as three independent coordinates. 

Table III   

DIMENSIONS OF A TRICEPT ROBOT (UNIT: mm) 

a b H 

120 346.4 805 

iO A a ; iOB b ; qi0 is the initial length of the ith prismatic joint 

(i=1,2,3). 

Fig.5 Schematic diagram of the 3-UPS&UP mechanism 

within the Tricept robot 
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Thus the 3 3  dimensionally homogeneous Jacobian paJ  can 

be obtained directly by using Eq.(14).      

pa aJ v q , 1
pa vv v vJ J J J J             (20) 

T
3 1

T
3 2

T
3 3

vv

,

,

,

s

J s

s

, 

T

1 3 1

T

2 3 2

T

3 3 3

v

,

,

,

a s

J a s

a s

 

T
2 4

T
2 4

v ,

,

J s

n

0

, 

T
1 4

T

4 3 4 2 4

T

4 3 4 2 4

q

q

,

, ,

, ,

n

J s s

s n

 

where ,aj is  (i=1,2,3) is a unit vector along the thaj  1-DOF 

joint of the ith limb. 
T

1 2 3a q q qq  with iq  being the rate 

of the ith actuated UPS limb along 3,is .Here, the joint axes are 

arranged such that 1, 2,i is s , 2, 3,i is s , 3, 4,i is s , 1,4 2,4s s , 

and 2,4 3,4s s . i iO Aa , 4 3 4q OO,s , 1,4 1,4 2,4n s s , and 

2,4 2,4 3,4n s s . 

Consider, for illustration, a 3-UPS&UP parallel mechanism 

having the geometric parameters given in Table III with a 

cylindrical task workspace of height 200 mmh  and diameter 

1000 mm . Fig.6 plots the condition number of paJ , 

paJ , evaluated throughout the entire task workspace. For a 

given z-coordinate of O , the maximum value of paJ  

occurs at the workspace boundary; whilst its minimum value 

occurs at 0x y . This shows that the kinematic performance 

can be improved by decreasing the distance between O  and O  

in the given range of h . 

Finally, it must be stressed that the units of pav  and aq  are 

both length/time for these two examples, leading to paJ  being 

dimensionless. This means that not only the condition number 

but also the maximum/minimum singular value of paJ  are 

dimensionless, and can thereby be used as the local conditioning 

index. However, for a parallel mechanism actuated by revolute 

joints, the unit of aq  is angle/time and paJ  is no longer 

dimensionless although it remains dimensionally homogeneous. 

In this case, paJ  is suitable only for kinematic performance 

evaluation. The worst analytic case is when a parallel 

mechanism is driven by a mixture of prismatic and revolute 

actuators. The method presented here no longer works directly 

and so special treatments will need to be used to achieve the 

dimensionally homogeneous Jacobian for kinematic 

performance evaluation. 

 

IV. CONCLUSIONS 

This paper proposes a new approach for deriving the f f  

dimensionally homogeneous Jacobian for dexterity analysis of 

f-DOF ( 2 6f ) parallel manipulators having only one type 

of actuator, i.e., either revolute or prismatic. The following 

conclusions are drawn. 

1) The proposed approach is general for f-DOF parallel 

manipulators having coupled translational and rotational motion 

capabilities provided that a proper linear mapping can be made 

between the twist of the platform and the independent 

coordinates in accordance with the specified motion types of the 

platform.  

2) The procedure to formulate the dimensionally 

homogeneous Jacobian is standardized and computationally 

effective thanks to the use of the generalized Jacobian.  

3) Both condition number and singular values of the derived 

Jacobian can be employed as a local conditioning index for 

parallel mechanisms actuated by prismatic joints; whereas, only 

the condition number can be used for those actuated by revolute 

joints. 
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