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Mutual Information-Based Visual Servoing

Amaury Dame and Eric Marchand

Abstract—In this paper, we propose a new information theoretic
approach to achieve visual servoing directly utilizing the informa-
tion (as defined by Shannon) contained in the images. A metric
derived from information theory, i.e., mutual information, is con-
sidered. Mutual information is widely used in multimodal image
registration since it is insensitive to changes in the lighting con-
dition and to a wide class of nonlinear image transformations. In
this paper, mutual information is used as a new visual feature for
visual servoing, which allows us to build a new control law that
can control the six degrees of freedom (DOF) of a robot. Among
various advantages, this approach requires no matching or track-
ing step, is robust to large illumination variations, and allows the
consideration of different image modalities within the same task.
Experiments on a real robot demonstrate the efficiency of the pro-
posed visual-servoing approach.

Index Terms—Entropy, mutual information (MI), visual

servoing.

I. INTRODUCTION

ISUAL servoing uses the information provided by a vision
V sensor to control the movements of a dynamic system [3],
[4]. This approach requires the extraction of visual information
(usually geometric features) from the image in order to design
the control law. Robust extraction and real-time spatiotemporal
tracking of these visual cues [18] is a nontrivial task and is one
of the bottlenecks of the expansion of visual servoing.
Recently, it has been shown that no information other than
the image intensities can be considered to control the robot
motion and that the classical tracking and matching processes
can be avoided. The approaches proposed by Collewet and
Marchand [5], Deguchi [8], and Kallem et al. [12] no longer
require any matching or tracking processes. Assuming that the
pixel intensities at the desired pose are known and considering
the whole set of image intensities as a feature avoid the track-
ing and matching processes. Following this, various approaches
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have been presented. Deguchi [8] and Nayar et al. [19] con-
sider the full image, but in order to reduce the dimensionality of
image data, they perform an eigenspace decomposition of the
image. The control is then performed directly in the eigenspace
requiring both an off-line computation of this eigenspace (us-
ing a principal component analysis) and the projection of each
acquired image on this subspace. To create a control law closer
to the image, Collewet and Marchand [5] propose to regulate
directly the sum of squared differences (SSD) between the cur-
rent and reference images. Such an approach is nevertheless
quite sensitive to illumination variations (although using a more
complex illumination model in some particular cases is possi-
ble). Kallem et al. [12] also consider the pixel intensities with
a kernel-based method that leads to a highly decoupled control
law. However, this approach cannot control the six degrees of
freedom (DOF) of the robot, and it is very limited in the case
of appearance variations. Another approach that does not re-
quire tracking or matching has been proposed in [1]. It models
collectively feature points extracted from the image as a mix-
ture of Gaussian and attempts to minimize the distance function
between the Gaussian mixture at current and desired poses.
Simulation results show that this approach is able to control the
three DOF of the robot. However, an image processing step is
still required to extract the current feature points.

Although these methods are very different from the classical
geometric approaches [3], the goal remains the same: From
its current pose r, the robot has to reach the desired pose r*. In
terms of optimization [17], it means that during the whole visual-
servoing task, the pose of the robot has to evolve in the direction
of a given alignment function extremum. The camera velocity
is then computed using the derivatives of the cost function with
respect to the pose r.

As previously stated, image intensities are quite sensitive to
modifications of the environment [5]. To solve this problem,
our new approach does not consider directly the luminance of
the pixels but the information contained in the images. The
visual feature is the mutual information (MI) defined by Shan-
non in [24]. The MI (built from the image entropy) of two
random variables (images) measures their mutual dependence.
This function does not directly compare the intensities of the
two images but the distribution of the information in the im-
ages. Given the two images, the higher the MI, the better the
alignment between the two images. To consider the information
contained in the image and not the image itself offers a mea-
sure robust to perturbations or the image modalities (as soon
as enough information is shared between the modalities). This
yields very interesting properties for visual servoing: As for [5],
this approach does not require any tracking or matching step,
it is robust to large illumination variations and to partial oc-
clusions and is able to consider different image modalities in
the acquisition process. Although MI has been widely used for
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multimodal medical image registration [27] and more recently
in tracking [10], to the best of our knowledge, this is the first
time that it has been considered to build a vision-based control
law.

The remainder of this paper is organized as follows. In
Section I, we recall that visual servoing can be easily formulated
as an optimization problem and recall the main differences be-
tween feature-based visual-servoing and direct visual-servoing
approaches. Section III gives a background on information the-
ory and describes the new metric based on MI related to images.
The variation of the MI with respect to the displacement of
the camera is defined in Section IV, and the resulting control
law, which is based on the optimization of MI, is presented in
Section V. Finally, some positioning and navigation tasks of a
6-DOF robot are presented in Section V, and a more general
validation of the proposed approach is given by an empirical
convergence analysis in Section VI.

II. FROM FEATURE-BASED VISUAL SERVOING TO
DIRECT APPROACHES

For years, image-based visual servoing (IBVS) has been
mostly known through feature-based approaches [3]. More re-
cently, keeping the formulation of the positioning task as an
optimization problem, direct visual-servoing approaches [5],
[8], [12] have been proposed. These approaches have the advan-
tage that they do not require any feature extraction, matching,
and tracking steps; therefore, they are very accurate. Within this
class of methods, we propose in this paper a new information
theoretic approach that redefines the camera alignment process
using the Shannon MI.

A. Visual Servoing as an Optimization Approach

A visual-servoing problem can always be written as an opti-
mization problem [17]. The goal of visual servoing is that, from
an initial arbitrary pose, the camera pose r reaches the desired
pose r* that best satisfies some properties measured in or from
the images. If we note f, i.e., the function that measures the
positioning error, then the visual-servoing task can be written as

T = argmin f(r,r") (D)

where T is the camera pose obtained after the visual-servoing
task. The visual-servoing problem can, therefore, be considered
as an optimization of the function f where r is incrementally
updated to reach an optimum of f atT. If f is correctly chosen
at the end of the minimization, the final camera pose T should
be equal to the desired one r*. For an eye-in-hand configuration,
the pose update is performed by applying a velocity v, which
corresponds to the direction of the alignment function descent,
to the camera that is mounted on a robot end-effector:

Tpp1 =T, OV 2

where “@®” is the operator that updates the pose and which is
“implemented” through the robot controller.
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B. Feature-Based Approaches

Classical visual-servoing approaches consider a function f
based on the distance between geometrical features extracted
from the image. The visual features s can be 2-D features that
lead to an IBVS approach or 3-D features (such as the camera
pose) that lead to a position-based visual-servoing approach.
These visual features (points, lines, moments, contours, pose,
etc.) have thus to be selected and extracted from the images
to control the desired DOF of the robot. The control law is
then designed so that these visual features s(r) reach a desired
value s*, which leads to a correct realization of the task. The
optimization problem can thus be written as

T =argmin |s(r) —s*|. 3)
r

Although very efficient, these approaches have some drawbacks.
First, some features have to be chosen depending on the scene
characteristics. Second, the current features s(r) have to be
tracked in real time and matched with the desired ones s*. De-
spite the recent advances in computer vision, the tracking issue
is far from being solved. Finally, these tracking and match-
ing tasks are prone to some measurement errors that cause the
visual-servoing task to be less accurate than it could be.

C. Direct Approaches

To avoid these issues inherent to the use of geometrical fea-
tures, other formulations that use the images as a whole have
been proposed. We refer to this class of methods as direct visual-
servoing approaches. In this context, the visual-servoing task is
defined as an alignment between the current image I(r) and the
image acquired at the desired camera pose I*. The camera is
controlled in order to minimize an error measured between the
current and desired images.

1) Kernel and Photometric Visual Servoing: One solution
has been to consider a kernel-based approach [12]. This ap-
proach shows a large convergence domain; nevertheless, it gives
no precise alignment information and the visual-servoing task
is limited to 4 DOF. Furthermore, it is very sensitive to illumi-
nation variations.

Another solution, i.e., the photometric visual-servoing ap-
proach, considers f as the SSD of the image intensities [5]. In
this case, the optimization can simply be written as

T =argmin || I(r) — I"
= arg minz (I(r,x) — I*(X))2 4

where I(r,x) is the intensity of the pixel x in the image I
acquired at the current pose r. That equation is, in fact, a re-
formulation of (3), where the feature vector s is defined by the
image intensities. As already stated, the main advantage of these
direct visual-servoing approaches is that they do not rely on any
tracking or matching process. Furthermore, since the feature
vector contains all the image information and since no inter-
mediate visual features are used, the resulting visual-servoing
process does not suffer from measurement errors and performs
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From feature-based tracking to direct approaches. A visual-servoing task was usually based on measures extracted from the image such as points and

contours. It is now possible to run a visual-servoing task with no feature extraction or image processing through direct approaches. Our new approach is now

capable of servoing the robot using images acquired using different modalities.

a very accurate positioning task under constant illumination
conditions.

One problem remains in these solutions: If the appearance of
the object has changed from I* to the current acquired image
I(r) due to some illumination variations or some occlusions,
then the cost function is highly affected, which causes the visual-
servoing task to diverge.

2) Proposed Approach: The solution, which is proposed in
this paper, is to define the alignment function f as the MI be-
tween the two images. The MI can be defined as the quantity
of information shared by two signals (or images in our case).
This metric is very robust to the appearance variations. As in
the other direct approaches, we still use the entire information
provided by the images I(r) and I* by achieving the following
optimization:

T = argmax MI(I(r),I"). 5)

In the following section, we will see that the optimization of
MI is well adapted for the visual-servoing problem: It performs
a very accurate positioning task, has a large convergence area,
and is robust to both occlusions and illumination variations (see
Fig. 1).

Finally, it opens new possible visual-servoing applications.
Indeed, it is also robust to the alignment between images ac-
quired using different sensors (modalities). For example, Fig. 1
shows a map and a satellite image of the same area that are used
in the same visual-servoing task.

III. INFORMATION THEORY AND MUTUAL INFORMATION

In this section, a brief definition of MI is given as it was
originally defined in the theory of communication in [24]. A
definition adapted to the optimization of the visual-servoing
problem is then derived from the original definition to best fit
the optimization problem.

A. Shannon Mutual Information

MI is an alignment function that was first introduced in infor-
mation theory. Some essential notions such as entropy and joint
entropy underpin the application of this alignment measure. To
address these definitions, let us omit the pose r for the purpose
of clarity and consider that I is now a random variable and that
the actual pixel intensities are samples of this random variable
(I(x) being the intensity of the pixel x).

1) Entropy: The entropy H(I) is a measure of variability of
arandom variable I. If ¢ is a possible value of I(x) (i € [0, N, ]
with N, = 255) and py(i) = Pr(I(x) =) is the probability
distribution function of 4, then the Shannon entropy H(I) of a
discrete variable I is given by the following expression:

NCI
H(I) = = " pi(i) log (pr (i) . 6)
i=0
The log basis only changes the unit of the entropy; therefore, it
makes no difference in our optimization problem. The formula-
tion can be seen as follows: Since — log (pr (7)) is a measure of
the uncertainty of the event 4, then H(I) is a weighted mean of
the uncertainties. H(I) is then the variability of I.

Since a sample of I is, in our case, given by the pixel intensi-
ties I(x), the probability distribution function can be estimated
using the normalized histogram of this image. The entropy can,
therefore, be considered as a dispersion measure of the image
histogram.

2) Joint Entropy: Following the same principle, the joint
entropy H(I, I*) of two random variables I and I* can be defined
as the variability of the couple of variables (I, I*). The Shannon
joint entropy expression is given by

Nep Ney.

HILL) ==Y pie (i, ) log (pur- (i, 5)

i=0 j=0

(N

where ¢ and j are, respectively, the possible values of the vari-
ables T and I*, and pr1- (¢, j) = Pr(I(x) =« N I*(x) = j) is the
joint probability distribution function. Here, I and I* being im-
ages, ¢ and j are the pixel intensities of the two images and the
joint probability distribution function is a normalized bidimen-
sional histogram of the two images. As for entropy, joint entropy
measures the dispersion of the joint histogram of I and I*.

At first sight, the joint entropy could be considered as a good
alignment measure: If the dispersion of the joint histogram is
small, then the correlation between the two images is strong and
we can suppose that the two images are aligned. Nevertheless,
the dependences on the entropies of I and I* make it unsuitable.
Indeed, if one of the images has a constant gray-level value,
then the joint histogram would be very focused and the entropy
value would be very small, despite the fact that the two images
are not aligned.

3) Original Mutual Information: The definition of M1 solves
the aforementioned problem [24], [27]. To subtract the random
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alignment functions between the desired and current images with respect to the camera translational error (m). Ml is robust in every case, whereas the SSD is not in
the illumination case. The noisy case depicts the improvement made on the MI computation from its original version MIy5¢ to the one used in the visual-servoing

approach Ml a1.

variable’s entropies from their joint entropy yields an alignment
measure that does not depend on the variable marginal entropies.
The MI of two random variables I and I* is then given by

MI(L, T*) = H(T) + H(T*) — H(L, T") (8)

where MI measures the quantity of information shared by two
random variables.

4) Link With Visual Servoing: If this expression is combined
with the previously defined visual-servoing problem, we can
consider that the image or random variable I depends on the
pose of the camera r. Using the same notations as in Section II,
the MI can thus be written with respect to r as follows:

MI(r) = MI(I(r),T) = H(I(r)) + H(I") — H(I(r),T"). (9)

To develop the MI expression, we assume that the histogram
of the current image and the joint histogram of the two images
also depend on the camera pose. The probabilities py and pry-
are thus noted with respect to the current pose. The MI between
the current and desired images can, therefore, be rewritten as

Mi(r) =Y pur(i, j,r) log <M) .

10
nGon)

To illustrate the original MI function in the positioning problem,
Fig. 2 (green curve Mly54) shows the results obtained in a simple
example where the displacement of the camera is limited to one
translation along the x-axis of the camera frame (thatis, r = ¢,.).
The desired image I* is acquired and then the camera is moved
around the desired pose with respect to the translation ¢, where
the current images I(r) are acquired. To check the robustness
of MI with respect to noise, a Gaussian white noise is added to
each pixel intensity and MI(r) is computed for each pose. Fig. 2
represents the corresponding values of the MI and the SSD with
respect to the positioning error Ar.

The computation of MI using the original approach yields an
accurate cost function, but it has two problems: First, the com-
putation of a classical histogram is not differentiable, and it is

also sensitive to small local maxima. Indeed the pixel intensities
of the numerical images are encoded on 256 gray-level values.
In that case, the histograms and joint histograms have, respec-
tively, 256 and 256 x 256 bins. To consider such a number of
bins implies that several histogram bins are empty. Perturbations
on these kinds of histograms have then a strong impact on the
entropy measures.

B. Adapting the Mutual Information Formulation

The original definition of MI requires the computation of large
histograms that are highly time consuming, not differentiable,
and yields local maxima. Therefore, the original formulation is
not adapted for our gradient-based optimization problem and
requires modifications.

1) Histograms Binning: Starting from the previous obser-
vation, one obvious solution is to decrease the number of his-
togram bins [21]. The analytical formulation of the normalized
histogram of an image I is generally written as

mir) = 5 320~ 1) (a1

where x are the pixels of the image, and Ny is the number
of pixels. Each time I(r,x) = i, the ith histogram bin entry
is typically incremented by 1. ¢ is then a Kronecker’s delta
function defined by ¢(i —i') = §; = 1 for i =4’ and ¢(i —
i') = 0 otherwise.

As can be seen, the number of bins corresponds to the maxi-
mum gray-level intensity of the image V., = 255. To reduce it,
the image intensities are simply scaled as follows:

= N,
I(r,x) = I(r,x)Nc
c1

(12)

where N, is the new number of histogram bins. The obtained in-
tensities are no longer integer values. A classical method would
then be to simply use the integer part of I to compute the new
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Fig.3. B-splines functions used for an efficient and differentiable computation

of the histograms and their derivatives.

histogram. However, this solution is not suitable for two reasons:
The computation is still not differentiable, and the loss of the
decimal part involves a large loss of the information provided
by the intensity.

An adequate solution is to keep the real value I. Instead of
incrementing one entry of the histogram for each pixel, several
entries are incremented, depending on their distance with the in-
put intensity I. To do so, Viola and Wells [27] introduced the use
of Gaussian density functions for ¢, while Maes et al. [15] used
partial volume interpolation by choosing ¢ as B-spline func-
tions that are typically an approximation of Gaussian functions.
In this paper, we focus on the use of B-spline functions (see
Fig. 3) for their advantage concerning the computation time.
Moreover, their properties are well adapted to histogram com-
putation and optimization problems: Their use in the histogram
computation requires no renormalization, and their derivatives
are easily and inexpensively computed.

Using both the scaled images and the B-spline function ¢,
the computation of the probabilities and joint probability used
in (6) and (7) are written as

pi(i,r) = EZW —1I(r,x))

pr- (i, 7,1)) = Ni d o (i-Tr,x) 6 (i —T(x). (13)

Several solutions have been proposed to estimate an optimal
number of histogram bins [23], [25]. Nevertheless, a constant
number of bins set to N, = 8, which keeps a small value and
avoids losing the information, has always given satisfactory
results in our experiments. Thus, it will be the solution adopted
in the remainder of this paper.

If we compare in Fig. 2 the MI values between the original
formulation (see the Mls5¢ curve) and the one with 8(MlIg) and
64 bins (MlIg4) in the histograms, the benefits of the histogram
binning operation are obvious. MI is no longer subject to local
maxima, and as the number of bins decreases, the function is
greatly convexified. In terms of optimization, the convergence
domain is then greatly widened.

2) Image Filtering: The histogram binning operation gives
a very satisfying MI function. Nevertheless, some works on reg-

IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 5, OCTOBER 2011

istration by MI maximization have shown that the convergence
domain can be increased using some particular image interpo-
lation [21], that is, the process necessary to pick up an intensity
at a noninteger position in the image.

In this approach, image intensities are always picked at integer
positions; thus, no image interpolation is originally required. To
choose a high-order interpolation solution becomes equal to an
image filtering. The effect of this filter is somehow the same
as the one of the histogram binning. Indeed, if some entries
of the histograms are originally null, that is, if an intensity is
not represented in the image, then filtering this image offers a
greater opportunity to make this intensity appear and therefore
smooths the MI function.

The curve Ml .1 in Fig. 2 shows the results obtained with
a simple 5 x 5 Gaussian filter on both images I and I* in the
previous translation example. It illustrates the advantages of this
approach that yields a more smooth and convex MI registration
function.

To validate the proposed formulation, i.e., the 1-D transla-
tional example, where MI was previously evaluated with noisy
images, has also been performed in the occlusion and illumina-
tion variation cases. The values of the SSD are also computed
to justify the use of the MI function. As Fig. 2 shows, M1, in the
case of noise, occlusions, and illumination variations, remains
robust while the SSD is not. Indeed, in the case of the occlusion,
the link between the intensities of the nonoccluded part and the
reference is stronger than any link between the new elements
and the reference. Therefore, the optimum is unchanged. Con-
sidering the illumination variations, despite the modifications
of the intensities, we keep the link between the intensities of
the left part of the current and reference images as well as the
link in the right part. Therefore, MI still provides an accurate
estimation of the alignment position.

IV. MUTUAL INFORMATION IN VISUAL SERVOING

The goal is now to build the control law that will bring the
pose of the camera to maximize the MI function to satisfy the
problem as it is defined in Section II. Since the proposed MI is
robust to many appearance variations, we can assume that the
maximum of the MI will be reached when the current pose of
the camera reaches the desired pose.

A. Mutual Information-Based Control Law

To perform the optimization and reach the maximum, we have
to study the variation of the MI depending on the velocity of the
camera.

The problem of finding the camera pose maximizing the MI
can be reformulated as iteratively finding the velocity that brings
the MI derivatives to a null value. These derivatives are com-
puted with respect to the camera velocity which brings us to a
problem of regulation of the interaction matrix of the MI. Using
the formalism of [22], the regulation of a task function e to zero
is done using the following control law:

v=—a."el (14)
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domain, that is, the concave domain represented in purple, while the proposed optimization method has a large convergence domain that is represented in sky blue.

where A is a positive scalar factor used to tune the conver-

gence rate, and f;+ is an estimation of the pseudoinverse of the
interaction matrix associated with the task. In the classical ge-
ometric visual-servoing approaches, the task to regulate is the
difference between the desired and current features. In our prob-
lem, we identify the task by L;\—H, i.e., the interaction matrix of
MI that has to be regulated to 0 since the gradient of MI is null
at convergence. Since the task and the velocity have the same
dimension, the pseudoinverse can be replaced by the inverse
leading to

= —AH\ Ly (15)

where H) g is the interaction matrix of Ly that we call Hessian
of MI. Given (10) and the chain rules simplifications detailed
in [10], the expressions of the Gradient and Hessian are

opir- .
Ly = Z g? (1 + log <p;>) (16)
i,j
OL
Hyir = 81:1
31’11* opir (1 1 pir- [ pur-
_Z or pII*_ZTI * or? Y41 )

7

For the purpose of clarity, we noted the interaction matrix of
a variable = as Jz/0r where the correct notation should be
L, [3]. It is often proposed in the literature [9], [10], [26],
to approximate the Hessian matrix by neglecting the second-
order derivatives. In our approach, we compute the full Hessian
matrix using the second-order derivatives that are, in our point of
view, required to obtain a precise estimation of the motion. More
details are given in Appendix to highlight the problem caused by
this classical approximation. Considering expressions (16) and
(17), all the required variables are known apart from the joint
probability derivatives. Using the joint probability expression
given in (13) yields the following derivatives expressions:

Oprr- (4, 4, 1))

1«0, -
e TN 2o T

Ppu-(i,j,r)) 1 o
Or? Ny ~ Or?

x)) ¢ (j — T'(x))

(i-I(r,x) ¢ (j - T(x)).

(18)

In order to compute the joint probability derivatives, the ¢ func-
tion has to be two times differentiable. In our study, we consider
that ¢ is a B-spline function. To satisfy the necessary differentia-

bility condition, ¢ is chosen as a third-order B-spline (¢ = Bs,
see Fig. 3).

The interaction matrix of the function ¢ can then be decom-
posed as

gf (i —I(r,x)) = gj’ (i —I(r,x)) VI Ly
where VI = (VI,, ,VI, )= (p,VL;,p,VL,) is the gradient
of the image I expressed in the metric space that are obtained
using the classical image gradients and the camera intrinsic
parameters (p,,p,) that is the ratio between the focal length
and the size of a pixel. Ly is the interaction matrix that links the
displacement of a point in the image plan to the camera velocity.
The interaction matrix is given by [3]

L. — -1z 0 z/Z xy
T 0 =17 y/Z 1+?

where (x, y) are the coordinates of the point expressed in meters
in the image plan, and Z is its depth relative to the camera. In
this paper, we consider that the depth of the scene is unknown,
and thus we simply set the depth of each point constant.

Using the same principle, the second-order derivative of the
¢ function is given by

19)

—(142%) y
—xy —x

92 - 52 - _ _

aTZ) (i —I(r,x)) = 8z¢ (i —I(r,x)) (VILy) (VI Ly)
= %21 T(r.x)) (VLH, + VI, H,)
) _ _
¥ (i —I(r,x)) Ly VI Ly (20)

where V2T € R?*? is the gradient of VI in the metric space,
and H, and H, are, respectively, the derivatives of the first
and second line of the interaction matrix Ly (see [13] for the
computation of the two Hessian matrices).

The resulting MI, interaction matrix Ly;; and Hessian Hy;y
are represented in Fig. 4 using the same 1-DOF approach as was
used in Fig. 2.

B. Optimization Approaches

Newton’s method makes the assumption that the cost func-
tion to optimize is parabolic. Since MI is quasi-concave, this
assumption is valid near the convergence where the function
is concave. The definition of MI given in Section III-B yields
a large concave domain and thus a large convergence domain.
Nevertheless, a larger convergence domain can be obtained.

Indeed, if we focus on the MI and MI derivatives values
reported in Fig. 4 for a simple 1-DOF example, we see that
the concave domain is relatively small (the domain in purple
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where the Hessian is negative) compared with the domain of
convergence that a steepest gradient descent would have (sky
blue domain). However, let us recall that the steepest gradient
descent is not adapted for our 6-DOF problem since several of
these DOF are highly correlated [5].

Usually, the optimization is improved with some line-search
methods [28] or with the Levenberg—Marquardt approach [16],
[20]. Nevertheless, those techniques require backtracking strate-
gies that are not suitable to the visual-servoing problem since it
is impossible to move the robot to test various positions.

The solution that we propose is to study the valley shape of the
cost function at convergence. Knowing the shape, it is possible to
modify the steepest gradient-descent direction to make it follow
the valley. This optimization approach is commonly known as
a preconditionning approach [2].

To characterize the valley shape at convergence, we simply
estimate the Hessian matrix of the cost function computed at
convergence. A good assumption is then simply to consider that
the current image at convergence is similar to the desired image,
and the Hessian matrix at convergence Hy;; is then given by (17)
using I = TI*.

The resulting Hessian matrix is a negative matrix since it is
computed at the maximum of the MI function and is ideal to
adapt the direction of the gradient to make it follow the valley
using

v = —AH;; Ly @1

Since the Hessian matrix is computed using only the reference
image, singularities are possible only when there is not enough
information on the reference image (for instance, when there are
no gradients (only null gradients) on the horizontal or vertical
axes of the image). Moreover, the matrix Hy;; also gives an ideal
norm to the velocity that brings it to a null value at convergence.
We can observe that if we formulate the problem using the task
function of [22], this approach is equal to approximating f; by
L;,i.e., the interaction matrix of the task at the desired position,
that is common in the geometric visual-servoing approaches [3].
Let us note that the time-consuming computation of the Hes-
sian matrix is performed only once in this approach. Only the
computation of the interation matrix Ly is required at each
iteration; thus, the control law computation is very fast.

V. EXPERIMENTAL RESULTS

To validate the proposed approach, several experiments have
been performed using a camera mounted on a 6-DOF gantry
robot. Independently from the experiment, the computation time
remains low. The control law is computed at video rate. A veloc-
ity is computed and sent to the robot every 20 ms for a 320 x 240
input image using a 2.4-GHz computer.

A. Positioning Tasks

A first set of experiments are realized to validate the ro-
bustness of the proposed approach using monomodal images in
nominal conditions, as well as with occlusions and illumination
variations to validate the robustness of MI. The camera is first
moved to the desired pose r*, where the reference image is ac-
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Fig. 5. Visual servoing using MI. The positioning error, velocities, and MI are
represented with respect to the time in seconds.

quired. The camera pose is then set to an initial pose r, which
ensures that the reference image is partially represented in the
current image.

During the task, the positioning error Ar, which is the trans-
formation between r and r*, is computed to evaluate the be-
havior of the task. For a purpose of clarity, we will refer to the
positioning error as ATiyaps, i-€., the norm of the translation
between the center of the camera at the current pose and at the
desired pose in meters, and as Ar,,¢, i.e., the norm of rotation
error in degrees.

1) Nominal Conditions: In this experiment, the illumination
conditions remain constant during the realization of the position-
ing task. Fig. 5 shows the desired and initial images acquired by
the camera, the initial and final error images, and the evolution
of the positioning error using the cartesian coordinates for the
translation part of Ar and the error on the rotational part.

From an initial positioning error of Ar¢yans = 0.18 m and
Ar.ot = 12.2°, the camera is smoothly converging to the de-
sired pose to reach a final positioning error of Ariyans =
3 x 107* m and Ar,o; = 0.06°. Considering that the distance
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verified by the evolution of the positioning error over time (in seconds) that converges to zero and by the appearance of the final error image.

from the camera to the scene is about 1 m, the proposed
visual-servoing task proves to be very accurate compared with
the accuracy that feature-based approaches would provide.

A second observation concerns the required degree of over-
lap between the current and desired images. This experiment
has been chosen to illustrate the possible convergence domain
that can be reached using the proposed method. In this exper-
iment, only 50% of the reference image pixels are present in
the initial image. Using this scene, we reach the limit of the
convergence possibilities of the proposed visual-servoing task.
A lower percentage would cause the task to fail, while a larger
percentage yields to a success in most of the cases (avoiding
the cases with large rotations and translations around the focal
axis). A thorough analysis of the convergence domain is given
in the next section.

2) Robustness With Respect to Occlusions and Illumination
Variations: In these experiments, the appearance of the scene is
modified during the positioning task using occlusions or illumi-
nation variations. Two experiments are illustrated to show the
robustness of the proposed approach. In the first one (see Illumi-
nation 1 in Fig. 6), the illumination conditions are changed by
moving the light sources in the environment, while in the second
one (see [llumination 2), a light source is mounted on the camera,
which leads to important moving specularities on the acquired
images. As we can see in Fig. 6, despite the large initial position-
ing error and the change in appearance, the visual-servoing task
converges and the positioning error decreases with respect to the
time to become almost null. As expected, the proposed MI-based
visual-servoing scheme is naturally robust to large perturbations
and remains very accurate. Indeed, in the illumination variation
experiments, the initial positioning error is Ar¢yans = 0.17 m
and Ar.o¢ = 16.3° in the first one and Aripans = 0.37 m

Fig. 7. External view of the scene (draperies) considered in the depth approx-
imation experiment. The depth variation exceeds 30 cm.

and Ar,.o¢ = 24.5° in the second. The visual-servoing task
reaches a final positioning error of Argpans = 9 X 107* m
and Ar,,¢ = 0.08°. In the occlusion experiment, the initial er-
ror is Arirans = 0.35 m and Ar.o; = 25.2°; after the visual-
servoing task, it is Ariyans = 1 X 107> m and Ar,o¢ = 0.1°.
The whole experiment using the first illumination variations is
presented in the attached video.

3) Robustness With Respect to Depth Approximation: In the
previous experiments, the desired image was always depicting a
fronto-parallel scene. Therefore, the effect of the scene’s depth
approximation presented in Section [Vwas limited. In this sec-
tion, an experiment is performed to illustrate the robustness of
the proposed approach with respect to this approximation in a
more extreme case. The considered scene is no longer planar,
with a depth variation exceeding 30 cm (see the external view
in Fig. 7), while the distance between the camera and the scene
is about 1 m.

Despite the error that is introduced in the computation of the
Gradient and Hessian matrices of the MI, the control law keeps
converging to the desired position. Indeed, this approximation
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only causes a small bias in the computation of the gradient, and
the experiment shows that this bias is negligible. The fourth
row of Fig. 6 shows the initial and desired images with the
evolution of the positioning error. With an initial positioning
error of Argyans = 0.27 m and Ar,o¢ = 25.1°, the final pose
is very close to the desired pose with an accuracy equal to the
one obtained in nominal conditions.

B. Multimodal Image-Based Navigation

In the definition of the MI that we proposed, a linear depen-
dence between the intensities of the desired and current images
is not required. MI is thus able to align two images even if they
are acquired from different modalities as soon as they share
enough information. In this experiment, we show the robust-
ness of MI with respect to multimodal alignment by servoing
the camera on an aerial scene using a map reference image.

Here, we consider a different task: following a visual path.
The goal is now to reproduce a trajectory using a sequence
of previously learned reference images and one visual-servoing
task per reference image. The challenge in this experiment is that
the scenes during the learning and the navigation steps are from
different modalities. Indeed, the sequence of reference image
is learnt while the camera is moving over a map (provided by
the Institut géographique national (IGN) géoportail), and the
multiple visual-servoing tasks are performed over a satellite
image (at the same scale).

Several navigation tasks have been performed with success
(see also the results in [7]). Fig. 8 illustrates one of these naviga-
tion tasks. We can see that the current and reference images are
correctly aligned with the displacement of the camera, despite
their large differences of appearance (that would cause every
feature-based or photometric-based technique to fail). Thus, the
resulting camera trajectory of the navigation task properly re-
plays the learned trajectory. The navigation experiment is pre-
sented in the attached video.

VI. EMPIRICAL CONVERGENCE ANALYSIS

When considering IBVS with redundant features, only local
stability can be considered, and this is also the case for our
MI-based visual-servoing scheme. Nevertheless, it is always
possible to evaluate the convergence area of this method from
an empirical point of view. This section evaluates the perfor-
mances of the proposed visual-servoing approach on a large set
of simulated experiments (to consider simulation allows us to
perform exhaustive tests with hundreds of positioning tasks).

A. Convergence Domain and Performance Metrics

A set of initial poses have been chosen to best evaluate the
robustness of the task with respect to the six DOF of the robot.

The initial poses are set so that the center of the camera is
placed on a regular 3-D grid centered on the desired pose, and its
direction is defined so that the initial and desired images overlap
(this implies large variations around the r, and r, axes). In this
case, each initial pose ensures that the current image shares
some information with the desired image. We also consider a
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Fig. 8.  Multimodal MI-based visual servoing in a navigation task. An image
path is learned on the map scene and the visual-servoing task performs the
navigation on the satellite scene. The reference and resulting trajectories are
very close. The correct alignment is also visible in the image with the reference
and current images overlaid.

high degree of rotation variation around the camera z-axis 7,
since these rotations are usually difficult to handle in visual
servoing.

Fig. 9 shows the convergence results obtained on a 3-D grid
of 21 x 21 x 21 initial poses varying from —2 to 2 m on the
translations along the x- and y-axis (producing rotations from
—60° to 60° around the same axis) and from —1 to 1 m in
translation along the camera z-axis with an initial rotation r, of
0° and 20°. The convergence domain is considerable. We can
notice on the slices along the three planes that define the grid
that the convergence domain is convex and that its hull has a
spherical shape approximately centered on the desired pose with
aradius of about 1 m.

Although the previous experiments described the conver-
gence area, it is also of interest to analyze the camera trajectory
during the positioning task. A set of four quantitative metrics
have been measured on this set of experiments to perform this
evaluation [11]. The first is the convergence ratio that gives the
proportion of converging visual-servoing tasks on the whole set
of experiments. The second and third are the average distance
covered by the center of the camera and the average integral
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Fig. 10.  Performance metrics on one task. (a) Reference image. (b) Image at
the initial pose. (c) Final image error. (d) Resulting trajectory (green) of the
camera from the initial pose (blue) to the desired pose (red).

between the camera center and the geodesic (we consider only
successful experiments). Both measures are illustrated in Fig. 10
on the resulting trajectory of the camera in one of the experi-
ments with an initial positioning error of Ar¢,ans = 1 m and
Aryot = 49.0°. Finally, the last metric is the final positioning
error, that is, the transformation between the final pose of the
camera and its desired pose.

The results that have been obtained are represented in
Table I with respect to the initial rotational error around the focal
axis 7, . The proposed visual-servoing task has a large conver-
gence domain and good performance measures. The greater the
initial rotational error, the less important is the convergence
rate. Indeed, if it is too large, then the initial amount of shared
information between the images is too small, and the control
law reaches a local optimum. The final positioning error has
not been reported in the table since it remains constant with
a final translation error of 3 x 10~ mm and 0.003° in every
converging experiment.

B. Comparison With Existing Solutions

Let us now compare our approach with other visual-servoing
schemes in one typical visual-servoing task with and with-

TABLE 1
PERFORMANCE OF THE PROPOSED VISUAL SERVOING TASK ON THE SET OF
INITIAL POSES REPRESENTED IN FIG. 9

T2 0° | 10° | 20° | 30° | 40° | 50°
Convergence (%) 26.7 | 27.6 | 252 | 21.0 | 124 1.8
Distance (m) 1.06 | 1.08 | 1.11 | 1.16 | 1.27 | 1.65
Integral (m?) 0.11 | 0.12 | 0.12 | 0.13 | 0.14 | 0.25

out illumination variations. Two visual-servoing approaches,
which are adapted to the current problem, have been considered.
The first one is the photometric-based visual servoing [5]. The
second one is a classical feature-based visual servoing where
the features are points extracted and matched using the scale-
invariant feature transform (SIFT) algorithm [14].

The obtained results are summarized in Fig. 11 where SSD
refers to the photometric approach. Without illumination vari-
ations, the proposed approach has a similar behavior to the
photometric one. In terms of trajectory, the direct approaches
(i.e., MI and photometric) are further from the geodesic than
the SIFT approach. Indeed, the optimization in the SIFT-based
approach is performed on a quasi-quadratic function, while the
cost function in the direct approaches are much more nonlinear
yielding the presented trajectories. Considering the final posi-
tioning error, the direct approaches are more accurate than the
feature-based approaches. The accuracy of the direct approaches
comes from the fact that no intermediate measure is considered.
In the SIFT approach, the coordinates of the extracted points
are intermediate measures that cause measurement errors and
limit the accuracy of the positioning task. Furthermore, in direct
methods, all the information contained in the image is con-
sidered, and this redundancy allows for greater improvement
regarding the positioning accuracy. A good alternative is then
to use the feature-based approach and switch the control law
at convergence to finally use the MI-based visual-servoing ap-
proach to take advantage of both a trajectory near the geodesic
and a very accurate final pose. This approach, which we call
hybrid approach, has been implemented and gives indeed the
most adapted behavior with both advantages of trajectory and
accuracy.
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Fig. 11.  Comparison between our MI-based VS, the photometric VS (SSD), an SIFT-based VS, and an hybrid VS with and without illumination variations. (a)

Reference image. (b) Image acquired at the initial pose. (c) Final error image. (d) Trajectories in the 3-D space. The tables show the corresponding values of the

performance metrics.

To evaluate the performance of the approaches with respect to
illumination variations, the following variation has been applied
to the scene: From the acquisition of the desired image to the
visual-servoing tasks, the left part of the scene has been illumi-
nated and the right part is put in the shadow. The consequence of
such a modification in the intensities causes the SSD function
to have a minimum at the wrong camera pose, and thus, the
photometric approach diverges. The illumination variation has
also a slight effect on the matching step of the SIFT approach;
the visual-servoing task is then converging but has a larger final
positioning error. As for the MI-based approach, the trajectory
of the camera is slightly affected, but the final positioning error
remains very small.

VII. CONCLUSION

In this paper, we presented a new visual-servoing approach
based on MI. This new control law does not use any feature;
therefore, it also does not require any extraction, matching, or
tracking step that are usually the bottleneck of classical ap-
proaches.

The goal is to bring the image acquired from the camera
to be the more similar to a reference image. Thus, only the
reference image has to be known to reach the desired position.
Moreover, since the similarity measure is the MI, the new control
law is naturally robust to partial occlusions and illumination
variations. Another advantage, which comes from the fact that
itis a featureless approach, is that there is no measurement errors
due to feature extraction, and thus, the positioning task is very
accurate.

As is well known in the medical field, MI is also robust to
multimodal alignment. Some new visual-servoing applications
are, therefore, possible, including, for instance, aerial drone
navigation. Although our experiments were limited to map and
aerial images, other modalities can be easily considered such as
infrared images.

APPENDIX
WHY THE HESSIAN MATRIX MUST NOT BE APPROXIMATED

It is common to find the Hessian matrix of MI given in (17)
approximated by the following expression [10], [26]:

H NzapII*TapII* 11
M i Or op \pi+ pr

where the second-order derivative of the joint probability has
been neglected. The approximation is inspired from the one
that is made in the Gauss—Newton method for a least-squared
problem. It assumes that the second-order derivative is null at
the convergence.

Considering the expression of the marginal probability
pr-(§) = >_; pir- (4, 7), it is clear that pr-(j) > prr- (4, j); there-
fore, 1/pr-(4,7) — 1/pr+(j) > 0. Since %—I;*T%—I;* isapositive
matrix, the final Hessian matrix given by (22) is positive. Since
the optimum of MI is a maximum, the Hessian matrix at con-
vergence is supposed to be negative by definition. The common
approximation of (22) is thus not suited for the optimization of
MI.

(22)
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