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Abstract— A 5-SPU robot with collinear universal joints is well
suited to handling an axisymmetric tool, since it has 5 controllable
DoFs and the remaining one is a free rotation around the tool. The
kinematics of such a robot having also coplanar spherical joints
has previously been studied as a rigid subassembly of a Stewart-
Gough platform, it being denoted a line-plane component. Here
we investigate how to move the leg attachments in the base and
the platform without altering the robot’s singularity locus. By
introducing the so-called 3D space of leg attachments, we prove
that there are only three general topologies for the singularity
locus corresponding to the families of quartically-, cubically-
and quadratically-solvable 5-SRJ robots. The members of the
last family have only 4 assembly modes, which are obtained
by solving two quadratic equations. Two practical features of
these quadratically-solvable robots are the large manipulability
within each connected component and the fact that, for a fixed
orientation of the tool, the singularity locus reduces to a plane.

Index Terms— Parallel manipulators, Gough-Stewart plat- Fig. 1. A 5-SRJ parallel robot with aligned universal joints. While the xi

- - ’ - . - : defined by these universal joints is rigidly linked to the éodsr fixed leg
Loerr;?;;] robot kinematics, kinematics singularities, manipulator lengths, any tool attached to it can freely rotate.

|. INTRODUCTION one of these legs is eliminated to obtain a 5-DoF parallel

Over the past half-century, the Stewart-Gough platform hesbot, two alternatives arise to make the moving platform
been applied extensively to automate many different tasks docation controllable; namely: (1) adding an extra paskge
to its well-known merits in terms of speed, rigidity, dynamior (2) restraining the mobility of one of the five remaining
bandwidth, accuracy, cost, etc. [1], [2]. There are many inkegs. Then, the challenge consists in how to perform any
portant industrial tasks requiring a tool to be perpendictd of these two operations so that the resulting robot has 3
a 3D free-from surface along a given trajectory. They ineludranslations and 2 rotations. Y. Zhao and colleagues beat th
5-axis milling, laser-engraving, spray-based paintingtes-jet challenge for the first alternative. They proposed to intro-
cutting, and, in general, any manipulation task in which th#uce a PRPU (Prismatic-Revolute-Prismatic-Revolute¥ipas
tool is axisymmetric. These tasks can be performed by robd¢g. The properties of the resulting mechanism, technicall
with only 3 translations and 2 rotatiori®., 5 DoF (degrees of referenced to as a 5-3*PRPU mechanism for obvious
freedom). Since the Stewart-Gough platform has 6 DoF, someasons, has been analyzed in a series of papers [8], [9], [10
limited-DoF parallel robots have been designed for thiglkinrMore recently, Y. Lu and colleagues opted for the second
of applications with the aim of simplifying the structuredan alternative. They proposed a 4-BPSHR parallel platform
the control of the general Stewart-Gough platform but withowhose static and dynamic properties are studied in [11] and
losing its aforementioned merits [3], [4], [5], [6], [7]. [12], respectively. Many other examples of 5-DoF parallel

The Stewart-Gough platform consists of a base andrebots can be found in literature but they greatly deparninfro
moving platform connected by six_\&(Universal-Prismatic- the basic 6-UB design in the sense that they do not contain
Spherical) legs, where the underline indicates that thse- prat least 4 UB legs.
matic joint is actuated. Thus, it is usually referenced tmas A parallel robot consisting of a base and a moving platform
6-UPS, or equivalently as a 6-8P parallel mechanism. If connected by five SP legs is clearly uncontrollable. For

. . o " . example, if the universal joints are aligned as in Fig. 1, the
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above arrangement of five BRegs as dine-plane component Stewart-Gough platforms that contain a line-plane comptne
since it can always be considered as a rigid subassembly in a
standard Stewart-Gough platform [13], [14].

In 1991, Zhang and Song solved, for the first time, the
forward kinematics of a general Stewart-Gough platform-con Let us consider the 5-legged parallel platform appearing in
taining a line-plane component [15], [16]. They showed hoWid. 2, whose base and platform attachments lie on plane
the line in the |ine_p|ane Component of such a p|atf0rm C@ﬂd "neA, respectively. We assume that no four attachments
have up to eight configurations with respect to the plane arl@l, the base plane are collinear; otherwise, the mechanism
as a consequence, the platform can have up to 16 assenyyld contain a four-legged rigid subassembly, which hasbe
modes. The eight configurations of the line correspond to tRBIdied separately [26]. Ll coincide with thexy-plane of
roots of a bi-quartic polynomial. Therefore, the existente the base reference frame. Thus, the leg attachments in giee ba
an algebraic expression for these configurations as a amcthave coordinates; = (z;,y;,0)", fori = 1,...,5. The pose
of the five leg lengths was proved. Later on, in 2000, Hus8f A With respect tdlI can be described by the position vector
and Karger studied the conditions for this subassembly to Be= (Pz,py,p-)" and the unit vectoi = (u,v,w)” in the
architecturally singular and found two algebraic conditio direction of A. Thus, the coordinates of the leg attachments
that must be simultaneously satisfied [17]. More recentlii) A, expressed in the base reference frame, can be written a:
Borras and Thomas analyzed the role of cross-ratios betwdsn= P + zii.
the location coordinates of the spherical and universaitgoi !t is worth emphasizing that the attachments of #h leg
centers —which will be referred to aattachmentsin what C€an be determined by a single point ' with coordinates
follows— in the characterization of architectural singitlas, (%%, 2). This 3D space of leg attachmentsill play an
and in singularity-invariant architectural changes, iretplane important role later in Sections Ill and IV-B.
components [18]. )

The parallel singularities of the Stewart-Gough platform bs bs ba 2
have been extensively studied, mainly from an analytic view i
point [19], [20]. A few works have attained a geometric
characterization of the singularity locus for particul&atform
architectures [21], [22], such as 6-4 platforms [23] and the
octahedral manipulator [24], [25]. Similarly, we deriverbe
simple geometric condition that completely characterites
singularity locus of 5-SB robots having a line-plane structure.
Moreover, in our search for transformations of robot design z
that leave the singularity locus invariant, we introduce th
3D space of leg rearrangements, which turns out to be a as ay
useful tool to characterize all robot instances having #ac
the same locus. Moreover, this space permits to furtherpgrou
robot instances into families having topologically-eglént
singularity structures. It is proved that there are onlgéhsuch Fig. 2.  Schematic representation of the S5parallel robot in Fig. 1.
families, corresponding to robots whose forward kinensatic
have a quartic, cubic or quadratic solution, respectively. , ) )

Then, quadratically-solvable 5-8Probots are studied in A+ Singularity Analysis
depth. We show that this family is characterized by a simple a It has previously been shown [18] that the Jacobian de-
gebraic relation between the base and the platform attachmierminant of a general Gough-Stewart platform containing a
coordinates, which makes the number of possible assembHegged line-plane component factors into two terms: bag t
modes drop to 4 so that they can be computed by solvingnishes when the sixth leg lies on the platform plane, aed th
two quadratic polynomials. In addition, the singularitcls other being the determinant of the following matrix:
becomes so simple that, for a fixed orientation, it reduces to
a plane.

Il. 5-SPU ROBOT WITH PLANAR BASE AND LINEAR
PLATFORM

wp,  w(p.u — pew) w(pzv — pyw)

The rest of this paper is organized as follows. Section Il 21 il y1
presents the kinematic and singularity analysis of the ggne T = 22 IQ Y2
5-SRJ platform, yielding the 8 assembly modes. Next, leg 23 x3 Y3
rearrangements that preserve the singularity locus adkestu ! ! da
in Section Ill, to then proceed to the classification of 8JSP “ e Ys
platforms according to their singularity structure in SectV. p:(Pow — pzu)  pa(pyw —psv)  —w?
The family of quadratically-solvable robots is studied &tal L1721 Y121 1
in Section V, showing that the number of assembly modes L2722 Y222 1 1)
drops to 4 and the singularity structure is greatly simplifie 323 Ysz3 1
as presented in Section V-C. Finally, Section VI points out Taza Yaza }

the implications of the results obtained for the study of BSU L5%5 Ys%s5



which depends exclusively on the 5-legged 5-DoF component.Solving (4) by Cramer’s rule, and applying the multilingri
Thus, the singularity locus of the 5-BRnanipulator studied property of determinants, yields

in this paper corresponds to the root locus of the polynomial

resulting from expanding such determinant, i.e.,

Crwp, + Cow(p.u — pyw) + Caw(p.v — pyw)+
Cap: (pew — pu) + Csp.(pyw — pov) — Cow® =0, (2)

whereC;, fori =1,...6, is the cofactor of th¢1,) entry of

T, which depends only on leg attachments. In what followsector of the matrix in the system (4) Vs, ..

pe = (—Cot + E2)/Ch,

py = (—Cst + E3)/Ch, @)
u=(—Cyt + E;)/C1,
v = (~Cst + Bs)/Ch,

where E; results from substituting théi — 1)th column
., N5)T and

we assume that not all; are equal to zero, since in this case€omputing its determinant.
det(T) would be identically zero irrespective of the pose of From equation:? +v%+w? = 1 and equation (3) foi = 1,

the platform, which would thus be architecturally singular

B. Forward Kinematics

Similarly to [16], the forward kinematics of our 5-legged

parallel robot can be solved by writing the leg lengths

I, = ||b; — ay||, for ¢ = 1,...,5. Then, subtracting from

the expression for?, i = 1,...,5, the equation|i]] =
u? +v? + w? = 1, quadratic terms inu, v and w cancel
out yielding

Zit — TPy — YiDy — TiZih — YiZiV
3)

1
+50r oy Pl al tyl 2 1)) =0,

fori=1,...,5, wheret = p -i.

Subtracting the first equation from the others, quadratic, = —
terms inp,, p, andp. cancel out as well. Then, the resulting

system of equations can be written in matrix form as

T2 —T1 Y2 — Y1 T2z — X121 Y222 — Yi1z1 Pz
T3 —T1 Y3 — Y1 T3z3 —T121 Y3R3 — Y121 Py
Ty —T1 Y4 — Y1 T424 — T121 Y424 — Y121 u
Ts —T1 Ys — Y1 Xsz5 —T1z1 Y525 — Y121 v
(22 — 2z1)t + Ny
_ (23—21)t+N3 (4)
(Z4 72’1)t+N4 ’
(25 — z1)t + N5
where
1
Ni=S(af+yi +27 =17 —at—yi =2 +17).  (5)

2

it can be concluded that:

puw? = (1 - u? - 0?)
2(=2z1t + 21y + 11Dy + 21910 + Z1T11) (8)
—pi—py —at— i — 2]
Bne the other hand, from=p - i,
(pzw)2 = (t — pou — py”)2~ 9)

Equating the right hand sides of equations (8) and (9), the
following polynomial int¢ is finally obtained:

Tl4f,4 + n3t3 + n2t2 + nit +ng =0, (10)

where

(C1Cs — CaC5)°
o

2
ng = —@(012(0503 + 0402)
1
+ C1(C2 + C3)(Cazy + (C1 + Cazy + Csy1)z1 + y1C3)

+ (0463 — C5CQ)(E5C2 + BEyCy — E4C3 — E3C4))
(11)

and nq, ny; andng depend also on constant parameters, but
are not provided for space reasons.
Each of the four roots of (10) determines a single value for
D, Py, u, andv through (7) and two sets of values fpr and
w by simultaneously solvingi|| = 1 and¢ = p-i. Thus, up to
8 assembly modes are obtained for a given set of leg lengths.
The polynomial in equation (10) is the maximum degree
polynomial that we have to solve to obtain the forward
kinematics solutions, so we say that the general solution fo

Now, notice that the determinant associated with the Iinef’He 5-SRJ manipulator with planar base and linear platform

system (4) can be written as

z
T2
T3
T4
Is

n
Y2
Ys
Ya
Ys

r1z1
Tozg
T3z3
L4z
T525

Y121
Yaz2
Ysz3
Yaza
Yszs

(6)

= e

which coincides withC'; in (2). If (6) vanishes, eithep,, p,,
u, Or v, can be chosen as parameter, instead tf reformulate
the linear system (4). Since for a non-architecturally siag

is quartic.

IIl. SINGULARITY-INVARIANT LEG REARRANGEMENTS

Now we want to explore possible changes of leg attachments
in both the planar basé and the linear platfornh that leave
the robot’s singularity locus invariant. To this aim, we ffirs
interpret the singularity equation (2) as an unfolding of a
surface in the 3D space of leg attachments, whose simple
characterization in terms of a distinguished point (dethote

robot not all cofactors are zero, it can be shown that a nofi-in what follows) and a single line through it (denoted
singular linear system of the form (4) can always be found Wy..) permits deriving geometric rules to perform the sought
choosing eithet, p,, p,, u, or v as parameter. singularity-invariant leg rearrangements.



A. Algebraic Formulation for which any value of: satisfies equation (14).

Consider the following 2D surface iR? Figure 3 shows that the surface defined by (13) has the shape
of a spiral-like ruled surface around a vertical axis pasgsin
through pointB (16) in thexzy-plane, and approaching a line
parallel to (15) as: tends toco. This can be recognized as

-0, (12) @ hyperbolic paraboloid with two directing lines at infinity
which are obtained by intersecting the planes 0 andCyx+
Csy + C1 = 0 with the plane at infinity.

z Ty €Tz Yz
21 1 Y1 T1z1 Y121
Z2 X2 Y2 T2z Y222
23 T3 Y3 X323 Y323
24 T4 Ysa T4R4 Y424
25 Ts5 Ys TRz Y525

e )

which can be interpreted as the hypersurface defined byspoint
(xiyyi,2:),4 = 1,...5, in the 3D space of leg attachments
introduced in the preceding section. The Laplace expansion
by the elements of the first row of such determinant leads to
the equation

Ciz+ Cox + Csy + Cyxz + Cryz + Cg = 0, (13)

U A
whereC; are the cofactors of the elements of the first row, for . —
i1 =1,...,5. Note that these are the same coefficients as those
in the singularity polynomial (2). If any leg is substitutby a
new one going from the base attachmant (x,y,0) to the
platform attachmenb = p + zi, for any («,y, z) satisfying =
(13), the values of the coefficients; for i = 1,...,6 will
remain the same up to a constant multiple. Hence the poifiig: 3- Representation of surface (13) with the origin pthee point (16),
with the coordinates of the five leg attachments belong to tR& hey-axis placed at ine (15).
surface defined by (13), and we can freely move them within
this surface without altering the platform’s singularigcus.
This is because the coefficients of the singularity polyradmi

in (2) remain _the same up to a s_calar_ multiple anq, a5 Bte that equation (14) defines a one-to-one correspondence
consequence, its root locus remains invariant. The onliaau between points irk and lines of a pencil i, with vertex at
required is that this scalar multiple be different from zeae B (see Fig. 4) !

otherwise the platform would be architecturally singulais
worth noting that, in this case, the coordinates of the tegul
five legs would not define a surface in implicit form through
equation (12).

Interpreting this surface in the 3D space of leg attachments
—where(z, y) andz are the coordinates of the attachments in
the base planél and the platform line\, respectively— we

B. Geometric Rules to Perform Leg Rearrangements

We like to study what leg rearrangements leave the surface
defined by (13) unchanged, and thus keep the platform singu-
larity locus invariant. To this aim, let us rewrite equati@d3)
in matrix form as

[(C2 C3 Cs) + 2(Cy C5 C1))] =0. (14)

S

For each pair(z,y), there is a unique corresponding
through (14), providedC,z+ Csy+C1) # 0. Conversely, for
each value ot, equation (14) defines a unique line in variableBig. 4. The one-to-one correspondence between the attathrirerthe

2 andwv. This also holds for = co. whose Corresponding line platform line and the lines of the pencil centered/ht Each value ofz;
. Y. ! defines a point in the platform lindy; = p + z;i, and a line in the plane

is: B.,.

{(z,y) | Caz + Csy + C1 = 0} (15)

. L . . In what follows, any line inll passing through poin will
Equation (14) has the forr.n.of a pro;ectwg pencil Of.“ne.SOe called a5-line. The -line associated with the attachment
where <_aach line of the pepcﬂ is formed by a linear comblmauqn A with local coordinate:; will be denoteds. .. Of particular
of the line (15) anq .the I'nﬁ?x + sy + G = 0. Thep, thg interest isB3,, given in equation (15), because in practice no
vertex of the pencil is the point that belong to both lines,, i. attachment inll can be located on it (with the exception of

B_ C3C1 — CsCs CaC1 — CyCy 16 B), as the corresponding attachment sdrshould have to be
T\ OyCs — CuCy7 CoCs — C4C3 ) (16) moved to infinity. Moreover, the surface defined by (13) will




be calledB-surfacewhen interpreted in the 3D space of leg
attachments.

Summarizing, we can state two simple rules to move the leg
attachments without altering the singularity locus of aegiv
5-SPU platform with planar base and linear platform, namely:

« for fixed platform attachments, all attachments in the base
plane can be freely moved along thé&lines; and

« for fixed base attachments, an attachment in the linear
platform can be freely moved if, and only if, the corre-
sponding attachment in the base is located at

Again, the only caution required is to avoid falling into
architecturally singular designs, which can be easily aetk
because all’;’s, ¢ = 1...6, would be zero. These architec-
turally singular designs originated by degeneracies, sagh
placing three attachments on the safiw¥ine or having four
collinear attachments on the base, were already charzateri
in [18].

C. Geometric Interpretation of Parallel Singularities
Let us rewrite (2) in vector form as:

PzW — pU
[w(Csy C3 Cg) —p.(Cs Cs C1)] | pyw —p.v | =0. (17)
w

The parallel singularities of the analyzed 5&Fobot cor-
respond to those configurations, definedy= (ps, py,p-)
andi = (u,v,w), that satisfy the above equation. Then, two
situations arise:

o If w#0, (17) yields

Pe + pu
[(C2 C3 Cg) + u(Cy C5 C1)] | py +pv | =0, (18)
1

wherep = —p. /w. The first term of the equation defines _ _ o
A non-singular pose of the manipulator, for the positp =

a pencil of lines, the same pencil obtained in the previofe:éiag'8 51'3), i — (1/3,-2/3,—2/3) (top). A singular posep — (7v/6 —

section. Now, observe thalt intersectslI at: 7,4,14) andi = (0, =8 =Y5) of the manipulator (bottom).

A = (ps + pu,py + 1w, 0). (19)

recisely at its correspondirfgtline B, . Note that this includes
Then, according to (18), the singularity occurs when poiﬁf]e casé/s in whichu EO e

A lies on the line defined b8+ 15, that is, the line of
the pencil corresponding to= —p. /w. Note that, if A
coincides withB3, the focus of the pencil, the manipulato
would be singular for any value ¢f, andw, becaused
would simultaneously lay on all lines of the pencil.

o If w=0, (17) yields

implications. First, a configuration is singular iff a legnca
Tattain zero length through a singularity-invariant legrraage-

point where the platform intersects the base. Second, ¢hés z
length leg condition holding at singularities permits einm
the coordinates of attachments in the base (x,y,0)” and
(Cy Cs) (pZD =0. (20) platformb = p + zi at point A, leading to the following
b= change of variables:
In this case, the manipulator is singular whers parallel
to B, that is, wheni = +——L_(C5, —C4,0). W= Pt = Pt
. . Ci+Cs L. YW = Pyw — pPv (21)
If, in addition, p, = 0, A necessarily lies otl, which is 2w = p,
a trivial singularity.
In sum, the 5-SB manipulator is in a singular configuration
iff the platform pointp + zi intersecting the base does so (—w?)(Cyz + Cox + Csy + Cuzz + Cszy + Cg) = 0. (22)

which, if applied to equation (2), yields:

The above geometric interpretation has two very intergstin

ment. The attachments of such a leg will both coincide with th



Whenw # 0, this reduces to equation (13). Therefore, excet Example I
for configurations in which the platform lies parallel to the
base, the3-surface (13) in the 3D space of leg attachments
provides a characterization of singularities equivalenthe

hypersurface equation (2) in the 5D robot configuration spac

D. Example |

Multiple spherical joints exist in most well-studied Gough
Stewart platforms. Such joints simplify the kinematics and
singularity analysis of parallel manipulators, but theye ar
difficult to construct and present small joint ranges, which
make them of little practical interest. In this example it is
shown how the presented leg rearrangements can be used to
eliminate multiple spherical joints from a particular dgsi
without losing the advantages of having simple kinematict a
maintaining the same singularity locus.

Consider the 5-3P manipulator depicted in Fig. 6(top),
which is clearly of the line-plane type studied in this paper
A set of leg rearrangements can be performed to transform
it into a platform with the same singularities, but with no
multiple spherical joints. One of the possible sequencdegf
rearrangements to attain this goal appears in Fig. 6(bdttorme:

Fig. 7. From a plane-line component in the top figure, an unieolp
manipulator is obtained using singularity-invariant legrrangements.

Consider the Stewart-Gough platform in Fig. 7(top). It
contains an upside-down line-plane component. Hence, the
associated pencil of lines lies, in this case, in the platfor
plane. Moreover, the attachment in the platform of the leg no
included in the line-plane component is made to be coint¢iden
with the focus of the pencils.

According to the results presented in Section IlI-B, two
platform attachments can be moved along th@ifines to
meet at5 without modifying the singularity locus of the
considered platform. A point-plane component thus arises
(Fig. 7(left-bottom)). It can be shown that the attachments
in the plane of a point-plane component can be arbitrarily
relocated, without changing the singularity locus of theolgh
platform, provided that no architectural singularities atro-
duced [27]. As a consequence, it is possible to misalign two
Fig. 6. Singularity-invariant leg rearrangements can bel aehe manipu- Of the base attachments (Fig. 7(right-bottom)). The raswdn
lator design stage to eliminate multiple spherical joints. uncoupled parallel platform because the legs of the pdamep

component determine the location of a point in the moving

Two remarks may ease the practical application of the legatform and the other three legs, the platform’s orientatit
rearrangement rules presented in the preceding section:  can pe said that the resulting uncoupled manipulator cositai

- There can be at most two coincident attachments @anconcealed line-plane component. Thus, it is clear that the

the base plane, which must lie on poiit Otherwise, presented study transcends that of 8J3Ratforms.
the manipulator either would contain a four-legged rigid
component or it would be architecturally singular. IV. CLASSIFYING 5-SPU PLATFORMS BY THEIR
- Along a design process, the location of polhtmay be SINGULARITIES
conveniently specified by placing two coincident attacly - pjatform Families with Identical Singularities
ments, which can be separated later on using appropriat
leg rearrangements.

eOnce the leg rearrangements that preserve singularity loci
have been identified, we like to classify platforms in fagsli

1Check file 04_The_3-4_5-UPS.mw in the multimedia attachedardbr that Sha_re ea?_h such locus. To thIS end, We fII’S_t identify the
a numerical example. geometric entities that fully describe the singularityusc



It is interesting to realize that it is possible to locate gyco implies thatCyCs — C4C3 = 0. By introducing this constraint
of A ontoII, parallel to the line3., into equation (13), we obtain:

C2C5 — C3Cy _ (Caz+ C2)x + (C3/C2)(Caz + C2)y + Cr12 + Cs = 0. (24)
VCi+C2 ’ It turns out that all3-lines have now the same slofg&; /Cy =
o _ . (23) ¢;/cy, and, therefore, they are all parallel ... Figure
so that each attachment it lies on its associate§-line in 9(center) shows the correspondifigsurface with they-axis
IT (Fig. 8). _ _ _ placed at lineB... Note, thus, that thé-surface approaches
Let us denote the coordinates of the intersections\ of asymptotically linel3,, asz tends to +/=0. Moreover, theB3-
with B., by b;". Notice thatb [, i = 1, ..., 5, are spaced at the jine associated with the value offor which Cyz+C; = 0 is
same distances in* asb;, i =1,...,5, in A. Then,A" is a the line at infinity. This appears as the surface asymptbtica
privileged line inlI that represents a possible location for zpnroaching a horizontal plar@,z + C» = 0 in the central
so that the attachments in it coincide with their corresfiemd graphic in Fig. 9, which can be recognized as a hyperbolic
B-lines. . ' o ~ cylinder.
Given a particular manipulator, poid, line B, and line  Thys, it is worth remarking that, in the one-to-one corre-

A* can be computed using (16), (15) and (23), respectivelyondence between points Anand lines inll, we have here
These determine the fivé-lines passing through the basghat a finite point inA has its associate#-line at infinity,

AT = {(x,y)l Cyz + Csy+ C1 +

attachments, and their intersections with, b, i=1,....5, while the point at infinity inA is associated with the finite
determine also the location of the attachméstsi = 1,...,5 B_ Jine.
in A (see Fig. 8). Next let us explore what would happen if these two lines

are made to be coincident, i.65, is taken to infinity. Since
point B € B, B also stays at infinity as before. This further
condition implies thaCy = C5 = 0, and equation (24) reduces
to:

Cox + Csy+ Ciz+4+ Cs = 0. (25)

Of course allB-lines continue to be parallel, but observe that
their spacing has now become a linear functior: ohamely,
C1z + Cg. Thus, theB-surface is a plane in this case. Figure
9(right) shows this planas-surface withi3-lines parallel to the
y-axis. Note that the3-surface approaches ling,, linearly
as z tends to +/sc.

In sum, there are only three possible topologies for ffhe
Fig. 8. Planar geometric construction that defines all thevg#ac param-  surfaces associated with non-architecturally singul&3P6-
eters in a 5-SB manipulator with planar base and linear platform. manipulators: one when poidt is finite (Fig. 9(left)), another
when B is taken to infinity butB., remains finite (Fig.
9(center)), and the third when both poiitand line B, are
taken to infinity (Fig. 9(right)). Again, through the change
of variables in (21), we can conclude that the manipulators
fh each of these three families have singularity loci witk th
same topology.

As a consequence, poi8, line B, and line At char-
acterize a family of 5-SB manipulators having exactly the
same singularity locus. Furthermore, assuming that piist
finite, we can always apply a planar affine transformation th
movesB to the origin and lineB,, to the y-axis. Then, the
B-surfaces associated with two non-architecturally siagak
SPU manipulators differ at most on scaling factor namely ) ) )
the distance of poinB to line A™ (namedL in Fig. 8). This C. Quartic, Cubic and Quadratic cases
factor regulates the attachments spacing in the platfone li At the end of Section 1I-B we mentioned that the general
in relation to the attachments spacing in the base 6|ane solution of the forward kinematics for the 5-8Pnanipulator

Therefore, all non-architecturally singular 5{$mnanipu- With planar base and linear platformdsartic, since it entails
lators with a finite point3 have associate#-surfaces with finding the roots of polynomial (10).
the same topology. Moreover, through the change of vaable Now note that, when poirit lies at infinity, CoCs —C4C3 =
in (21), we can conclude that the singularity loci of all thes0, the leading coefficient, in equation (10) vanishes, and
manipulators have also the same topology. the forward kinematic solution becomesbic. Then we only
obtain 6 assembly modes for the platform likeFinally, if not
only B is at infinity, but also line3, (that is,Cy = C5 = 0),
it is easy to see that also the coefficient in (10) becomes

So far we have assumed that poiit was finite. Now, zero, leading to aquadratic solution. When this happens,
suppose we take it to infinity. According to equation (16)s ththe maximum simplification of the kinematics is obtained: a

o - , platform with 4 assembly modes.

To visualize the effect of moving lind+ and point3 on the geometry . .
of the manipulator, a video has been attached as a multimediariahate Thus, let us remark that the three topologles of the singu-
def i ni ngGeonet ri cEl enent s. avi larity locus derived in the preceding section corresponthéo

B. Three Possible Topologies for the Singularity Locus
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Fig. 9. Quartic, cubic and quadratically solvable SBanipulators (from top-left to top-right), with their cesponding3-surfaces (bottom).

quartically-solvable 5-3B robot family, the cubically-solvable parametrized by coordinatés, v, p,,p,) € S? x R?, except
family, and the quadratically-solvable one (Fig. 9). at the great circle of? projecting to theB..-line, wherep,
can take any value.
For the two cases wittB at infinity, by fixing as before
(u,v,w) = (0,0,—1), the 2D slices obtained will look
Let us b”eﬂy diSCUSS What the S|iceS Of the Singularitgxacﬂy as the Corresponding_surfaces_ Then, by making
hypersurface for a fixed platform orientation would lookelik (;, 4 ) sweep the sphere of platform orientations, we can
for each topology. visualize each of the three 4D singularity hypersurfacethas
For the quartic case, taking:,v,w) = (0,0, —1), which  composition of the spherically arranged 2D slices. Thisoised
corresponds to the platform link placed perpendicular to thejn Fig. 10(center) for the second topology (cubic case) and i
base plané'[, the 2D slice will look exactly as th8-surface Fig. 10(bottom) for the third topology (quadratic case).
displayed in Fig. 3, since equation (2) reduces to (13). Ttas
every neighboring point in the sphere of platform orieratiasi
will correspond a slightly different 2D slice, and we can V. 5-SPU QUADRATICALLY -SOLVABLE MANIPULATOR
visualize the 4D singularity hypersurface as the combomati ] ) )
of these spherically arranged 2D slices. A 5-DoF manipulator whose forward kinematics has a

Figure 10(top) illustrates the evolution of the singularidu@dratic solution is of interest by itself and also as a
slice when(u, v, w) moves from one pole (0,0,1) towards th&omponent to be included m_a general 6-I_30F _Stewart-Gough
equator(u, v,0) of the sphere of orientations. In general, th@latform. Hence we analyze it thoroughly in this section.
spiral-like surface progressively flattens and, for theitlimgy Let us consider a quadratically-solvable manipulator vehos
case in whichw = 0, it becomes a plane. Note that thidin€ Bo coincides with thep,-axis, and thus its3-lines are
relates to the assumptian # 0 that we made in the Cham‘geparallel to this axis. This implies that we can freely fix @I
of variables (21). Wheno = 0, the platform lineA of the attachment coordinates = (z;,y:,0) andb; = p+ z;i, with
manipulator is parallel to the base plaHe and the equation P = (Pz,py,p=) andi = (u,v,w) as before, subject to the
of the singularity locus reduces & (Cyu + Csv) = 0. Two  Only constraint
subcases need to be distinguished= 0 andC,u+C5v = 0. 2 = 04, (26)

In the former, A lies onll, and the spiral surface becomes

the planep,p,, as mentioned. In the latter subcase, i.e., whevhere § is, thus, a proportionality factor between platform
Cyu+Csv = 0, Ais parallel to theB,-line and the singularity attachments and the-coordinates of the base attachments. To
slice at these two equator points covers the whole sfiéce ease readability of the equations, we set= y; = 0 without

of coordinates,, py, p-. losing generality. Therd, x; andy;, i = 2,3,4,5, are left

In sum, the singularity locus of a 5-8Pmanipulator with as parameters that characterize the family of_®SBbots
a finite point3 is a 4D hypersurface i5? x R? that can be analyzed in this section.

D. Singularity hypersuface analysis
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Fig. 10. Evolution of the singularity loci in the space of fidam positions
(pe, Py, p>) € R? as the platform orientation varies in the spheigv, w) €
S2. On top, for the case in which poirt§ is at the origin and lineB..

A. Forward Kinematics

With the attachment coordinates given in (26), the cofactor
of the elements of the first row @F are:

C, = 6%F,
Co = —5°F, (27)
U3=C4=0C5=C=0,
where I’ can be written as
ﬂ% T2Y2 T2 Y2
F= ﬂfg r3yYs T3 Y3 (28)
Ty TaYs T4 Y4
96% T5Ys Ts Ys
and the coefficients of polynomial (10) are:
ng = Ng = 0
(62 +1)0%F% — 25FE, — E2
"2 = 52 F2
B 2152541?2 — FO(E4E; + FEsE3) — Es(EyFs — E3E))
"= 55 3
(E3 + E5 + I}(E} + E2))F?6" — (EyEs — E4E3)*
o = S8 F4 - ll

Then, polynomial (10) becomes quadratic and, as a conse-
guence, its two roots can be simply expressed as:

1
T O3F(20FE, + E2 — (82 + 1)02F2?)
[6*F2Ey — 0F (B2 By + E5E3)

+ Es(E3Ey — EoBs) + MZ} ,

t

(29)

where the discriminant is
A =5F (B3 + Ef — 6*F?)
[26YF?E4l3 + 8*F(E213 + E3) + 0F (B3 + E3) (30)
— (6% 4+ 1)0°F312 + 2F3(EyFs — E4E3)).
Each of the two above roots, say andt,, determines a
single value forp,, py, u, andv through (7) and two sets of
values forp, andw by simultaneously solvingi|| = 1 and

t = p -i. The resulting four assembly modes are explicitly
given by:

53 Fti+Eo
62F

5

32 ; (31)

B!

(E4—38F)6°Ft;+E4E2+EsEs
62F\/64F2—E2—E3

and

s

>,
|
|

coincides with thep,-axis. Center figure corresponds to the case in which

point B is at infinity and lineB~ coincides with thep,-axis. Finally, in
the case that lind3 is at infinity, the slice of the singularity locus for a
each particular orientation is a plane. The bottom grapisiglays the normal
vector to this plane.

&
lov

(32)

>
|

IRV

62F
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B. Singularity Analysis C. Structure of Configuration Space
Substituting the values of the cofactors (27) into (2), the The singularity locus of the 5-&Probots studied consists

singular configurations of the studied 54$PBlatform are the of two hypersurfaces i3 x S? —the robot configuration space
solutions of the following equation (or C-space, for short)—, namely:

2 _
5 wF [6pyw — (ud — 1)p,] = 0. (33) w=0 and wp, — (u— l)pz —o (36)

Observe that, except far, all other design parameters are _ 0 _
embedded inF, whereas the robot pose appears only in the NOte that, since, andv do not appear in the hypersurface
remaining two factors. Thus, if" = 0, the manipulator is equations, they do not need to be taken into account when

architecturally singulai,e. it is always singular independently@nalyzing the topology of singularities. C-space can theis b

of its leg lengths. schematically represented by drawing the sphere of orien-
Let us now turn to the casg + 0, and study the parallel tations in each point of the plane,p.. Furthermore, only

singularities of non-architecturally singular manipotat the projection of the sphere in the direction of theaxis
A singular configuration §,i) € R3 x §2, with p = Needs to be displayed. Figure 11 shows such representatior

(Pa Py p-) andi = (u,v,w), is that satisfying eithetw = 0 for eight positions around the origin in the plapgp., for

or [bwp, — (du — 1)p.] = 0. the cased = 1 (the casesy < 1 and§ > 1 follow easily

Follwing the geometric interpretation given in Sectiorr l11from this one, as detailed in [28]). Observe that only the
C, whenw = 0, the manipulator is always in a singu|arity,re|ati0npz/px is relevant, therefore each disk stands for all
because the liné is always parallel to théS., (any line is positions in the half-line starting at the origin and havihg
parallel to a line at infinity, and for the quadratic cag, is Samep:/p, value. Color encodes where the region lies in
at infinity). This last condition holds for configurations ere  relation to the two hypersurfaces. For example, yellow {soin
the platform is parallel to the base plane. (the brightest grey level ones) are those where< 0 and

On the other hand, whem # 0 equation (18) reads as ~ wp=—(u—1/0)p. < 0. Lines separating two colors correspond

to the two hypersurfaces.
Da + pu
[(Cz 0 0) + M(O 0 Cl)] Dy +uv | = 0,
1

wherey = =2=. This condition holds when the intersectior - ‘ ‘
w-e we w- /

point of A with II, defined asA4 in equation (19), belongs to
the lineCox + uC7 = 0. In other words, when the poid is

at a distance?z &1 = — 2= from the y-axis, the manipulator : g ;
L . 2 w U u U
is in a singularity.

Note that singularities can also be expressed in joint spe p=

R5 by using the discriminant (30), whose expression on . 4 .
depends on the leg lengtlls i=1,..., 5. WhenA = 0 the ‘

two solutions (29) coincide, yielding a singularity. Not&atA " * Da

also consists of two factors, the first oR& + E2 — 64 F? = 0

corresponds to the conditian = 0 and the other is equivalent ; . ; 3 ;

to (dwpy — (du — 1)p,) = 0. v v
An interesting practical consideration is that, if we fix the

orientation of the tool, singularities define a plane in posi 1 :
space (as shown in Fig.10(bottom)): 1
w- w w
c1px + c2pz =0, (34) ;
BT R Cou

with ¢; = dw? and ¢ = w(1 — ud). For example, if the
tool is orthogonal to the base plane, i(@,v,w) = (0,0,1),
then the robot will reach a singularity when its positior, i.
(pz, Py, p-), satisfies:

Fig. 11. Representation of the sphere of orientations fghtepositions
around the origin. The four connected components are markiddiiferent

5]?1 +p, =0. (35) colors.

It follows from the above singularity analysis that, for a Hence, the two singular hypersurfaces divide C-space into
fixed value ofs, the whole family of non-architecturally singu-four connected components, corresponding to the four assem
lar 5-SRJ robots considered have exactly the same singularityy modes in (31) and (32). Note that the symmetry in these
locus. In other words, given a member of the family, onequations shows up neatly in the figure. It is worth mentignin
can freely move its leg attachments without modifying ththat for platform positions in the first quadrant, namely vehe
singularity locus, provided two constraints are maintdjnep, > 0 andp, > 0, all the hemisphere of orientations with
namely the proportionality betweer; and z;, and F' # 0 w > 0 is reachable. Similarly, there is a whole hemisphere
in (28) precluding architecturally singular designs. reachable in the other quadrants.
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Further details on the structure of C-space and its celB] J. Gao, H. Sun, and Y. Zhao, “The primary calibration reskaof a
decomposition induced by the singularity hypersurfaces ca

be found in [28].

V1. CONCLUSIONS

[0

(10]

The complete charting of the singular configurations of

individual parallel robots is important for motion plangin

(11]

and trajectory control. Obtaining rules to perform leg re-

arragements that leave the singularity locus unchanged has

a more generic interest in that it permits optimizing robqjy;
designs within a repertoire of them without having to care

about collateral variations in their singularities. Eventfier,
the establishment of entire robot families with topolotjica
equivalent singularity structures permits having a globaiv

(23]

of the design options available and their associated kitiema}M]

complexities.

This paper has presented contributions at these threeslevel
for the case of 5-9P robots with planar base and linear plat115]
form, excluding only non-generic designs such as those with

four collinear attachments in the base [26] and architedur

[16]

singular ones. It has been shown that there are only three

families with distinct topologies for the singularity logu
corresponding to quartically-, cubically- and quadrdlyca
solvable robot platforms.

The presented analysis of 543Robots is also useful for

(17]

(18]

the study of 6-UB Stewart-Gough platforms that contain a

line-plane component, as it has been shown for the decoupfﬁq

manipulator with three collinear attachments in Sectid+Ell

If such component is of the quadratically-solvable types th
kinematics of the 6-DoF platform becomes greatly simplifieézo]
having a total of 8 assembly modes. A cell decomposition of

its singularity locus can be readily derived from that ofbéai

in Section V-C, by just considering the additional singuldf!]
hypersurface corresponding to the platform attachmenhef t

6th leg lying on the base plane.
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