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Learning Stable Nonlinear Dynamical Systems
With Gaussian Mixture Models

S. Mohammad Khansari-Zadeh and Aude Billard

Abstract—This paper presents a method to learn discrete robot
motions from a set of demonstrations. We model a motion as a non-
linear autonomous (i.e., time-invariant) dynamical system (DS) and
define sufficient conditions to ensure global asymptotic stability at
the target. We propose a learning method, which is called Stable
Estimator of Dynamical Systems (SEDS), to learn the parameters
of the DS to ensure that all motions closely follow the demonstra-
tions while ultimately reaching and stopping at the target. Time-
invariance and global asymptotic stability at the target ensures that
the system can respond immediately and appropriately to pertur-
bations that are encountered during the motion. The method is
evaluated through a set of robot experiments and on a library of
human handwriting motions.

Index Terms—Dynamical systems (DS), Gaussian mixture
model, imitation learning, point-to-point motions, stability
analysis.

I. INTRODUCTION

W E consider modeling of point-to-point motions, i.e.,
movements in space stopping at a given target [1].

Modeling point-to-point motions provides basic components
for robot control, whereby more complex tasks can be decom-
posed into sets of point-to-point motions [1], [2]. As an example,
consider the standard “pick-and-place” task: First, reach for the
item, then after grasping, move to the target location, and finally,
return home after release.

Programming by demonstration (PbD) is a powerful means
to bootstrap robot learning by providing a few examples of
the task at hand [1], [3]. We consider PbD of point-to-point
motions where motions are performed by a human demonstrator.
To avoid addressing the correspondence problem [4], motions
are demonstrated from the robot’s point of view by the user
that guides the robot’s arm passively through the task. In our
experiments, this is done either by back driving the robot or by
teleoperating it using motion sensors (see Fig. 1). We, hence,
focus on the “what to imitate” problem [4] and derive a means
to extract the generic characteristics of the dynamics of the
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Fig. 1. Demonstrating motions by teleoperating a robot (left) using motion
sensors or (right) by back driving it.

motion. In this paper, we assume that the relevant features of
the movement, i.e., those to imitate, are the features that appear
most frequently, i.e., the invariants across the demonstration.
As a result, demonstrations should be such that they contain
the main features of the desired task, while exploring some of
the variations allowed within a neighborhood around the space
covered by the demonstrations.

A. Formalism

We formulate the encoding of point-to-point motions as con-
trol law that is driven by autonomous dynamical systems (DS):
Consider a state variable ξ ∈ R

d that can be used to unambigu-
ously define a discrete motion of a robotic system (e.g., ξ could
be a robot’s joint angles, the position of an arm’s end-effector in
the Cartesian space, etc.). Let the set of N given demonstrations
{ξt,n , ξ̇t,n}T n ,N

t=0,n=1 be instances of a global motion model that
is governed by a first-order autonomous ordinary differential
equation (ODE)

ξ̇ = f(ξ) + ε (1)

where f : R
d → R

d is a nonlinear continuous and continu-
ously differentiable function with a single equilibrium point
ξ̇∗ = f(ξ∗) = 0, θ is the set of parameters of f , and ε represents
a zero mean additive Gaussian noise. The noise term ε encapsu-
lates both inaccuracies in sensor measurements and errors that
result from imperfect demonstrations. The function f̂(ξ) can be
described by a set of parameters θ, in which the optimal values
of θ can be obtained based on the set of demonstrations us-
ing different statistical approaches.1 We will further denote the
obtained noise-free estimate of f from the statistical modeling
with f̂ throughout this paper. Our noise-free estimate will, thus,
be

ξ̇ = f̂(ξ). (2)

1Assuming a zero mean distribution for the noise makes it possible to estimate
the noise free model through regression.

1552-3098/$26.00 © 2011 IEEE
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Fig. 2. Typical system’s architecture that illustrates the control flow in a
robotic system as considered in this paper. The system is composed of two loops:
the inner loop that represents the robot’s dynamics and a low-level controller
and an outer loop that defines the desired motion at each time step. The learning
block is used to infer the parameters of motion θ from demonstrations.

Given an arbitrary starting point ξ0 ∈ R
d , the evolution of

motion can be computed by integrating from (2).
Two observations follow from formalizing our problem using

(1) and (2): 1) The control law that is given by (2) will generate
trajectories that do not intersect, even if the original demonstra-
tions did intersect; and 2) the motion of the system is uniquely
determined by its state ξ. The choice of state variable ξ is, hence,
crucial. For instance, if one wishes to represent trajectories that
intersect in the state space, one should encode both velocity and
acceleration in ξ, i.e., ξ = [x; ẋ].

The use of DS is advantageous in that it enables a robot to
adapt its trajectory instantly in the face of perturbations [5].
A controller that is driven by a DS is robust to perturbations
because it embeds all possible solutions to reach a target into
one single function f̂ . Such a function represents a global map
that specifies on the fly the correct direction for reaching the
target, considering the current position of the robot and the
target. In this paper, we consider two types of perturbations:
1) spatial perturbations that result from a sudden displacement
in space of either the robot’s arm or of the target; and 2) temporal
perturbations which result from delays in the execution of the
task.2

Throughout this paper, we choose to represent a motion in
a kinematic coordinates system (i.e., the Cartesian or robot’s
joint space) and assume that there exists a low-level controller
that converts kinematic variables into motor commands (e.g.,
force or torque). Fig. 2 shows a schematic of the control flow.
The whole system’s architecture can be decomposed into two
loops. The inner loop consists of a controller that generates the
required commands to follow the desired motion and a system
block to model the dynamics of the robot. Here, q, q̇, and q̈ are
the robot’s joint angle and its first and second time derivatives.

2Note that we distinguish between spatial and temporal perturbations as
these result in different distortion of the estimated dynamics and, hence, require
different means to tackle these. Typically, spatial perturbations would result
from an imprecise localization of the target or from interacting with a dynamic
environment where either the target or the robot’s arm may be moved by an
external perturbation; temporal perturbations typically arise when the robot is
stopped momentarily due to the presence of an object or due to safety issues
(e.g., waiting until the operator has cleared the workspace).

Motor commands are denoted by u. The outer loop specifies the
next desired position and velocity of the motion with respect
to the current status of the robot. An inverse kinematics block
may also be considered in the outer loop to transfer the desired
trajectory from the Cartesian to the joint space (this block is not
necessary if the motion is already specified in the joint space).

In this control architecture, both the inner and outer loops
should be stable. The stability of the inner loop requires the
system to be input-to-state stable (ISS) [6], i.e., the output of the
inner loop should remain bounded for a bounded input. The sta-
bility of the outer loop is ensured when learning the system. The
learning block refers to the procedure that determines a stable
estimate of the DS to be used as the outer-loop control. In this
paper, we assume that there exists a low-level controller which is
not necessarily accurate,3 that makes the inner-loop ISS. Hence,
we focus our efforts on designing a learning block that ensures
stability of the outer-loop controller. Learning is data driven and
uses a set of demonstrated trajectories to determine the param-
eters θ of the DS that is given in (2). Learning proceeds as a
constraint optimization problem, satisfying asymptotic stability
of the DS at the target. A formal definition of stability is given
next.

Definition 1: The function f̂ is globally asymptotically stable
at the target ξ∗ if f(ξ∗) = 0 and ∀ξ0 ∈ R

d ; the generated motion
converges asymptotically to ξ∗, i.e.,

lim
t→∞

ξt = ξ∗ ∀ξ0 ∈ R
d . (3)

f̂ is locally asymptotically stable if it converges to ξ∗ only
when ξ0 is contained within a subspace D ⊂ R

d .
Nonlinear DS are prone to instabilities. Ensuring that the

estimate f̂ results in asymptotically stable trajectories, i.e., tra-
jectories that converge asymptotically to the attractor as per
Definition 1, is thus a key requirement for f̂ to provide a use-
ful control policy. In this paper, we formulate the problem to
estimate f and its parameters θ as a constrained optimization
problem, whereby we maximize accuracy of the reconstruction
while ensuring its global asymptotic stability at the target.

The remainder of this paper is structured as follows.
Section II reviews related works on learning discrete motions
and the shortcomings of the existing methods. Section III for-
malizes the control law as a stochastic system composed of a
mixture of Gaussian functions. In Section IV, we develop con-
ditions to ensure global asymptotic stability of nonlinear DS. In
Section V, we propose a learning method to build an ODE
model that satisfies these conditions. In Section VI, we quan-
tify the performance of our method to estimate the dynamics
of motions 1) against a library of human handwriting motions;
and 2) in two different robot platforms (i.e., the humanoid robot
iCub and the industrial robot Katana-T). We further demonstrate
how the resulting model from the proposed learning methods
can adapt instantly to temporal and spatial perturbations. We
devote Section VII to discussion, and finally, we summarize the
obtained results in Section VIII.

3When controlled by a DS, the outer-loop controller can handle the inner-
loop controller’s inaccuracy by treating these as perturbations, comparing the
expected versus the actual state of the system.
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II. RELATED WORKS

Statistical approaches to modeling robot motion have become
increasingly popular as a means to deal with the noise inherent
in any mechanical system. They have proved to be interesting al-
ternatives to classical control and planning approaches when the
underlying model cannot be well estimated. Traditional means
of encoding trajectories is based on spline decomposition af-
ter averaging across training trajectories [7]–[10]. While this
method is a useful tool for quick and efficient decomposition
and generalization over a given set of trajectories, it is, how-
ever, heavily dependent on heuristics to segment and align the
trajectories and gives a poor estimate of nonlinear trajectories.

Some alternatives to spline-based techniques perform regres-
sion over a nonlinear estimate of the motion that is based on
Gaussian kernels [2], [11], [12]. These methods provide pow-
erful means to encode arbitrary multidimensional nonlinear tra-
jectories. However, similar to spline encoding, these approaches
depend on explicit time indexing and virtually operate in an open
loop. Time dependence makes these techniques very sensitive
to both temporal and spatial perturbations. To compensate for
this deficiency,4 one requires a heuristic to reindex the new tra-
jectory in time, while simultaneously optimizing a measure of
how good the new trajectory follows the desired one. To find
a good heuristic is highly task-dependent and a nontrivial task,
and becomes particularly nonintuitive in high-dimensional state
spaces.

Coates et al. [13] proposed an Expectation Maximization
(EM) algorithm that uses an (extended) Kalman smoother to
follow a desired trajectory from the demonstrations. They use
dynamic programming to infer the desired target trajectory and
a time alignment of all demonstrations. Their algorithm also
learns a local model of the robot’s dynamics along the desired
trajectory. Although this algorithm is shown to be an efficient
method to learn complex motions, it is time dependent and, thus,
shares the disadvantages that are mentioned earlier.

DS have been advocated as a powerful alternative to mod-
eling robot motions [5], [14]. Existing approaches to the sta-
tistical estimation of f in (2) use either Gaussian Process Re-
gression (GPR) [15], Locally Weighted Projection Regression
(LWPR) [16], or Gaussian Mixture Regression (GMR) [14],
where the parameters of the Gaussian Mixture are optimized
through EM [17]. GMR and GPR find a locally optimal model
of f̂ by maximizing the likelihood that the complete model rep-
resents the data well, while LWPR minimizes the mean square
error (MSE) between the estimates and the data (for a detailed
discussion on these methods, see [18]).

Because all of the aforementioned methods do not optimize
under the constraint of making the system stable at the attractor,
they are not guaranteed to result in a stable estimate of the mo-
tion. In practice, they fail to ensure global stability, and they also
rarely ensure local stability of f̂ (see Definition 1). Such esti-
mates of the motion may, hence, converge to spurious attractors
or miss the target (diverging/unstable behavior) even when esti-

4If one is to model only time-dependent motions, i.e., motions that are deemed
to be performed in a fixed amount of time, then one may prefer a time-dependent
encoding.

Fig. 3. Example of 2-D dynamics learned from three demonstrations using
five different methods: GMR, LWPR, GPR, BM, and SEDS (this study). For
further information, see the text.

mating simple motions such as motions in the plane, see Fig. 3.
This is due to the fact that there is yet no generic theoretical
solution to ensuring stability of arbitrary nonlinear autonomous
DS [19]. Fig. 3 illustrates an example of unstable estimation
of a nonlinear DS using the aforementioned three methods for
learning a 2-D motion. Fig. 3(a) represents the stability analysis
of the dynamics learned with GMR. Here, in the narrow regions
around demonstrations, the trajectories converge to a spurious
attractor just next to the target. In other parts of the space, they
either converge to other spurious attractors far from the target or
completely diverge from it. Fig. 3(b) shows the obtained results
from LWPR. All trajectories inside the black boundaries con-
verge to a spurious attractor. Outside of these boundaries, the
velocity is always zero (a region of spurious attractors); hence,
a motion stops once it crosses these boundaries or it does not
move when it initializes there. Regarding Fig. 3(c), while for
GPR trajectories converge to the target in a narrow area close to
demonstrations, they are attracted to spurious attractors outside
that region.

In all these examples, regions of attractions are usually very
close to demonstrations and, thus, should be carefully avoided.
However, the critical concern is that there is no generic theoret-
ical solution to determine beforehand whether a trajectory will
lead to a spurious attractor, to infinity, or to the desired attractor.
Thus, it is necessary to conduct numerical stability analysis to
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locate the region of attraction of the desired target which may
never exist or may be very narrow.

The Dynamic Movement Primitives (DMP) [20] offer a
method by which a nonlinear DS can be estimated while en-
suring global stability at an attractor point. Global stability is
ensured through the use of linear DS that takes precedence over
the nonlinear modulation to ensure stability at the end of the
motion. The switch from nonlinear to linear dynamics proceeds
smoothly according to a phase variable that acts as an implicit
clock. Such an implicit time dependence requires a heuristics
to reset the phase variable in the face of temporal perturbations.
When learning from a single demonstration, DMP offers a ro-
bust and precise means of encoding a complex dynamics. Here,
we take a different approach in which we aim at learning a gen-
eralized dynamics from multiple demonstrations. We also aim
to ensure time independence, and hence robustness to temporal
perturbations. Learning also proceeds from extracting corre-
lation across several dimensions. While DMP learns a model
for each dimension separately, we here model a single multi-
dimensional model. The approach that we propose is, hence,
complementary to DMP. The choice between using DMP or
stable estimator of dynamical systems (SEDS) to model a mo-
tion is application dependent. For example, when the motion is
intrinsically time dependent and only a single demonstration is
available, one may use DMP to model the motion. In contrast,
when the motion is time independent and when learning from
multiple demonstrations, one may opt to use SEDS. For a more
detailed discussion of these issues and for quantitative compar-
isons across time-dependent and time-independent encoding of
motions using DS, see [5] and [21].

In our prior work [14], we developed a hybrid controller that
is composed of two DS working concurrently in end-effector
and joint angle spaces, resulting in a controller that has no
singularities. While this approach was able to adapt online to
sudden displacements of the target or unexpected movement of
the arm during the motion, the model remained time dependent
because, similarly to DMP, it relied on a stable linear DS with a
fixed internal clock.

We, then, considered an alternative DS approach that is based
on the hidden Markov model and GMR [22]. The method that
is presented here is time independent and, thus, robust to tem-
poral perturbations. Asymptotic stability could, however, not
be ensured. Sole a brief verification to avoid large instabilities
was done by evaluating the eigenvalues of each linear DS and
ensuring that they all have negative real parts. As stated in [22]
and as we will show in Section IV, asking that all eigenvalues
be negative is not a sufficient condition to ensure stability of the
complete system (see, e.g., Fig. 5).

In [21] and [23], we proposed a heuristics to build iteratively a
locally stable estimate of nonlinear DS. This heuristics requires
one to increase the number of Gaussians and retrain the mix-
ture using EM iteratively until stability can be ensured. Stability
was tested numerically. This approach suffered from the fact
that it was not ensured to find a (even locally) stable estimate
and that it gave no explicit constraint on the form of the Gaus-
sians to ensure stability. The model had a limited domain of
applicability because of its local stability, and it was also com-

putationally intensive, making it difficult to apply the method in
high dimensions.

In [18], we proposed an iterative method, which is called
Binary Merging (BM), to construct a mixture of Gaussians so
as to ensure local asymptotic stability at the target; hence, the
model can be only applied in a region close to demonstrations
[see Fig. 3(d)]. Although this study provided sufficient condi-
tions to make DS locally stable, similar to [23], it still relied on
determining numerically the stability region and had a limited
region of applicability.

In this paper, we develop a formal analysis of stability and
formulate explicit constraints on the parameters of the mixture
to ensure global asymptotic stability of DS. This approach pro-
vides a sound ground for the estimation of nonlinear DS which
is not heuristic driven and, thus, has the potential for much larger
sets of applications, such as the estimation of second-order dy-
namics and for control of multidegrees of freedom (multi-DOF)
robots as we demonstrate here. Fig. 3(e) represents results that
are obtained in this paper. Being globally asymptotically sta-
ble, all trajectories converge to the target. This ensures that the
task can be successfully accomplished starting from any point
in the operational space with no need to reindex or rescale. Note
that the stability analysis that we presented here was published
in a preliminary form in [5]. This paper largely extends this
work by 1) having a more depth discussion on stability; 2) by
proposing two objective functions to learn parameters of DS
and comparing their pros and cons; 3) by having a more de-
tailed comparison of the performance of the proposed method
with BM and three best regression methods to estimate motion
dynamics, namely GMR, LWPR, and GPR; and 4) by having
more robot experiments.

III. MULTIVARIATE REGRESSION

We use a probabilistic framework and model f̂ via a finite
mixture of Gaussian functions. Mixture modeling is a popular
approach for density approximation [24], and it allows a user to
define an appropriate model through a tradeoff between model
complexity and variations of the available training data. Mixture
modeling is a method that builds a coarse representation of the
data density through a fixed number (usually lower than 10) of
mixture components. An optimal number of components can be
found using various methods, such as the Bayesian information
criterion (BIC) [25], the Akaike information criterion (AIC)
[26], the deviance information criterion (DIC) [27], that penalize
a large increase in the number of parameters when it only offers
a small gain in the likelihood of the model.

While nonparametric methods, such as Gaussian Process or
variants on these, offer optimal regression [15], [28], they suffer
from the curse of dimensionality. Indeed, computing the esti-
mate regressor f̂ grows linearly with the number of data points,
making such an estimation inadequate for on-the-fly recompu-
tation of the trajectory in the face of perturbations. There ex-
ists various sparse techniques to reduce the sensitivity of these
methods to the number of data points. However, these tech-
niques either become parametric by predetermining the optimal
number of data points [29], or they rely on a heuristic such as
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information gain to determine the optimal subset of data points
[30]. These heuristics resemble that offered by the BIC, DIC, or
AIC criteria.

Estimating f via a finite mixture of Gaussian functions, the
unknown parameters of f̂ become the prior πk , the mean μk

and the covariance matrices Σk of the k = 1 . . . K Gaussian
functions (i.e., θk = {πk , μk ,Σk} and θ = {θ1 . . . θK }). The
mean and the covariance matrices of a Gaussian k are defined
by

μk =

(
μk

ξ

μk
ξ̇

)
, Σk =

(
Σk

ξ Σk
ξ ξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
. (4)

Given a set of N demonstrations {ξt,n , ξ̇t,n}T n ,N
t=0,n=1 , each

recorded point in the trajectories [ξt,n , ξ̇t,n ] is associated with a
probability density function P(ξt,n , ξ̇t,n ):

P(ξt,n , ξ̇t,n ;θ) =
K∑

k=1

P(k)P(ξt,n , ξ̇t,n |k)
{ ∀n ∈ 1 . . . N

t ∈ 0 . . . T n

(5)
where P(k) = πk is the prior, and P(ξt,n , ξ̇t,n |k) is the condi-
tional probability density function that is given by

P(ξt,n , ξ̇t,n |k) = N (ξt,n , ξ̇t,n ;μk ,Σk )

=
1√

(2π)2d |Σk |
e−

1
2 ([ξ t , n ,ξ̇ t , n ]−μk )T (Σk )−1 ([ξ t , n ,ξ̇ t , n ]−μk ) . (6)

Taking the posterior mean estimate of P(ξ̇|ξ) yields (as de-
scribed in [31])

ξ̇ =
K∑

k=1

P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(
μk

ξ̇
+ Σk

ξ̇ξ

(
Σk

ξ

)−1(
ξ − μk

ξ

))
. (7)

The notation of (7) can be simplified through a change of
variable. Let us define⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ak = Σk
ξ̇ξ

(Σk
ξ )−1

bk = μk
ξ̇
− Akμk

ξ

hk (ξ) = P(k)P(ξ |k)∑K

i = 1
P(i)P(ξ |i)

.

(8)

The substitution of (8) into (7) yields

ξ̇ = f̂(ξ) =
K∑

k=1

hk (ξ)(Akξ + bk ). (9)

First observe that f̂ is now expressed as a nonlinear sum of
linear DS. Fig. 4 illustrates the parameters of (8) and their effects
on (9) for a 1-D model constructed with three Gaussians. Here,
each linear dynamics Akξ + bk corresponds to a line that passes
through the centers μk with slope Ak . The nonlinear weighting
terms hk (ξ) in (9), where 0 < hk (ξ) ≤ 1, give a measure of the
relative influence of each Gaussian locally. Observe that due
to the nonlinear weighting terms hk (ξ), the resulting function
f̂(ξ) is nonlinear and flexible enough to model a wide variety
of motions. If one estimates this mixture using classical meth-
ods such as EM, one cannot guarantee that the system will be

Fig. 4. Parameters that are defined in (8) and their effects on f̂ (ξ) for a 1-D
model constructed with three Gaussians. See the text for further information.

asymptotically stable. The resulting nonlinear model f̂(ξ) usu-
ally contains several spurious attractors or limit cycles even for
a simple 2-D model (see Fig. 3). Next, we determine sufficient
conditions on the learning parameters θ to ensure asymptotic
stability of f̂(ξ).

IV. STABILITY ANALYSIS

The stability analysis of DS is a broad subject in the field
of dynamics and control, which can generally be divided into
linear and nonlinear systems. Stability of linear dynamics has
been studied extensively [19], where a linear DS can be written
as

ξ̇ = Aξ + b. (10)

Asymptotic stability of a linear DS that is defined by (10) can
be ensured by solely requiring that the eigenvalues of the matrix
A be negative. In contrast, the stability analysis of nonlinear
DS is still an open question, and theoretical solutions exist only
for particular cases. Beware that the intuition that the nonlinear
function f̂(ξ) should be stable if all eigenvalues of matrices Ak ,
k = 1 . . . K, have strictly negative real parts is not true. Here is
a simple example in 2-D that illustrates why this is not the case,
as well as why estimating stability of nonlinear DS, even in 2-D
is nontrivial.

Example: Consider the parameters of a model with two Gaus-
sian functions to be⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Σ1
ξ = Σ2

ξ =
[

3 0
0 3

]

Σ1
ξ̇ ξ

=
[
−3 −30
3 −3

]
, Σ2

ξ̇ ξ
=

[
−3 3
−30 −3

]
μ1

ξ = μ2
ξ = μ1

ξ̇
= μ2

ξ̇
= 0.

(11)

Using (8), we have⎧⎨
⎩A1 =

[
−1 −10
1 −1

]
, A2 =

[
−1 1
−10 −1

]
b1 = b2 = 0.

(12)

The eigenvalues of the two matrices A1 and A2 are complex
with values −1 ± 3.16i. Hence, each matrix determines a stable
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Fig. 5. While each of the subsystems (left) ξ̇ = A1 ξ and (center) ξ̇ = A2 ξ is
asymptotically stable at the origin, a nonlinear weighted sum of these systems
(right) ξ̇ = h1 (ξ)A1 ξ + h2 (ξ)A2 ξ may become unstable . Here, the system
remains stable only for points on the line ξ2 = ξ1 (drawn in black).

system. However, the nonlinear combination of the two matri-
ces, as per (9), is stable only when ξ2 = ξ1 and is unstable in
R

d \ {(ξ2 , ξ1)|ξ2 = ξ1} (see Fig. 5).
Next, we determine sufficient conditions to ensure global

asymptotic stability of a series of nonlinear DS given by (7).
Theorem 1: Assume that the state trajectory evolves according

to (9). Then, the function that is described by (9) is globally
asymptotically stable at the target ξ∗ in R

d if{
(a) bk = −Akξ∗

(b) Ak + (Ak )T ≺ 0
∀k = 1 . . . K (13)

where (Ak )T is the transpose of Ak , and . ≺ 0 refers to the
negative definiteness of a matrix.5

Proof: We start the proof by recalling the Lyapunov con-
ditions for asymptotic stability of an arbitrary dynamical sys-
tem [19].

Lyapunov Stability Theorem: A dynamical system that is de-
termined by the function ξ̇ = f̂(ξ) is globally asymptotically
stable at the point ξ∗ if there exists a continuous and continu-
ously differentiable Lyapunov function V (ξ) : R

d → R such
that ⎧⎪⎨

⎪⎩
(a) V (ξ) > 0 ∀ξ ∈ R

d , ξ 
= ξ∗

(b) V̇ (ξ) < 0 ∀ξ ∈ R
d , ξ 
= ξ∗

(c) V (ξ∗) = 0, V̇ (ξ∗) = 0.

(14)

Note that V̇ is a function of both ξ and ξ̇. However, since ξ̇
can be directly expressed in terms of ξ using (9), one can finally
infer that V̇ only depends on ξ.

Consider a Lyapunov function V (ξ) of the form

V (ξ) =
1
2
(ξ − ξ∗)T (ξ − ξ∗) ∀ξ ∈ R

d . (15)

Observe first that V (ξ) is a quadratic function and, hence,
satisfies condition (14a). Condition that is given by (14b) follows
from taking the first derivative of V (ξ) with respect to time; we

5A d × d real symmetric matrix A is positive definite if ξT Aξ > 0 for all
nonzero vectors ξ ∈ R

d , where ξT denotes the transpose of ξ. Conversely,
A is negative definite if ξT Aξ < 0. For a nonsymmetric matrix, A is positive
(negative) definite if and only if its symmetric part Ã = (A + AT )/2 is positive
(negative) definite.

have

V̇ (ξ) =
dV

dt
=

dV

dξ

dξ

dt

=
1
2

d

dξ

(
(ξ − ξ∗)T (ξ − ξ∗)

)
ξ̇

= (ξ − ξ∗)T ξ̇ = (ξ − ξ∗)T f̂(ξ)

= (ξ − ξ∗)T
K∑

k=1

hk (ξ)(Akξ + bk )

︸ ︷︷ ︸
= ξ̇ (see(9))

= (ξ − ξ∗)T
K∑

k=1

hk (ξ)(Ak (ξ − ξ∗) + Akξ∗ + bk︸ ︷︷ ︸
=0 (see(13a))

)

= (ξ − ξ∗)T
K∑

k=1

hk (ξ)Ak (ξ − ξ∗)

=
K∑

k=1

hk (ξ)︸ ︷︷ ︸
hk >0

(ξ − ξ∗)T Ak (ξ − ξ∗)︸ ︷︷ ︸
<0 (see(13b))

< 0 ∀ξ ∈ R
d , ξ 
= ξ∗. (16)

Conditions that are given by (14c) are satisfied when substituting
ξ = ξ∗ into (15) and (16)

V (ξ∗) =
1
2
(ξ − ξ∗)T (ξ − ξ∗)

∣∣∣∣
ξ=ξ ∗

= 0 (17)

V̇ (ξ∗) =
K∑

k=1

hk (ξ)(ξ − ξ∗)T Ak (ξ − ξ∗)

∣∣∣∣∣
ξ=ξ ∗

= 0. (18)

Therefore, an arbitrary ODE function ξ̇ = f̂(ξ) that is given
by (9) is globally asymptotically stable if conditions of (13) are
satisfied. �

Conditions (13a) and (13b) are sufficient to ensure that an ar-
bitrary nonlinear function that is given by (9) is globally asymp-
totically stable at the target ξ∗. Such a model is advantageous
in that it ensures that starting from any point in the space, the
trajectory (e.g., a robot arm’s end effector) always converges to
the target.

V. LEARNING GLOBALLY ASYMPTOTICALLY STABLE MODELS

Section IV provided us with sufficient conditions whereby
the estimate f̂(ξ) is globally asymptotically stable at the target.
It remains now to determine a procedure to compute unknown
parameters of (9), i.e., θ = {π1 . . . πK ;μ1 . . . μK ; Σ1 . . . ΣK }
such that the resulting model is globally asymptotically stable.
In this section, we propose a learning algorithm, which is called
SEDS, that computes optimal values of θ by solving an opti-
mization problem under the constraint of ensuring the model’s
global asymptotic stability. We consider two different candi-
dates for the optimization objective function: 1) log-likelihood
and 2) MSE. The results from both approaches will be evaluated
and compared in Section VI-A.
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SEDS-Likelihood: Using log-likelihood as a means to con-
struct a model

min
θ

J(θ) = − 1
T

N∑
n=1

T n∑
t=0

logP(ξt,n , ξ̇t,n |θ) (19)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) bk = −Akξ∗

(b) Ak + (Ak )T ≺ 0

(c) Σk � 0

(d) 0 < πk ≤ 1

(e)
∑K

k=1 πk = 1

∀k ∈ 1 . . . K (20)

where P(ξt,n , ξ̇t,n |θ) is given by (5), and T =
∑N

n=1 Tn is the
total number of training data points. The first two constraints
in (20) are stability conditions from Section IV. The last three
constraints are imposed by the nature of the Gaussian mixture
model to ensure that Σk are positive-definite matrices, priors
πk are positive scalars smaller than or equal to one, and sum of
all priors is equal to one (because the probability value of (5)
should not exceed 1).

SEDS-MSE: Using MSE as a means to quantify the accuracy
of estimations that are based on demonstrations6

min
θ

J(θ) =
1

2T

N∑
n=1

T n∑
t=0

‖ ˆ̇
ξt,n − ξ̇t,n‖2 (21)

subject to the same constraints as given by (20). In (21), ˆ̇
ξt,n =

f̂(ξt,n ) are computed directly from (9).
Both SEDS-Likelihood and SEDS-MSE can be formulated

as a Nonlinear Programming (NLP) problem [32] and can be
solved using standard constrained optimization techniques. We
use a Successive Quadratic Programming (SQP) approach that
relies on a quasi-Newton method7 to solve the constrained opti-
mization problem [32]. SQP minimizes a quadratic approxima-
tion of the Lagrangian function over a linear approximation of
the constraints.8

Our implementation of SQP has several advantages over gen-
eral purpose solvers. First, we have an analytic expression of

6In our previous work [5], we used a different MSE cost function, which
balanced the effect of following the trajectory and the speed. See Appendix A
for a comparison of results using both cost functions and further discussion.

7Quasi-Newton methods differ from classical Newton methods in that they
compute an estimate of the Hessian function H (ξ) and, thus, do not require a
user to provide it explicitly. The estimate of the Hessian function progressively
approaches to its real value as optimization proceeds. Among quasi-Newton
methods, we use Broyden–Fletcher–Goldfard–Shanno [32].

8Given the derivative of the constraints and an estimate of the Hessian and
the derivatives of the cost function with respect to the optimization parameters,
the SQP method finds a proper descent direction (if it exists) that minimizes the
cost function while not violating the constraints. To satisfy equality constraints,
SQP finds a descent direction that minimizes the cost function by varying
the parameters on the hypersurface that satisfies the equality constraints. For
inequality constraints, SQP follows the gradient direction of the cost function
whenever the inequality holds (inactive constraints). Only at the hypersurface
where the inequality constraint becomes active does SQP look for a descent
direction that minimizes the cost function by varying the parameters on the
hypersurface or toward the inactive constraint domain.

the derivatives, improving significantly the performances. Sec-
ond, our code is tailored to solve the specific problem at hand.
For example, a reformulation guarantees that the optimization
constraints (20a), (20c), (20d), and (20e) are satisfied. There
is, thus, no longer the need to explicitly enforce them during
the optimization. The analytical formulation of derivatives and
the mathematical reformulation to satisfy the optimization con-
straints are explained in detail in [33].

Note that a feasible solution to these NLP problems always
exists. Algorithm 1 provides a simple and efficient way to com-
pute a feasible initial guess for the optimization parameters.
Starting from an initial value, the solver tries to optimize the
value of θ such that the cost function J is minimized. How-
ever, since the proposed NLP problem is nonconvex, one cannot
ensure to find the globally optimal solution. Solvers are usu-
ally very sensitive to initialization of the parameters and will
often converge to some local minima of the objective function.
Based on our experiments, running the optimization with the
initial guess that is obtained from Algorithm 1 usually results in
a good local minimum. In all experiments that are reported in
Section VI, we ran the initialization three to four times, and use
the result from the best run for the performance analysis.

We use the BIC to choose the optimal set K of Gaussians.
The BIC determines a tradeoff between optimizing the model’s
likelihood and the number of parameters that are needed to
encode the data

BIC = T J(θ) +
np

2
log(T ) (22)

where J(θ) is the normalized log-likelihood of the model that
is computed using (19), and np is the total number of free
parameters. The SEDS-Likelihood approach requires the esti-
mation of K(1 + 3d + 2d2) parameters (the priors πk , mean
μk , and covariance Σk are of size 1, 2d, and d(2d + 1),



950 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 5, OCTOBER 2011

Fig. 6. Performance comparison of SEDS-Likelihood and SEDS-MSE through a library of 20 human handwriting motions.

respectively). However, the number of parameters can be re-
duced since the constraints given by (20a) provide an explicit
formulation to compute μk

ξ̇
from other parameters (i.e., μk

ξ , Σk
ξ ,

and Σk
ξ̇ξ

). Thus, the total number of parameters to construct a

GMM with K Gaussians is K(1 + 2d(d + 1)). As for SEDS-
MSE, the number of parameters is even more reduced since
when constructing f̂ , the term Σk

ξ̇
is not used and, thus, can be

omitted during the optimization. Taking this into account, the
total number of learning parameters for the SEDS-MSE reduces
to K(1 + 3

2 d(d + 1)). For both approaches, learning grows lin-
early with the number of Gaussians and quadratically with the
dimension. In comparison, the number of parameters in the pro-
posed method is fewer than GMM and LWPR.9 The retrieval
time of the proposed method is low and in the same order of
GMR and LWPR.

The source code of SEDS can be downloaded from
http://lasa.epfl.ch/sourcecode/.

VI. EXPERIMENTAL EVALUATIONS

Performance of the proposed method is first evaluated against
a library of 20 human handwriting motions. These were chosen
as they provide realistic human motions while ensuring that
imprecision in both recording and generating motion is minimal.
Precisely, in Section VI-A, we compare the performance of
the SEDS method when using either the likelihood or MSE.
In Section VI-B, we validate SEDS to estimate the dynamics
of motion of two robot platforms: 1) the 7-DOF right arm of

9The number of learning parameter in GMR and LWPR is K (1 + 3d + 2d2 )
and 7

2 K (d + d2 ), respectively.

the humanoid robot iCub and 2) the six DOF industrial robot
Katana-T arm. In Sections VI-C and VI-D, we show that the
method can learn second- and higher order dynamics that allows
us to embed different local dynamics in the same model. Finally,
in Section VI-E, we compare our method with those of four
alternative methods GMR, LWPR, GPR, and BM.

A. Stable Estimator of Dynamical Systems: Likelihood Versus
Mean Square Error

In Section V, we proposed two objective functions: likelihood
and MSE for training the SEDS model. We compare the results
that are obtained with each method for modeling 20 handwriting
motions. The demonstrations are collected from pen input using
a Tablet-PC. Fig. 6 shows a qualitative comparison of the esti-
mate of handwriting motions. All reproductions were generated
in simulation to exclude the error due to the robot controller
from the modeling error. The accuracy of the estimate is mea-
sured according to (23), with which the method accuracy in
estimating the overall dynamics of the underlying model f̂ is
quantified by measuring the discrepancy between the direction
and magnitude of the estimated and observed velocity vectors
for all training data points10

10Equation (23) measures the error in our estimation of both the direction
and magnitude of the velocity. It is, hence, a better estimate of how well our
model encapsulates the dynamics of the motion, in contrast with an MSE on the
velocity magnitude alone.
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TABLE I
PERFORMANCE COMPARISON OF SEDS-LIKELIHOOD AND SEDS-MSE IN

LEARNING 20 HUMAN HANDWRITING MOTIONS

ē =
1
T

N∑
n=1

T n∑
t=0

(
r

(
1 − (ξ̇t,n )T ˆ̇

ξt,n

‖ξ̇t,n‖‖ ˆ̇
ξt,n‖ + ε

)2

+ q
(ξ̇t,n − ˆ̇

ξt,n )T (ξ̇t,n − ˆ̇
ξt,n )

‖ξ̇t,n‖‖ξ̇t,n‖ + ε

) 1
2

(23)

where r and q are positive scalars that weigh the relative influ-
ence of each factor,11 and ε is a very small positive scalar.

The quantitative comparison between the two methods is
represented in Table I. SEDS-Likelihood slightly outperforms
SEDS-MSE in accuracy of the estimate, as seen in Fig. 6 and
Table I. Optimization with MSE results in a higher value of the
error. This could be due to the fact that (21) only considers the
norm of ξ̇ during the optimization, while when computing ē,
the direction of ξ̇ is also taken into account [see (23)]. Although
one could improve the performance of SEDS-MSE by consider-
ing the direction of ξ̇ in (21), this would make the optimization
problem more difficult to solve by changing a convex objective
function into a nonconvex one.

SEDS-MSE is advantageous over SEDS-Likelihood in that it
requires fewer parameters (this number is reduced by a factor
of 1

2 Kd(d + 1)). On the other hand, SEDS-MSE has a more
complex cost function that requires computing GMR at each
iteration over all training data points. As a result, the use of
MSE makes the algorithm computationally more expensive, and
it has a slightly longer training time (see Table I).

Following the previous observations that SEDS-Likelihood
outperforms SEDS-MSE in terms of accuracy of the recon-
struction and the training time, in the rest of the experiments,
we will use only SEDS-Likelihood to train the globally stable
model.12

B. Learning Point-to-Point Motions in the Operational Space

We report on five robot experiments to teach the Katana-T
and the iCub robots to perform nonlinear point-to-point motions.
In all our experiments, the origin of the reference coordinates
system is attached to the target. The motion is, hence, controlled
with respect to this frame of reference. Such representation
makes the parameters of a DS invariant to changes in the target
position.

11Suitable values for r and q must be set to satisfy the user’s design criteria
that may be task dependent. In this paper, we consider r = 0.6 and q = 0.4.

12Note that in our experiments, the difference between the two algorithms in
terms of the number of parameters is small and, thus, is not a decisive factor.

In the first experiment, we teach a 6-DOF industrial Katana-
T arm how to put small blocks into a container13 (see Fig. 7).
We use the Cartesian coordinates system to represent the mo-
tions. In order to have human-like motions, the learned model
should be able to generate trajectories with both similar position
and velocity profiles to the demonstrations. In this experiment,
the task was shown to the robot six times and was learned us-
ing K = 6 Gaussian functions. Fig. 7(a) illustrates the obtained
results for generated trajectories starting from different points
in the task space. The direction of motion is indicated by ar-
rows. All reproduced trajectories are able to follow the same
dynamics (i.e., having similar position and velocity profile) as
the demonstrations.

Immediate adaptation: Fig. 7(b) shows the robustness of the
model to the change in the environment. In this graph, the orig-
inal trajectory is plotted in thin blue line. The thick black line
represents the generated trajectory for the case where the target
is displaced at t = 1.5 s. Having defined the motion as au-
tonomous DS, the adaptation to the new target’s position can be
done instantly.

Increasing accuracy of generalization: While convergence to
the target is always ensured from conditions that are given by
(13), due to the lack of information for points far from demon-
strations, the model may reproduce some trajectories that are not
consistent with the usual way of doing the task. For example,
consider Fig. 8(a), i.e., when the robot starts the motion from
the left side of the target, it first turns around the container and
then approaches the target from its right side. This behavior may
not be optimal as one expects the robot to follow the shortest
path to the target and reach it from the same side as the one it
started from. However, such a result is inevitable since the infor-
mation that is given by the teacher is incomplete, and thus, the
inference for points that are far from the demonstrations are not
reliable. In order to improve the task execution, it is necessary
to provide the robot with more demonstrations (information)
over regions that are not covered before. By showing the robot
more demonstrations and retraining the model with the new
data, the robot is able to successfully accomplish the task [see
Fig. 8(b)].

The second and third experiments consisted of having Katana-
T robot place a saucer at the center of the tray and putting a cup
on the top of the saucer. Both tasks were shown four times and
were learned using K = 4 Gaussians. The experiments and the
generalization of the tasks starting from different points in the
space are shown in Figs. 9 and 10. Fig. 11 shows the adaptation
of both models in the face of perturbations. Note that in this
experiment, the cup task is executed after finishing the saucer
task; however, for convenience, we superimpose both tasks in
the same graph. In both tasks, the target (i.e., the saucer for the
cup task and the tray for the saucer task) is displaced during the
execution of the task at the time t = 2 s. In both experiments,
the adaptation to the perturbation is handled successfully.

13The robot is only taught how to move blocks. The problem of grasping the
blocks is out of the scope of this paper. Throughout the experiments, we pose
the blocks such that they can be easily grasped by the robot.
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Fig. 7. Katana-T arm that performs the experiment of putting small blocks
into a container. See the text for further information. (a) Ability of the model
to reproduce similar trajectories starting from different points in the space.
(b) Ability of the model to adapt its trajectory on the fly to a change in the
target’s position.

The fourth and fifth experiments consisted of having the
7-DOF right arm of the humanoid robot iCub perform com-
plex motions, containing several nonlinearities (i.e., successive
curvatures) in both position and velocity profiles. Similar to
earlier, we use the Cartesian coordinates system to represent
these motions. The tasks are shown to the robot by teleoper-
ating it using motion sensors (see Fig. 1). Fig. 12 illustrates
the result for the first task where the iCub starts the motion in
front of its face. Then, it does a semispiral motion toward its
right side, and finally at the bottom of the spiral, it stretches
forward its hand completely. In the second task, the iCub starts
the motion close to its left forehand. Then, it does a semicircular
motion upward and finally brings its arm completely down (see
Fig. 13). The two experiments were learned using five and four
Gaussian functions, respectively. In both experiments, the robot
is able to successfully follow the demonstrations and to gener-

Fig. 8. Improving the task execution by adding more data for regions that are
far from the demonstrations. (a) Generalization based on the original model. (b)
Generalization after retraining the model with the new data.

Fig. 9. Katana-T arm that performs the experiment of putting a saucer on a
tray.

Fig. 10. Katana-T arm that performs the experiment of putting a cup on a
saucer.
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Fig. 11. Ability of the model to on-the-fly adapt its trajectory to a change in
the target’s position. (a) Trajectory of reproductions. (b) Velocity profile for the
saucer task. (c) Velocity profile for the cup task.

Fig. 12. First experiment with the iCub. The robot does a semispiral motion
toward its right side, and at the bottom of the spiral, it stretches forward its hand
completely.

alize the motion for several trajectories with different starting
points. Similar to what was observed in the three experiments
with the Katana-T robot, the models that are obtained for the
iCub’s experiments are robust to perturbations.

C. Learning Second-Order Dynamics

So far, we have shown how DS can be used to model/learn
a demonstrated motion when modeled as a first-order time-
invariant ODE. Although this class of ODE functions are generic
enough to represent a wide variety of robot motions, they fail
to accurately define motions that rely on second-order dynam-
ics such as a self-intersecting trajectory or motions for which
the starting and final points coincide with each other (e.g., a
triangular motion). Critical to these kinds of motion is the am-
biguity in the correct direction of velocity at the intersection
point if the model’s variable ξ considered to be only the carte-
sian position (i.e., ξ = x ⇒ ξ̇ = ẋ). This ambiguity usually re-
sults in skipping the loop part of the motion. However, in this

Fig. 13. Second experiment with the iCub. The robot does a semicircle motion
upward and brings its arm completely down.

example, this problem can be solved if one defines the motion in
terms of position, velocity, and acceleration, i.e., second-order
dynamics:

ẍ = g(x, ẋ) (24)

where g is an arbitrary function. Observe that any second-order
dynamics in the form of (24) can be easily transformed into a
first-order ODE through a change of variable, i.e.,{

ẋ = v

v̇ = g(x, v)
⇒ [ẋ; v̇] = f(x, v) (25)

Having defined ξ = [x; v] and, thus, ξ̇ = [ẋ; v̇], (25) reduces
to ξ̇ = f(ξ) and, therefore, can be learned with the methods that
are presented in this paper. We verify the performance of our
method in learning a second-order motion via a robot task. In
this experiment, the iCub performs a loop motion with its right
hand, where the motion lies in a vertical plane and, thus, contains
a self-intersection point (see Fig. 14). Here, the task is shown to
the robot five times. The motion is learned with seven Gaussian
functions with SEDS-Likelihood. The results demonstrate the
ability of SEDS to learn second-order dynamics.

By extension, since any nth-order autonomous ODE can be
transformed into a first-order autonomous ODE, the proposed
methods can also be used to learn higher order dynamics, how-
ever, at the cost of increasing the dimensionality of the system. If
the dimensionality of an nth-order DS is d, the dimensionality of
the transformed dynamics into a first-order DS is n × d. Hence,
increasing the order of the DS is equivalent to increasing the di-
mension of the data. As the dimension increases, the number of
optimization parameters also increases. If one optimizes the val-
ues of these parameters that are based on using a quasi-Newton
method, the learning problem indeed becomes intractable as
the number of dimensions increases. As an alternative solution,
one can define the loop motion in terms of both the Cartesian
position x and a phase variable. The phase-dependent DS has
lower dimension (i.e., dimensionality of d + 1) compared with
the second-order DS and is more tractable to learn. However, as
it is already discussed in Section II, the use of the phase variable
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Fig. 14. Learning a self-intersecting motion with a second-order dynamics.

makes the system time dependent. Depending on the applica-
tion, one may prefer to choose the system of (25) and learn a
more complex DS, or to use its phase variable form, which is
time dependent but easier to learn.

D. Encoding Several Motions Into One Single Model

We have so far assumed that a single dynamical system drives
a motion; however, sometimes it may be necessary to execute
a single task in different manners starting from different areas
in the space, mainly to avoid joint limits, task constraints, etc.
We have shown an example of such an application in an exper-
iment with the Katana-T robot (see Fig. 8). Now, we show a
more complex example and use SEDS-Likelihood to integrate
different motions into one single model (see Fig. 15). In this ex-
periment, the task is learned using K = 7 Gaussian functions,
and the 2-D demonstrations are collected from pen input using
a Tablet-PC. The model is learned using SEDS-Likelihood, and
it is provided with all demonstration data points at the same
time without specifying the dynamics they belong to. Looking
at Fig. 15, we see that all the three dynamics are learned success-
fully with a single model, and the robot is able to approach the
target following an arc, a sine function, or a straight line path,
respectively, starting from the left, right, or top side of the task
space. While reproductions follow locally the desired motion
around each set of demonstrations, they smoothly switch from
one motion to another in areas between demonstrations.

E. Comparison With Alternative Methods

The proposed method is also compared with three of the best
performing regression methods to date (GPR, GMR with EM,

Fig. 15. Embedding different ways of performing a task in one single model.
The robot follow an arc, a sine, or a straight line starting from different points
in the workspace. All reproductions were generated in simulation.

and LWPR14) and our previous work BM on the same library
of handwriting motions that are represented in Section VI-A
(see Table II) and the robot experiments that are described in
Sections VI-B–D (see Table III). All reproductions were gener-
ated in simulation to exclude the error due to the robot controller
from the modeling error. Fig. 3 illustrates the difference between
these five methods on the estimation of a 2-D motion. To ensure
fairer comparison across techniques, GMR was trained with the
same number of Gaussians as that found with BIC on SEDS.

As expected, GPR is the most accurate method. GPR per-
forms a very precise nonparametric density estimation and is,
thus, bound to give optimal results when using all of the training
examples for inference (i.e., we did not use a sparse method).
However, this comes at the cost of increasing the computa-
tion complexity and storing all demonstration data points (i.e.,
higher number of parameters). GMR outperforms LWPR by
being more accurate and requiring fewer parameters.

Both BM and SEDS-Likelihood are comparatively as accu-
rate as GMR and LWPR. To recall, neither GPR, GMR nor
LWPR ensure stability of the system (neither local nor global
stability), and BM only ensures local stability (see Section II
and Fig. 3). SEDS outperforms BM in that it ensures global
asymptotic stability and can better generalize the motion for
trajectories far from the demonstrations. In most cases, BM is
more accurate (although marginally so). BM offers more flex-
ibility since it unfolds a motion into a set of discrete jointwise
partitions and ensures that the motion is locally stable within
each partition. SEDS is more constraining since it tries to fit a
motion with a single globally stable dynamics. Finally, in con-
trast with BM, SEDS also enables to encode stable models of
several motions into one single model (e.g., see Section VI-D).

VII. DISCUSSION AND FUTURE WORK

In this paper, we presented a method to learn arbitrary discrete
motions by modeling them as nonlinear autonomous DS. We
proposed a method that is called SEDS to learn the parameters
of a GMM by solving an optimization problem under strict
stability constraint. We proposed two objective functions that are
SEDS-MSE and SEDS-Likelihood for this optimization problem.

14The source code of all the three is downloaded from the website of their
authors.
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TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED METHODS WITH ALTERNATIVE APPROACHES IN LEARNING 20 HUMAN HANDWRITING MOTIONS

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHODS WITH ALTERNATIVE APPROACHES IN LEARNING ROBOT EXPERIMENTS PRESENTED

IN SECTIONS VI-B AND C

The models result from optimizing both objective functions
benefit from the inherent characteristics of autonomous DS,
i.e., online adaptation to both temporal and spatial perturbation.
However, each objective function has its own advantages and
disadvantages. Using log-likelihood is advantageous in that it is
more accurate and smoother than MSE. Furthermore, the MSE
cost function is slightly more time consuming since it requires
computing GMR at each iteration for all training data points.
However, the MSE objective function requires fewer parameters
than the likelihood one which may make the algorithm faster
in higher dimensions or when higher number of components is
used.

None of the two methods are globally optimal as they deal
with a nonconvex objective function. However, in practice, in
the 20 handwriting examples and the six robot tasks, which we
reported here, we found that SEDS approximation was quite
accurate. An assumption made throughout this paper is that
represented motions can be modeled with a first-order time-
invariant ODE. While the nonlinear function that is given by (9)
is able to model a wide variety of motions, the method cannot be
used for some special cases that violate this assumption. Most
of the time, this limitation can be tackled through a change of
variable (as presented in our experiments; see Fig. 14).

The stability conditions at the basis of SEDS are sufficient
conditions to ensure global asymptotic stability of nonlinear
motions when modeled with a mixture of Gaussian functions.
Although our experiments showed that a large library of robot
motions can be modeled while satisfying these conditions, these
global stability conditions might be too stringent to accurately
model some complex motions. For these cases, the user could
choose local approaches such as BM to accurately model desired
motions.

While, in Section VI-C, we showed how higher order dy-
namics can be used to model more complicated movements,
determining the model order is definitely not a trivial task. It
relies on having a good idea of what matters for the task at
hand. For instance, higher order derivatives are useful to control
for smoothness, jerkiness, and energy consumption and, hence,
may be used if the task requires optimizing for such criteria.

Incremental learning is often crucial to allow the user to refine
the model in an interactive manner. At this point in time, the
SEDS training algorithm does not allow for incremental retrain-
ing of the model. If one was to add new demonstrations after
training the model, one would have to either retrain entirely the
model that is based on the combined set of old and new demon-
strations or build a new model from the new demonstrations
and merge it with the previous model.15 For a fixed number of
Gaussians, the former usually results in having a more accurate
model, while the latter is faster to train (because it only uses the
new set of demonstrations in the training).

Ongoing work is directed at designing an online learning ver-
sion of SEDS whereby the algorithm optimizes the parameters
of the model incrementally as the robot explores the space of
motion. This algorithm would also allow for the user to provide
corrections and, hence, to refine the model locally, along the
lines that we followed in [34].

Furthermore, we are currently endowing the method with
the on-the-fly ability to avoid possible obstacle(s) during the

15Two GMM with K 1 and K 2 number of Gaussian functions can be merged
into a single model with K = K 1 + K 2 Gaussian functions by concatenating
their parameters, i.e., θ = {θ1 . . . θK 1

. . . θK }, where θk = {πk , μk , Σk }.
The resulting model is no longer (locally) optimal; however, it could be an
accurate estimation of both models, especially when there is no overlapping
between the two models.
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execution of a task. We will also focus on integrating physical
constraints of the system (e.g., robot’s joints limit, the task’s
constraint, etc.) into the model to solve for this during our global
optimization. Finally, while we have shown that the system
could embed more than one motion and, hence, account for
different ways to approach the same target, depending on where
the motion starts in the workspace, we have still yet to determine
how many different dynamics can be embedded in the same
system.

VIII. SUMMARY

DS offer a framework that allows for fast learning of robot
motions from a small set of demonstrations. They are also ad-
vantageous in that they can be easily modulated to produce
trajectories with similar dynamics in areas of the workspace
that is not covered during training. However, their application
to robot control has been given little attention so far, mainly
because of the difficulty of ensuring stability. In this paper, we
presented an optimization approach for statistically encoding a
dynamical motion as a first-order autonomous nonlinear ODE
with Gaussian Mixtures. We addressed the stability problem of
autonomous nonlinear DS and formulated sufficient conditions
to ensure global asymptotic stability of such a system. Then,
we proposed two optimization problems to construct a globally
stable estimate of a motion from demonstrations.

We compared performance of the proposed method with cur-
rent widely used regression techniques via a library of 20 hand-
writing motions. Furthermore, we validated the methods in dif-
ferent point-to-point robot tasks that are performed with two
different robots. In all experiments, the proposed method was
able to successfully accomplish the experiments in terms of high
accuracy during reproduction, the ability to generalize motions
to unseen contexts, and the ability to adapt on the fly to spatial
and temporal perturbations.

APPENDIX A

COMPARISON WITH THE COST FUNCTION DESCRIBED IN [5]

In our previous work [5], we had used a different MSE cost
function from that proposed in this paper that balanced the error
in both position and velocity

min
θ

J(θ) =
1
N

N∑
n=1

T n∑
t=0

(
ωξ‖ξ̂n (t) − ξt,n‖2

+ ωξ̇‖
ˆ̇
ξn (t) − ξ̇t,n‖2

)
. (26)

ˆ̇
ξn (t) = f̂(ξ̂n (t)) are computed directly from (9). ξ̂n (t) =∑t

i=0
ˆ̇
ξn (i)dt generate an estimate of the corresponding demon-

strated trajectory ξn by starting from the same initial points as
that demonstrated, i.e., ξ̂n (0) = ξ0,n ∀n ∈ 1 . . . N . ωξ and ωξ̇

are positive scalars weighing the influence of the position and
velocity terms in the cost function.

In contrast with the cost function that is proposed in this pa-
per that assumes independence across data points [see (21)], the
aforementioned cost function propagates the effect of the esti-

TABLE IV
EVALUATION OF THE EFFECT OF WEIGHTING TERMS ON THE MSE COST

FUNCTION PRESENTED IN [5]

mation error at each time step along each trajectory. Considering
only the error in speed removes these effects (i.e., less complex
optimization) while yielding nearly similar performance. For
example, when learning the 20 human handwriting motions that
are described in Section VI-A, using the cost function given in
(26) has yielded an average error of 0.23 (against an error of
0.25 when using only speed in the cost function; see Table I).

Another difficulty that we avoid when considering solely one
term in our cost function is related to determining adequate
values for the weighting terms (in [5], their value were pre-
set to 1). To illustrate this issue, we ran the optimization on
four different handwriting motions by varying the weighting
terms given to the velocity and position, respectively. We report
on the accuracy as defined in (23) for each of these runs in
Table IV. The weighting terms in the fourth column of Table IV
are obtained by normalizing the effect of the position and ve-
locity terms. One sees that the advantage of using either of the
velocity or position term is not clear cut. For instance, when
modeling motion 1, using only the velocity term provides the
best result. For motions 2 and 4, the model that is obtained from
the normalized weighting terms is more accurate, and the mo-
tion 3 is more accurate when the both weights are set equal. In
general, it is difficult to say, a priori, which weights will result
in a more accurate model. This effect is due to the fact that when
the weights are changed, the shape of the cost function changes
as well in a nonlinear manner.
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