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Abstract—We propose distributed algorithms to automatically B '_| Chemistry | i -

deploy a team of mobile robots to partition and provide coveage EemaEaaEE:
of a non-convex environment. To handle arbitrary non-conva o . a Engineering 1
environments, we represent them as graphs. Our partitionig and h £
coverage algorithm requires only short-range, unreliablgrairwise ° H i EDE D s
“gossip” communication. The algorithm has two components{(1) L g ¢
a motion protocol to ensure that neighboring robots communtate Physical Sciences
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territory ownership when two robots communicate. By studying
Brolda Hall

an appropriate dynamical system on the space of partitionsfathe
graph vertices, we prove that territory ownership converge to
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a pairwise-optimal partition in finite time. This new equili brium
set represents improved performance over common Lloyd-typ
algorithms. Additionally, we detail how our algorithm scales well
for large teams in large environments and how the computatio
can run in anytime with limited resources. Finally, we report on
large-scale simulations in complex environments and hardare

experiments using the Player/Stage robot control system. Fig. 1. Example of a team of robots providing efficient cogeraf a non-
convex environment, as measured by an appropriate mutticeast function.
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|. INTRODUCTION

Coordinated networks of mobile robots are already in ué pgcted distance petwe_en the close_st robot _and_ spatially
for environmental monitoring and warehouse logistics. | istributed events which will appear at discrete points iroa-

the near future, autonomous robotic teams will revolutieni convex e“nV|ro_nment.”Optlmahty_ IS deflne_d with refe_zrencato
evant “multicenter” cost function. As with all multirobco-

transportation of passengers and goods, search and rqs;cué

erations, and other applications. These tasks share a comrﬂf)dmat'on applications, the challenge comes from recyitie

feature: the robots are asked to provide service over a spaccO munication r??“irem?”t33 the p_rop_osed_ algorithm requi
One question which arises is: when a group of robots is vgaitiﬁm y shor'g-range gossip” communication, 1.., asynclons,
for a task request to come in, how can they best positigwd unreliable communication between nearby robots.
themselves to be ready to respond? . _
The distributecenvironment partitioning probleffior robotic ~ Literature Review
networks consists of designing individual control and com- Territory partitioning and coverage control have applica-
munication laws such that the team divides a large space ifitns in many fields. In cyber-physical systems, applicatio
regions. Typically, partitioning is done so as to optimizeoat include automated environmental monitoriag [1], fetchamyl
function which measures the quality of service providedroveelivery [2], construction[3], and other vehicle routingesar-
all of the regionsCoverage controadditionally optimizes the ios [4]. More generally, coverage of discrete sets is alesety
positioning of robots inside a region as shown in Elg. 1. related to the literature on data clustering dntheans [[5],
This paper describes a distributed partitioning and cayeraas well as the facility location okk-center problem []6].
control algorithm for a network of robots to minimize thePartitioning of graphs is its own field of research, $ée [T]ao

. _ survey. Territory partitioning through local interact®is also
This work was supported in part by ARO MURI Award W911NF-05-1

0219, NSF grants 11S-0904501 and CPS-1035917, and MIURt grein-  Studied for an.|mal groups, see f0f example [8]-. o
20087W5P2. Preliminary and incomplete versions of thiskempeared inthe A broad discussion of algorithms for partitioning and

Proceedings of the 2009 ASME Dynamic Systems and ControfeCemce, coverage control in robotic networks is presented [ih [9]
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auctions, se€ [17] for a survey. can handle large robot teams, and a hardware-in-the-loop
While Lloyd iterative optimization algorithms are populaexperiment conducted in our lab which incorporates sensor
and work well in simulation, they require synchronous angoise and uncertainty in robot position. Through numerical
reliable communication among neighboring robots. As rebaoanalysis we also show how our new approach to partitioning
with adjacent regions may be arbitrarily far apart, thesepresents a significant performance improvement over both
communication requirements are burdensome and unrealisdmmon Lloyd-type methods and the recent results in [18].
for deployed robotic networks. In response to this issugL&h The present work differs from the gossip Lloyd method [18]
the authors have shown how a group of robotic agents cianthree respects. First, whilé_[18] focuses on territory-pa
optimize the partition of a convex bounded set using a Lloytiioning in a convex continuous domain, here we operate
algorithm with gossip communication. A Lloyd algorithm tvit on a graph which allows our approach to consider geodesic
gossip communication has also been applied to optimizidgstances, work in non-convex environments, and maintain
partitions of non-convex environments in_[19], the key ideesonnected territories. Second, instead of a pairwise L-lial
being to transform the coverage problem in Euclidean spaggdate, we use an iterative optimal two-partitioning appto
into a coverage problem on a graph with geodesic distanceghich yields better final solutions. Third, we also present a
Distributed Lloyd methods are built around separate partiotion protocol to produce the sporadic pairwise commu-
tioning and centering steps, and they are attractive becangcations required for our gossip algorithm and chararteri
there are known ways to characterize their equilibrium setse computational complexity of our proposal. Preliminary
(the so-called centroidal Voronoi partitions) and proven-co versions of this paper appeared|(inl[19] and [20]. Compared to
vergence. Unfortunately, even for very simple environreernthese, the new content here includes: (1) a motion protocol;
(both continuous and discrete) the set of centroidal Voron@) a simplified and improved pairwise partitioning rule) (3
partitions may contain several sub-optimal configuratiéfls proofs of the convergence results; and (4) a descriptioruof o
are thus interested in studying (discrete) gossip coverag®lementation and a hardware-in-the-loop experiment.
algorithms for two reasons: (1) they apply to more realistic
robot network models featuring very limited communication Paper Structure and Notation

large non-convex environments, and (2) they are more flexibl ) ) ,
than typical Lloyd algorithms meaning they can avoid poor In SectionT] we review and adapt coverage and geometric

suboptimal configurations and improve performance. concepts (e.g., centroids, Voronoi partitions) to a digcesvi-
ronment like a graph. We formally describe our robot network

model and the discrete partitioning problem in Secfighatic

Statement of Contributions then state our coverage algorithm and its properties. S¢Bf

There are three main contributions in this paper. Firggontains proofs of the main convergence results. In Sefflon
we present a discrete partitioning and coverage optinaizatiVe detail our implementation of the algorithm and present
algorithm for mobile robots with unreliable, asynchroncarsd  €xperiments and comparative analysis. Some conclusiens ar
short-range communication. Our algorithm has two comp8iven in Sectioi M.
nents: amotion protocowhich drives the robots to meet their [N our notation,R~, denotes the set of non-negative real
neighbors, and pairwise partitioning ruleto update territories Numbers andZ~, the set of non-negative integers. Given a
when two robots meet. The partitioning rule optimizes ceve$€t 4, |4| denotes the number of elements.n Given sets
age of a set of points connected by edges to form a graph. FheB, their difference isA\ B = {a € A| a ¢ B}. A set-
flexibility of graphs allows the algorithm to operate in nonvalued map, denoted b§ : A = B, associates to an element
convex, non-polygonal environments with holes. Our gragf 4 a subset ofB.
partition optimization approach can also be applied to non-
planar problems, existing transportation or logisticsvoeks, [1. PRELIMINARIES

or more general dat_a sets. _ We are given a team oN robots tasked with providing
Second, we provide an analysis of both the convergenggerage of a finite set of points in a non-convex and non-
properties and computational requirements of the algurith 5|y gonal environment. In this Section we translate cotsep

By studying a dynamical system of partitions of the graphgseq in coverage of continuous environments to graphs.
vertices, we prove that almost surely the algorithm coreerg

to a pairwise-optimal partition in finite time. The set of ]

pairwise-optimal partitions is shown to be a proper subs8t Non-convex Environment as a Graph

of the well-studied set of centroidal Voronoi partitionseW Let @Q be a finite set of points in a continuous environment.

further describe how our pairwise partitioning rule can b&hese points represent locations of interest, and are a&sbum

implemented to run in anytime and how the computationtd be connected by weighted edges. K&iQ) = (Q, E, w)

requirements of the algorithm can scale up for large domaibse an (undirected) weighted graph with edge Bet Q x Q

and large teams. and weight mapy : £ — R+ ; we letw,. > 0 be the weight
Third, we detail experimental results from our implementaf edgee. We assume that(Q) is connected and think of

tion of the algorithm in the Player/Stage robot control egst the edge weights as distances between locations.

We present a simulation of 30 robots providing coverage of aRemark 2.1 (Discretization of an EnvironmenBor  the

portion of a college campus to demonstrate that our algaritrexamples in this paper we will use a coameupancy grid



map as a representation of a continuous environment. @ Adjacency of Partitions

an occupancy grid_[21], each grid cell is either free spacerq, oyr gossip algorithms we need to introduce the notion
or an obstacle (occupied). To form a weighted graph, eagh agjacent subgraphs. Two distinct connected subgraphs
free cell becomes a vertex and free cells are connected Wih 4.0 said to beadjacentif there are two vertices;, ¢;

iy 45

edges if they border each other in the grid. Edge Weigkﬁélonging, respectively, t& and P; such that(q;, ¢;) € E.
are the distances between the centers of the cells, i.e., E‘)”!?serve that if P, and P; are édjacent therP, U P is
grid resolution. There are many other methods to discretize.,nnected. Similarly, we say that robatand j are adjécent
space, inpluding triangularization_ and other approaches f . 5. neighbors if their subgrapti and P; are adjacent.
computational geometry [22], which could also be used.  accordingly, we introduce the following useful notion.

_In any weighted grapl@:(Q) there is a standard notion of  pefinition 2.3 (Adjacency Graph)Eor P € Party(Q), we
distance between vertices d_eflned as followspathin G IS define theadjacency graptbetween regions of partitio® as
an ordered sequence of vertices such that any consecutive BRP) = ({1,...,N},E(P)), where(i,5) € £(P) if P, and
of vertices is an edge af. Theweight of a pathis the sum P; are adjacent.
of the weights of the edges in the path. Given vertiteand pj5ie thatG(P) is always connected sing@(Q) is.
k in G, the distancebetweenh and k, denoteddq (h, k), is
the weight of the lowest weight path between themy-oo if _
there is no path. If7 is connected, then the distance betwedd. Cost Functions
any two vertices in is finite. By conventiondg(h,k) = 0 We define three coverage cost functions for graftse,
if h = k. Note thatdg (h, k) = da(k,h), for anyh,k € Q. Hmyticentes AN0Hexpected LEL theweight functions : Q — R~
assign a relative weight to each elementfThe one-center
function Hne gives the cost for a robot to cover a connected
subsetd C @) from a vertexh € A with relative prioritization

We will be partitioning @) into N connected subsets orset by¢:
regions which will each be covered by an individual robot. Hone(h; A) = Z da(h, k)p(k).
To do so we need to define distances on induced subgraphs of ke
G(Q). GivenI C @Q, thesubgraph induced by the restriction
of G to I, denoted byG N1, is the graph with vertex set

equal to/ and edge set containing all weighted edges Ulderrelation, <, is defined on), i.e., thatQ — {1, ..., |Ql}.

G where both vertices belong t. In other words, we set With this assumption we can deterministically pick a vertex
(@, B,w)nI=(QNI,EN(IxI),wlrxr). The induced sub- ;7 i minimizesHone as follows.

sgfggelss_ aiy:r:%h;ei gIrasvf;v\\:\lltrfiIt ea dnc()lilo]:) qidjtanc& b]f)tweenDefinition 2.4 (Centroid):Let @ be a totally ordered set,
- g ’ ’ AR = B0 IVB Y and letd C Q. We define the set of generalized centroids of

Note thatd;(h, k) > da(h, k). . . X 2 .
We define aonnected subset 6f as a subsetl  Q such A as the set of vertices id which minimize Hone, i.€.,

that A # () and G N A is connected. We can then partitich C(A) := argmin Hone(h; A).
into connected subsets as follows. heA

Definition 2.2 (Connected Partitions)Given  the  graph Fyrther, we define the map Cd as(@d := min{c € C(A)}.
G(Q) = (Q, E,w), we define aconnectedV —partition of @ we call Cd 4) the generalized centroidf A.

B. Partitions of Graphs

A technical assumption is needed to solve the problem of
&Jinimizing Hone(+, A): we assume from now on thattatal

as a collection” = {P;}/Y, of N subsets of) such that In subsequent use we drop the word “generalized” for
0] vazl P, =Q; brevity. Note that with this definition the centroid is well-
(i) PNP;=0if i+ j; defined, and also that the centroid of a region always belongs
(iy P;# 0 forallie{l,...,N};and to the region. With a slight notational abuse, we define
(iv) P; is connected for ali € {1,..., N}. Cd : Party(Q) — QY as the map which associates to a

partition the vector of the centroids of its elements.

Lelgf:r;]r\;(Cgi)i)ti(:nbellietzethzeite(:czoglr;?‘r(\:;i?(_prt?érglr?nss tgf%.st We define themulticenter functiorHmuiicentert0 measure the
perty P 9 J cost for NV robots to cover a connected-partition P from

one P;, i.e., each location in the environment is covered bt¥|e vertex set € QN
just one robot. Notice that eadh € P induces a connected '
subgraph inG(Q). In subsequent references ¢ we will 1 N
often meanGN P;, and in fact we refer toP;(t) as the Hmutticente(c; P) = mzﬂone@i;ﬂ)-
dominance subgrapbr region of the i-th robot at timet. ke@ i=1
Among the ways of partitioning), there are some which We aim to minimize the performance functi@fiiicenter With
are worth special attention. Given a vector of distinct poinrespect to both the verticesand the partitionP.
c € QN, the partitionP € Partx(Q) is said to be a/oronoi We can now state the coverage cost function we will be
partition of Q generated by &, for each P, and allk € P;, concerned with for the rest of this paper. L®feypected :
we havec; € P; anddg(k, ¢;) < dg(k,c;), Vj # i. Note that Party(Q) — R be defined by
the Voronoi partition generated hyis not unique since how
to apportion tied vertices is unspecified. Hexpected P) = Hmuticente(CA(P), P).



will periodically be asked to perform a task somewhere in it

region with tasks appearing according to distributipri’WVhen

idle, the robots would position themselves at the centrdid o @) (b) (©

their region. By partitioning~ so as to mln'm'zg'[emec‘ed the Fig. 2. All possible centroidal Voronoi partitions of a umin 2 x 5 grid.

robot team would minimize the expected distance betweem&uming all edge weights are and all vertices have priorityt, then (a)

task and the robot which will service it. has a cost ofl.2w, (b) has a cost of.1w, and (c) has a cost df.0w. Only
(c) is pairwise-optimal by definition.

In the motivational scenario we are considering, each rob(..x.. .. ..
L L]

E. Optimal Partitions
We introduce two notions of optimal partitions: centroidarlecj.uced by .c.hangmg eithét ore independently. A pairwise-
Voronoi and pairwise-optimal. Our discussion starts wiil t op_tlmal pqrt|t|0n_ach|eves t,h's_ property and adds that‘?erye
following simple result about the multicenter cost funaotio palr_(_)f nelghborlng_robot:éz,]), there does not exist a two-
Proposition 2.5 (Properties of Multicenter Function)et partition of ;U P; with a lower coverage cost. In other words,
P e Party(Q) ande € QN. If P' is a Voronoi partition positioning the robots at the centroids of a centroidal Yioio
N .

s o , ‘ ) partition (locally) minimizes the expected distance betwve
generated by and¢’ € Q" Is such that; € C(F%) Vi, then task appearing randomly i@ according to relative weights

Hmutticented ¢, P’) < Hmuticentelc, P), and and the robot who owns the vertex where the task appears.
Honuticentel s P) < Hmuticented ¢, P)- _Posmonlng at the centroids of_ a pairwise-optimal pamt_l
improves performance by reducing the number of sub-optimal
The second inequality is strict if any ¢ C(P;). solutions which the team might converge to.
Propositio 26 implies the following necessary condition
if (¢, P) minimizes Hmutticentes thenc; € C(P;) Vi and P |Il. M ODELS, PROBLEM FORMULATION, AND PROPOSED
must be a Voronoi partition generated by Thus, Hexpected SOLUTION

has the_ .following property as an imm_ediate.consequen_ce ofpe aim to partition() among N robotic agents using
PVOPF’S'“O”'IB: givenP € Party(Q), if P* is a Voronoi only asynchronous, unreliable, short-range communinatio
partition generated by G&) then Sectior 1A we describe the computation, motion, and com-

Hexpocied P*) < Hexpected P). mun!catlon capabilities required of the team of robots, mnq

SectiorIII-B we formally state the problem we are addregsin
This fact motivates the following definition. In Sectio TI-C we propose our solution, tiescrete Gossip
Definition 2.6 (Centroidal Voronoi Partition): Coverage Algorithmand inIIl-D we provide an illustration. In

P € Party(Q) is a centroidal Voronoi partitionof @ SectiondIlI-E andII-F we state the algorithm’s convergen
if there exists ac € @™ such thatP is a Voronoi partition and complexity properties.
generated by and¢; € C(P;) V i.

The set ofpairwise-optimal partitiongrovides an alterna- A. Robot Network Model with Gossip Communication

tivg dpfinition for_the optimality. of a p_artition: a partitiois Our Discrete Gossip Coverage Algorithm requires a team
pairwise-optimal if, for every pair of adjacent regionse@an ¢ n robotic agents where each agént {1,..., N} has the

not find a better two-partition of the union of the two regionsfollowing basic computation and motion capabilities:
This condition is formally stated as follows.

Definition 2.7 (Pairwise-optimal Partition):
P € Party(Q) is a pairwise-optimal partition if for
every(i, j) € £(P),

(C1) agenti knows its unique identifiet;

(C2) agenti has a processor with the ability to stof& Q)
and perform operations on subgraphst&fQ); and

(C3) agenti can determine which vertex i it occupies and

Hone(CA(P,); P;) + Hone(CA(P}); P;) = can move at speed along the edges ofi(Q) to any
' other vertex inQ.
a bg}ji-%P,-{ > min{dpup (a,k),dpop, (b,F)} ¢(k)}- Remark 3.1 (Localization)The localization requirement in

keP;UP; (C3) is actually quite loose. Localization is only used fawn

The following Proposition states that the set pairwisdd@tion and not for updating partitions, thus limited dioat

optimal partitions is in fact a subset of the set of centrbigicalization errors are not a problem. _
Voronoi partitions. The proof is involved and is deferred to TNe robotic agents are assumed to be able to communicate

Appendix[Q. See Fid]2 for an example which demonstratééth each other according to tlrange-limited gossip commu-
that the inclusion is strict. nication modelwhich is described as follows:

Proposition 2.8 (Pairwise-optimal Implies Voronoilet ~ (C4) given a communication ranggomm > maxce g we, When

P € Party(Q) be apairwise-optimal partition Then P is any two agents reside for some positive duration at a
also acentroidal Voronoi partition distancer < rcomm, they communicate at the sample
For a given environmen), a pair made of a centroidal times of a Poisson process with intensigmm > 0.

Voronoi partition P and the corresponding vector of centroid®ecall that an homogeneous Poisson process is a widely-
c is locally optimal in the following sens@expectedCannot be used stochastic model for events which occur randomly and



independently in time, where the expected number of eventsRemark 3.3 (Motion Protocol)The motion protocol is de-

in a periodA is Alcomm: signed to ensure frequent enough communication between
Remark 3.2 (Communication Modelfl) This commu- pairs of robots. In general, any motion protocol can be used

nication capability is the minimum necessary for our algawhich meets this requirement, gocould selecty; from the

rithm, any additional capability can only reduce the timboundary ofP; or use some heuristic non-uniform distribution

required for convergence. For example, it would be accéptalover P;.

to have intensityA\(r) depend upon the pairwise robot distance If any two agents and; reside in two vertices at a graphical

in such a way that\(r) > Acomm for r < rcomm distance smaller that,,mm for some positive duration, then at

(2) We use distances in the graph to model limited ranglee sample times of the corresponding communication Poisso

communication. These graph distances are assumed to facess the two agents exchange sufficient information to

proximate geodesic distances in the underlying continuoupdate their respective dominance subgraphsind P; via

environment and thus path distances for a diffracting watke Pairwise Partitioning Rule.

or moving robot.

Pairwise Partitioning Rule

Assume that at time € R>(, agent; and agentj communi-
B. Problem Statement cate. Without loss of generality assume that j. Let P;(t)

Assume that, for alt € R, each ageni € {1,..., N} and P;(t) denote the current dominance subgraphs ahd
maintains in memory a connected subBgt) of environment j, respectively. Moreover, lett denote the time instant just
Q. Our goal is to design a distributed algorithm that itergijv after¢. Then, agents andj perform the following tasks:
updates the partitiorP(¢t) = {P;(¢)}/L, while solving the 1. agenti transmitsP;(t) to agentj and vice-versa
following optimization problem: 2. initialize W+ := P;(t), Wy := P;(t), a* := Cd(P;(t)),

. b* .= Cd(P; (¢
PePartn (@) Herpected ), @, compute(UJ:(:))Pi(t) U P;(t) and an ordered lis§ of all

subject to the constraints imposed by the robot network inode pairs of vertices irt/

with range-limited gossip communication from SectionAll- 4: for each(a,b) € S do
5:  compute the sets

_ _ _ W, :={x €U :dy(xz,a) <dy(z,b)}
C. The Discrete Gossip Coverage Algorithm W, = {z €U :dy(z,a) > dy(z,b)}
In the design of an algorithm for the minimization prob- 6: if Hone(a; Wa) + Honelb; W3) <
lem (1) there are two main questions which must be addressed. Hone(a™*; War ) + Hone(b*; Wp-)  then
First, given the limited communication capabilities in {C4 7: W = Wo, Wys 1= Wy, a* :=a,b* =0

how should the robots move insidg to guarantee frequent 8: P;(t1) := W+, P;(t") := W

enough meetings between pairs of robots? Second, Whe’ome remarks are now in order.

two robots are communicating, what information should they  remark 3.4 (Partitioning Rule)(1) The Pairwise Parti-

exchange and how should they update their regions? tioning Rule is designed to find a minimum cost two-partition
In this section we introduce thBiscrete Gossip Coverage qf ;7. More formally, if list S and setsiW,. and W;- for

Algorithm which, following these two questions, consists Ofa*,b*) € S are defined as in the Pairwise Partitioning Rule,

two components: then W, and W, are an optimal two-partition off.
(1) theRandom Destination & Wait Motion Protogand (2) While the loop in steps 4-7 must run to completion to
(2) the Pairwise Partitioning Rule guarantee thatV,- and W,. are an optimal two-partition of

The concurrent implementation of the Random Destinatidn, the loop is designed to return an intermediate sub-optimal
& Wait Motion Protocol and the Pairwise Partitioning Rulgesult if need be. IfP; and P; change, therexpected Will
determines the evolution of the positions and dominandecrease and this is enough to ensure eventual convergence.
subgraphs of the agents as we now formally describe. We s{@x We make a simplifying assumption in the Pairwise
with the Random Destination & Wait Motion Protocol. Partitioning Rule that, once two agents communicate, the
application of the partitioning rule is instantaneous. Wedss
the actual computation time required in Secfion1II-F ancheo
implementation details in Secti¢n V.
(4) Notice that simply assigniny/,- to ¢ andW,- to j can
cause the robots to “switch sides” ih. While convergence is
guaranteed regardless, switching may be undesirable i som
applications. In that case, any smart matchingigf and,-
to ¢+ andj may be inserted.
(5) Agents who are not adjacent may communicate but the
partitioning rule will not change their regions. Indeed tlis

If agent: is moving from one vertex to another we say thataseW,- and W will not change frompP;(¢) and P;(t).
agenti is in the movingstate while if agent is waiting at Some possible modifications and extensions to the algorithm
some vertex we say that it is in tiveaiting state. are worth mentioning.

Random Destination & Wait Motion Protocol
Each agent i € {1,...,N} determines its
motion by repeatedly performing the following
actions:

1: agenti samples adestination vertex;; from a uniform
distribution over its dominance subgraph;

2: agenti moves to vertex; through the shortest path i}
connecting the vertex it currently occupies apdand

3: agent; waits atq; for a durationr > 0.
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Fig. 3. Simulation of four robots dividing a square envir@mhwith obstacles. The boundary of each robots territorgiré&avn in a different color, the
centroid of a territory is drawn with an X, and pairwise commization is drawn with a solid red line. On the left is the imitpartition assigned to the robots.
The middle frames show two pairwise territory exchangesh wpdated territories highlighted with solid colors. Theafi partition is shown at right.

Remark 3.5 (Heterogeneous Robotic Networke): case Assume the agents implement tBéscrete Gossip Coverage
the robots have heterogeneous dynamics, line 5 can Algorithm consisting of the concurrent implementation of the
modified to consider per-robot travel times between vesticcRandom Destination & Wait Motion Protocahd thePairwise
For example,dy(z,a) could be replaced by the expectedPartitioning Rule Then,

time for robot: to travel froma to « while du(x,b) would ;) the partitionP(t) remains connected and is described by
consider robotj. P :Rso — Party(Q), and

Remark 3.6 (Coverage and Task Servicingere we fo- b converges almost surely in finite time to a pairwise-
cus on partitioning territory, but this algorithm can eadie optimal partition.
combined with methods to provide a service@has in [4]. R K 3.8 (Optimality of Soluti definiti
The agents could split their time between moving to meet thei emark 3.8 (Optimality of Solutionspy _ definition, a

neighbors and update territory, and performing requestsicst pairwise-optimal partition is optimal in th@expecieaCan not
in their region ' be improved by changing only two regions in the partition.

Remark 3.9 (Generalizationsfor simplicity we assume

D. lllustrative Simulation uniform robot speeds, communication processes, and wait-
. S .. . ing times. An extension to non-uniform processes would be
The simulation in Fig[13 shows four robots partitioning a g P

. - Straightforward.
square environment with obstacles where the free space is
represented by a2 x 12 grid. In the initial partition shown
in the left panel, the robot in the top right controls most of. Complexity Properties and Discussion
the environment while the robot in the bottom left controls

. . In this subsection we explore the computational require-
very little. The robots then move according to the Random ; ; :
- ) . . ments of the Discrete Gossip Coverage Algorithm, and make
Destination & Wait Motion Protocol, and communicate ac- . .
. - . L ..some comments on implementation. Cost functtie(h; F;)
cording to range-limited gossip communication model wit : .
) IS the sum of the distances betwekrand all other vertices
reomm = 2.5m (four edges in the graph).

The first pairwise territory exchange is shown in the second P.. This computation of one-to-all distances is the core

panel, where the bottom left robot claims some territoryrfro computation of the algorithm. For most graphs of interest th

the robot on the top left. A later exchange between the tvxt/ tal number of edgefE| is proportional to|Q], so we Wwil

robots on the top is shown in the next two panels. Noticseate bound_s on this com_putation in terqulﬂ._Co.mputing
that the cyan robot in the top right gives away the vertex (iltne-to-all distances requires one of the following:
currently occupies. In such a scenario, we direct the rabot t * if all edge weights in(Q) are the same (e.g., for a graph
follow the shortest path if(Q) to its updated territory before ~ from an occupancy grid), a breadth-first search approach
continuing on to a random destination. can be used which requir€¥(| 7[) in time and memory;
After 9 pairwise territory exchanges, the robots reach thee Otherwise, Dijkstra’s algorithm must be used which re-
pairwise-optimal partition shown at right in Figl 3. The ex-  quiresO(|F;|log (|7])) in time andO(|P;|) in memory.
pected distance between a random vertex and the closest ralen D(P;) be the time to compute one-to-all distancesHn

decreases fror.34m down to1.74m. then computingHone(h; P;) requiresO(ID(F;)) in time.
Proposition 3.10 (Complexity PropertiesThe motion
E. Convergence Property protocol requiresO(|P;|) in memory, and O(D(F;)) in

The strength of the Discrete Gossip Coverage Algorithm g®mputation time. The partitioning rule requir@$|P; |+| P;|)
the possibility of enforcing that a partition will convergga in communication bandwidth between robois and j,
pairwise-optimal partition through pairwise territoryalange. O(|P;| + |P;|) in memory, and can run in any time.

In Theoreni 3.7 we summarize this convergence property, with Proof: We first prove the claims for the motion protocol.
proofs given in Sectiofp 1V. Step 2 is the only non-trivial step and requires finding a
Theorem 3.7 (Convergence Propertyyonsider a network shortest path inP;, which is equivalent to computing one-to-
of N robotic agents endowed with computation and motion cal distances from the robot's current vertex. Hence, iuiess

pacities (C1), (C2), (C3), and communication capacitie$)(C O(D(F;)) in time andO(F;) in memory.



We now prove the claims for the partitioning rule. In steghis implies that
1, robots: and j transmit their subgraphs to each other,

which requiresO(|P;| + |P;|) in communication bandwidth. dp,up, (,07) < dpup;(m, b%) +dpup; (2,m)
For step 3, the robots determibe:= P; U P;, which requires < dp,up;(m,a”) +dp,up,(x,m)
O(|P;|+|P;]) in memory to store. Step 4 is the start of a loop = dpup, (z,0%).

which execute)(|U|*) times, affecting the time complexity

of steps 5, 6 and 7. Step 5 requires two Computations 'BIfIIS is a contradiction forr € W,-. Similar considerations
one-to-all distances i/ which each takeD(D(U)). Step 6 hold for Wj.. o _ _ L
involves four computations ®.ne Over different subsets @f, The rest of this section is dedicated to proving convergence
however those foiV,. andW,. can be stored from previousOur first step is to show that the evolution determined by
computation. SincéV, and W, are strict subsets df/, step the Discrete Gossip Coverage Algorithm can be seen as a
5 takes longer than step 6. Step 7 is trivial, as is step 8. TH@t-valued map. To this end, for any pair of robotsj) €

total time complexity of the loop is thu®(|U|> D(U)). {1,...,N}?, i # j, we define the mafy; : Party(Q) —
However, the loop in steps 4-7 can be truncated after aﬁ?rtN (Q) by
number of iterations. While it must run to completion to T,:(P) = (P, ”7131_7”'7133_’”.713]\])7

guarantee thatV,- and W,- are an optimal two-partition of
U, the loop is designed to return an intermediate sub-optimghere P, = 1,. and ﬁj = Wp-.

result if need be. IfP; and P; change, therHexpected Will If at time t € R, the pair(i, j) and no other pair of robots
decrease. Our convergence result will hold provided thiat lerform an iteration of the Pairwise Partitioning Rule rthiee

elements ofS are eventually checked if; and P; do not gynamical system on the space of partitions is described by
change. Thus, the partitioning rule can run in any time with

each iteration requirin@(D(U)). | P(t") =Ty (P(t)). (2)
All of the computation and communication requirements iw

Propositior 3.70 are independent of the number of robots and define the set-valued map: Party (Q) = Partn(Q) as

scale with the size of a robot's partition, meaning the Diter T(P)=A{T;;(P)| (i,j) € {1,....N}*,i#j}. (3
Gossip Coverage Algorithm can easily scale up for large seam
of robots in |arge environments. Observe thaﬂZ) can then be reWrittenBer) S T(P(t))

The next two Propositions state facts whose validity is
ensured by LemmB_B.1 of AppendiX B which states a key
property of the Random Destination & Wait Motion Protocol.

Proposition 4.1 (Persistence of Exchange€pnsider N

robots implementing the Discrete Gossip Coverage Algorith

This section is devoted to proving the two statements . : .
Theorem{ZJ7. The proof that the Pairwise Partitioning Ruiﬂﬁen, there almost surely exists an increasing sequence of

i +y
maps a connectedy -partition into a connected/-partition is me m.St,ams{tk}kEZzo such thatP(t;) = Tij(P(tx)) for
straightforward. The proof of convergence is more involve%ome(l’])_ € E(P(tr)). . _
and is based on the application of LemmalA.1 in Appendix A . Pr_oof._ The proof .fOHOWS directly from Le'T‘m-l_
to the Discrete Gossip Coverage Algorithm. LemA.\f'h'Ch |m_pI|e_s tha_t the time betwee_n _two consecutive paewis
establishes strong convergence properties for a particlaas Communications is almost surely finite. u
of set valued maps (set-valued maps are briefly reviewed inThe existence of time sequen¢g, }, ., allows us to to
AppendixA). express the evolution generate by the Discrete Gossip €over

We start by proving that the Pairwise Partitioning Rule i€9€ Algorithm as aflscrete time process. &) := P(tx)
well-posed in the sense that it maintains a connected ipartit and P(k + 1) := P({;), then

Proof of Theoreni 317 statemefit (i)fo prove the state- P(k+1) € T (P(k))

ment we need to show thdt(¢t™) satisfies points (i) through
(iv) of Definition [Z2. From the definition of the PairwisewhereT : Party(Q) = Party(Q) is defined as in[{3).
Partitioning Rule, we have th& (tT)UP; (tT) = P;(t)JP;(t) Given k € Zso, let 7, denote the information which
and P;(t7) N P;(t") = (. Moreover, sincex* € P;(t*) and completely characterizes the state of Discrete Gossip agee
b* € P;(tT), it follows that P;(t*) # 0 and P;(tT) # (. Algorithm just after thek-th iteration of the partitioning rule,
These observations imply the validity of points (i), (ijpda i.e., at timet;” . Specifically,Z, contains the information
(iii) for P(t*). Finally, we must show thal;(¢t*) and P;(t*) related to the partitionP(k), the positions of the robots at
are connected, i.e.P(tT) also satisfies point (iv). To dot;_,, and whether each robot is in theiting or movingstate
so we show that, givemr € W,., any shortest path in att; . The following result characterizes the probability that,
P;(t) U P;(t) connectingz to a* completely belongs téV,-. given Z;, the (k + 1)-th iteration of the partitioning rule is
We proceed by contradiction. Let. .- denote a shortest pathgoverned by any of the mags;, (i,j) € E(P(k)).
in P;(t) U Pj(t) connectingz to «* and let us assume that Proposition 4.2 (Probability of CommunicationiConsider
there existsm € s, 4+ such thatm € W;,-. For m to be a team of N robots with capacities (C1), (C2), (C3), and
in Wy means thatlp, up, 1) (m, b*) < dp,yup, ) (m,a*). (C4) implementing the Discrete Gossip Coverage Algorithm.

IV. CONVERGENCEPROOFS



Then, there exists a real numbeie (0, 1), such that, for any of persistent random switchestated in Assumption (iii) of
k€ Z>o and(i,j) € E(P(k)) LemmalAl, for the special cage= 1. Hence, we are in the
osition to apply Lemm&a“Al1l and conclude convergence in
P[P(k+1) =Ty;(P(k)) | Z] > 7. Enite-time to F;;1|?1yelement of the intersection of the e%uiieh'br

Proof: Assume that at timé one pair of robots commu- ©f the mapsT;;, which by definition is the set of the pairwise-

nicates. Given a paifi, j) € £(P(f)), we must find a lower Optimal partitions. u

bound for the probability thati, j) is the communicating pair.

Since all the Poisson communication processes have the same V. EXPERIMENTAL METHODS& RESULTS

intensity, the distribution of the chance of communication To demonstrate the utility and study practical issues of

?S uniflorm 0\;]er the pairs Whiﬁh ahre “abrlle to communicatlet’he Discrete Gossip Coverage Algorithm, we implemented
€., coseritianrcomm to each other. Thus, we must only, using the open-source Player/Stage robot control system
show th"?‘t(l’j) ha_‘s a positive probgb|l|ty of bemg_able to[@] and the Boost Graph Library (BGL) [24]. All results

communicate at time, which is equivalent to showing that resented here were generated using Player 2.1.1, Stage 2.1

(i.’{]) s ‘."I.ble to goglmuniﬁate forf afpositive fracFionllognihm nd BGL 1.34.1. To compute distances in uniform edge weight
with positive probability. The proof of LemniaB.1 implie graphs we extended the BGL breadth-first search routine with

1 ili — Acomm ri
W'th probability at I_eash/(l e ") any par ing (P(2)) a distance recorder event visitor.
is able to communicate for a fraction of time not smaller than

%, wherea and A are defined in the proof of Lemnia B.1.

Hence the result follows. m A. Large-scale Simulation
The property in Proposition 4.2 can also be formulated asTo evaluate the performance of our gossip coverage al-
follows. Leto : Z>o — {(i,j) € {1,...,N}?,i # j} be the gorithm with larger teams, we tested 30 simulated robots

stochastic process such thdt) is the communicating pair at partitioning a map representing 30m x 225m portion of
time k. Then, the sequence of pairs of robots performing tle@mpus at the University of California at Santa Barbara. As
partitioning rule at time instant§t, },, can be seen as ashown in Fig[#, the robots are tasked with providing coverag

realization of the process, which satisfies of the open space around some of the buildings on campus,
o - a space which includes a couple open quads, some narrower
P[U(k +1) = (i,) | C’(k)} 27 (4) passages between buildings, and a few dead-end spurs. For

for all (4, §) € £(P(k)). this large environment the simulated robots 2ne on a side

Next how that th t function d h ﬁ]nd can move at.0%. Each territory cell is3m x 3m.
ext we Show that the cost function decreases WRENever Mg, g simulation we handle communication and partition-

application ofT" from (3) changes the territory partition. Thising as follows. The communication range is set3ton (10
fact is a key ingredient to apply Lemrha A.1.

) ; edges in the graph) with = 0.399M" The robots wait
Lemma 4.3 (Decreasing Cost Functior)et g graph) eommt s

at their destination vertices for = 3.5s. This value forr
+ +
P e Partf(Q) and let P* € T(P). If P* # P, then was chosen so that on average one quarter of the robots are
Hexpecte&P ) < ’Hexpectetﬁp)-

. . o waiting at any moment. Lower values af mean the robots
Proof: Without loss of generality assume that ;) is the

. ing the Pairwise Partitioning Rule. Th are moving more of the time and as a result more frequently
pair executing the Pairwise Partitioning Rule. Then miss connections, while for higher the robots spend more

Hexpected P) — Hexpected P) time stationary which also reduces the rate of convergence.
With the goal of improving communication, we implemented a
_ . pt . pt
= Hone(CA(F"); 1) + Hond CA(P;); PyT) minor modification to the motion protocol: each robot pids i
— Hone(Cd(P;); P;) — Hone(Cd(P); Pj).  random destination from the cells forming the open bourtbary

According to the definition of the Pairwise Partitioning Eulof its territory. In our implementation, the full partitiory

we have that ifPi+ 4 P, P+ P;, then Io_op may take5 seconds for the largest initial territories in
J Fig.[d. We chose to stop the loop after a quarter second for
Hone(CA(P;"); P7) + Hone(Cd(P;"); P;") this simulation to verify the anytime computation claim.
< Hone(a*;Pf)+7'lone(b*;Pj+) The 30 robots start clustered in the center of the map

between Engineering Il and Broida Hall, and an initial Vason
< Hone(CA(F:); Fi) + Hone( CA(F;); Pj) partition is generated from these starting positions. Trit&l
from which the statement follows. m Partition is shown on the left in Fig.]4 with the robots
ositioned at the centroids of their starting regions. Tiigal
zartition has a cost oB7.1m. The team spends about 27

minutes moving and communicating according to the Dis-

aIgo%m te\tlolveslflln.a;‘;]nlteﬁst;:)at\ce of part;uonsl, and .tt).y -Iihe%rete Gossip Coverage Algorithm before settling on the final
rem statementl (i), the sBt,y (@) is strongly positively partition on the right of Fig[l4. The coverage cost of the

invariant. This fact implies that assumption (i) of LemmdlA. S f
is satisfied. From Lemm@a4.3 it follows that assumption (i|f)Inal equilibrium improved by54% to 17.1m. Visually, the

is alslo satisfied, Witmexpe_ctedpla}’ing th_e role of the function —7p,¢ open boundary oP; is the set of vertices i?; which are adjacent
U. Finally, the property in[{4) is equivalent to the propertyo at least one vertex owned by another agent.

We now complete the proof of the main result, Theokerh 3.
Proof of Theoren{3]7 statemer] (ii):Note that the
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Fig. 4. Images of starting and final partitions for a simaativith 30 robots providing coverage of a portion of camput/@sB.
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Fig. 5. Graph of the costexpecteqOVer time for the simulation in Fig4. Fig. 6. Erratic mobile robot with URG-04LX laser rangefinder

final partition is also dramatically more uniform than th

Square footprin{40cm x 37 with two differential drive
initial condition. This result demonstrates that the aildpon q print40cm em),

is effective for | in | . wheels and a single rear caster. Each robot carries an ahboar
is effective for large teams in large non-convex enwront:;uencomputer with a 1.8Ghz Core 2 Duo processor, 1 GB of

Fig.[d shows th_e evolution Gexpecteqduring the simulation. memory, and 802.11g wireless communication. For navigatio
The largest cost improvements happen early when the robg localization, each robot is equipped with a Hokuyo URG-

that own the large territories on the left and right of the MaPal X laser rangefinder. The rangefinder sc88 points over
communicate with neighbors with much smaller territorie§400 at 10H = with a range of5.6 meters

These big territory changes then propagate through the net-

work as the robots meet and are pushed and pulled towards EXPeriment setup:Our mixed physical and virtual robot
lower cost partition. experiments are run from a central computer which is atthche

to a wireless router so it can communicate with the physical
_ _ robots. The central computer creates a simulated worldgusin
B. Implementation Details Stage which mirrors and extends the real space in which the

We conducted an experiment to test the algorithm usir@ysical robots operate. The central computer also siesilat
three physical robots in our lab, augmented by six simulat&ae virtual members of the robot team. These virtual robas a
robots in a synthetic environment extending beyond the Idpodeled off of our hardware: they are differential drivefwit
Our lab space id1.3m on a side and is represented by théhe same geometry as the Erratic platform and use simulated
upper left portion of the territory maps in Fig. 7. The teorjt  Hokuyo URG-04LX rangefinders.
graph loops around a center island of desks. We extended.ocalization: We use theamcl driver in Player which
the lab space through three connections into a simulatiéblements Adaptive Monte-Carlo Localizatioh [25]. The
environment around the lab, producingla.9m x 15.9m physical robots are provided with a map of our lab with a
environment. The map of the environment was specified willicm resolution and told their starting pose within the map.
a 0.15m bitmap which we overlayed with 8.6m resolution We set an initial pose standard deviation0ofm in position
occupancy grid representing the free territory for the tello  and12° in orientation, and request localization updates using
cover. The result is a lattice-like graph with all edge wésgh50 of the sensor’'s range measurements for each change of
equal t00.6m. The 0.6m resolution was chosen so that ouRem in position or2° in orientation reported by the robot’s
physical robots would fit easily inside a cell. odometry system. We then use the most likely pose estimate

Additional details of our implementation are as follows. output byamc1 as the location of the robot. For simplicity and

Robot hardware:We use Erratic mobile robots from Viderereduced computational demand, we allow the virtual robots
Design, as shown in Fifl 6. The vehicle platform has a roughdgcess to perfect localization information.
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Fig. 7. Each column contains a territory map and the cormdipg overhead camera image for a step of the hardwaresiethp simulation. The position
of the camera in the environment is shown with a camera icaherterritory map. The physical robots are numbered 1, 2,3aadd have the orange, blue,
and lime green partitions. Their positions in each teryitorap are indicated with numbered circles.

Motion Protocol: Each robot continuously executes theobots, with the physical robots, labeled 1, 2, and 3, linpd u
Random Destination & Wait Motion Protocol, with navigatiorin a corner of the lab and the simulated robots arrayed around
handled by thesnd driver in Player which implements Smooththem. The starting positions are used to generate thelinitia
Nearness Diagram navigatidn [26]. Fend we set the robot Voronoi partition of the environment. The physical robotao
radius parameter t@2cm, obstacle avoidance distance tdhe orange, blue, and lime green territories in the uppér lef
0.7m, and maximum speeds (4" and40%. Thesnd driver quadrant. We chose this initial configuration to have a high
is a local obstacle avoidance planner, so we feed it a sere@werage cost, while ensuring that the physical robots will
of waypoints every couple meters along paths found{®)). remain in the lab as the partition evolves.

We consider a robot to have achieved its target location wheny the middle column, robots 1 and 2 have met along their

it is within 20cm and it will then wait forr = 3.5s. For the gnared border and are exchanging territory. In the teyritor
physical robots the motion protocol and navigation proeessmap, the solid red line indicates 1 and 2 are communicating
run on board, while there are separate threads for eactalirtyng their updated territories are drawn with solid orange an
robot on the central computer. blue, respectively. The camera view confirms that the two
Communication and PartitioningAs the robots move, a yohots have met on the near side of the center island of desks.

central process monitors their positions and simulates the.l.he final partition at right in Fig7 is reached aﬂﬁ%

range-limited gossip communication model between both "%inutes. All of the robots are positioned at the centroids of

g%dconv‘lfi‘tu?Ihé(s)zmsa;ra\%eetseiwx;e:ch%iz] aST)d ti‘]ca‘l’tmf[ﬁe:robtt}eir final territories. The three physical robots have goom
s P Sluster in one corner of the lab to a more even spread around

would be likely to communicate when separated by at m%te space. Figld8 shows the evolution of the cost function

four edges, but would also sometimes not connect des . . :
being cl%se When this process determines two robots shgj_t pected@S the experiment progresses, including the costs for
: dach robot. As expected, the total cost never increaseshand t

cor_nm_unlcate_, .'t !nforms the robo_ts _who then pgrfo_rm .thg’lsparity of costs for the individual robots shrinks ovenéi
Pairwise Partitioning Rule. Our pairwise communicatiorn im

o . . . . ) until settling at a pairwise-optimal partition.
plementation is blocking: if robot is exchanging territory g P P P

with j, then it informs the match making process that it is In this experiment the hardware challenges of sensor noise,
unavailable until the exchange is complete. navigation, and uncertainty in position were efficientlynha

dled by theamcl and snd drivers. The coverage algorithm
] ] ] assumed the role of a higher-level planner, taking in posi-
C. Hardware-in-the-Loop Simulation tion data fromamcl and directingsnd. By far the most
The results of our experiment with three physical robotsomputationally demanding component wascl, but the
and six simulated robots are shown in Figs. 7 &hd 8. The Igibsition hypotheses froramc1 are actually unnecessary: our
column in Fig.[T shows the starting positions of the team abverage algorithm only requires knowledge of the vertex
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a robot occupies. If a less intensive localization method

available, the algorithm could run on robots with signifitan
lower compute power.
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D. Comparative analysis

. . . . ig. 9. Initial partition and histogram of final costs for a Me Carlo
In this subsection we present a numerical comparison of tﬁgt comparing the Discrete Gossip Coverage Algorithmckblzars), Gossip

performance of the Discrete Gossip Coverage Algorithm amn@yd Algorithm (gray bars), and Decentralized Lloyd Alghm (red dashed
the following two Lloyd-type algorithms. line). For the gossip algorithms, 116 simulations werequened with different
Decentralized Lioyd AlgorithmThis method is from(TL1] Sequences f parvise communicatons. The Decertalioniaigonthn
and [9], we describe it here for convenience. At each discret
time instantt € Z>o, each robot; performs the following
tasks: (1) transmits its position and receives the positions of
all adjacent robots; (Z) Computes its Voronoi regioRL. based of the final results for the f0||0Wing Monte Carlo test. The
on the information received; and (8)moves to C{P;). environment and robot motion models used are described in
Gossip Lloyd Algorithm: This method is from[[19]. It is Section V-B. Starting from the indicated initial conditione
a gossip algorithm, and so we have used the same comrl 116 simulations of both gossip algorithms. The random-
nication model and the Random Destination & Wait MotioR€ss in the test comes from the sequence of pairwise com-
Protocol to create meetings between robots. Say rokmts; Munications. These sequences were generated using: (1) the
meet at time, then the pairwise Lloyd partitioning rule worksRandom Destination & Wait Motion Protocol with sampled
as follows: (1) robot transmitsP; (¢) to j and vice versa; (2) uniformly from the open boundary of; and v = 3.5s;
both robots determin& = P;(t) U P;(t); (3) roboti sets and (2) the range-limited gossip communication model with
P,(t*) to be its Voronoi region ot/ based on CP;(t)) and  Tcomm = 2.5m and Acomm = 0.3
Cd(P;(t)), andj does the equivalent. The cost of the initial partition in Fid.]9 i5.48m, while
For both Lloyd algorithms we use the same tie breaking rulee best known partition for this environment has a cost of
when creating Voronoi regions as is present in the Pairwigest under2.18m. The histogram in Fig[]9 shows the final
Partitioning Rule: ties go to the robot with the lowest indexequilibrium costs for 116 simulations of the Discrete Gpssi
Our first numerical result uses a Monte Carlo probabilit€¢overage Algorithm (black) and the Gossip Lloyd Algorithm
estimation method froni [27] to place probabilistic bounds o(gray). It also shows the final cost using the Decentralized
the performance of the two gossip algorithms. Recall that thloyd Algorithm (red dashed line), which is deterministic
Chernoff bound describes the minimum number of randofrom a given initial condition. The histogram bins have a
samplesK required to reach a certain level of accuracy in width of 0.10m and start from2.17m. For the Discrete
probability estimate from independent Bernoulli testst &0 Gossip Coverage Algorithm]05 out of 116 trials reach
accuracye € (0,1) and confidencé —n € (0, 1), the number the bin containing the best known partition and the mean
of samples is given by > ﬁlog%. For n» = 0.01 and final cost is2.23m. The Gossip Lloyd Algorithm reaches
e = 0.1, at least 116 samples are required. the lowest bin in only5 of 116 trials and has a mean final
Figure[® shows both the initial territory partition of thecost of 2.51m. The Decentralized Lloyd Algorithm settles
extended laboratory environment used and also a histograh®.48m. Our new gossip algorithm requires an average of
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100} 1 1 selecting unique starting locations for the robots unifigrm
SOJ I! ! at random and using these locations to generate an initial
0 b ' " ' Voronoi partition. The initial cost for each test is showrtiwi
100t . ' the green dashed line. In 9 out of 10 tests the Discrete Gossip
501 | I! 1 Coverage Algorithm reaches the histogram bin with the best
oL S ! . . . known partition in at least12 of 116 trials. The two Lloyd
methods get stuck in sub-optimal centroidal Voronoi piarti
1007 : : more thart% away from the best known partition in more than
58‘ Ii . o . . . half the trials in 7 of 10 tests.
L 1 1
128Ji 1 VI. CONCLUSION
. 0 - : - : : We have presented a novel distributed partitioning and cov-
S 100t ° 1 erage control algorithm which requires only unreliablersho
8 50J! 1 range communication between pairs of robots and works in
S o0 r ! s s s non-convex environments. The classic Lloyd approach te cov
B 100! ' ' erage thlml_zgthn involves iteration qf separa_\te centeand
g SOJ I! i Vo_ron0| partitioning steps. For gossip algonthms, howeve
@ 0 L , , , 1 this separation is unnecessary computationally and we have
shown that improved performance can be achieved without
100¢ : : it. Our new Discrete Gossip Coverage Algorithm provably
S0r 1 . converges to a subset of the set of centroidal Voronoi par-
0 ' ' ' ' ' titions which we labeled pairwise-optimal partitions. dhgh
100} ! ! numerical comparisons we demonstrated that this new subset
501 | |: : of solutions avoids many of the local minima in which Lloyd-
0" : : : : : type algorithms can get stuck.
100} 1 1 Our vision is that this partitioning and coverage algorithm
50;_|J ! ' will form the foundation of a distributed task servicing iget
0 L ; L E— : for teams of mobile robots. The robots would split their time
100b B . between servicing tasks in their territory and moving totaoh
SOJ' 1 their neighbors and improve the coverage of the space. Our
0 L A , , , convergence results only require sporadic improvements to
2 2.5 3 3.5 4 45 the cost function, affording flexibility in robot behaviocasid

capacities, and offering the ability to handle heterogeseo
robotic networks. In the bigger picture, this paper denmmaitss

Fig. 10.  Histograms of final costs from 10 Monte Carlo testingis the potential of gossip communication in distributed cdord
random initial conditions in the environment shown in Hig.c&mparing nation algorithms. There appear to be many other problems

Discrete Gossip Coverage Algorithm (black bars), GossipydllAlgorithm : i .. L
(gray bars), and Decentralized Lloyd Algorithm (red daskiad). For the where this realistic and minimal communication model could

gossip algorithms, 116 simulations were performed witfed#t sequences of be fruitfully applied.

pairwise communications. The Decentralized Lloyd Alduritis deterministic

given an initial condition so only one final cost is shown. Thigal cost for

each test is drawn with the green dashed line. APPENDIX A

Final cost (m)

For completeness we present a convergence result for set-
o o - valued algorithms on finite state spaces, which can be recov-
96 pairwise commgnlcatlons to reach an equilibrium, wheregseq as a direct consequence[of [18, Theorem 4.5].
gossip Lloyd requires 26. Given a setX, a set-valued mafi’ : X = X is a map
Based on these results, we can conclude Wittt confi- which associates to an elemente X a subsetZ ¢ X. A
dence that there is at least 80% probability that 9 robots set-valued map is non-emptyif(z) # ¢ for all z € X. Given
executing the Discrete Gossip Coverage Algorithm startirgnon-empty set-valued m&p an evolution of the dynamical
from the initial partition shown in Fiﬂg will reach a pairse- system associated B is a Sequencéxn}nez>0 c X where
optimal partition which has a cost withit¥s of the best known Tpy1 € T(z,) for all n € Zsg. A setW C X is strongly
cost. We can further conclude withh% confidence that the positively invariantfor 7 if 7'(w) c W for all w € W.
Gossip Lloyd Algorithm will settle more thaa% above the | emma A.1 (Persistent random switches imply convergence):
best known cost at leastt% of the time starting from this |et (X, d) be a finite metric space. Given a collection of maps
initial condition. Ty, ..., T : X — X, define the set-valued map: X = X
Figure[I0 compares final cost histograms for different by 7'(z) = {Ti(z),...,Twm(z)}. Given a stochastic process
initial conditions for the same environment and parametess: Z>o — {1,...,m}, consider an evolutiojxzy, },cz., Of
as described above. Each initial condition was created Bysatisfyingz,, 1 = Tp(,)(2,). Assume that: -
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[Aft(a)ftiff

(i) there exists a set¥’ C X that is strongly positively at a, ¢ must choose: for ] consecutive times.

invariant forT’; Finally, the probability that duFing this interval will not
(i) there exists a functio : W — R such thatU(w’) < communicate with any robot other thans lower bounded by
U(w), for allw € W andw’ € T(w) \ {w}; and e~ ronmA(N=2) " The probability that (i) occurs is thus lower

(iii) there existp € (0,1) andk € N such that, for alli € bounded by(1/ |Q|)(%W e~ AemmAN Combining the bounds for
{1,...,m} [and n € Zso, there existsh] € {1,...,k} (i) and (ii), it follows that
such thatP (o (n + h) =i|o(n),...,o(1)]| > p. A
T 1\ 2T —Aeomm(A+T)N
Fori € {1,...,m}, let F; be the set of fixed points df; in P[E] > (@) € (BTN,
W,ie., F = {w e W|Ti(w) = w}. If zp € W, then the 1he same lower bound holds f&f E,], meaning that
evolution{x, }rez., converges almost surely in finite time to .
an element of the sé#y N+ -N F,,), i.e., there exists almost P [E;;] = P[E,] P [E;] > (4 )Z(ﬁe—mcomm(AH)N.

’ L
surelyr € N such that, forsome € (Fin---NE,), z, == K ) )
forn.> T If event £;; occurs, then robotsand j will be at adjacent

vertices for an amount of time during the interyalt + A)
equal tomin {A —t(a) —t; — 7, A — t(b) — 7;} . Sincet(a)
and ¢(b) are no more than‘@, we can conclude that

. This ApPe”d”? proves a |o|r0phert%/ _Of the f‘zndothesTﬁ'ndj will be within reomm for at leastr. Conditioned on
tion & Wait Motion Protocol which is needed to show t eE-j occurring, the probability that and ; communicate in

persistence of pairwise exchanges.. ) . (t,t+A) is lower bounded byt — e~*~m™ A suitable choice
Lemma B.1:Consider N robots implementing the Dis- for o from the statement of the Lemma is thus

crete Gossip Coverage Algorithm starting from an arbitrary ST A

P € Party(Q). Considert € R>, and let P(t) denote the a= () (7] e~ 2Xomn(A+T)N (1 — e eom)

- . ) IQT
partition at timet. Assume that at time no two robots are | be sh h his al . | b d for th
communicating. Then, there exist > 0 and o € (07 1)’ t can be shown that this also constitutes a lower boun rt

independent ofP(f) and the positions and states of thé)ther possible combinations of initial states: rob@t waiting
robots at timet, such that, for every(i,j) € E(P(1)), and ropotj i; moving rop(_)tsi and j are bothmoving and
P (i, /) communicate withir(t, ¢ + A)] > a. robotsi andj are bothwaiting. |
Proof: To begin, we define two useful quantities. Let
S(Q) = max max max dp,(h,k) be a pseudo- APPENDIXC
; f PePartg(Qh) Pieih,kez - 9S@ | 9 We fi In this appendix we provide the proof of Proposition]2.8
'?me,te_r ogQ,Pan tder! (I:< 0((1)_5 =Lt 7}3 be I;;a which states that any pairwise-optimal partition is also a
pag (i, ) el ( t)' Tm p'% a éaiﬁnt vergcg_sl_e tih"te djj centroidal Voronoi partition.
ur-goal Is 1o lower boun e probability thatand j Proof of Proposition[2J8: To create a contradiction,

will communicate within the |nterva(t,t+A.).. To do SO assume thalP € Party (Q) is a pairwise-optimal partition
we constructone sequence of events of positive prObab'"%ut not a centroidal Voronoi partition. In other words, ter
which enables such communication. Consider the following,. components®, and P; in P and an element of one

i J

_situatior_lzz' i_s in the movingstate'a}nd_ needs ti_rT_te to reach component, say: € P,, such that
its destinationg;, whereas roboy is in the waiting state at
vertex ¢; and must wait there for time; < 7. We denote dg (z,Cd(P;)) > de («, Cd(F)) . (5)
by t(a) (resp.t(b)) the time needed fof (resp.j) to travel
from ¢; (resp.g;) to a (resp.b). Let E; be the event suc
that i performs the following actions irf¢,t + A) without de (x,Cd(Py)) > de (z, Cd(P;)) . (6)
communicating with any robat £ j:

(i) ¢ reachesy; and waits afy; for the durationr; and

APPENDIXB

h ChooseP; such that for allk # j

Let sgb be a shortest path i’ connectinga to b and let

& ) .

(i) i chooses vertex as its next destination and then stayd? € Sz.cdp,) P€ the first element of the path starting from
at a for at leastA — t(a) — t; — 7. Cd(P;) which is not inP;. Let ¢ be such thain € P;.

Let E; be the event such thatperforms the following actions h It thh:tx' then from [(5) and the definition (ﬁg-,cd(Pj) we

in (¢,t+ A) without communicating with any # i: ave tha

(i) 7 waits atg; for the durationr;; and dp, (x,Cd(P;)) > dg (z,Cd(F))

(i) j chooses vertek as its next destination and then stays > dg (z,Cd(P)) = dp,up, (z,Cd(P)))
atb for at leastA — ¢(b) — 7;.

Let B — E- A B which, sincer € P;, creates a contradiction of the fact that
1] T g

Next, we lower bound the probability that evefit occurs. 'S Pairwise-optimal. .
Recall the definition of\comm from Sec[IIA. Since a robot | 2 # . then, given((), one of these two conditions holds:
can have at mostV — 1 neighbors, the probability that (i) () dc (m,Cd(F%)) > dg (m, Cd(F;)), or
of E; happens is lower bounded hy *~mN  For (ii), the (i) da (m,Cd(Fr)) = dg (m, Cd(F;)).
probability thati chooses: is 1/ | P;|, which is lower bounded In the first case, we again have a contradiction using the same
by 1/]Q|. Then, in order to spend at leggk —t(a) —t; —7) logic above withm in place ofz. In the second case, we



must further consider whether there eX|st$%Cd

such

that every vertex ins¢ cd(p,) 1S also in Py If there is not
such a path, then

dpe (m,

. - . 21
and we again have a contradiction as above. If there is sucbj}

[20]

Cd(Pg)) > dG (m, Cd(Pg)) = dP[UPj (m, Cd(PJ))

path, then we can instead repeat this analysis using #simg

place ofj and considering the path formed by tb@ Ccd(Py)

and the vertices in¢ v.cdp,) afterm. Since the next vertex
playing the role ofm must be closer ta;, we will eventually
find a vertex which creates a contradiction. [ |

(1]

(2]

(3]

(4

(5]

6]

(7]

(8]

El

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[25]

REFERENCES

[26]

R. Smith, J. Das, H. Heidarsson, A. Pereira, F. Arridbiel. Cetnic,
L. Darjany, M.-E. Garneau, M. Howard, C. Oberg, M. Ragan, &.lsrt,
E. Smith, B. Stauffer, A. Schnetzer, G. Toro-Farmer, D. Ga& Jones,
and G. Sukhatme, “USC CINAPS builds bridgetEE Robotics &
Automation Magazinevol. 17, no. 1, pp. 20-30, 2010.

P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinatingritreds of
cooperative, autonomous vehicles in warehous&kMagazine vol. 29,
no. 1, pp. 9-20, 2008.

S. Yun, M. Schwager, and D. Rus, “Coordinating consiorctof truss
structures using distributed equal-mass partitioning,”International
Symposium on Robotics Researltucerne, Switzerland), Aug. 2009.
F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smitbynamic
vehicle routing for robotic systemsProceedings of the IEEEvol. 99,
no. 9, pp. 1482-1504, 2011.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: review,”
ACM Computing Surveysol. 31, no. 3, pp. 264-323, 1999.

V. V. Vazirani, Approximation AlgorithmsSpringer, 2001.

P. O. Fjallstrom, “Algorithms for graph partitioningA survey,”
Linkoping Electronic Articles in Computer and InformatidScience
vol. 3, no. 10, 1998.

F. R. Adler and D. M. Gordon, “Optimization, conflict, antbnover-
lapping foraging ranges in ants&merican Naturalistvol. 162, no. 5,
pp. 529-543, 2003.

F. Bullo, J. Cortés, and S. MartineDistributed Control of Robotic
Networks Applied Mathematics Series, Princeton University Press,
2009. Available at http://www.coordinationbook.info.

S. P. Lloyd, “Least squares quantization in PCNEEE Transactions
on Information Theoryvol. 28, no. 2, pp. 129-137, 1982. Presented at
the 1957 Institute for Mathematical Statistics Meeting.

J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Gmage control
for mobile sensing networks,JEEE Transactions on Robotics and
Automation vol. 20, no. 2, pp. 243-255, 2004.

M. Zhong and C. G. Cassandras, “Distributed coveragetrob in
sensor network environments with polygonal obstaclesfFAC World
Congress (Seoul, Korea), pp. 4162-4167, July 2008.

L. C. A. Pimenta, V. Kumar, R. C. Mesquita, and G. A. S. d¥e,
“Sensing and coverage for a network of heterogeneous rbliotEEE
Conf. on Decision and Contro{Cancin, México), pp. 3947-3952, Dec.
2008.

M. Schwager, D. Rus, and J. J. Slotine, “Decentralizadiaptive cov-
erage control for networked robotdyiternational Journal of Robotics
Researchvol. 28, no. 3, pp. 357-375, 2009.

R. Cortez, H. Tanner, and R. Lumia, “Distributed robatadiation map-
ping,” in Experimental Robotic§O. Khatib, V. Kumar, and G. Pappas,
eds.), vol. 54 ofSpringer Tracts in Advanced Robotigsp. 147-156,
Springer, 2009.

O. Baron, O. Berman, D. Krass, and Q. Wang, “The equétdbtation
problem on the plane’European Journal of Operational Research
vol. 183, no. 2, pp. 578-590, 2007.

M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-teas multirobot
coordination: A survey and analysiffoceedings of the IEEEvol. 94,
no. 7, pp. 1257-1270, 2006.

F. Bullo, R. Carli, and P. Frasca, “Gossip coverage mrfor robotic
networks: Dynamical systems on the the space of partitioB$AM
Journal on Control and OptimizatiorAug. 2010. Submitted. Available
at| http://motion.me.ucsb.edu/pdf/2008u-bcf/pdf.

(23]

[27]

14

[19] J. W. Durham, R. Carli, P. Frasca, and F. Bullo, “Disergtartitioning

and coverage control with gossip communication,”ABME Dynamic
Systems and Control Conferengelollywood, CA, USA), pp. 225-232,
Oct. 2009.

J. W. Durham, R. Carli, and F. Bullo, “Pairwise optima\verage control
for robotic networks in discretized environments,” IBEE Conf. on
Decision and Contrgl(Atlanta, GA, USA), pp. 7286—7291, Dec. 2010.
H. Minc, Nonnegative MatricesWiley, 1988.

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwapfko
Computational Geometry: Algorithms and ApplicatioSpringer, 2 ed.,
2000.

B. Gerkey, R. T. Vaughan, and A. Howard, “The Playergstéroject:
Tools for multi-robot and distributed sensor systems Jnin Conference
on Advanced Robotic§Coimbra, Portugal), pp. 317-323, June 2003.
J. G. Siek, L.-Q. Lee, and A. Lumsdaine, “Boost Graph raily.”
http://www.boost.org, July 2007. Version 1.34.1.

S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust it Carlo
localization for mobile robots,Artificial Intelligence vol. 128, no. 1-2,
pp. 99-141, 2001.

J. W. Durham and F. Bullo, “Smooth nearness-diagramgadion,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systeifiice, France),
pp. 690695, Sept. 2008.

R. Tempo, G. Calafiore, and F. Dabbef@andomized Algorithms for
Analysis and Control of Uncertain Systen®pringer, 2005.


http://www.coordinationbook.info
http://motion.me.ucsb.edu/pdf/2008u-bcf.pdf

	I Introduction
	II Preliminaries
	II-A Non-convex Environment as a Graph
	II-B Partitions of Graphs
	II-C Adjacency of Partitions
	II-D Cost Functions
	II-E Optimal Partitions

	III Models, Problem Formulation, and Proposed Solution
	III-A Robot Network Model with Gossip Communication
	III-B Problem Statement
	III-C The Discrete Gossip Coverage Algorithm
	III-D Illustrative Simulation
	III-E Convergence Property
	III-F Complexity Properties and Discussion

	IV Convergence Proofs
	V Experimental Methods & Results
	V-A Large-scale Simulation
	V-B Implementation Details
	V-C Hardware-in-the-Loop Simulation
	V-D Comparative analysis

	VI Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

