On Coordinate-Free Rotation Decomposition: work [18] about sensor networks provides necessary and sofficie

Euler Angles about Arbitrary Axes for the orientation localization problem with only bearing angle
information.
Giulia Piovan and Francesco Bullo We articulate the contributions of this paper as follows. First, in

Section Il, we characterize three basic problems involving rotation

. .. matrices; while the results are simple, they are elegant and of
Abstract—This paper focuses on Euler angles and on the decomposition . . . . .
of rotations. We consider arbitrary rotation axes that are not necessarily possﬂ:?le general interest. Se_cc_;nd, as mf"“n result in Se_c_tlon I, we
mutually orthogonal; we characterize the set of rotation marices that establish necessary and sufficient coordinate-free conditions for the
admit Euler angles about arbitrary rotation axes; and we provide a single  existence of Euler angles about the given arbitrary axes. In other
set of Euler angles formulas that applies to any selection abtation axes. words, as a function of the rotation axes, we characterize the set
Igeré?;fgasc:r?rféei rgfed r";r;%i?:éw:r?dmng Eg%g?ﬁéi}geﬁ:}?’avgwheé? of rotations that admit thg decomposition into subsequent rotatiops.
matrix is manipulated. Remarkably, not all matrices are decomposable when the rotation
axes are not mutually orthogonal. Third, if the Euler angles exist,
then we provide explicit formulas for their computation. Remarkably,
. INTRODUCTION our single set of formulas applies to any possible choice of rotation
Rotations matrices play a key role in the field of kinematics anakes; this statement contrasts with the usual need to handle separately
Euler angles are a powerful approach to the decomposition adigtinct choices of rotation axes. Recall that 12 distinct choices of
parametrization of rotation matrices. Accordingly, rotation matricgotation axes triplets are possible and require corresponding inversion
and Euler angles are standard topics in robotics education, e.g., fggulas. As fourth and final contribution, in Section 1V, we verify
the established textbooks [1], [2], [3]. Euler angles are studied that our general conditions and formulas are consistent with the
classical and geometric mechanics [4], [5], [6] and are an exami@ssic results: (i) if the second rotation axis is orthogonal to the first
of “exponential coordinates of the second kind” in differential geon&nd to the third, then the decomposability conditions are satisfied
etry [7]. A matrix exponential formalism for rotations is described@lways and Euler angles exist for any rotation matrix; (ii) our
in [8] and an early reference on the role of matrix exponential iformulas are equivalent to the standard ones for the case of ZYZ
robotics is [9]. An insightful and geometric treatment of rotatiofculer angles.
matrices in the context of manipulation is given in [10]. Application Compared with the treatment in [14] and in [15], our results and
of Euler angles to flight control are discussed in [11] and to computgroofs are presented in a geometric coordinate-free fashion and are
vision in [12]. The problem of Euler angles about non-orthogonatated in a particularly explicit and concise way.
axes was first considered by Daveport [13], who proved the conditio
for the existence of a solution if the first two and the last two axes. Basic properties of rotation matrices
are mutgally perp_end_lcular. The generalized Euler angles have bgeﬁs usual, we define the operater R® — R?
succesglvely studied in [14], [15], where the problem was tackled B all v,w € R3
a cogrdlnate-depen.dent way. . . formula expresses the rotation matrix about the rotation axig an
Thls paper considers thg following problem: can a rqtatlon bitrary anglex € [, 7| as
equivalent to the composition of three subsequent rotations about
given axes? If so, what are the three angles establishing this de- exp(an) =I5 +sin(a)n + (1 — cos(a))n’. 1)
orthonormal basis, the three. angles are the el known Euler anglg, &7 Unitiength vecton and anglea, the rotation axisn is
' - ang ) S . YfVariant under any rotation about itself:
(In other words, decomposing the rotation matrix is equivalent to
computing Euler angles.) We are interested in the general case where n"exp(an) =n", and exp(an)n =n. )
the three axes are arbitrary and not necessarily mutually orthogo
Additionally, we tackle this rotation decomposition problem in

by vw = v x w,
Given a unit-length vecton € R?, Rodrigues’

r{EI—‘E}IriaIIy, we recall that, for am? € SO(3) andwv € R?,

coordinate-free way. By coordinate free, we mean that all statements Rexp(v) = exp(ﬁ) R. (3)
and proofs require neither a reference frame nor the manipulation of
the components of any array or matrix. B. Basic trigonometric inversion

Our interest for the coordinate-free study of Euler angles about

arbitrary axes has multiple motivations. First, we believe that the . - .
o - . . atélnz(y, z) be the angle between the horizontal positive axis and
decomposition of rotations is a fundamental essential problem an : .
. . . . he_ point(z,y) measured counterclockwise.
that our general discussion has a tutorial value in graduate cours
on robotics. Our interest for coordinate-free characterizations an
Euler angles formulas is part of an ambitious plan to provide a acosf +bsinf = c, 4
geometric treatment to the entire field of kinematics. Moreover, Euler iabled The followi at s hold:
angles about arbitrary axes have been recently applied to a numbe'lnotpe. va;na , € [2_”’ m[. The 9 owing s a.emen S 0_ :
distinct disciplines. The early work [14] is motivated by applications () If @+ < ¢, then equation (4) admits no solution;
in multi-body mechanics. The spacecraft and underwater vehicles rél) if a”+b" = ¢”, then equation (4) admits the unique solution
_orie_ntation pr_oblem via a minim'al numb_er of rotational maneuvers 6 = atan (b, a) + atan (0, ¢); (5)
is discussed in [15] and [16]. Attitude estimation problems involving ) ) ) . . i
non-orthogonal Euler angles are discussed in [17]. Finally, the recefiii) if a” 4 b= > ¢, then equation (4) admits the two solutions
given by

For any point (z,y) in the plane except for the origin, let

€ . : '
fssumea, b andc are constants ifR, consider the equation
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II. BASIC INVERSION AND EQUALITY PROBLEMS INVOLVING
ROTATIONS

In this section we present four basic lemmas that have intrinsic

Furthermore, if the two statements hold, then

0 = atans (an x v, v w— (an)(an)).

interest and that are required by the proofs of the main results in the Proof: To show that (i) implies (i) it suffices to recall equa-
next section. The first two lemmas provide the complete solution @n (2). To show that (i) implies (ii), note that both vectarsand

two decomposition problems for rotation matrices.
Lemma 1 (SO(3) inversion) Assumev and w are unit-length vec-
tors in R® and consider the equation

v = Rw, (7)

in the variableR € SO(3).
Every solution to equatiof7) is written as

R= exp(ﬁ ﬁ) exp (a E)

where 3 is an arbitrary angle in[—m, [, and where the angle: €
[0, 7] and the unit-length vectoe € R® are defined by

o = atans([Jv x w|, v w),
vers(v X w), if vxw#0,
e =
any unit-length vectod v, otherwise
Proof: First, let us show thaH = exp(a @) is a solution of (7):

Hw= exp(a@)w,

=wcosa+ (e X w)sina+ (1 —cosa)(e - w)w.

Becauses andw are mutually orthogonal unit vectors, we have that

Hw = wcosa+ nsina, (8)

wheren is a unit vector perpendicular to the plane containingnd

w take value in the plang/ perpendicular ta» and passing through

the points(n”w)n and (n”v)n. Also note thatn™w = n”v is
different from+1 because of the assumption thais not parallel to

v or w. We claim that (1) the intersection between the unit sphere
S* and the planeX is a circle and (2) the mag — exp (6 n)v is

a bijection betweers' and the circleS? N#. These claims follow
from simple geometric arguments; see Figure 1. Because this map is

Fig. 1. A graphical proof of Lemma 2: there exists a unique argle

w whose direction is given by their cross product. Let us considér, [ such thatexp(6 n)v = w if and only if nTw = nTv.
the orthonormal bas¢w,n,e}. Then, equation (8) represents the

rotation of axisw around axise of an anglea, where « is, by
definition, the angle betweew andv. ThereforeHw = v, that is,
H is solution of (7). Now, for an arbitrary angte € [—7, «[, we
compute

exp(y0)v =wvcosy + (v X v)siny + (1 — cosy)(v - v)v

=VCOSY+ vV —vCosy = .

Thenv = exp(y7) Hw.

bijective, we conclude that the angleis unique.

Finally, we prove the expression for the andleLet vy, andwy
be the orthogonal projections ofandw respectively onto the plane
H. Clearly, vy = v — (v - n)n. Geometric reasoning implies that
0 is the amount of counter-clockwise rotation about the axithat
rotatesvy ontow+y,. On the planéH, consider the orthonormal basis
given bywy /|lvy || andn x vy /||[v«||. We compute the angié by
noting it must satisfy

Now, we want to show that any solution of (7) takes such a cos(6) = V- WH and sin(0) = Wy N X VY
form. Suppose the matri®®? € SO(3) is solution of (7). We oz || ||lww]’ o[ lww]
obtain Rw = exp(y®@)Hw, which can be easily written as 4,4 therefore

exp(a @) exp(y @) Rw = w. It is known that any rotation of a fixed

vector that yields the same vector is equivalent to a rotation of the 0 = atanz(sin6,cos6) = atan(wy - n X v, V¥ - WwWx).

vector about itself by any angle. Then
exp(a &) exp(y )R = exp(d W),
for any é € [—m, w[. From (7) and (3) we obtain

—

exp(6®) = exp(6 R 'v) = R exp(6 @) R,

Simple calculations showing thaby - n x v = w-n x v and

vy cwy =v-w— (v-n)(w-n). [
Our third and last result for this section provides necessary and

sufficient conditions for two rotation matrices to be equal.

Lemma 3 (Equal rotations) Let v and w be unit-length vectors in

and Rexp(a€) = exp((6 — 7) ). Therefore, any solution of (7) g3 gnq |et R, R € SO(3) be rotation matrices. IfRw # +v or

can be written as® = exp(¢v) H, for any ¢ € [, 7[.

Lemma 2 (SO(3) inversion about a fixed axis)Given unit-length
vectorsv, w, and n in R such that eithern is not parallel to

Rw # +w, then the following statements are equivalent:
() R= R, .
(i) v"R=vTR and Rw = Rw.

v or n is not parallel tow. Then the following two statements are/f w 7 Fv, then the following statements are equivalent:

equivalent:
@) nTw =nTv, and
(i) there exists a unique angkee€ [—m, 7| such that

exp(dn)v = w.

(i) R=R, .
(iv) v " R=v"Randw"R=w"R.

Proof: It is trivial to show that (i) implies (i) and that (iii)
implies (iv). We want now to show that (ii) implies (i). Without loss



of generality, assum@&” v # +w. From (ii) we haveRR' v = v  so that the scalar function
andR" Rw = w. Therefore, Lemma 1 implies that there exist angles 0 T 0.7 _
o and B in [—, 7| such that 2 L exp(0a72) s — (11 72)(rs - 12)
o R takes any value between|r{ |||r3] and ||r{|||3]. Note that
RR =exp(av), O et 2 = 1 - (71 -r2)? and JrE |2 = 1 — (2 - 72)%. Hence,
R'R= exp(ﬁ {Z;) (10) equation (15) admits a (possibly non-unique) solutigrif and only
if
|7'1TR1‘3 — (r1-7r2)(rs-1r2)| < \/1 — (r1 -7‘2)2\/1 — (rs - r2)?,

which can be written as (14).
and, from equation (10), we have that Next, we aim to prove that equation (13) has a (possibly non-
unique) solution in{61,02,0s} if and only if equation (15) has a
(possibly non-unique) solution .
Equation (12) is satisfied if either = 3 = 0 or R”v andw are 10 show thatR andexp (61 71) exp(6> 72) exp (03 7s) are equal
parallel. However, by assumption we knd&” v # +w. Therefore, We adopt the re_sults in Lemma 3 with two vectarsand w equal
equation (12) is true only itv = 8 = 0. This impliesRTR -1 to 1 anq 3. Flrst,.let us assume th?&r;i_ #* irl._ In order to
and thereforeR = R. use the first result in Lemma 3, we first right-multiply Iy and,
second, we left-multiply equation (13) byf and take the transpose.
In summary, we obtain:

From equation (9), using equation (3), we obtain

R'R= exp(a }?T\'v), (12)

exp(a IiT\v) = exp(ﬁ 17;) (12)

N(%w, let us shothhat (iv) implies (iii). Equations (iv) implies
RR v =v and RR w = w. According to Lemma 1, there exist

angIeSa, /B in [_77 7T[ such that exp(01 5"\1) eXp(GQ ?2)7‘3 = R’I"g, (17)
RR" = exp(ad), exp(—0s 7s) exp(— 02 F2)rs = BTy, (18)
RRT = eXp(ﬁﬁ))_ Now, we invoke Lemma 2 once for equation (17) and once for

equation (18). First, for equation (17), there exists a unigque angle

The following equivalence 61 € [—m, [ such that the unit-length vectexp (62 72) r3 is rotated

exp(a®) = exp(B W) onto Rr3 about the rotation axis, if and only if
is satisfied only ifa = 8 =0 or if v || w. We know by assumption i (Rrs) = 7’{(6"1)(92 T2)7s). (19)
. ~T
thatv andw are not parallel. Therefore, = 5 = 0, thatis,RR =  Second, for equation (18), there exists a unique afigle [, 7|
I3, which impliesR = R. B such that the unit-length vectexp (—0 72) 71 is rotated ontaR” ry
about the rotation axiss if and only if

I1l. DECOMPOSITION OF ROTATIONSEXISTENCE AND
COMPUTATION OF NONORTHOGONAL EULER ANGLES

This section contains the main results of this note. First, wel€arly, both equations (19) and (20) are equivalent to equation (15)
establish necessary and sufficient conditions for the existence of E\@#8fl: assuming the inequality (14), they both hold true wheneyer
angles about arbitrary rotation axes. In other words, we answer {ieSelected to satisfy equation (15).
following question: when is it possible to decompose a rotation matrix NOW, let us consider the special case
as the product of three rotation matrices about given arbitrary axes? Rrs = +r,. 1)

rgT(RTrl) = rg(exp(—eg T2)71). (20)

To show that equation (13) holds true, we want to invoke the second
result of Lemma 3 withw and v equal tor. and r;. Using
equality (21), equation (13) can be written as:

Theorem 4 (Decomposition of rotations: Existencelet 71, 72
andr; be unit-length vectors ilR® such thatrs is neither parallel to
71 nor to rs. The rotation matrixR € SO(3) admits (possibly non-

tjhni(tqge) Euler angles(01, 02,05} € [ﬂr,ﬁﬁ about {r1, 72,73}, exp(:t91 R\m) exp(92 ;z)exp(gg ?3) =R,
at is, N .

exp(01 ;1) exp(92 ;2) exp(93 ;3) — R, (13) which is equivalent to
if and only if exp (02 72) exp(0s 73) = exp( F 01 Rra) R.

Using the property (3) to the right-hand side, we obtain:
[Pl (R —rary )rs| < \/1 - (rlTrg)2\/1 — (rTr2)2.  (14) g the property (3) 9

Proof: First, let us start our proof by computing the condition
such that equation (15) admits solution®in Left-multiplying by»? ~ @nd, therefore,

and right-multiplying byrs both sides of equation (13), equation (2) exp(0272) exp((03 + 01)73) = R. (22)
implies

exp(&z /1”\’2) exp(03 /1”\’3) = Rexp( F o0, ;I'\g),

7] exp(0272)rs = r] Rrs. (15) Following a similar procedure, equation (13) can also be written as:

Decomposer; and r3 as the orthogonal sum of their components exp((01 £ 03)71) exp(6272) = R. (23)

parallel and perpendicular te,: Now, we left-multiply equation (22) by-2 and take the transpose.
L 1 We obtain:

r1=(ri-ro)ra+7ry, r3=(rs-r2)ra+r3. 16 N
1=(r1-72)T2 + 73 3= (r3-7r2)r2+ 13 (16) exp( — (63 = 6,) Fs)rs = RV, (24)

Using this decomposition and equation (2) we compute . . .
Sincer, is neither parallel ta~; nor to r3, we can use Lemma 2.

1 exp(f272)rs = (r1-12)(rs - 72) + i exp(f27) 7y, According to Lemma 2, there exists a unique arggle-0; in [—, [



such that the unit-length vectet, is rotated ontoR” v, about the Applying Rodrigues’ formula (1) to the previous equation, we see

rotation axisrs if and only if that #> alone must satisfy
riry =ri R ry, acosfz + bsinfy = c, (31)
which, for the equality (21), is equivalent to where a, b and ¢ are defined as in the proposition statement.

T T Equation (13) has solutions only if equation (31) does. This fact
r3T2 =ETiT2. (25)  follows as a consequence of the equivalence betiden /a2 + b2

Now, we left-multiply equation (23) by:T and take the transpose,and (14). To show that, we consider the equivalefpe- 273 —Is.

and using equality (21) we obtain: It is then easy to show that= 'T"{(R — 7"27";)7’3. The right-hand

side of inequality (14) can be written as

eXp(fagfl"\z)T‘l = :|:’I“3, (26
. . . 1— T 2, /1 — T 2 1 1
For Lemma 2, there exists a unique ang@len [—r, 7| such that the \/ (rir2) \/ (rgm2)® = |ri | ”ri HT .
unit-length vectorr; is rotated ontatrs about the rotation axis. = max |(r1)" exp(0272) 73],
2

if and only if +72 73 = 721, which is equivalent to (25). Now, we
want to show that (15) and (25) are equivalent whenever equalily (2thereri andr3 are defined as in (16), i.e., they are the component
holds. For (21), equation (15) becomes equivalent to of r1 and r3 respectively, that is orthogonal te,. Using the
decomposition in (1), the following equivalence holds:

1"1T exp (6’2 ?2)1"3 = =+1, 27)
(ri) 7 ex (627 )rl = —(r1) 737y cos b
which is verified if and only if 1 p\P2T2)Ts = 1) T2h3 2
exp(272)rs = v @8) s e ) e ()
272 3 — 1-
_ _ ” Sinceri andrs are orthogonal tae, it follows that
If we left-multiply equation (28) byr; and take the transpose, we L Lrs
obtain (25). Therefore, equation (15) implies (25). Vice versa, one (ri) vz +(r1) rarz =0,
more application of Lemma 2 shows that equation (25) implies (28) —(rD) ey = —7i Fars = a,
(and, therefore, (15)). Hence, we know that equations (24) aéy (2 (TL)T? e — b
hold true wheneveé. is selected to satisfy equation (15). L) Tels = TRl =
This statement concludes our proof that equation (13) is solvathience,
in {61,602,60s} if and only if equation (15) is solvable if, and p P
Rr; # £7;; and that equation (13) is solvable {2, 05 £ 6} if \/1 —(r ’"2)2\/1 — (rzm2)?
and only if equation (15) is solvable i and Rrs = +r1. n = max |(r1)" exp (02 72)r3 |
Next, we provide explicit formulas for the computation of the Euler .
angles about arbitrary axes. = max |acos b2 + bsin o] = v a? + b2,

and therefore the inequalitiég < v/a? + b2 and (14) are equivalent.

We just showed that equation (15) admits solutions if and only if
equation (31) has solutions. Now, as a direct consequence of the basic
trigonometric inversion in Subsection I-B we establish the following
facts. If¢? > a*4b?, then equations (31) and (13) have no solutions.

Theorem 5 (Decomposition of rotations: Computation)Let 74,
ro and r3 be unit-length vectors iR® such thatr, is neither
parallel to r1 nor to r3. Assume that1, 7> andrs and the rotation
matrix R satisfy the necessary and sufficient condit{@d). Then
all triplets of Euler angles{61, 02,65} satisfying equatior(13) are If ¢ < a? + b2, then equation (15) has two real solutior8s):

determined as follows, and (A2)2, as given in equation (29) in the statement, and these two
. . . . . . 2)2, 1
First, the angled, is one of the two (possibly coincident) solutlonssoIutions are identical only i — a?-1b2. The expressions fah, and

to: 03 as given in the statement follow directly from Lemma 2 in order to
_ S a2 2 _ 2 3
(B2)1,2 = atanz(b, a) £ atanz(Va? +b2 — %), (29) satisfy equations (17) and (18) respectively. The expressiafy foé;
wherea = —ri7ars, b = r{ Pars, andc = r{(R—1I3— ?3)1“3- in the statement follows from Lemma 2 applied to equation (2a).
Second, ifR"r1 # +rs, then the angle$, and 6; are uniquely  Finally, for completeness sake, we consider the special case of the
determined by decomposition of a rotation matrix as the product of two rotation

T T T T matrices about given arbitrary axes.
61 =atany (w; r1 X v1, vi w1 — (v 1) (Wi T1)), 9 y

03 = — atans (wTrg X V3, VI wsz — ('uTrg)(wTrg)) e . .
3 P U8 3 3 ) Lemma 6 (Decomposition into two rotation matrices)Let 74
wherev; = exp(6272)rs, w1 = Rrs, vs = exp(— 602 72)r1, and and 75 be unit-length vectors iiR* such thatr, # +rs, and letR

ws = R r,. be a rotation matrix inSO(3). The following equation
H H T _ T _
Third, if R T1=7T3 (or R r = —rg_), then the angle$; _and exp(94 ?4) exp(95 ?5) R, 32)
03 are not uniquely determined, but their s#m+ 6 (respectively,
their differencefs — 6,) equals admits a unique solutioffs, 65} € [, [ if and only if
— atang (szrg X Tg, TR Wy — (r2Tr3)(wgr3)), rirs = ri Rrs. (33)
for wo = RTrs. Such solution is given by
) . . i . 0, = at T T T T
Proof: Left-multiplying by »7 and right-multiplying byrs both 4 = atans (wy ra X 75, r5 wa — (r574) (Wi Ts)),
sides of equation (13), equation (2) implies 05 = —atans (w3 rs X 74, T4 Wws — (15 r5) (W T5)),

rT exp(02 ?2)1‘3 =T Rrs. (30) wherewy = Rrs andws = RTry.



Proof: It is straightforward to show that (32) implies (33). Let

Proof: Sincer; andr. are equal toz andr is equal toy, the

us now assume that (33) holds. For to Lemma 2, there exists a unigpagameters:, b andc in (29) becomen = 1, b = 0 andc = Rss.

angle« such that

exp(a ;‘\4)1”5 = }2’1'57 (34)

which is equivalent to right-multiplying both sides of equation (32) by

Therefore, equation (29) becomes:

(02)1,2 = atana(£4/1 — R2,, Rs3),

rs. Thereforef, = o.. Now, we take the transpose of equation (33)vhich is equivalent to (37).

According to Lemma 2, there exists a unique anglsuch that

exp(B7s)rs = R ra, (35)

which is equivalent to left-multiplying both sides of equation (32) b
rT and take the transpose. Therefdte = — 5. Hence, for Lemma 3,
equation (32) holds.

The values fo, andds follow from equations (34) and (35) when
Lemma 2 is applied. [ ]

IV. EQUIVALENCE WITH THE CLASSIC TREATMENT OFEULER
ANGLES

In this section we verify that our general conditions and formulage sumg; + ¢, is given byfs + 6,

Now, let us consider the cage” r, # r3. According to Theorem 5
and substitutingr; and r3; with z, and »3 with y, angle 6, is
computed ag; = atana(R23sin 2, Ri3sinf2). In particular,0,
?tang(Rzg, ng) if sinf> > 0, andf; = atanz(—Rzg, —R13) if

sinf; < 0, as in (38). Following the same procedure, we can compute

03, WhiCh, for Theorem 5 |§3 = ataHQ(Rgz sin 92, —R31 sin 92)
In particular, 03 = atans(Rs2, —Rs1) if sinf, > 0, and 03 =
atang(ngg, R31) if sinf; < 0, as in (39)

Now, let us consider the cade” r1 = +r3, which can be written
asR”z = +z. From equation (29), it follows thak = 0 if RT z =
z, and 0y = 47 if RT2z = —z. Hence, the casR”z = +z
corresponds tein 62 = 0 andcos > = +1. Then, from Theorem 5,
— atang(—Rgl, RQQ), which

are consistent with the classic results. Specifically, we show how a€equivalent to (40). This concludes our proof that our results match

results in Theorem 4 confirm the known existence results for thge zvz-Euler angle transformation.

classic Euler angles, i.e., for the case in which the second rotat
axis is orthogonal to both the first and the third rotation axes.

Corollary 7 (Existence for orthogonal axes)Adopting the same
notation as in Theorem 4,if; | r» andrs 1 73, then the necessary
and sufficient conditior{14) holds true always and therefore Euler
angles are well defined for ani® € SO(3).

Proof: If 71 L r, andry L 73, thenrfr, = 0 andrir, = 0.
Therefore, equation (14) becomes

T?R’I‘g <1

Since r; and 3 are unit-length vectors, the above inequality is[6]

always satisfied. Hence, according to Theorem 4, Euler angles
always well defined for any® € SO(3). [

Finally, we verify the following fact: when our general formulas [8]
are applied to specific choices of mutually orthogonal axes, they are

equivalent to the ones reported in the literature. Specifically, #nd
rs are equal toz andr, is equal toy, then equation (13) becomes

(36)

and the rotation matrixRzyz = [Ry;)], @ € {1,2,3}, is called
the ZYZ-Euler angle transformationlt is well known (see, for
example, [1]) that solutions of equation (36) are given by

exp(012) exp(629) exp(632) = Rzyz,

0 = atang(:t\/ 1-— R§3, R33)7 (37)
9, = ataHQ(Rzg, R13), If S%Il 0o > 0, (38)
atan2(_R237 —R13)7 if sinf, < 0,
and
05 — atanz(Rgz, —R31), If s%n 0o > O, (39)
atang(—Rg% ]’%31)7 if sinf> < 0.

If sinf> = 0, and, consequentlyos 82 = +1, only the sumg; + 63
can be determined, and it is given by:

01 & 05 = + atana(Ra1, Ra2). (40)

Corollary 8 (ZYZ-Euler angle transformation) The Euler angles

[ |
I0Mother conventions for rotation axes and Euler angles triplets can
be treated analogously.
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