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On Coordinate-Free Rotation Decomposition:
Euler Angles about Arbitrary Axes

Giulia Piovan and Francesco Bullo

Abstract—This paper focuses on Euler angles and on the decomposition
of rotations. We consider arbitrary rotation axes that are not necessarily
mutually orthogonal; we characterize the set of rotation matrices that
admit Euler angles about arbitrary rotation axes; and we provide a single
set of Euler angles formulas that applies to any selection ofrotation axes.
The results are presented and derived in a coordinate-free setting, where
no reference frames are required and no components of any array or
matrix is manipulated.

I. I NTRODUCTION

Rotations matrices play a key role in the field of kinematics and
Euler angles are a powerful approach to the decomposition and
parametrization of rotation matrices. Accordingly, rotation matrices
and Euler angles are standard topics in robotics education, e.g., see
the established textbooks [1], [2], [3]. Euler angles are studied in
classical and geometric mechanics [4], [5], [6] and are an example
of “exponential coordinates of the second kind” in differential geom-
etry [7]. A matrix exponential formalism for rotations is described
in [8] and an early reference on the role of matrix exponential in
robotics is [9]. An insightful and geometric treatment of rotation
matrices in the context of manipulation is given in [10]. Application
of Euler angles to flight control are discussed in [11] and to computer
vision in [12]. The problem of Euler angles about non-orthogonal
axes was first considered by Daveport [13], who proved the conditions
for the existence of a solution if the first two and the last two axes
are mutually perpendicular. The generalized Euler angles have been
successively studied in [14], [15], where the problem was tackled in
a coordinate-dependent way.

This paper considers the following problem: can a rotation be
equivalent to the composition of three subsequent rotations about
given axes? If so, what are the three angles establishing this de-
composition? When the three rotation axes are selected from an
orthonormal basis, the three angles are the well-known Euler angles.
(In other words, decomposing the rotation matrix is equivalent to
computing Euler angles.) We are interested in the general case where
the three axes are arbitrary and not necessarily mutually orthogonal.
Additionally, we tackle this rotation decomposition problem in a
coordinate-free way. By coordinate free, we mean that all statements
and proofs require neither a reference frame nor the manipulation of
the components of any array or matrix.

Our interest for the coordinate-free study of Euler angles about
arbitrary axes has multiple motivations. First, we believe that the
decomposition of rotations is a fundamental essential problem and
that our general discussion has a tutorial value in graduate courses
on robotics. Our interest for coordinate-free characterizations and
Euler angles formulas is part of an ambitious plan to provide a
geometric treatment to the entire field of kinematics. Moreover, Euler
angles about arbitrary axes have been recently applied to a number of
distinct disciplines. The early work [14] is motivated by applications
in multi-body mechanics. The spacecraft and underwater vehicles re-
orientation problem via a minimal number of rotational maneuvers
is discussed in [15] and [16]. Attitude estimation problems involving
non-orthogonal Euler angles are discussed in [17]. Finally, the recent
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work [18] about sensor networks provides necessary and sufficient
for the orientation localization problem with only bearing angle
information.

We articulate the contributions of this paper as follows. First, in
Section II, we characterize three basic problems involving rotation
matrices; while the results are simple, they are elegant and of
possible general interest. Second, as main result in Section III, we
establish necessary and sufficient coordinate-free conditions for the
existence of Euler angles about the given arbitrary axes. In other
words, as a function of the rotation axes, we characterize the set
of rotations that admit the decomposition into subsequent rotations.
Remarkably, not all matrices are decomposable when the rotation
axes are not mutually orthogonal. Third, if the Euler angles exist,
then we provide explicit formulas for their computation. Remarkably,
our single set of formulas applies to any possible choice of rotation
axes; this statement contrasts with the usual need to handle separately
distinct choices of rotation axes. Recall that 12 distinct choices of
rotation axes triplets are possible and require corresponding inversion
formulas. As fourth and final contribution, in Section IV, we verify
that our general conditions and formulas are consistent with the
classic results: (i) if the second rotation axis is orthogonal to the first
and to the third, then the decomposability conditions are satisfied
always and Euler angles exist for any rotation matrix; (ii) our
formulas are equivalent to the standard ones for the case of ZYZ
Euler angles.

Compared with the treatment in [14] and in [15], our results and
proofs are presented in a geometric coordinate-free fashion and are
stated in a particularly explicit and concise way.

A. Basic properties of rotation matrices

As usual, we define the operatorv̂ : R3 → R
3 by v̂w = v ×w,

for all v,w ∈ R
3. Given a unit-length vectorn ∈ R

3, Rodrigues’
formula expresses the rotation matrix about the rotation axisn of an
arbitrary angleα ∈ [−π, π[ as

exp
(
α n̂

)
= I3 + sin(α)n̂+ (1− cos(α))n̂2. (1)

For any unit-length vectorn and angleα, the rotation axisn is
invariant under any rotation about itself:

n
T exp

(
α n̂

)
= n

T , and exp
(
α n̂

)
n = n. (2)

Finally, we recall that, for anyR ∈ SO(3) andv ∈ R
3,

R exp(v̂) = exp(R̂ v)R. (3)

B. Basic trigonometric inversion

For any point (x, y) in the plane except for the origin, let
atan2(y, x) be the angle between the horizontal positive axis and
the point(x, y) measured counterclockwise.

Assumea, b andc are constants inR, consider the equation

a cos θ + b sin θ = c, (4)

in the variableθ ∈ [−π, π[. The following statements hold:

(i) if a2 + b2 < c2, then equation (4) admits no solution;
(ii) if a2 + b2 = c2, then equation (4) admits the unique solution

θ = atan2(b, a) + atan2(0, c); (5)

(iii) if a2 + b2 > c2, then equation (4) admits the two solutions
given by

θ1,2 = atan2(b, a)± atan2(
√

a2 + b2 − c2, c). (6)

In equations (5) and (6), the equality sign is meant modulo2π so
that the solutions take value in[−π, π[.
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II. BASIC INVERSION AND EQUALITY PROBLEMS INVOLVING

ROTATIONS

In this section we present four basic lemmas that have intrinsic
interest and that are required by the proofs of the main results in the
next section. The first two lemmas provide the complete solution to
two decomposition problems for rotation matrices.

Lemma 1 (SO(3) inversion) Assumev andw are unit-length vec-
tors in R

3 and consider the equation

v = Rw, (7)

in the variableR ∈ SO(3).
Every solution to equation(7) is written as

R = exp
(
β v̂

)
exp

(
α ê

)

whereβ is an arbitrary angle in[−π, π[, and where the angleα ∈
[0, π] and the unit-length vectore ∈ R

3 are defined by

α = atan2(‖v × w‖, vTw),

e =

{
vers(v × w), if v × w 6= 0,

any unit-length vector⊥ v, otherwise.

Proof: First, let us show thatH = exp
(
α ê

)
is a solution of (7):

Hw = exp
(
α ê

)
w,

= w cosα+ (e×w) sinα+ (1− cosα)(e ·w)w.

Becausee andw are mutually orthogonal unit vectors, we have that

Hw = w cosα+ n sinα, (8)

wheren is a unit vector perpendicular to the plane containinge and
w whose direction is given by their cross product. Let us consider
the orthonormal base{w,n, e}. Then, equation (8) represents the
rotation of axisw around axise of an angleα, whereα is, by
definition, the angle betweenw andv. ThereforeHw = v, that is,
H is solution of (7). Now, for an arbitrary angleγ ∈ [−π, π[, we
compute

exp
(
γ v̂

)
v = v cos γ + (v × v) sin γ + (1− cos γ)(v · v)v
= v cos γ + v − v cos γ = v.

Thenv = exp
(
γ v̂

)
Hw.

Now, we want to show that any solution of (7) takes such a
form. Suppose the matrix̃R ∈ SO(3) is solution of (7). We
obtain R̃w = exp

(
γ v̂

)
Hw, which can be easily written as

exp(α ê) exp(γ v̂)R̃w = w. It is known that any rotation of a fixed
vector that yields the same vector is equivalent to a rotation of the
vector about itself by any angle. Then

exp(α ê) exp(γ v̂)R̃ = exp(δ ŵ),

for any δ ∈ [−π, π[. From (7) and (3) we obtain

exp(δ ŵ) = exp(δ
̂̃
R

−1

v) = R̃
−1

exp(δ ŵ)R̃,

and R̃ exp(α ê) = exp((δ − γ) v̂). Therefore, any solution of (7)
can be written as̃R = exp

(
ϕ v̂

)
H, for anyϕ ∈ [−π, π[.

Lemma 2 (SO(3) inversion about a fixed axis)Given unit-length
vectorsv, w, and n in R

3 such that eithern is not parallel to
v or n is not parallel tow. Then the following two statements are
equivalent:

(i) nTw = nTv, and
(ii) there exists a unique angleθ ∈ [−π, π[ such that

exp(θ n̂)v = w.

Furthermore, if the two statements hold, then

θ = atan2

(
w

T
n× v, vT

w − (vT
n)(wT

n)
)
.

Proof: To show that (ii) implies (i) it suffices to recall equa-
tion (2). To show that (i) implies (ii), note that both vectorsv and
w take value in the planeH perpendicular ton and passing through
the points(nTw)n and (nTv)n. Also note thatnTw = nTv is
different from±1 because of the assumption thatn is not parallel to
v or w. We claim that (1) the intersection between the unit sphere
S
2 and the planeH is a circle and (2) the mapθ 7→ exp

(
θ n̂

)
v is

a bijection betweenS1 and the circleS2 ∩H. These claims follow
from simple geometric arguments; see Figure 1. Because this map is

θ

v

n

exp(θn̂)v

H

Fig. 1. A graphical proof of Lemma 2: there exists a unique angleθ ∈
[−π, π[ such thatexp(θ n̂)v = w if and only if nT

w = n
T
v.

bijective, we conclude that the angleθ is unique.
Finally, we prove the expression for the angleθ. Let vH andwH

be the orthogonal projections ofv andw respectively onto the plane
H. Clearly,vH = v − (v · n)n. Geometric reasoning implies that
θ is the amount of counter-clockwise rotation about the axisn that
rotatesvH ontowH. On the planeH, consider the orthonormal basis
given byvH/‖vH‖ andn×vH/‖vH‖. We compute the angleθ by
noting it must satisfy

cos(θ) =
vH ·wH

‖vH‖‖wH‖ , and sin(θ) =
wH · n× vH

‖vH‖‖wH‖ ,

and, therefore,

θ = atan2(sin θ, cos θ) = atan(wH · n× vH, vH ·wH).

Simple calculations showing thatwH · n × vH = w · n × v and
vH ·wH = v ·w − (v · n)(w · n).

Our third and last result for this section provides necessary and
sufficient conditions for two rotation matrices to be equal.

Lemma 3 (Equal rotations) Let v andw be unit-length vectors in
R

3 and letR, R̃ ∈ SO(3) be rotation matrices. IfRw 6= ±v or
R̃w 6= ±v, then the following statements are equivalent:

(i) R = R̃,
(ii) vT R̃ = vTR and R̃w = Rw.

If w 6= ±v, then the following statements are equivalent:

(iii) R = R̃,
(iv) vT R̃ = vTR andwT R̃ = wTR.

Proof: It is trivial to show that (i) implies (ii) and that (iii)
implies (iv). We want now to show that (ii) implies (i). Without loss
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of generality, assumeRTv 6= ±w. From (ii) we haveRR̃
T
v = v

andR̃
T
Rw = w. Therefore, Lemma 1 implies that there exist angles

α andβ in [−π, π[ such that

RR̃
T
= exp

(
α v̂

)
, (9)

R̃
T
R = exp

(
β ŵ

)
. (10)

From equation (9), using equation (3), we obtain

R̃
T
R = exp

(
α R̂Tv

)
, (11)

and, from equation (10), we have that

exp
(
α R̂Tv

)
= exp

(
β ŵ

)
. (12)

Equation (12) is satisfied if eitherα = β = 0 or RTv andw are
parallel. However, by assumption we knowRTv 6= ±w. Therefore,
equation (12) is true only ifα = β = 0. This impliesR̃

T
R = I,

and thereforeR = R̃.
Now, let us show that (iv) implies (iii). Equations (iv) implies

RR̃
T
v = v andRR̃

T
w = w. According to Lemma 1, there exist

anglesα, β in [−π, π[ such that

RR̃
T
= exp

(
α v̂

)
,

RR̃
T
= exp

(
β ŵ

)
.

The following equivalence

exp
(
α v̂

)
= exp

(
β ŵ

)

is satisfied only ifα = β = 0 or if v ‖ w. We know by assumption
thatv andw are not parallel. Therefore,α = β = 0, that is,RR̃

T
=

I3, which impliesR = R̃.

III. D ECOMPOSITION OF ROTATIONS: EXISTENCE AND

COMPUTATION OF NON-ORTHOGONAL EULER ANGLES

This section contains the main results of this note. First, we
establish necessary and sufficient conditions for the existence of Euler
angles about arbitrary rotation axes. In other words, we answer the
following question: when is it possible to decompose a rotation matrix
as the product of three rotation matrices about given arbitrary axes?

Theorem 4 (Decomposition of rotations: Existence)Let r1, r2

andr3 be unit-length vectors inR3 such thatr2 is neither parallel to
r1 nor to r3. The rotation matrixR ∈ SO(3) admits (possibly non-
unique) Euler angles{θ1, θ2, θ3} ∈ [−π, π[3 about {r1, r2, r3},
that is,

exp
(
θ1 r̂1

)
exp

(
θ2 r̂2

)
exp

(
θ3 r̂3

)
= R, (13)

if and only if

|rT
1 (R− r2r

T
2 )r3| ≤

√
1− (rT

1
r2)2

√
1− (rT

3
r2)2. (14)

Proof: First, let us start our proof by computing the condition
such that equation (15) admits solutions inθ2. Left-multiplying byrT

1

and right-multiplying byr3 both sides of equation (13), equation (2)
implies

r
T
1 exp

(
θ2 r̂2

)
r3 = r

T
1 Rr3. (15)

Decomposer1 and r3 as the orthogonal sum of their components
parallel and perpendicular tor2:

r1 = (r1 · r2)r2 + r
⊥

1 , r3 = (r3 · r2)r2 + r
⊥

3 . (16)

Using this decomposition and equation (2) we compute

r
T
1 exp

(
θ2r̂2

)
r3 = (r1 · r2)(r3 · r2) + r

⊥

1 exp
(
θ2r̂2

)
r
⊥

3 ,

so that the scalar function

θ2 7→ r
T
1 exp

(
θ2r̂2

)
r3 − (r1 · r2)(r3 · r2)

takes any value between−‖r⊥
1 ‖‖r⊥

3 ‖ and ‖r⊥
1 ‖‖r⊥

3 ‖. Note that
‖r⊥

1 ‖2 = 1 − (r1 · r2)
2 and ‖r⊥

3 ‖2 = 1 − (r2 · r2)
2. Hence,

equation (15) admits a (possibly non-unique) solutionθ2 if and only
if

|rT
1 Rr3 − (r1 · r2)(r3 · r2)| ≤

√
1− (r1 · r2)2

√
1− (r3 · r2)2,

which can be written as (14).
Next, we aim to prove that equation (13) has a (possibly non-

unique) solution in{θ1, θ2, θ3} if and only if equation (15) has a
(possibly non-unique) solution inθ2.

To show thatR andexp
(
θ1 r̂1

)
exp

(
θ2 r̂2

)
exp

(
θ3 r̂3

)
are equal

we adopt the results in Lemma 3 with two vectorsv andw equal
to r1 and r3. First, let us assume thatRr3 6= ±r1. In order to
use the first result in Lemma 3, we first right-multiply byr3 and,
second, we left-multiply equation (13) byrT

1 and take the transpose.
In summary, we obtain:

exp
(
θ1 r̂1

)
exp

(
θ2 r̂2

)
r3 = Rr3, (17)

exp
(
−θ3 r̂3

)
exp

(
−θ2 r̂2

)
r1 = RT

r1. (18)

Now, we invoke Lemma 2 once for equation (17) and once for
equation (18). First, for equation (17), there exists a unique angle
θ1 ∈ [−π, π[ such that the unit-length vectorexp

(
θ2 r̂2

)
r3 is rotated

ontoRr3 about the rotation axisr1 if and only if

r
T
1

(
Rr3

)
= r

T
1

(
exp

(
θ2 r̂2

)
r3

)
. (19)

Second, for equation (18), there exists a unique angleθ3 ∈ [−π, π[
such that the unit-length vectorexp

(
−θ2 r̂2

)
r1 is rotated ontoRTr1

about the rotation axisr3 if and only if

r
T
3

(
RT

r1

)
= r

T
3

(
exp

(
−θ2 r̂2

)
r1

)
. (20)

Clearly, both equations (19) and (20) are equivalent to equation (15)
and, assuming the inequality (14), they both hold true wheneverθ2
is selected to satisfy equation (15).

Now, let us consider the special case

Rr3 = ±r1. (21)

To show that equation (13) holds true, we want to invoke the second
result of Lemma 3 withw and v equal to r2 and r1. Using
equality (21), equation (13) can be written as:

exp
(
± θ1 R̂r3

)
exp

(
θ2 r̂2

)
exp

(
θ3 r̂3

)
= R,

which is equivalent to

exp
(
θ2 r̂2

)
exp

(
θ3 r̂3

)
= exp

(
∓ θ1 R̂r3

)
R.

Using the property (3) to the right-hand side, we obtain:

exp
(
θ2 r̂2

)
exp

(
θ3 r̂3

)
= R exp

(
∓ θ1 r̂3

)
,

and, therefore,

exp
(
θ2 r̂2

)
exp

(
(θ3 ± θ1) r̂3

)
= R. (22)

Following a similar procedure, equation (13) can also be written as:

exp
(
(θ1 ± θ3) r̂1

)
exp

(
θ2 r̂2

)
= R. (23)

Now, we left-multiply equation (22) byrT
2 and take the transpose.

We obtain:
exp

(
− (θ3 ± θ1) r̂3

)
r2 = R

T
r2. (24)

Sincer2 is neither parallel tor1 nor to r3, we can use Lemma 2.
According to Lemma 2, there exists a unique angleθ3±θ1 in [−π, π[
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such that the unit-length vectorr2 is rotated ontoRTr2 about the
rotation axisr3 if and only if

r
T
3 r2 = r

T
3 R

T
r2,

which, for the equality (21), is equivalent to

r
T
3 r2 = ±r

T
1 r2. (25)

Now, we left-multiply equation (23) byrT
1 and take the transpose,

and using equality (21) we obtain:

exp
(
− θ2 r̂2

)
r1 = ±r3, (26)

For Lemma 2, there exists a unique angleθ2 in [−π, π[ such that the
unit-length vectorr1 is rotated onto±r3 about the rotation axisr2

if and only if ±rT
2 r3 = rT

2 r1, which is equivalent to (25). Now, we
want to show that (15) and (25) are equivalent whenever equality (21)
holds. For (21), equation (15) becomes equivalent to

r
T
1 exp

(
θ2 r̂2

)
r3 = ±1, (27)

which is verified if and only if

exp
(
θ2 r̂2

)
r3 = ±r1. (28)

If we left-multiply equation (28) byrT
2 and take the transpose, we

obtain (25). Therefore, equation (15) implies (25). Vice versa, one
more application of Lemma 2 shows that equation (25) implies (28)
(and, therefore, (15)). Hence, we know that equations (24) and (26)
hold true wheneverθ2 is selected to satisfy equation (15).

This statement concludes our proof that equation (13) is solvable
in {θ1, θ2, θ3} if and only if equation (15) is solvable inθ2 and
Rr3 6= ±r1; and that equation (13) is solvable in{θ2, θ3 ± θ1} if
and only if equation (15) is solvable inθ2 andRr3 = ±r1.

Next, we provide explicit formulas for the computation of the Euler
angles about arbitrary axes.

Theorem 5 (Decomposition of rotations: Computation)Let r1,
r2 and r3 be unit-length vectors inR3 such thatr2 is neither
parallel to r1 nor to r3. Assume thatr1, r2 andr3 and the rotation
matrix R satisfy the necessary and sufficient condition(14). Then
all triplets of Euler angles{θ1, θ2, θ3} satisfying equation(13) are
determined as follows.

First, the angleθ2 is one of the two (possibly coincident) solutions
to:

(θ2)1,2 = atan2(b, a)± atan2(
√

a2 + b2 − c2, c), (29)

wherea = −rT
1 r̂

2

2r3, b = rT
1 r̂2r3, and c = rT

1 (R− I3 − r̂
2

2)r3.
Second, ifRTr1 6= ±r3, then the anglesθ1 and θ3 are uniquely

determined by

θ1 =atan2

(
w

T
1 r1 × v1, v

T
1 w1 − (vT

1 r1)(w
T
1 r1)

)
,

θ3 =− atan2

(
w

T
3 r3 × v3, v

T
3 w3 − (vT

3 r3)(w
T
3 r3)

)
,

wherev1 = exp
(
θ2 r̂2

)
r3, w1 = Rr3, v3 = exp

(
− θ2 r̂2

)
r1, and

w3 = RTr1.
Third, if RTr1 = r3 (or RTr1 = −r3), then the anglesθ1 and

θ3 are not uniquely determined, but their sumθ3 + θ1 (respectively,
their differenceθ3 − θ1) equals

− atan2

(
w2

T
r3 × r2, r

T
2 w2 − (rT

2 r3)(w
T
2 r3)

)
,

for w2 = RT r2.

Proof: Left-multiplying by rT
1 and right-multiplying byr3 both

sides of equation (13), equation (2) implies

r
T
1 exp

(
θ2 r̂2

)
r3 = r

T
1 Rr3. (30)

Applying Rodrigues’ formula (1) to the previous equation, we see
that θ2 alone must satisfy

a cos θ2 + b sin θ2 = c, (31)

where a, b and c are defined as in the proposition statement.
Equation (13) has solutions only if equation (31) does. This fact
follows as a consequence of the equivalence between|c| ≤

√
a2 + b2

and (14). To show that, we consider the equivalencer̂
2

2 = r2r
T
2 −I3.

It is then easy to show thatc = rT
1 (R − r2r

T
2 )r3. The right-hand

side of inequality (14) can be written as
√

1− (rT
1
r2)2

√
1− (rT

3
r2)2 = ‖r⊥

1 ‖‖r⊥

3 ‖
= max

θ2

|(r⊥

1 )
T exp

(
θ2 r̂2

)
r
⊥

3 |,

wherer⊥
1 andr⊥

3 are defined as in (16), i.e., they are the component
of r1 and r3 respectively, that is orthogonal tor2. Using the
decomposition in (1), the following equivalence holds:

(r⊥

1 )
T exp

(
θ2 r̂2

)
r
⊥

3 = −(r⊥

1 )
T
r̂
2

2r
⊥

3 cos θ2

+ (r⊥

1 )
T
r̂2r

⊥

3 sin θ2 + (r⊥

1 )
T
r
⊥

3 + (r⊥

1 )
T
r̂
2

2r
⊥

3 .

Sincer⊥
1 andr⊥

2 are orthogonal tor2, it follows that

(r⊥

1 )
T
r
⊥

3 + (r⊥

1 )
T
r̂
2

2r
⊥

3 = 0,

−(r⊥

1 )
T
r̂
2

2r
⊥

3 = −r
T
1 r̂

2

2r3 = a,

(r⊥

1 )
T
r̂2r

⊥

3 = r
⊥

1 r̂2r3 = b.

Hence,
√

1− (rT
1
r2)2

√
1− (rT

3
r2)2

= max
θ2

|(r⊥

1 )
T exp

(
θ2 r̂2

)
r
⊥

3 |

= max
θ2

|a cos θ2 + b sin θ2| =
√

a2 + b2,

and therefore the inequalities|c| ≤
√
a2 + b2 and (14) are equivalent.

We just showed that equation (15) admits solutions if and only if
equation (31) has solutions. Now, as a direct consequence of the basic
trigonometric inversion in Subsection I-B we establish the following
facts. Ifc2 > a2+b2, then equations (31) and (13) have no solutions.
If c2 ≤ a2 + b2, then equation (15) has two real solutions,(θ2)1
and(θ2)2, as given in equation (29) in the statement, and these two
solutions are identical only ifc2 = a2+b2. The expressions forθ1 and
θ3 as given in the statement follow directly from Lemma 2 in order to
satisfy equations (17) and (18) respectively. The expression forθ3±θ1
in the statement follows from Lemma 2 applied to equation (24).

Finally, for completeness sake, we consider the special case of the
decomposition of a rotation matrix as the product of two rotation
matrices about given arbitrary axes.

Lemma 6 (Decomposition into two rotation matrices) Let r4

and r5 be unit-length vectors inR3 such thatr4 6= ±r5, and letR
be a rotation matrix inSO(3). The following equation

exp
(
θ4 r̂4

)
exp

(
θ5 r̂5

)
= R, (32)

admits a unique solution{θ4, θ5} ∈ [−π, π[2 if and only if

r
T
4 r5 = r

T
4 Rr5. (33)

Such solution is given by

θ4 = atan2

(
w

T
4 r4 × r5, r

T
5 w4 − (rT

5 r4)(w
T
4 r4)

)
,

θ5 = − atan2

(
w

T
5 r5 × r4, r

T
4 w5 − (rT

4 r5)(w
T
5 r5)

)
,

wherew4 = Rr5 andw5 = RTr4.
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Proof: It is straightforward to show that (32) implies (33). Let
us now assume that (33) holds. For to Lemma 2, there exists a unique
angleα such that

exp
(
α r̂4

)
r5 = Rr5, (34)

which is equivalent to right-multiplying both sides of equation (32) by
r5. Therefore,θ4 = α. Now, we take the transpose of equation (33).
According to Lemma 2, there exists a unique angleβ such that

exp
(
β r̂5

)
r4 = R

T
r4, (35)

which is equivalent to left-multiplying both sides of equation (32) by
rT
4 and take the transpose. Therefore,θ5 = −β. Hence, for Lemma 3,

equation (32) holds.
The values forθ4 andθ5 follow from equations (34) and (35) when

Lemma 2 is applied.

IV. EQUIVALENCE WITH THE CLASSIC TREATMENT OFEULER

ANGLES

In this section we verify that our general conditions and formulas
are consistent with the classic results. Specifically, we show how the
results in Theorem 4 confirm the known existence results for the
classic Euler angles, i.e., for the case in which the second rotation
axis is orthogonal to both the first and the third rotation axes.

Corollary 7 (Existence for orthogonal axes)Adopting the same
notation as in Theorem 4, ifr1 ⊥ r2 andr2 ⊥ r3, then the necessary
and sufficient condition(14) holds true always and therefore Euler
angles are well defined for anyR ∈ SO(3).

Proof: If r1 ⊥ r2 andr2 ⊥ r3, thenrT
1 r2 = 0 andrT

3 r2 = 0.
Therefore, equation (14) becomes

r
T
1 Rr3 ≤ 1.

Since r1 and r3 are unit-length vectors, the above inequality is
always satisfied. Hence, according to Theorem 4, Euler angles are
always well defined for anyR ∈ SO(3).

Finally, we verify the following fact: when our general formulas
are applied to specific choices of mutually orthogonal axes, they are
equivalent to the ones reported in the literature. Specifically, ifr1 and
r3 are equal toz andr2 is equal toy, then equation (13) becomes

exp
(
θ1 ẑ

)
exp

(
θ2 ŷ

)
exp

(
θ3 ẑ

)
= RZY Z , (36)

and the rotation matrixRZY Z = [Rij ], i ∈ {1, 2, 3}, is called
the ZYZ-Euler angle transformation. It is well known (see, for
example, [1]) that solutions of equation (36) are given by

θ2 = atan2(±
√

1−R2

33
, R33), (37)

θ1 =

{
atan2(R23, R13), if sin θ2 > 0,

atan2(−R23, −R13), if sin θ2 < 0,
(38)

and

θ3 =

{
atan2(R32, −R31), if sin θ2 > 0,

atan2(−R32, R31), if sin θ2 < 0.
(39)

If sin θ2 = 0, and, consequently,cos θ2 = ±1, only the sumθ1 ± θ3
can be determined, and it is given by:

θ1 ± θ3 = ± atan2(R21, R22). (40)

Corollary 8 (ZYZ-Euler angle transformation) The Euler angles
solutions of equation(36) can be equivalently computed by using the
formulas provided by Theorem 5 applied to the special caser1 =
r3 = z and r2 = y.

Proof: Sincer1 andr2 are equal toz andr2 is equal toy, the
parametersa, b and c in (29) becomea = 1, b = 0 and c = R33.
Therefore, equation (29) becomes:

(θ2)1,2 = atan2(±
√

1−R2

33
, R33),

which is equivalent to (37).
Now, let us consider the caseRTr1 6= r3. According to Theorem 5

and substitutingr1 and r3 with z, and r3 with y, angle θ1 is
computed asθ1 = atan2(R23 sin θ2, R13 sin θ2). In particular,θ1 =
atan2(R23, R13) if sin θ2 > 0, and θ1 = atan2(−R23, −R13) if
sin θ2 < 0, as in (38). Following the same procedure, we can compute
θ3, which, for Theorem 5 isθ3 = atan2(R32 sin θ2, −R31 sin θ2).
In particular, θ3 = atan2(R32, −R31) if sin θ2 > 0, and θ3 =
atan2(−R32, R31) if sin θ2 < 0, as in (39).

Now, let us consider the caseRT r1 = ±r3, which can be written
asRTz = ±z. From equation (29), it follows thatθ2 = 0 if RTz =
z, and θ2 = ±π if RTz = −z. Hence, the caseRTz = ±z

corresponds tosin θ2 = 0 andcos θ2 = ±1. Then, from Theorem 5,
the sumθ3 ± θ1 is given byθ3 ± θ1 = − atan2(−R21, R22), which
is equivalent to (40). This concludes our proof that our results match
the ZYZ-Euler angle transformation.

Other conventions for rotation axes and Euler angles triplets can
be treated analogously.
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