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Abstract—The paper focuses on stiffness matrix computation 

for manipulators with passive joints, compliant actuators and 

flexible links. It proposes both explicit analytical expressions and 

an efficient recursive procedure that are applicable in the general 

case and allow obtaining the desired matrix either in analytical or 

numerical form. Advantages of the developed technique and its 

ability to produce both singular and non-singular stiffness 

matrices are illustrated by application examples that deal with 

stiffness modeling of two Stewart-Gough platforms. 

 
Index Terms— stiffness modeling, parallel manipulators, 

passive joints, recursive computations 

I. INTRODUCTION 

N many applications, manipulator stiffness becomes one of 

the most important performance measures of a robotic 

system. To evaluate stiffness properties, several methods can 

be applied such as Finite Element Analysis, Matrix Structural 

Analysis and Virtual Joint Modeling (VJM) [1-12], where the 

last one is the most attractive in robotic domain since it 

operates with an extension of the traditional rigid model that is 

completed by a set of compliant virtual joints (localized 

springs), which describe elastic properties of the links, joints 

and actuators. This paper contributes to the VJM-based 

technique and focuses on some particularities of the 

manipulators with passive joints. 

For conventional serial manipulators (without passive joints, 

whose stiffness is equal to zero), the VJM approach yields 

rather simple analytical presentation of the desired stiffness 

matrix 
C

K . Relevant expression -T 1

θ θC θ


K J K J  can be found 

in the work of Salisbury [1] and other authors. Here, the matrix 

θ
K  aggregates the stiffness coefficients of all elastic virtual 

joints, and 
θ

J  is the corresponding kinematic Jacobian. 

Further, this result was extended by Gosselin for the case of 

parallel manipulators (with numerous passive joints) assuming 

that the manipulator structure is not over-constrained [2]. For 

more general case, that includes overconstrained architectures, 

a solution was proposed in our previous work [13], but the 
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developed technique requires rather intensive numerical 

computations related to high-dimensional matrix inversion. 

This work focuses on reduction of the computational 

complexity by means of analytical inversion of some sub-

matrices and application of dedicated recursive procedures.  

It is also worth mentioning that some previous works [14] 

propose (or at least discuss) a trivial solution of the considered 

problem, which deals with a straightforward modification of 

the stiffness matrix 
θ

K , in accordance with the passive joint 

type and geometry (corresponding rows and columns are 

simply set to zero). However, as follows from our study, this 

approach gives true results if (and only if) the matrix 
θ

K  is 

diagonal. It is clear that it is not valid in the general case where 

there is a coupling between different types of the elementary 

virtual springs presented by non-diagonal elements of 
θ

K . 

Non-triviality of this problem is clearly confirmed by a 

motivation example presented in web-appendix of this paper 

[15], which deals with a single passive joint. 

II. PASSIVE JOINTS IN A SERIAL CHAIN 

In contrast to conventional serial manipulators, whose 

kinematics does not include passive joints and assures full 

controllability of the end-effector, parallel manipulators 

include a number of under-actuated serial chains that are 

mutually constrained by special connection to the base and to 

the end-platform. Let us derive an analytical expression for the 

stiffness matrix of such kinematic chain taking into account 

influence of the passive joints. 

The kinematic chain under study (Fig.1) consists of a fixed 

base, a series of flexible links, a moving platform, and a 

number of actuated or passive joints separating these elements. 

Following the methodology proposed in our previous 

publications [13], a relevant VJM model may be presented as a 

sequence of rigid links separated by passive joints and six-

dimensional virtual springs describing elasticity of the links 

and actuators. 

 
Fig. 1. The VJM model of a general serial chain (Ps – passive joint, Ac – 

actuated joint) 

It can be proven that the static equilibrium equations of this 
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mechanical system may be written as  

 
T T

θ θ q
; ; ( , )  J F K θ J F 0 t g q θ  (1) 

 

where 
q θ

,  J J  are kinematic Jacobians with respect to the 

passive and virtual  joint coordinates q , θ  respectively; F  is 

the external loading (force and torque), 
θ

K  the aggregated 

stiffness matrix of the virtual springs, the vector t  includes the 

position and orientation (Cartesian coordinates and Euler 

angles) of the platform. Using these equations simultaneously 

and applying the first-order linear approximation under 

assumption that corresponding values of the external force F  
and the coordinate variations are small enough (see [13] for 

details), one can derive the matrix expression   

 
1

1 T

θ qC

T

q




 
  

   
      

J K J JK

J 0
 (2) 

 

that allows obtaining the desired Cartesian stiffness matrix 
C

K  

numerically, by extracting a 6 6  sub-matrix in upper-left 

corner of (2).  

In spite of apparent simplicity, the above procedure is not 

convenient for the parametric stiffness analysis that usually 

relies on analytical expressions. To derive such expression for 

the matrix 
C

K , let us apply the blockwise  inversion based on 

the Frobenius formula [16] that allows to present the desired 

stiffness matrix as 

 
0 0 T 0 1 T 0

C C C q q C q q C
( )


 K K J J K J J KK . (3) 

 

Here, the first term 0 -1 T 1

C θ θ θ
( )


K J K J  is the stiffness matrix of 

the corresponding serial chain without passive joints and the 

second term defines the stiffness reduction due to the passive 

joints. It worth mentioning that this result is in good agreement 

with other relevant works [8][17] where 
C

K  was presented as 

the difference of two similar components but they were 

computed in a different way. 

Analyzing the latter expression, one can get the following 

conclusions concerning the stiffness matrix properties: 

Remark 1. The first term of the expression (3) is non-

singular if and only if  θ
6rank J , i.e. if the VJM model of 

the chain includes at least 6 independent virtual springs. 

Remark 2. The second term of the expression (3) is non-

singular if and only if  q q
rank nJ , where 

q
n  is the number 

of passive joints.  

Remark 3. If both terms of (3) are non-singular and 
q

1n  , 

their difference produces a symmetrical stiffness matrix, which 

is always singular and  C q
6rank n K .  

Remark 4. If the matrix 0

C
K  of the chain without passive 

joints is symmetrical and positive-definite, the stiffness matrix 

of the chain with passive joints 
C

K  is also symmetrical but 

positive-semidefinite. 

Further simplification can be achieved by applying block-

wise inversion to 
T 0 1

q C q
( )


J K J , which presents the main 

computational difficulty in equation (3). Relevant results are 

summarized in the following proposition.  

Proposition. If the chain does not include redundant passive 

joints, expression (3) allows recursive presentation  

 
1 T 1 T

C C C q q C q q C
( ) ; 0,1, 2...

i i i i i i i i i
i

 
  K K K J J K J J K  (4) 

 

where 0 -1 T 1

C θ θ θ
( )


K J K J  and sub-Jacobians 

q

i
J  are extracted 

from 
q

J  in arbitrary order (column-by-column, or by groups 

of columns), superscripts 'i' and 'i+1' define iteration number. 

Corollary. The desired stiffness matrix 
C

K  can be 

computed in 
q

n  steps, by sequential application of expression 

(4) for each column of the Jacobian 
q

J  (i.e. for each passive 

joint separately).  

These results give convenient computational techniques that 

will be used below for obtaining the stiffness matrix for 

parallel manipulators, they are illustrated in Section V. More 

detailed and formal proof is presented in web-appendix [15]. 

III. PASSIVE JOINTS IN A PARALLEL MANIPULATOR 

Let us consider now a parallel manipulator, which usually 

may be presented as a strictly parallel structure of the actuated 

serial legs connecting the base and the end-platform (Fig. 2) 

[18]. Using the methodology described in previous section and 

applying it to each leg, there can be computed a set of 

Cartesian stiffness matrices ( )

C

i
K  expressed with respect to the 

same coordinate system but corresponding to different 

platform points. If initially the chain stiffness matrices were 

computed in local coordinate systems, their transformation to 

the global system  is performed in standard way [19].  

 

(c)

(b)

1u


2u


1v
 2v


3v


(a) F

M

1v
 2v


3v
 F

M

1v
 2v


3v


F

M

 
Fig. 2. Typical parallel robot (a) and transformation of its VJM models (b, c) 

 

To aggregate these matrices ( )

C

i
K , they must be also re-

computed with respect to same reference point of the platform. 

Assuming that the platform is rigid enough (compared to the 

legs), this conversion can be performed by extending the legs 

by a virtual rigid link connecting the end-point of the leg and 

the reference point of the platform (see Fig. 2 where these 

extensions are defined by the vectors 
i

v ).  

After such extension, an equivalent stiffness matrix of the 

leg may be expressed using relevant expression for a usual 

serial chain, i.e. as ( ) T ( ) ( ) 1

v C v

i i i 
J K J , where the Jacobian ( )

v

i
J  

defines differential relation between the coordinates of the i-th 

leg end-frame and the end-platform reference frame. Hence, 

using the superposition principle, the final expression for the 

stiffness matrix of the parallel manipulator can be written as 
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T 1
( ) ( ) ( ) ( )

С v С v

1

m

m i i i

i

 



 K J K J  (5) 

 

where m is the number of serial kinematic chains in the 

manipulator architecture. It is implicitly assumed here that all 

stiffness matrices (both for the legs and for the whole 

manipulator) are expressed in the same global coordinate 

system. Hence, the axes of all virtual springs are parallel to the 

axes x, y, z of this system and corresponding Jacobians and 

their inverses can be easily computed analytically as 

 

 
1

3 3( ) ( )

v v

3 36 6 6 6

( ) ( )
,

i ii i


 

     
    
   

I v I v
J J

0 I 0 I
 (6) 

 

where 
3

I  is the identity matrix of size 3 3 , and  v  is a 

skew-symmetric matrix corresponding to the vector v . 

Therefore, expression (5) allows explicit aggregation of the 

leg stiffness matrices with respect to any given reference point 

of the platform. It is worth mentioning that in practice, the 

matrices ( )

C

i
K  are always singular while there aggregation 

usually produce a non-singular singular matrix [13].  

IV. COMPUTATIONAL TECHNIQUES  

A.  Recursive computations: single-joint decomposition 

Let us assume that a current recursion deals with a single 

passive joint corresponding to the i-th column of the Jacobian 

q
J , which is denoted as 

q

i
J  and has size 6 1 . In this case, the 

matrix expression T 1

q C q
( )

i i i 
J K J  is reduced to the size of 1 1  

and the matrix inversion is replaced by a simple scalar 

division. Besides, the term  
C q

i i
K J  has size 6 1 , so the 

recursion (4) is simplified to  

 

1 T ( 1) ( ) ( ) ( )

C C

1 1
or

i i i i i i

i i jk jk j k
K K u u

 

 
         
     

K K u u  (7) 

 

where 
C q

i i

i
u K J  is a 6 1 vector and T

q C q

i i i
  J K J  is a 

scalar. It can be also proven that each recursion reduces the 

rank of the stiffness matrix by 1. 

Hence, in the general case, the recursion (4) involves rather 

non-trivial transformations of 
C

i
K , different from simple 

setting to zero a row and/or a column. Let us consider now 

several specific (but rather typical) cases where the 

transformation rules are more simple and elegant. 

B. Analytical computations: chains with trivial passive 

joints 

In practice, many parallel robots include kinematic chains 

for which the passive joint axes are collinear to the axes x, y or 

z of the Cartesian coordinate system. For such architectures, 

the vector-columns of the Jacobian 
q

J  include a number of 

zero elements, so the expressions (7) can be essentially 

simplified. Let us consider a set of trivial cases where 
q

i
J  are 

created from the columns of the identity matrix: 

Corresponding passive joints will be further referred to as 

the „trivial‟ ones. It can be easily proven that they cover the 

following range of the joint geometry: 

(i) translational passive joint with arbitrary spatial 

position (with the joint axis directed along x, y or z); 

(ii) rotational passive joints positioned at the reference 

point (with the joint axis directed along x, y or z). 

Besides, it is worth to consider additional case-study 

corresponding to „quasi-trivial‟ passive joints: 

(iii) rotational passive joints shifted by the distance L with 

respect to the reference point in the direction either x, 

y or z (with the joint axis directed along x, y or z). 

For the trivial passive joints, assuming that ( )

q

p
J denotes the 

vector-column with a single non-zero element in the p-th 

position, the recursive expression (7) for the Cartesian stiffness 

matrix is simplified to   

 
( 1) ( ) ( ) ( ) ( )i i i i i

jk jk jp pk pp
K K K K K


      
     

 (8) 

 

that is very simple and can be easily performed analytically. 

Web-appendix [15] contains a number of examples illustrating 

stiffness matrix transformations for trivial and quasi-trivial 

passive joints. They can be used as templates for analytical 

computations.  

V. APPLICATION EXAMPLES  

Let apply now the developed technique to computing of the 

stiffness matrix for two versions of a general Stewart-Gough 

platform presented in Fig. 3 [17][20]. It is assumed that in both 

cases the manipulator base and the moving plate (platform) are 

connected by six similar extensible legs (Fig. 4) but their 

spatial arrangements are different: 

Case A: the legs are regularly connected to the base and 

platform, with the same angular distance 60°.  

Case B: the legs are connected to the base and platform in 

three pairs, with the angular distance of 120° between the 

mounting. 

 
Fig. 3 Geometry of the Stewart-Gough platforms under study 
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P-joint
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Fig. 4.  Geometry of the manipulator leg and its VJM model 

 

Using the proposed technique and performing sequentially 

relevant recursive computations (see web-appendix [15] for 

details), the desired stiffness matrix of the Gough platform for 

the both cases can be presented as 
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0
6

0 T 0 T

0С 11

1

( )
( )

i

i i i

i i i

K


 
         


u

K u v u
v u

 (9) 

where 
11

K  is the corresponding element of 
θ

K , the vectors 

i
u , 

i
v  describing spatial locations of the legs are computed 

via the direct kinematics, and 0

i i
v u  is the vector product. 

Further, after relevant transformations, the desired stiffness 

matrices for the cases A, and B can be expressed as 
2

2

2

( ) 11

C 2 2 2

2 2

0 0 0 0

0 0 0 0

0 0 2 0 0 03

0 0 0 0

0 0 0 0

0 0 0 0 0 0

a a

a a

A

a

a

d rhd

d rhd

hK

L rhd r h

rhd r h

 

 
 

 
  

 

 

 

  

K  (10) 

and 
2

2

2

( ) 11

C 2 2 2

2 2

2 2

0 0 0 0

0 0 0 0

0 0 2 0 0 03

0 0 0 0

0 0 0 0

0 0 0 0 0 1.5

a b

a b

B

b

b

d Rr rhd

d Rr rhd

hK

L rhd r h

rhd r h

r R

 
 

  
 

  
 

 
 
  

K  (11) 

where R , r  define location of the leg connection points, 

a
d R r  ; / 2

b
d R r  ; L  is the leg length, h  is the 

vertical distance between the base and the platform. As follows 

from these expressions, the matrix ( )

C

A
K  is singular and allows 

“free” rotation of the end-platform around the vertical axis. In 

contrast, the matrix ( )

C

B
K  is non-singular and the manipulator 

resists to all external forces/torques applied to the platform. 

These results are in good agreement with previous research on 

the Stewart-Gough platforms and confirm efficiency of the 

developed computational technique for manipulator stiffness 

modeling [6][20]. Hence, the developed technique allows us 

obtaining analytical expressions for 
C

K  rather easily. 

VI. CONCLUSION  

For robotic manipulators with passive joints, the stiffness 

matrices of separate kinematic chains are singular. So, the 

most of existing stiffness analysis methods can not be applied 

directly. To deal with such architectures in more efficient way, 

this paper proposes a new approach that allows obtaining both 

singular and non-singular stiffness matrices and which is 

appropriate for a general case, independent of the type and 

spatial location of the passive joints. The developed approach 

is based on the extension of the virtual-joint modeling 

technique and includes two basic steps which sequentially 

produce stiffness matrices of separate chains and then 

aggregate them in a common matrix. 

In contrast to previous works, the desired stiffness matrix is 

presented in an explicit analytical form, as a sum of two terms. 

The first of them has traditional structure and describes 

manipulator elasticity due to the link/joint flexibility, while the 

second one directly takes into account influence of the passive 

joints. To simplify analytical computations, it is proposed a 

recursive procedure that sequentially modifies the original 

matrix in accordance with the geometry of each passive joint.  

Advantages of the developed technique are illustrated by 

application examples that deal with stiffness modeling of two 

Stewart-Gough platforms. Future work will focus on the 

extension of these results for the case of parallel manipulators 

with non-rigid platform and essential external loading. 
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