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An interval approach for stability analysis; Application
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Abstract— This paper proposes an interval based method for the
validation of reliable and robust navigation rules for mobile robots. The
main idea is to show that for all feasible perturbations, thee exists a
safe subset of the state space such that the system cannotagmse The
methodology is illustrated on the line following problem ofa sailboat and
then validated on an actual experiment where an actual sailbat robot,
named Vaimos, sails autonomously from Brest to Douarnenez (more than
100 km).

Index Terms—differential inclusion, interval analysis, line following,
robotics, sailboat, stability, viability.

I. INTRODUCTION

Interval analysis [18] is an efficient tool for solving namar
problems. In the domain of robotics and automatic conttohais
been used to study rigorously the stability of difficult Emg17] or
nonlinear systems [26], to characterize capture domairig1@], to
compute nonlinear controllers [10] and to build reliablesetvers
[21][7][1]. In this context, there exists also some pointrarical
techniques [23] which use some Lipschitz properties of fretesns
or ellipsoidal methods [22] when the system is linear. Naowerival
methods can take advantage of constraint propagation togiso-
vide efficient resolution algorithms [5] and their ability integrate
nonlinear state equations in a guaranteed way [8]. Whenytsters
is both nonlinear and uncertain, in a set-membership corgbility
analysis is a difficult problem and to our knowledge, no tdéa
algorithm are available in this context. The goal of the paise
twofold. It first shows that interval analysis can also beduer
reliable stability analysis of uncertain nonlinear sysserfihen, the
paper deals with an actual autonomous uncertain systemhvidia
sailboat robot. The principle of the approach is to repreganertain
systems by differential inclusions [2] and then to perforityapunov
analysis in order to transform the stability problem int@&isversion
framework. An illustration related to the validation of antl| law
for a sailboat robot [4][25] will be provided.

The paper is organized as follows. Section Il presents thi®mo
of V-stability which is derived from Lyapunov theory for statyil
analysis of nonlinear systems. It also shows thatithstability can
be cast into a set inversion problem which can be solved el
and in a guaranteed way by interval-based algorithms. iiffial in-
clusions are a generalization of state equations when seth@rship
uncertainties occur. This notion is presented in Sectignahd the
V-stability is extended to deal with differential inclusgnt is also
shown how interval based methods can be used to prove their
stability. In Section IV, the approach is illustrated on t®blem
of finding a controller for a sailboat which i¥-stable and which
also satisfies some feasibility constraints. A convincirgegimental
validation demonstrates the applicability and the robessnof the
resulting controller. Section V concludes the paper.

Il. V-STABILITY

Consider a system described by the following state equation

% =f(x). 1)
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This system may correspond to some controlled robot movirgni
autonomous mode. Consider a differentiable funcion R" — R.
The system (1) is said to b€-stable if there exists > 0 such that

)

This definition, clearly influenced by the book of Aubin and
Frankowska [2], has the main advantage that it can be studird)
numerical methods. The notion df-stability is weaker than the
stability in the sense of Lyapunov [15]. Figure 1 illustsata V-
stable system which has a limit cycle (represented by theegir
Define theV-invariant set(painted gray in the picture) by =
V=1 (] —00,0]) = {x|V (x) < 0}. Note thatV is not necessarily
bounded. The following theorem tells us that if the systefriistable
then it will be captured byy.

Theorem 1 If (1) is V-stable then

(i) forall x(0),3t > 0 such thatx (¢t) € V
(i) x@t)eV = x([t,00]) CV.

Proof. Let us first prove (i). Ifx (0) € V, the proposition is trivial.
If now x (0) ¢ V. SinceV (x(t)) < —e as long asV’ (x(t)) > 0,
then3t;, € |0, @J such thatV' (x (¢1)) = 0. The property (i)
of (3) is thus satisfied. We shall prove (ii) by contradictidssume
nowV (x(t)) < 0andV (x(t+ 7)) > 0 with 7 > 0. Then3t; €
[t,t + 7] such thatV (x (1)) = 0 and V (x(t1)) > 0, which is
inconsistent with (2)H

Remark. Figure 2 gives an example where we have
(V (x)>0 = V(x)< 0) and (i) is not satisfied. This situation

(V(x)zo :>vwx)g-f).

®)

cannot appear if the propertQV x)>0 = V(x)<e< 0) is
true, as required by the definition &f-stability.

The following theorem shows that proving thestability amounts
to solving a set inversion problem.

Theorem 2 Consider a small real number> 0 and define the
function

9= (x) = min (g—‘; (x) .f(x) +¢, V(x)) . 4)
We have the two following relations
@ g ([0,00) =0 = (1)isV-stable, )

®) g ([0,00) 0 =

Proof. We shall first prove (a). Assume that for some given
e we haveg! ([0,00]) = 0, ie., Vx,g:(x) < 0. From (4),
we get that for allx, we have 2% (x).f(x) + e < 0 or

(1) is V-unstable
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Fig. 1. If V is the function represented by its level curves, then théerys
represented by the vector field ¥s-stable.
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Fig. 2. AlthoughV (x) < 0, the trajectory (dot line) never enters insitle
(painted gray)
Fig. 3. Lower and upper set inversion of a thick functlon Treme box
corresponds td—20 20} Black boxes correspond B! (Y) and grey

V(x) < 0. Now, from the logic rule(B or -A) < (A= B), boxes do not intersed L ov).
we get the following relatiofV (x) > 0 = 2% (x) .f (x) + ¢ < 0).
Or equivalently(V (x) >0 = V (x) < —¢) . As a consequence,
the system (1) isV-stable. The proof for (b) will be by V-unstable if none of its solution satisfies (2). Sifeéx) is closed
contradiction. Assume that (1) i§/-stable. Then from (2), andV is differentiable, the thick function
we have the relation (V (x) >0 = V(x)< 0) or equiva- ov
lently (V (x) > 0= 2Y (x).f (x) < 0). Thus, for allx, we have G (x) = min <a (x) .F(x)+[e], V(X)) ®
Y (x).f(x) <0orV(x)<0,ie,go(x)<0. W
where [e] = [0,e*] is also an interval valued function. Here, the
IIl. DIFFERENTIAL INCLUSION min operator should be understood in the Minkowski sense.

When the system becomes uncertain, the state equation can beheorem 3 If G (x) is the thick function defined by (8), we have
represented by a differential inclusion. This notion makgmssible the two following relations
to develop numerical algorithms to study rigorously thdits [23],
[6]. This section presents the notion of differential irsthn and (@ G ([0,00]) =
shows how thé/-stability can be extended to uncertain systems. (b) G'(]0,00]) #

1 .
= (7) is V-stable )

0
0 = (7)isV-unstable

A. Thick functions —1 ®)

Proof. Let us first prove (a).G ([0,00]) = 0 =

A multivalued function(or thick function F from R" — R? (x| G(x) N [0,00] #0} = 0 = ¥x,G(x) C] —
associates to eachc R" a convex subseF (x) of R” (see e.g., [3], 0] 1) X, mm(%v (x) F(x) + [€],V(x) ] - 00,0 =
[2]). Given a subset oR”, we define the lower and upper mversegfx min(2Y (x) % + et V(x)) < 0 = ¥x,(V(x) < —et or
[3] as follows V) < 0) = V(X >0=Vx < —") = (7)is V-
F(Y) = {x|Fx)CY} ) Stable. Let us now prove (I8} ([0,00]) # 0 = Qx| G c

F (Y) = {x|Fx)nY#0}. [0,00[} # 0 = Ix,G (x) C [0,00] 9 Ix, mln(%v (x).F(x) +

Interval algorithms make it possible to compute efficiemfijaranteed (€], V(%)) < [0,00[ = 3x ;min (32 (x) %, V(x)) > 0 =
approximations of the upper and lower inverses Byof a set 3x, (V (x) >0andV(x) > ()) = (7) is V-unstable &

Y C R”. Consider for instance the thick functiofl (z1,z2) = ConsequenceUsing a set inversion algorithm, we are able to prove
(@1 — [-1,1])% + (22 — [-2,2])* = {(&1 —a)® + (z2—b)*,a € that a differential inclusion is or not-stable by computing two
[—1,1],b € [—2, 2]}. Interval arithmetic makes it possible to evaluatgubpavmgs (i.e., union of boxeX), X such thaX ¢ G~ ([0, o0[) C

F. For instanceF (3, 1) = 3-[-1,1))* + (1-[-2,2)* = ' (0, 00]) C X. Taking (9) into account, we conclude thafifis

2 2
(12,4])° + ([-1,3])" = [4,16] + [0, 9] = [4,25]. An accurate not empty, (7) isV-unstable and i is empty then (7) is/-stable.
approximation of upper and lower inverses By of the interval  pa o etric case Assume now that the robot depends on a para-

[10,100] is represented on Figure 3. Xf is the union of all black metric vectorp, i.e., it can be described by the following differential
boxes and ifX is the union of black boxes with the two white

inclusion
rings then |n£erval analysis guarantees the following @surlesX C .
F1(Y) c F '(Y) c X. Note that since the intervdlt, 25] is xeF(x,p). (10)
neither inside nor outsid¢l0, 100] the vector(3,1) is inevitably ) )
inside the white zone. The components op correspond either to some tuning parameters

that can be chosen arbitrary or to some perturbation vedtas
cannot be chosen. We define théstability parameter sef® as

B. V-stability of differential inclusion ) )
it ialinclusi lizati bih ¢ the set of allp such that the system i¥ -stable. Define the
Differential inclusions [2][20] are a generalization oéthoncept o thick function Gp (x) — mm(g‘; (x).F(x,p) + [£],V(x)) =

state equation and are used to represent uncertain dyngstéass in {min (av (x).f
) . . o ) i z f+¢e,V(x),f € F(x,p),e € [¢]}. From (9), we
a set-membership framework. differential inclusioncan be defined have (a)Gpl (0,00) = 0 = p € P and (b) G* ([0, 00)) % 0

by the following inclusion
. = p ¢ P. As a consequence, B~ = {p, ([() oo]) = (ZJ} and
* € F(x) () pr {p,G," ([0,00[) = 0}, thenP~ C P C P". Inner and outer

whereF is a thick function fromR™ to R™. The differential inclusion subpavings [14], [24] approximations Bf- andP™* can be computed
(7) is said to bé/-stable if all its solutions satisfy (2). It is said to beusing interval analysis [13].
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Fig. 5. The robot is controlled first by a loop to fix the headang then

. . . by a second vector field loop to generate feasible headings
Fig. 4. The sailboat robo¥aimos

IV. APPLICATION TO SAILBOAT CONTROL
A. Controllers

The robot to be considered here is the sailbd@mosof IFRE- N
MER (see Figure 4) which aims at collecting measurementfiet t
surface of the ocean [9]. Qo=n
Heading controller. This robot has two inputs. One is the rudder
angle 6. We also control the maximal angle of the sé&jt®** (or Q ES
equivalently, the length of the mainsheet). As a conseqietiee
actual angle of the sail satisfiés € [—™2, §™#*]. Most of the time Y4 <Q
ds = £05™ which means that the mainsheet is tight. Assume that \Ej
the desired course andleof the boat is feasible, then a simple control
law for the rudder and the sail can efficiently make the roboven
toward the right coursé. An efficient one is théveading controller
[12] given by:

Fig. 6. Some directions for the sailboat are not feasiblees€hunfeasible
courses forms the no-go zone painted grey.

5 _ 67 sin (6 — 0) if cos(§—6)>0
r = o™ sign(sin (0 — 0)) otherwise implemented invaimos The pointsa, b correspond to the line to be
cos (1 —0) followed.
o %( w29+1> Function 7 ( b 3
unction ,a, b,y .,
(11) X > Yy T

e = det (Hb—::H’x —a

p =atanZb — a)

0" = ¢ — 2= atan(2)

if cos(¢p —6%) +cos¢ <0

whered is the heading of the robot (measured by a compass)and
is the angle of the wind measured by a weather vane. In {FT);

is the maximal angle of the rudder asth (6 — 6) corresponds to
the heading error (we did not take = 6 — 6 as an error: when
0 — 6 = 2km, we want a zero error). Wheevs (0 — 0) < 0, the or (Je] <7 and (cos(¢p — ¢) + cos ¢ < 0))
robot is going to the opposite direction and the rudder ieduat the thenf = 7 + ¢ — ¢.sign(e)
maximum §, = +5™%%). For the sail, we took a Cardioid model: 7 elsed = 0”

when we are goTirng downwindos (¢ — ) = 1, the sail should be 5 Step 1, we compute the algebraic distandeom the robot to its
opened ¢ = 3); when we are close to the wines (1 —0) ~ e (ab). The sign ofe determines if the robot is on the left or on the
—1, the sail shquld be closgdy ™ ~ ()).. Once the low level control right to the line, as represented by Figure 7. At Step 2, thgeaof
loop has been implemented, a supervisor should send to #®nlge ¢ |ine,, js computed. Two modes should be taken into account: the

controller, feasible courses in order to perform the linfing (see direct modeand theclose hauled modd1) Direct mode This mode

O~ WN P

Figure 5) . o is chosen when the wind is well oriented so that tack manasuvr
Feasibility of a course A coursed is feasible if are not needed. The corresponding nominal codtsgsee Figure 7)
cos (¢ — 8) + cos¢ >0, (12) is computed at Step 3 wherg_ > 0 corresponds to thecidence

angle (when the robot is far from its line,, corresponds to the
where ¢ is the close hauled angle (typicali5’). If this condition angle between the desired heading and the line)randrresponds
is not satisfied, the courscorresponds to a direction which is tooto thecutoff distance. This expression féf makes the line attractive:
close to the wind and the boat cannot keep the cofir@ee Figure (a) whene = o0, we have 6 = ¢ £v__ , i.e., the robot has a
6). heading which corresponds to the anglg. (b) if e = +r, we have
Vector field controller. Following a vector field has been proposed* = ¢ + 222 and (c) fore = 0 we havef* = ¢, which corresponds
by [19] for sailboat robots. A vector field controller has tfeem to the direction of the line. (2Close hauled modd&wo tacks can be
6 = h(x,v), wherex € R? represents the position of the center othosen: the starboard tack or the port tack. We chose thetsigk at
the robot (measured using the GPS). The algorithm belowgsex Step 6. Now, it remains to choose the mode (direct or closéetau
the functiond, obtained using a pragmatic approach, that has bedn9* is not a feasible course (see (12)), then the close haule@ mod
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Fig. 7. Nominal vector fieldd* associated with the line following. The

coefficient v, allows to weight between two objectives: (i) the heading

should corresponds to the direction of the line and (ii) thstathce to the

line should be small. Fig. 8. Characterization of th&'-stable parameter sét for Case 1. The
black area is proved to be insideand the gray area is proved to be outside
P. The cross + represents a parameter vector for which themyis not

is chosen. It is also the case if the directiprof the line does not V-stable.

correspond to a feasible course, except if we are far fronlitiee

i.e., |e| < r (see Step 5).

B. Characterization of the feasible parameter set

We choose a frame based on the line to be followed. The origin o
the frame isa, and on this frameyp = 0. The functiond becomes:

Function 8 (x,v,7v.,,7,¢)

1 0" =—22= atan(%2)

2 ifcos(p—0%)4cos( <0

3 or (|z2| < r and (cos ) + cos¢ < 0))
4 thend = 7 + v — ¢.sign(z2);

5 elsed = 0*;

We assume that the heading controller generates an actadinige
of 6 € [0 — eo,0 + eg]. Moreover, we also suppose that the speefig. 9. Differential inclusion associated with the confeed! sailboat for
v is always strictly positive. As a consequence, since thahaingle ¢ = % andy,, = 5. The frame box i§—100m, 100m}*.
1 is inside the intervaly] = [—m, ], studying the stability of the
robot amounts to studying the stability of the differentiadlusion
_ instancey = 7, as represented by the cross +) for which the system
%c < cos (066 [¥] Yoo 7, 0) + [0, €0]) ) ) (13) is V-unstable. The differential inclusion associated to théentircle
sin (6 (%, (%] , Voo 7, ) + [—€0, €0]) (i.e., 7. = Z ande € [—m, 7)) is represented on Figure 9. Thé

This is due to the fact that the stability properties of noedir systems invariant sefV = {23 — r7,.. < 0} corresponds to the hatched strip.
are invariant to any time transformation of the form = v (¢) .dt, To draw this figure, we built a grid in the state space: (z1, z2) and
where v (t) > 0. The properties of interest are the following.for eachx we have drawn arrows corresponding tosaltonsistent
Property 1. If the robot has a distance to the line less than, =  with the relation (13). The instability for some points oktlwhite
50m then, it will be the case foreveProperty 2. If the robot has circle (such as the cross) can be interpreted by the exstefc
a distance greater than,.. = 50m then this distance will decreasetrajectories that are consistent with the differentialuston and that
until it reaches a distance less thap... Property 3. The robot do not satisfy Property 2. Such an unstable trajecto(y) is drawn
always moves toward the right direction, i.¢;, > 0. The V-stable on Figure 9.
parameteiP set corresponds to the set of g@llsuch that Properties Case 2 We also wantt; > 0 which corresponds to Property 3.
1 and 2 are satisfied. Moreover, we takesp = 5° = 0.085rad, ,r = 25m and{ = Z.
Figure 10 gives a characterization of the resultifgn less than
2 minutes. As illustrated by the white circle for,, = %, for all
) feasible perturbations and for all wind directions, theatols always
The parameter vector is takenps= (7., ¢) , where € [-7, 7] y/_gaple and all other constraints (feasibility @fnd &1 > 0) are

is the angle of the wind with respect to the line and € [0,7] is  gatisfied. This feasibility of the differential inclusios illustrated by
the incidence angle. Let us illustrate the principle of oppraach Figure 11.

on two testcases related to the line following of a sailboabt. For
both cases, we take (x) = 23 — r2,,. Thus, theV-invariant sefy .
corresponds to the strip centered onto the line with radius.. D. Experiment

Case 1 We only take into account Properties 1 and 2. For Figure 12 gives a track of 100 km that has been done autondynous
[—eg,e0] = [0,0], [e] = [0, 1()*4], ¢ =%, r = 25m, theV-stable from Brest to Douarnenez (Brittany, France) by the sailboabto
parameter seP is represented on Figure 8. This characterization fofaimos For the parameters of the controller, we took= 25m,
IP is obtained in less than 1 minute on a classical laptop. Astitatted ., = § and we checked that the resulting controller guarantees the
by the white circle fory_, = Z, there exist some wind directions (for V-stability, provided that Vaimos with its heading conteslisatisfy

C. Testcases
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Fig. 10. V-stable parameter sétfor Case 2. The radius,, of the white
circle guarantees th¥-stability for all wind.

Fig. 11. Differential inclusion associated with the coifed sailboat for

¢ =% [eo] = £0.085 andv, = .

(13). The wind comes from the south. Except when the robot w.

inside the circle (due to a submarine coming back to Brest,atktlne
duty to move the robot toward the south) and inside the tteaftg
avoid a collision with a boat), the robot was always at a distaless
than 30 meters to its line (where we proved that this distahoild
be smaller than,.x = 50m). The properties 1,2,3 are thus alway
satisfied, as expected. Sin¢es taken as%, it was not possible to
satisfy Property 3, which has been violated several timesmguhe
mission. Inside the square, the robot had to move upwinda# in
a close hauled mode and alternated starboard tacks withtguks.
More details related to this mission and to the method (phd@a-+
source code, videos) are available in [11].

V. CONCLUSION
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Fig. 12. Track of Vaimos during its trip from Brest to Douanee. The
wind comes from the south.

multivalued functions (or thick functions). Now, this selvérsion
can efficiently be solved using interval analysis. The mathagy has
been illustrated on the control problem of an actual satlbolaot for
which a large scale mission of more than 100km has been peethbr
During its mission, the robot has never been at a distance than
30 meters to its line. To our knowledge such an accurate fi@ch
sailboat robot in the ocean has never been done before.
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