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polynomial thus providing what it is usually called dosed-form
solutionto the problem.

In 1987, Li and Matthew solved the position analysis problem of
the ten 5-link Assur kinematic chains in closed form for the first

time [2]. Their approach consisted in realizing that every Assur Il
group consisted of two kinematically independent loops which can be
classified into only six types: RRRR, RPRR, RPPR, RPRP, RRPP, and

A fully-parallel planar robot consists of moving platformcon- RPPP. Then, they reduced the problem to obtain the loop equations
nected to dixed baseby three serial kinematic chains, lmgs Each for these six loops in general form and compute the resultant in a sin-
chain consists of three independent 1-degree-of-freedom lovier pgle variable for the ten feasible combinations. Although outstanding
joints, one of which is driven by aactuator Since the displacement in many ways for its time (the authors even envisaged the possibility
of the moving platform is confined to a plane, only revolute (R) an@f applying their results to planar and spherical robots), this work has
prismatic (P) pairs are considered. Then, the topology of each seRgen overlooked by the robotics community. In 1996, Merlet tackled
kinematic chain can be described by three letters. There are selfeg same problem from a different point of view which resulted in
possible combinations: RRR, RPR, RRP, PRR, RPP, PRP, and PRRase-by-case analysis [3]. Other solutions for some 5-link Assur
The chain PPP is not considered because three P pairs represent #irgmatic chains have been presented, at least.]in[[4], [[5], [[6], [7].
translations in the plane which cannot be independent. The actualé@ development of a remarkable unified formulation for the forward
joint is identified by underlining it. Then, since any of the thre&inematics of all fully-parallel planar robots started in 1995 with
joints can be actuated, there are twenty one possible legs which Elsty’s first use of the Gmwald-Blaschke kinematic mapping to
be grouped in four leg architectures —known as the RR, PR, RP a#five the forward kinematics of the 3-RRobot [§]. This formulation
PP legs (see Tab[@ I)— attending to the sequence of passive joititgs thereafter extended by Hayes, Chen, Zsombor-Murray, asyy Hu
The number of passive prismatic joints in a loop cannot be more thainself who presented their results in a series of publications that
three, otherwise the robot would gain one degree of freedom. Tigiglminated with a recent monograph [9]. [10], [11]. [12]. [13]4]1
fact limits the number of possible PP legs to one. Then, since there B8], [16], [17]. The approach followed by these authors is based o
(') = 1140 feasible combinations of legs of type RR, PR, and RExamining the motion of each leg separately which can be represented
and3 - (') = 513 feasible combinations of one leg of type PP wittby only three types of surfaces: an hyperbolic paraboloid (for legs
any two legs of the other three types, the total number of differedf type PR and RP), a hyperboloid of one sheet (for legs of type
planar fully-parallel robots is 1653. When the three actuators ariR), or a plane (for legs of type PP). Then, the forward kinematics
locked, the robot becomes a rigid structure provided that it is not Rioblem boils down to find the points of intersection of these three
a singularity. This permits to classify these 1653 robots into 10 classgh surfaces. The result is indeed a uniform procedure for solving
attending to the topology of the resulting structure (see Table II). Upe forward kinematics of all fully-parallel planar robots but an
to this point, we have followed the usual approach used in robotigémination process is still required to obtain a univariate polynomial
to present all possible fully-parallel planar robots but observe that tf@ 11 different cases.
resulting structures are nothing more than the 5-link Assur kinematicA different unifying approach stems from regarding a translational
chains, also known as the planar Assur Il grougs [1]. motion as an infinitely small rotation about a point at infinity. It

The forward kinematics of parallel robots consists in finding this well-known that a translation in the directigfu., u,) may be
possible poses of the mobile platform, for specified values of thiepresented as a rotation about the ideal point given in homogeneous
actuated joint coordinates, with respect to the fixed base. Thusgcaordinates by —u,, u.,0). This is probably the most simple unify-
reduces to the position analysis of one of the ten possible structuirg approach to deal with revolute and prismatic joints simultaneously
in Tabledl. Numerical solutions to this problem are enough for marfgut, using the standard formulations such as those based on indepen-
applications but yield little insight into the problem. The alternativéent loop equations, it is difficult to be accommodated. This paper is
are the exact methods which rely on the computation of a univariatesentially devoted to show how a coordinate-free formulation based
on distances and oriented areas provides a framework within which
this idea can be easily applied. This will allow us to conclude that the
univariate polynomial of the 3-R®robot contains all the necessary
and sufficient information for solving the forward kinematics of all
fully-parallel planar robots.

This paper is organized as follows. Sectioh Il briefly reviews the
basics of deriving the univariate polynomial closure condition of the
3-RER robot in terms of distances and oriented areas. SeLfion 11
shows how to transform any other fully-parallel robot with prismatic
joints into a 3-RIR robot with some revolute joint centers located
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TABLE I

THE 10 FULLY-PARALLEL PLANAR ROBOT FAMILIES

Robot family Associated

(# of different structure Leg types
robot topologies)

I (56) l [ RR-RR-RR
RP-RR-RR
I (292) /( [ PR-RR-RR
I (216) /( \ RP-PR-RR
RP-RP-RR
V(22 ( \ PR-PR-RR
~ RP-RP-PR
v @2 )( ( PR-PR-RP
VI (63) S [ l PP-RR-RR
PP-RR-RP
Vit (216) )S [ T PP-RR-PR
RP-RP-RP
Vit (112) /( N ) PR-PR-PR
IX (108) )S \ T PP-PR-RP
PP-RP-RP
X (126) —L PP-PR-PR

——
Moreover,p,; = P;P; ands; ; = d; ; = ||pi;||>.

P |

o
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Fig. 1. The general 3-RP planar robot platform.

Figure[1 shows a general 3-RPplanar robot platform. The center
of the three grounded passive revolute joirtsdefine the base ori-
ented triangleA P, P; P» and the three moving passive revolute joints
centers,®, the moving oriented triangle\ Ps P, Ps. The squared
lengths of the active prismatic joints ase 4, s2,5, andss . Much
has been written about this parallel robot because of its practical
interest, mechanical simplicity, and rich mathematical properties. A
review of the different techniques for solving the forward kinematics
of this robot can be found in [18] where it is shown that this problem
can be solved by finding the roots of:

s2,5 = det(I — Z1,3,2Z1,6,3 — Zo,4,5 Z6,1,4) 51,6, (1)
where
7 L | sig+sik =585k —4Aijk
Bk = A o . .
ZSZ‘J 4 3,7,k Si,j + Si,k — Sj,k
with

1
Aijr=£7 \/(Si,j +siptsin)’ =2 (505245062 +5507)

being the oriented area @k P, P; P, (defined as positive iP;, P;,

and P, are ordered counter-clockwise, and negative otherwise).
Equation [(1) expresses the set of valuesspf compatible with

the fixed lengths of the active joints, the base and moving platform

side lengths, and the signs of the oriented triangleB, P; P> and

A Ps P, Ps. The expansion of the determinant in this equation yields

a scalar radical equation as a function of the unknown squared dis-

tances ¢ Which, after clearing radicals, finally yields the univariate

polynomial closure condition of the robot, a 6th-degree polynomial

equation insy,¢ which will be denoted by'(s1,6) = 0. The real roots

of this polynomial determine the solutions of the forward kinematics.

at infinity. Section[T¥ shows through examples how to solve _The interested reader is referred [0 ][18] for details on the above
using the univariate polynomial of the 3-RProbot— the position derivation.
analysis of different fully-parallel planar robots. Finally, we conclude

in Sectior Y with a summary of the main contributions and prospects

for future research.

Il. THE UNIVARIATE POLYNOMIAL CLOSURE CONDITION OF THE
3-RPR ROBOT IN TERMS OF DISTANCES AND ORIENTED AREAS

Ill. REPLACING REVOLUTE BY PRISMATIC JOINTS

In this section, we will consider the case in which the three revolute
joints connected to the moving platform are replaced with prismatic
joints. We will proceed progressively by replacing first one, then two,

In what follows, P; will denote a point,P; P; the segment defined and finally the three revolute joints. At the end, it will become clear

by P; and P;, and A P; P; P, the triangle defined by, P;, and P;.

that all other cases can be easily deduced from this analysis.



Py . . .
- respect to that ofA P, P; Ps. This has to be taken into account in the
univariate polynomial by changing the sign 4§ 4 5 if needed.
After the introduced changes, the univariate polynomial closure
P condition can be rewritten as a polynomialdp, that is,
[(s10) s1,4= (61 +d; 40 sin a1)2 = Z%(Slﬁ)éi =0. ()
S4,5 = (51 +d4/’5 sina3)2 =0
sa,6 = (01 + dyr g sin (12)2
Now, factoring outdt in the above closure condition, we get
n n—1\S1, n—2(51,
o1 'yn(sl,g)Jrﬂ/ 1(s1.0) Jr’y 2(216) +...]=0. (6)
01 03
Then, the closure condition can be expressed as:
n—1(S n—2(S
a(sng) + n(re) y ynza(sre) @)
o1 0%
P P P

Since ¢, is finally made to tend to infinity, we conclude that the
univariate polynomial closure condition for the resulting robot, after
the introduction of a prismatic joint, s, (s1,6) = 0.

dy 5 sin g B. Replacing two revolute joints

dy 4 sinay

Py Py IV

31

d4/76 sin ap

Ps

P

Fig. 2. One revolute joint in the moving platform is substtliby a prismatic
joint.

(mr — as + as) Ps

A. Replacing one revolute joint

Let us suppose that the revolute joint centeredPatin Fig. [ is -
replaced with a prismatic joint, as shown in Higj. 2(top), such fhat s
is split into P; and P;’. This new joint is placed at fixed orientationsFig. 3. Two revolute joints connected to the moving platfoma substituted
with respect to the links connected to them. Once an orientation™% Prismatic joints.
assigned to the prismatic joint axis with respect to its adjacent links, .
a set of orientation angles can be defined (in this casers andas) Now, let us suppose that the revolute joint centere@ats also

and, as a consequence, an oriented distance can be defined bet\'/if‘e%ﬁced W'th_ a prismatic joint a,s !ndlcated in Fig. 3. Fqllowlng the
P, Ps and Ps and the prismatic joint axis. This defines a set orame reasoning used above, this is equivalent to replagingith a

new points on this axis: those that realize the minimum distanR@INt at infinity, P, and substituting the distances betwenand

to P1, Ps and Ps which are denoted by in Fig. [@(bottom). Note 2, and Ps, by

that the prismatic joint imposes the alignment of these points but,

for the moment, let us suppose that they all are located at the same ds,2 = 62 + dsi 2 sin as, (8)
dis'gance, sa_yii, from P;°. This would i_mp_ly that t_hey unld lie on ds.6 = 02 + ds ¢ Sin aua, 9)
a circle but, if5; — oo, they would again lie on a line as imposed by

the prismatic join. Actually, the presented geometric transformatigiith d= — oo, respectively. To obtain the substitution fal, s,
simply consists in replacing; by P5° and substituting the distancesobserve that the angle formed by the two prismatic jointssis- as.

betweenP; and P;, P, and Ps, by Then,
ZP;OPGPfO =T — o5 + Q3.
da1 = 01 + dy 4 sinan, (2) . .
. Therefore, using the law of cosines, we conclude that:
das =01+ dy 5sinas, (3)

ds6 = 01 + du g sinaz, 4)
el ' di5 :dg,g + die — 2d5,6d4,6 COS(TI’ — a5 + 043)
respectively. — (85 4 der « i 2 0 (51 +dus i 2
It is worth noting that, after the described geometric transformation, (02 + dy g sin @a)” + (01 + du g sin z)

it might happen that the orientation 8fP° P; Ps have changed with +2(82 + ds/ g sin o) (81 + dus g sin az) cos(as — ).



with 61 — oo andds — oo. IV. EXAMPLE

) o Let us consider the planar 3-RPparallel robot in Fig[1l. As an
C. Replacing three revolute joints example, let us set; > = 16, s1,3 = 65, s2.3 = 73, s5,6 = 25,
sa,6 = 25, s4,5 = 36, and squared input joints, 4 = 1, s25 = 121,
andss,¢ = 169. Let us also assume that the orientationaP; P> P3
and A Ps P, Ps are positive. Substituting these valuedlifs,¢), the
following univariate polynomial is obtained

55 6 — 293.1486 57 ¢ + 54084.9111 57 6 — 3.558710° 53 ¢
+1.0004 10% 57 ¢ — 1.224010° 51,6 + 5.3843 10°.

This polynomial has a double real root 32.0000. The corre-
sponding solution of the forward kinematics, for the case in which
P= (0,007, P, = (4,007, and P; = (1,8)7, appears in the
first row of Fig.[3. This example was studied in_[18] to compare
the different formulations for solving the forward kinematic of the
3-RPR parallel robot presented in [19]. [20], and [8], with that based
on distances and oriented areas.

When the revolute joint centered Bj is replaced with a prismatic
joint, a RAP-RAR-RPR planar robot is obtained. This kind of robot
belongs to the type Il robot family in Tablellll. If the orientation of
the passive prismatic joint with respect to its adjacent links, according
to the notation used in Tablellll, is given by

ap = -T, @ —§7r+alrctamé andar: —§7T
Py 1—472—4 3’ 3—4,

. - i then
Fig. 4. The three revolute joints connected to the movingf@lat are 1 7

substituted by prismatic joints. dig=061 4+ ——. dys =06 — 3v/2, andd, 6 =01 — ——.

V2 V2
Finally, let us assume that the revolute joint centereéfais also  gypstituting these distances ii(s1,c), while keeping all other
replaced with a prismatic joint with the orientation angles indicategistances unaltered, and computing the leading coefficient of the

in Fig.[4. Using the same reasoning as above, this is equivalentgaiting polynomial ins;, we get the univariate polynomial
take Ps to infinity and substitute the distance betwe@nand P; by

(10) 36 — 672.0638 57 ¢ + 1.498310° 51 6 — 1.4372107 s ¢
+6.172910% 57 ¢ — 1.202310"% 516 + 8.793410"°.

dse = 03 + d3’6u sin ag.

In this case, to obtain the substitutions for the distances betWgen
andPs, and P4, observe that the angles formed by the new prismatic The real roots of this polynomial arg2.0000, 112.2332,
joint axis with those defined by the other two are—as andaz —as  141.1726, and342.8691. The corresponding solutions of the forward
(see Fig[4). Then, kinematics appear in the second row of Kij. 5.

Now, if the revolute joint centered &8 is also replaced with a
/PEPIPE =1 — an + s prismatic joint, a RP-RAP-RFR ro_bo_t is obtained. This kind of robo_t
R ’ belongs to the type IV robot family in Taklellll. If this new prismatic
LB PePy” = m — a2 + as. joint orientation with respect to its adjacent links, according to the

Consequently, using the law of cosines, notation of Tabldll, is given by

2 _— 2 | 2 4 4
ds,6 =(02 + dsr ¢ sinaa)” + 83 a4 = 2T — arctan 3 as = T + arctan 3’

+ 2(02 + ds/ ¢ sin a4 )03 cos(ar — o), (11) q
2 . 2 2 an
d614 —(61 + d4/,6/ Sin 0[2) + (53 g =T i arctan 27
+ 2(01 + dy ¢ sin a2)d3 cos(az — ag), (12) 5
then
and 1
dis =di ¢+ dig+2dsedascos(as + az). (13) dia =61+

V2
The required substitutions for all other cases can be derived dis = 61 — 3V2,
following the same procedure. Table]lll compiles them all thus '

concluding that the univariate polynomials of all fully-parallel planar dso =02 =4,

robots can be deduced from the univariate polynomial of the B-RP dig =01+ 05+ V2010, — 10V/261 — 1465 + 58,
robot when expressed in terms of distances and oriented areas. The  d3 ¢ = d» — 12,

degree of the resulting univariate polynomial for each family, that dig =02 —t.

is, the maximum number of solutions of the forward kinematics,

is also included in TabléJll and denoted by FK. The practical Substituting these values il'(s1,6), while keeping all other
consequences of the presented formulation are better understgiséances unchanged, and computing the leading coefficient of the
through an example. resulting polynomial inj;, and then the leading coefficient of the re-



TABLE Il

DISTANCE SUBSTITUTIONS FOR EACH ROBOT FAMILY

Family Associated —
(FK) structure Substitutions
Py P,
¢ *
Pg
|
None
(6)
Ps
bt ®
P Py
P4// 03 P5
Qo
P .
v Ps di,4 =061+ dy g sincg
1l f .
(6) a1 d4’6 = 51 + d4”,6 sin o
Ps dy5 =61+ dyn 5 sinag
@
P
Ps
di4 =01+ dy o sinay
d46 = 01 + dyr g sinaz
i dy5 =61 +dyn 5 sinag
©) di3=102+d; 3 sinoy
d2,3 =02+ dg 3 sinas
d3,6 = 62 + dgi g sinag
L J
Py
5
d1,4 =61+ d174/ sin aiq
d45 =61 +dyn 5 sinag
v d5,6 =62+ d5,6” sin g
@ diﬁ = d421,5 + dg,a +2dy 5ds,6 cos(az — as)
d36 =02+ d3 ¢ sinag
dig =02+t
®
Py
di,4a =081 +dy 4 sinag
Ps »
d4,5 =01+ d4//’5 sin a3
o2 o d5,6 - 52 + d5,6” sin g
Py N4 ) ) )
v R d4,6 = d475 + d5,6 +2d4,5ds,6 cos(az — as)
(4) “ «o d3,6 - 52 + d3,6’ sin ag
Ps die =02+t
P, )*0
2 d1,2 = 53 + d1,2” sin aiy
P a7 ¥ dy3 =63+ dorr 3 sinasg
1 J
Py das = 3 + dor 5 sin g




TABLE IIl (CONT'D)
DISTANCE SUBSTITUTIONS FOR EACH ROBOT FAMILY

Associated Substitutions
structure
Ps
®
d? 4 =6 +n?—2617 cos(ag — a1) , With n = 83 + dq/ 4/ sinag
Ps da6 =01 4 dyr g sina
d4,5 =61 + d4//75 sin a3
P d112 =2 +dy/ o sinay
- s
dly3 = d9 + d1/73 sin as
di6 =062+t
® )
Py
o d% 4= 5% +n2—-261 n cos(ag — 1) , With n = 62 + dyrv 4 sinag
7 ’ ,
S8 P5/ d4,6 = 51 + d4ll’6 sin a2
(8% .
di,2 =62+ dyr o sinay
PS P5// ’ .
di1,3 =02 +dys 3 sinas
» dig =062+t
3
ds,6 = 03 + dss ¢ sinag
d?l,f) = diﬁ + d§,6 — 2d476 d576 COS(CM7 — a3)
P d2’5 =03 + d2’5// sin ag
o ar di,a =061+ dy,4 sinog
Ps d3e = 62 + d3 ¢ sinag
9
dig =02+t
Py ’
di 5 = 5% + 7]12 — 283 m1 cos(ar —as) , with 1 = 61 + d4//’5/ sin ag
dg 6= 5% + 7722 — 203 M2 COS(O{4 - Cvg) , With n2 = d2 + d5/,6” sin aig
diﬁ = di5 + d§’6 +2dy5ds,6 cos(az — as)
d2,5 = 03 + da 5 sinag
Py
d?, =67 +n%—2617 cos(ag — 1) , With n = 62 + dyv 4 sinag
- o da,6 = 61 + dgr g sinaz
P5/ d1,2 = 62 + d1/72 sin aq
g
dig =02+t
PS P/ ’
o ° d5’6 =03 + dss ¢ sin ag
10 ’
12 d121 5 = dZ 6+ dg ¢ — 2da,6ds,6 cos(ar — as)
. ) ) )
B gy 13 d2,5 =83 + dg 5 sinag
3/
da3 =64+ d2y3/ sin a1
Py d%3 =d%2+d%3 72d1’2 d273 cos(a107a5)
d3’6 =04 + d3”,6 sin a19
d%A =02 + 1% — 2811 cos(ag — o) , With = 83 + dyr 4 sinag
Ps d416 =61 + d4“,6 sin aig
d415 =61 + d4//,5 sin ag
: dig =02+t
6
o da 3 = 3 + d2’3/ sin ag
7
Q9 d3e =63 + d311,6 sin ag
P. . .
I as 3" P, 12 diQ = 52 + 7712 — 20,4 1 COS(O{lO — a4) , with n = 0o + d1/72// sin g
3
. a1 d%,S = 52 + 7]22 + 204 m2 cos(ai1 — ag) , with ng = d3 + d2u’3/ sin ag
10
Py df 5 =di 5 +d5 5 —2d1,2da3 cos(ar — as)

d275 =64 + d2/75 sin 19




s1.6 :1232.0000
5 -1s 1o s 5 10 s -1s 10 | 57 5 1o Is
51,6 ;532.0000 51,6 —:112.2332 51,6 —:141.1726 51,6 21342.8691
t = 3.9529 t= 1;L.OOOO t= ;1.0000 t= ;6.2235

-10

t = 4.0000 t = 4.1681

Fig. 5. The solutions of the forward kinematics of the anadyadly-parallel planar robots (see the Maple Worksheethia supplementary downloadable
multimedia material for the numerical computations).




sulting polynomial ind2, we get the univariate polynomial these singularities could be obtained from those of the B-R¥bot
through a limit process. In this sense, it can be said that the presented
ideas have far-ranging implications as they can be applied to solve
where t is the oriented distance betwedh and the axis of the Other problems than those tackled in this article.

prismatic joint that substitutes the revolute joint centere@at

t* — 35.1765¢> + 410.7778 t* — 1849.7255 t + 2821.7516,

The real roots of this polynomial ar&9529, 4.0000, 11.0000, REFERENCES
and16.2235. The corresponding solutions of the forward kinematicm E. Ceresole, P. Fanghella, and C. Galletti, “Assur'sups) AKCS, basic
appear in the third row of Fid.l]5. trusses, SOCS, etc.: modular kinematics of planar linkadgrsgeedings

Finally, if the revolute joint centered d& is also replaced with a of the ASME 1996 International Design Engineering Techn@anfer-
prismatic joint, a 3-RP planar robot platform is obtained. This kind ~ €nces and Computers in Engineering Confere86eDETC/MECH-1027,

S 1996.
of robot platform belongs to the type VIII robot family in Tatilellil. [2] S. Li and G. Matthew, “Closed form kinematic analysis odimhr Assur I

If the orientation of this prismatic joint with respect to its adjacent groups,”Proceedings of the 7th IFToMM World Congress on the Theory
links, according to the notation of TaHIellll, is given by of Machines and Mechanismsol. I, pp. 141-145, 1987.
[3] J. Merlet, “Direct kinematics of planar parallel maniptales,” Proceed-
ings of the IEEE International Conference on Robotics antb#ation

a7 = 21 — arctan §7 Vol. 4, pp. 3744-3749, 1996. _ '
2 [4] S. Mitsi, K.-D. Bouzakis, G. Mansour, and |. Popescu, $Bon analysis
— 9 — arct 3 " 4 in polynomial form of planar mechanisms with Assur groups o618
Qg = 2T — arctan 2 arctan 3’ including revolute and prismatic jointdflechanism and Machine Theory
.3 Vol. 38, No. 12, pp. 1325-1344, 2003.
Qg9 = T + arcsin T, [5] S. Mitsi, K.-D. Bouzakis, and G. Mansour, “Position aysb in polyno-
13 mial form of planar mechanism with an Assur group of class 4uidicig
then one prismatic joint,Mechanism and Machine Theotyol. 39, No. 3, pp.
237-245, 2004.
dia =01+ i, [6] W.-Y. Chung, “The position analysis of Assur kinematicaai with five
V2 links,” Mechanism and Machine Thegryol. 40, No. 9, pp. 1015-1029,
dsg = 02 — 12, 2005.
d376 62 . [7] S. Mitsi, K.-D. Bouzakis, G. Mansour, and |. Popescu, $Bon analysis
1,6 =02 — 1, in polynomial form of class-three Assur groups with two oretar
B 6 prismatic joints,”Mechanism and Machine Theoryol. 43, No. 11, pp.
dis =087 + 063+ \/ 15 0105 — 6v251 — NeE; b5 + 18, 1401-1415, 2008.
[8] M.L. Husty. “Kinematic mapping of planar three-legged tfdams,”
4 16 Proceedings of the 15th Canadian Congress of Applied Meéché@AN-
2 2 2
ds,6 = 02 + 03 + 7 0203 — 802 — 7 o3 + 16, CAM 1995), Victoria, B.C., Canada, Vol. 2, pp. 876-877, 1995
[9] M.J.D. Hayes and P.J. Zsombor-Murray, “A planar parafteinipulator
2 4 with holonomic higher pairs: inverse kinematic$toceedings of the
2 <2 2 2 & 5
die =01 402 +205 + 4/ 15 0105 + /13 9203 CSME Forum 1996Hamilton, On., Canada, pp. 109-116, 1996.
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— 6\/551 — 80y — —— 03 +34+ \/§d4’5 ds.6, mapping of planar Stewart-Gough platform&toceedings of the 17th
V13 Canadian Congress of Applied Mechan{@ANCAM 1999), Hamilton,
33 On., Canada, pp. 319-320, 1999.
da5 = 03 — Tﬁ [11] M.J.D. HayesKinematics of General Planar Stewart-Gough Platforms
PhD thesis, Dept. of Mech. Eng., McGill University, Moaal, Qc.,
Substituting these values if'(s1,6), while keeping all other Canada, 1999.
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. . . . . . orwar Inematics or a planar s-legged platrorm wi olono higher
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we get the univariate polynomial 219, 1999.

[13] C. Chen,A Direct Kinematic Computation Algorithm for All Planar
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