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The Univariate Closure Conditions of All Fully-Parallel
Planar Robots Derived From a Single Polynomial

Nicolás Rojas and Federico Thomas,Member, IEEE

Abstract—The real roots of the univariate polynomial closure condition
of a planar parallel robot determine the solutions of its forward
kinematics. This paper shows how the univariate polynomials of all fully-
parallel planar robots can be derived directly from that of the widely
known 3-RPR robot by simply formulating these polynomials in terms of
distances and oriented areas. This is a relevant result because it avoids the
case-by-case treatment that requires different sets of variable eliminations
to obtain the univariate polynomial of each fully-parallel planar robot.

Index Terms—Planar robots, forward kinematics, position analysis,
planar Gough-Stewart platforms.

I. I NTRODUCTION

A fully-parallel planar robot consists of amoving platformcon-
nected to afixed baseby three serial kinematic chains, orlegs. Each
chain consists of three independent 1-degree-of-freedom lower pair
joints, one of which is driven by anactuator. Since the displacement
of the moving platform is confined to a plane, only revolute (R) and
prismatic (P) pairs are considered. Then, the topology of each serial
kinematic chain can be described by three letters. There are seven
possible combinations: RRR, RPR, RRP, PRR, RPP, PRP, and PPR.
The chain PPP is not considered because three P pairs represent three
translations in the plane which cannot be independent. The actuated
joint is identified by underlining it. Then, since any of the three
joints can be actuated, there are twenty one possible legs which can
be grouped in four leg architectures —known as the RR, PR, RP and
PP legs (see Table I)— attending to the sequence of passive joints.
The number of passive prismatic joints in a loop cannot be more than
three, otherwise the robot would gain one degree of freedom. This
fact limits the number of possible PP legs to one. Then, since there are
(

18

3

)

= 1140 feasible combinations of legs of type RR, PR, and RP,
and3 ·

(

18

2

)

= 513 feasible combinations of one leg of type PP with
any two legs of the other three types, the total number of different
planar fully-parallel robots is 1653. When the three actuators are
locked, the robot becomes a rigid structure provided that it is not in
a singularity. This permits to classify these 1653 robots into 10 classes
attending to the topology of the resulting structure (see Table II). Up
to this point, we have followed the usual approach used in robotics
to present all possible fully-parallel planar robots but observe that the
resulting structures are nothing more than the 5-link Assur kinematic
chains, also known as the planar Assur II groups [1].

The forward kinematics of parallel robots consists in finding the
possible poses of the mobile platform, for specified values of the
actuated joint coordinates, with respect to the fixed base. Thus, it
reduces to the position analysis of one of the ten possible structures
in Table II. Numerical solutions to this problem are enough for many
applications but yield little insight into the problem. The alternative
are the exact methods which rely on the computation of a univariate
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TABLE I
PLANAR FULLY -PARALLEL ROBOT LEG TYPES

Type RR Type RP Type PR Type PP

RRR
RRR
RRR
RPR
PRR
RRP

RPR
RPP
RPP
PRP
RRP
RRP

RPR
PRR
PRR
PRP
PPR
PPR

RPP
PRP
PPR

polynomial thus providing what it is usually called aclosed-form
solution to the problem.

In 1987, Li and Matthew solved the position analysis problem of
the ten 5-link Assur kinematic chains in closed form for the first
time [2]. Their approach consisted in realizing that every Assur II
group consisted of two kinematically independent loops which can be
classified into only six types: RRRR, RPRR, RPPR, RPRP, RRPP, and
RPPP. Then, they reduced the problem to obtain the loop equations
for these six loops in general form and compute the resultant in a sin-
gle variable for the ten feasible combinations. Although outstanding
in many ways for its time (the authors even envisaged the possibility
of applying their results to planar and spherical robots), this work has
been overlooked by the robotics community. In 1996, Merlet tackled
the same problem from a different point of view which resulted in
a case-by-case analysis [3]. Other solutions for some 5-link Assur
kinematic chains have been presented, at least, in [4], [5], [6], [7].
The development of a remarkable unified formulation for the forward
kinematics of all fully-parallel planar robots started in 1995 with
Husty’s first use of the Grünwald-Blaschke kinematic mapping to
solve the forward kinematics of the 3-RPR robot [8]. This formulation
was thereafter extended by Hayes, Chen, Zsombor-Murray, and Husty
himself who presented their results in a series of publications that
culminated with a recent monograph [9], [10], [11], [12], [13], [14],
[15], [16], [17]. The approach followed by these authors is based on
examining the motion of each leg separately which can be represented
by only three types of surfaces: an hyperbolic paraboloid (for legs
of type PR and RP), a hyperboloid of one sheet (for legs of type
RR), or a plane (for legs of type PP). Then, the forward kinematics
problem boils down to find the points of intersection of these three
such surfaces. The result is indeed a uniform procedure for solving
the forward kinematics of all fully-parallel planar robots but an
elimination process is still required to obtain a univariate polynomial
for 11 different cases.

A different unifying approach stems from regarding a translational
motion as an infinitely small rotation about a point at infinity. It
is well-known that a translation in the direction(ux, uy) may be
represented as a rotation about the ideal point given in homogeneous
coordinates by(−uy, ux, 0). This is probably the most simple unify-
ing approach to deal with revolute and prismatic joints simultaneously
but, using the standard formulations such as those based on indepen-
dent loop equations, it is difficult to be accommodated. This paper is
essentially devoted to show how a coordinate-free formulation based
on distances and oriented areas provides a framework within which
this idea can be easily applied. This will allow us to conclude that the
univariate polynomial of the 3-RPR robot contains all the necessary
and sufficient information for solving the forward kinematics of all
fully-parallel planar robots.

This paper is organized as follows. Section II briefly reviews the
basics of deriving the univariate polynomial closure condition of the
3-RPR robot in terms of distances and oriented areas. Section III
shows how to transform any other fully-parallel robot with prismatic
joints into a 3-RPR robot with some revolute joint centers located
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TABLE II
THE 10 FULLY-PARALLEL PLANAR ROBOT FAMILIES

Robot family Associated
Leg types

(# of different structure
robot topologies)

I (56) RR-RR-RR

II (252) RP-RR-RR
PR-RR-RR

III (216) RP-PR-RR

IV (252) RP-RP-RR
PR-PR-RR

V (252) RP-RP-PR
PR-PR-RP

VI (63) PP-RR-RR

VII (216) PP-RR-RP
PP-RR-PR

VIII (112) RP-RP-RP
PR-PR-PR

IX (108) PP-PR-RP

X (126) PP-RP-RP
PP-PR-PR

at infinity. Section IV shows through examples how to solve —
using the univariate polynomial of the 3-RPR robot— the position
analysis of different fully-parallel planar robots. Finally, we conclude
in Section V with a summary of the main contributions and prospects
for future research.

II. T HE UNIVARIATE POLYNOMIAL CLOSURE CONDITION OF THE

3-RPR ROBOT IN TERMS OF DISTANCES AND ORIENTED AREAS

In what follows,Pi will denote a point,PiPj the segment defined
by Pi andPj , and△PiPjPk the triangle defined byPi, Pj , andPk.

Moreover,pij =
−−→
PiPj andsi,j = d2i,j = ‖pi,j‖2.

P1P2

P3

P4

P5

P6

Fig. 1. The general 3-RPR planar robot platform.

Figure 1 shows a general 3-RPR planar robot platform. The center
of the three grounded passive revolute joints,, define the base ori-
ented triangle△P1P3P2 and the three moving passive revolute joints
centers, , the moving oriented triangle△P6P4P5. The squared
lengths of the active prismatic joints ares1,4, s2,5, ands3,6. Much
has been written about this parallel robot because of its practical
interest, mechanical simplicity, and rich mathematical properties. A
review of the different techniques for solving the forward kinematics
of this robot can be found in [18] where it is shown that this problem
can be solved by finding the roots of:

s2,5 = det(I− Z1,3,2Z1,6,3 − Z6,4,5 Z6,1,4) s1,6, (1)

where

Zi,j,k =
1

2 si,j

[

si,j + si,k − sj,k −4Ai,j,k

4Ai,j,k si,j + si,k − sj,k

]

with

Ai,j,k = ±1

4

√

(si,j+si,k+sj,k)
2−2 (si,j2+si,k2+sj,k2)

being the oriented area of△PiPjPk (defined as positive ifPi, Pj ,
andPk are ordered counter-clockwise, and negative otherwise).

Equation (1) expresses the set of values ofs1,6 compatible with
the fixed lengths of the active joints, the base and moving platform
side lengths, and the signs of the oriented triangles△P1P3P2 and
△P6P4P5. The expansion of the determinant in this equation yields
a scalar radical equation as a function of the unknown squared dis-
tances1,6 which, after clearing radicals, finally yields the univariate
polynomial closure condition of the robot, a 6th-degree polynomial
equation ins1,6 which will be denoted byΓ(s1,6) = 0. The real roots
of this polynomial determine the solutions of the forward kinematics.
The interested reader is referred to [18] for details on the above
derivation.

III. R EPLACING REVOLUTE BY PRISMATIC JOINTS

In this section, we will consider the case in which the three revolute
joints connected to the moving platform are replaced with prismatic
joints. We will proceed progressively by replacing first one, then two,
and finally the three revolute joints. At the end, it will become clear
that all other cases can be easily deduced from this analysis.
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Fig. 2. One revolute joint in the moving platform is substituted by a prismatic
joint.

A. Replacing one revolute joint

Let us suppose that the revolute joint centered atP4 in Fig. 1 is
replaced with a prismatic joint, as shown in Fig. 2(top), such thatP4

is split intoP ′

4 andP ′′

4 . This new joint is placed at fixed orientations
with respect to the links connected to them. Once an orientation is
assigned to the prismatic joint axis with respect to its adjacent links,
a set of orientation angles can be defined (in this caseα1, α2 andα3)
and, as a consequence, an oriented distance can be defined between
P1, P5 and P6 and the prismatic joint axis. This defines a set of
new points on this axis: those that realize the minimum distance
to P1, P5 andP6 which are denoted by in Fig. 2(bottom). Note
that the prismatic joint imposes the alignment of these points but,
for the moment, let us suppose that they all are located at the same
distance, sayδi, from P∞

4 . This would imply that they would lie on
a circle but, ifδi → ∞, they would again lie on a line as imposed by
the prismatic join. Actually, the presented geometric transformation
simply consists in replacingP4 by P∞

4 and substituting the distances
betweenP4 andP1, P5, andP6, by

d4,1 = δ1 + d1,4′′ sinα1, (2)

d4,5 = δ1 + d4′,5 sinα3, (3)

d4,6 = δ1 + d4′,6 sinα2, (4)

respectively.
It is worth noting that, after the described geometric transformation,

it might happen that the orientation of△P∞

4 P5P6 have changed with

respect to that of△P4P5P6. This has to be taken into account in the
univariate polynomial by changing the sign ofA6,4,5 if needed.

After the introduced changes, the univariate polynomial closure
condition can be rewritten as a polynomial inδ1, that is,

Γ(s1,6)∣∣
∣

∣

∣

∣

∣

∣

s1,4 =
(

δ1 + d
1,4′′

sinα1

)

2

s4,5 =
(

δ1 + d
4′,5

sinα3

)

2

s4,6 =
(

δ1 + d
4′,6

sinα2

)

2

=

n
∑

i=0

γi(s1,6)δ
i
1 = 0. (5)

Now, factoring outδn1 in the above closure condition, we get

δ
n
1

(

γn(s1,6) +
γn−1(s1,6)

δ1
+

γn−2(s1,6)

δ2
1

+ . . .

)

= 0. (6)

Then, the closure condition can be expressed as:

γn(s1,6) +
γn−1(s1,6)

δ1
+

γn−2(s1,6)

δ2
1

+ · · · = 0. (7)

Since δ1 is finally made to tend to infinity, we conclude that the
univariate polynomial closure condition for the resulting robot, after
the introduction of a prismatic joint, isγn(s1,6) = 0.

B. Replacing two revolute joints

δ1

δ2

δ2

P2

P3

P6

P
′

5

P
′′

5
P

∞

5

P
∞

5

P
∞

4

α3

α4 α5

α6

(α5 − α3)

(π − α5 + α3)

Fig. 3. Two revolute joints connected to the moving platform are substituted
by prismatic joints.

Now, let us suppose that the revolute joint centered atP5 is also
replaced with a prismatic joint as indicated in Fig. 3. Following the
same reasoning used above, this is equivalent to replacingP5 with a
point at infinity,P∞

5 , and substituting the distances betweenP5 and
P2, andP6, by

d5,2 = δ2 + d5′′,2 sinα6, (8)

d5,6 = δ2 + d5′,6 sinα4, (9)

with δ2 → ∞, respectively. To obtain the substitution ford4,5,
observe that the angle formed by the two prismatic joints isα5−α3.
Then,

∠P
∞

5 P6P
∞

4 = π − α5 + α3.

Therefore, using the law of cosines, we conclude that:

d
2

4,5 =d
2

5,6 + d
2

4,6 − 2d5,6d4,6 cos(π − α5 + α3)

=(δ2 + d5′,6 sinα4)
2 + (δ1 + d4′,6 sinα2)

2

+ 2(δ2 + d5′,6 sinα4)(δ1 + d4′,6 sinα2) cos(α5 − α3).
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with δ1 → ∞ andδ2 → ∞.

C. Replacing three revolute joints

δ1
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∞
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∞
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P
∞

4

P
∞

5

(α2 − α6)

(α7 − α4)

Fig. 4. The three revolute joints connected to the moving platform are
substituted by prismatic joints.

Finally, let us assume that the revolute joint centered atP6 is also
replaced with a prismatic joint with the orientation angles indicated
in Fig. 4. Using the same reasoning as above, this is equivalent to
takeP6 to infinity and substitute the distance betweenP6 andP3 by

d3,6 = δ3 + d3,6′′ sinα8. (10)

In this case, to obtain the substitutions for the distances betweenP6

andP5, andP4, observe that the angles formed by the new prismatic
joint axis with those defined by the other two areα7−α4 andα2−α6

(see Fig. 4). Then,

∠P
∞

5 P
′

6P
∞

6 = π − α7 + α4,

∠P
∞

6 P
′

6P
∞

4 = π − α2 + α6.

Consequently, using the law of cosines,

d
2

5,6 =(δ2 + d5′,6′ sinα4)
2 + δ

2

3

+ 2(δ2 + d5′,6′ sinα4)δ3 cos(α7 − α4), (11)

d
2

6,4 =(δ1 + d4′,6′ sinα2)
2 + δ

2

3

+ 2(δ1 + d4′,6′ sinα2)δ3 cos(α2 − α6), (12)

and
d
2

4,5 = d
2

5,6 + d
2

4,6 + 2 d5,6d4,6 cos(α5 + α3). (13)

The required substitutions for all other cases can be derived
following the same procedure. Table III compiles them all thus
concluding that the univariate polynomials of all fully-parallel planar
robots can be deduced from the univariate polynomial of the 3-RPR
robot when expressed in terms of distances and oriented areas. The
degree of the resulting univariate polynomial for each family, that
is, the maximum number of solutions of the forward kinematics,
is also included in Table III and denoted by FK. The practical
consequences of the presented formulation are better understood
through an example.

IV. EXAMPLE

Let us consider the planar 3-RPR parallel robot in Fig. 1. As an
example, let us sets1,2 = 16, s1,3 = 65, s2,3 = 73, s5,6 = 25,
s4,6 = 25, s4,5 = 36, and squared input jointss1,4 = 1, s2,5 = 121,
ands3,6 = 169. Let us also assume that the orientation of△P1P2P3

and△P6P4P5 are positive. Substituting these values inΓ(s1,6), the
following univariate polynomial is obtained

s
6

1,6 − 293.1486 s51,6 + 54084.9111 s41,6 − 3.5587 106 s31,6

+ 1.0004 108 s21,6 − 1.2240 109 s1,6 + 5.3843 109.

This polynomial has a double real root at32.0000. The corre-
sponding solution of the forward kinematics, for the case in which
P1 = (0, 0)T , P2 = (4, 0)T , and P3 = (1, 8)T , appears in the
first row of Fig. 5. This example was studied in [18] to compare
the different formulations for solving the forward kinematic of the
3-RPR parallel robot presented in [19], [20], and [8], with that based
on distances and oriented areas.

When the revolute joint centered atP4 is replaced with a prismatic
joint, a RPP-RPR-RPR planar robot is obtained. This kind of robot
belongs to the type II robot family in Table III. If the orientation of
the passive prismatic joint with respect to its adjacent links, according
to the notation used in Table III, is given by

α1 =
3

4
π, α2 =

5

4
π + arctan

4

3
, andα3 =

5

4
π,

then

d1,4 = δ1 +
1√
2
, d4,5 = δ1 − 3

√
2, andd4,6 = δ1 −

7√
2
.

Substituting these distances inΓ(s1,6), while keeping all other
distances unaltered, and computing the leading coefficient of the
resulting polynomial inδ1, we get the univariate polynomial

s
6

1,6 − 672.0638 s51,6 + 1.4983 105 s41,6 − 1.4372 107 s31,6

+ 6.1729 108 s21,6 − 1.2023 1010 s1,6 + 8.7934 1010.

The real roots of this polynomial are32.0000, 112.2332,
141.1726, and342.8691. The corresponding solutions of the forward
kinematics appear in the second row of Fig. 5.

Now, if the revolute joint centered atP6 is also replaced with a
prismatic joint, a RPP-RPP-RPR robot is obtained. This kind of robot
belongs to the type IV robot family in Table III. If this new prismatic
joint orientation with respect to its adjacent links, according to the
notation of Table III, is given by

α4 = 2π − arctan
4

3
, α5 = π + arctan

4

3
,

and
α6 = π + arctan

12

5
,

then

d1,4 = δ1 +
1√
2
,

d4,5 = δ1 − 3
√
2,

d5,6 = δ2 − 4,

d
2

4,6 = δ
2

1 + δ
2

2 +
√
2 δ1δ2 − 10

√
2 δ1 − 14 δ2 + 58,

d3,6 = δ2 − 12,

d1,6 = δ2 − t.

Substituting these values inΓ(s1,6), while keeping all other
distances unchanged, and computing the leading coefficient of the
resulting polynomial inδ1, and then the leading coefficient of the re-
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TABLE III
DISTANCE SUBSTITUTIONS FOR EACH ROBOT FAMILY

Family Associated
Substitutions

(FK) structure

I
(6)

P1 P2

P3

P4 P5

P6

None

II
(6)

PSfrag

P1 P2

P3

P
4′

P
4′′ P5

P6

α1

α2

α3

d1,4 = δ1 + d1,4′ sinα1

d4,6 = δ1 + d4′′,6 sinα2

d4,5 = δ1 + d4′′,5 sinα3

III
(6)

P1 P2

P
3′

P
3′′

P
4′

P
4′′ P5

P6

α1

α2

α3

α4

α5

α6

d1,4 = δ1 + d1,4′ sinα1

d4,6 = δ1 + d4′′,6 sinα2

d4,5 = δ1 + d4′′,5 sinα3

d1,3 = δ2 + d1,3′ sinα4

d2,3 = δ2 + d2,3′ sinα5

d3,6 = δ2 + d3′′,6 sinα6

IV
(4)

P1 P2

P3

P
4′

P
4′′ P5

P
6′

P
6′′

α1

α2

α3

α4

α5

α6

d1,4 = δ1 + d1,4′ sinα1

d4,5 = δ1 + d4′′,5 sinα3

d5,6 = δ2 + d5,6′′ sinα4

d2
4,6 = d2

4,5 + d2
5,6 + 2 d4,5 d5,6 cos(α2 − α5)

d3,6 = δ2 + d3,6′ sinα6

d1,6 = δ2 + t

V
(4)

P1

P
2′

P
2′′

P3

P
4′

P
4′′ P5

P
6′

P
6′′

α1

α2

α3

α4

α5

α6

α7
α8

α9

d1,4 = δ1 + d1,4′ sinα1

d4,5 = δ1 + d4′′,5 sinα3

d5,6 = δ2 + d5,6′′ sinα4

d2
4,6 = d2

4,5 + d2
5,6 + 2 d4,5 d5,6 cos(α2 − α5)

d3,6 = δ2 + d3,6′ sinα6

d1,6 = δ2 + t

d1,2 = δ3 + d1,2′′ sinα7

d2,3 = δ3 + d2′′,3 sinα8

d2,5 = δ3 + d2′,5 sinα9
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TABLE III (CONT’D)
DISTANCE SUBSTITUTIONS FOR EACH ROBOT FAMILY

Family Associated
Substitutions

(FK) structure

VI
(2)

P
1′

P
1′′

P2

P3

P
4′

P
4′′ P5

P6

α1

α2

α3

α4 α5

α6

d2
1,4 = δ2

1
+ η2 − 2 δ1 η cos(α6 − α1) , with η = δ2 + d1′′,4′ sinα6

d4,6 = δ1 + d4′′,6 sinα2

d4,5 = δ1 + d4′′,5 sinα3

d1,2 = δ2 + d1′,2 sinα4

d1,3 = δ2 + d1′,3 sinα5

d1,6 = δ2 + t

VII
(2)

P
1′

P
1′′

P2

P3

P
4′

P
4′′

P
5′

P
5′′

P6

α1

α2

α3

α4
α5

α6

α7α8

α9

d2
1,4 = δ2

1
+ η2 − 2 δ1 η cos(α6 − α1) , with η = δ2 + d1′′,4′ sinα6

d4,6 = δ1 + d4′′,6 sinα2

d1,2 = δ2 + d1′,2 sinα4

d1,3 = δ2 + d1′,3 sinα5

d1,6 = δ2 + t

d5,6 = δ3 + d5′,6 sinα8

d2
4,5 = d2

4,6 + d2
5,6 − 2 d4,6 d5,6 cos(α7 − α3)

d2,5 = δ3 + d2,5′′ sinα9

VIII
(2)

P1 P2

P3

P
4′

P
4′′

P
5′

P
5′′

P
6′

P
6′′

α1

α2

α3

α4

α5

α6

α7α8

α9

d1,4 = δ1 + d1,4′ sinα1

d3,6 = δ2 + d3,6′ sinα6

d1,6 = δ2 + t

d2
4,5 = δ2

3
+ η1

2 − 2 δ3 η1 cos(α7 − α3) , with η1 = δ1 + d4′′,5′ sinα3

d2
5,6 = δ2

3
+ η2

2 − 2 δ3 η2 cos(α4 − α8) , with η2 = δ2 + d5′,6′′ sinα4

d2
4,6 = d2

4,5 + d2
5,6 + 2 d4,5 d5,6 cos(α2 − α5)

d2,5 = δ3 + d2,5′′ sinα9

IX
(1)

P
1′

P
1′′

P2

P
3′

P
3′′

P
4′

P
4′′

P
5′

P
5′′

P6

α1

α2

α3

α4 α5

α6

α7α8

α9

α10

α11

α12

d2
1,4 = δ2

1
+ η2 − 2 δ1 η cos(α6 − α1) , with η = δ2 + d1′′,4′ sinα6

d4,6 = δ1 + d4′′,6 sinα2

d1,2 = δ2 + d1′,2 sinα4

d1,6 = δ2 + t

d5,6 = δ3 + d5′,6 sinα8

d2
4,5 = d2

4,6 + d2
5,6 − 2 d4,6 d5,6 cos(α7 − α3)

d2,5 = δ3 + d2,5′′ sinα9

d2,3 = δ4 + d2,3′ sinα11

d2
1,3 = d2

1,2 + d2
2,3 − 2 d1,2 d2,3 cos(α10 − α5)

d3,6 = δ4 + d3′′,6 sinα12

X
(1)

P
1′

P
1′′ P

2′

P
2′′

P
3′

P
3′′

P
4′

P
4′′ P5

P6

α1

α2

α3

α4
α5

α6

α7

α8

α9

α10

α11

α12

d2
1,4 = δ2

1
+ η2 − 2 δ1 η cos(α6 − α1) , with η = δ2 + d1′′,4′ sinα6

d4,6 = δ1 + d4′′,6 sinα2

d4,5 = δ1 + d4′′,5 sinα3

d1,6 = δ2 + t

d2,3 = δ3 + d2,3′ sinα8

d3,6 = δ3 + d3′′,6 sinα9

d2
1,2 = δ2

4
+ η1

2 − 2 δ4 η1 cos(α10 − α4) , with η1 = δ2 + d1′,2′′ sinα4

d2
2,3 = δ2

4
+ η2

2 + 2 δ4 η2 cos(α11 − α8) , with η2 = δ3 + d2′′,3′ sinα8

d2
1,3 = d2

1,2 + d2
2,3 − 2 d1,2 d2,3 cos(α7 − α5)

d2,5 = δ4 + d2′,5 sinα12



7

s1,6 = 32.0000

s1,6 = 32.0000 s1,6 = 112.2332 s1,6 = 141.1726 s1,6 = 342.8691

t = 3.9529 t = 4.0000 t = 11.0000 t = 16.2235

t = 4.0000 t = 4.1681

Fig. 5. The solutions of the forward kinematics of the analyzed fully-parallel planar robots (see the Maple Worksheet in the supplementary downloadable
multimedia material for the numerical computations).
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sulting polynomial inδ2, we get the univariate polynomial

t
4 − 35.1765 t3 + 410.7778 t2 − 1849.7255 t+ 2821.7516,

where t is the oriented distance betweenP1 and the axis of the
prismatic joint that substitutes the revolute joint centered atP6.

The real roots of this polynomial are3.9529, 4.0000, 11.0000,
and16.2235. The corresponding solutions of the forward kinematics
appear in the third row of Fig. 5.

Finally, if the revolute joint centered atP5 is also replaced with a
prismatic joint, a 3-RPP planar robot platform is obtained. This kind
of robot platform belongs to the type VIII robot family in Table III.
If the orientation of this prismatic joint with respect to its adjacent
links, according to the notation of Table III, is given by

α7 = 2π − arctan
3

2
,

α8 = 2π − arctan
3

2
− arctan

4

3
,

α9 = π + arcsin
3√
13

,

then

d1,4 = δ1 +
1√
2
,

d3,6 = δ2 − 12,

d1,6 = δ2 − t,

d
2

4,5 = δ
2

1 + δ
2

3 +

√

2

13
δ1δ3 − 6

√
2 δ1 −

6√
13

δ3 + 18,

d
2

5,6 = δ
2

2 + δ
2

3 +
4√
13

δ2δ3 − 8 δ2 −
16√
13

δ3 + 16,

d
2

4,6 = δ
2

1 + δ
2

2 + 2δ23 +

√

2

13
δ1δ3 +

4√
13

δ2δ3

− 6
√
2 δ1 − 8 δ2 −

22√
13

δ3 + 34 +
√
2 d4,5 d5,6,

d2,5 = δ3 −
33√
13

.

Substituting these values inΓ(s1,6), while keeping all other
distances unaltered, and iteratively computing the leading coefficients
of the resulting polynomial inδ1, and then inδ2, and finally inδ3,
we get the univariate polynomial

t
2 − 8.1681 t+ 16.6723.

The real roots of this polynomial are4.000 and4.1681. The corre-
sponding solutions of the forward kinematics appear in the last row
of Fig. 5.

V. CONCLUSION

Regarding a translational motion as an infinitely small rotation
about a point at infinity has been a common device to analyze some
simple kinematics problems. Applying it to the position analysis
of multiloop linkages did not seem to provide any advantage with
respect to existing approaches. Nevertheless, it has been shown that,
when this idea is combined with a formulation based on distances
and oriented areas, the result is a powerful tool that allowed us to
conclude that the univariate polynomial closure condition of the 3-
RPR robot contains the necessary and sufficient information to solve
the position analysis of all fully-parallel robots. No new sets of
variable eliminations are required.

Moreover, it is worth reminding that the singularities of a fully-
parallel planar robot can be obtained by computing the discriminant
of its univariate polynomial. Then, according to the presented results,

these singularities could be obtained from those of the 3-RPR robot
through a limit process. In this sense, it can be said that the presented
ideas have far-ranging implications as they can be applied to solve
other problems than those tackled in this article.
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