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Estimation of the blood velocity for nanorobotics
Matthieu Fruchard, Laurent Arcese, Estelle Courtial

Abstract—The paper aims at estimating the blood velocity to
enhance the navigation of an aggregate in the human vascu-
lature. The considered system is a polymer binded aggregate
of ferromagnetic nanorobots immersed in a blood vessel. The
drag force depends on the blood velocity and specially acts on
the aggregate dynamics. In the design of advanced control laws,
the blood velocity is usually assumed to be known or set to a
constant mean value to achieve the control objectives. We provide
theoretical tools to on-line estimate the blood velocity from the
sole measurement of the aggregate position and combine the state
estimator with a backstepping control law. Two state estimation
approaches are addressed and compared through simulations: a
high gain observer and a receding horizon estimator. Simulations
illustrate the efficiency of the proposed approach combiningon-
line estimation and control for the navigation of an aggregate of
nanorobots.

Index Terms—Blood velocity, high gain observer, receding
horizon estimator, magnetic nanorobots.

I. I NTRODUCTION

There has been a growing interest in the development of
therapeutic microrobots and nanorobots for some years [1].
Such systems have the potential to perform complex surgical
procedures without heavy trauma for the patients [2], [3],
[4], [5], [6]. Among the numerous prototypes developed,
those possessing a deported actuation are the most promising.
Indeed these robots do not embed any energy source thus
inducing smaller sizes. Untethered robots thus benefit froma
possible better therapeutic targeting since they can access to
hard-to-reach body’s area and also lessen medical side effects
linked to surgical operations.

The kind of deported actuators required to control such
robots depends on the propulsion strategy. A variable magnetic
field is necessary for robots with elastic flagellum [7], [8]
or helical flagella [9]. The control of bead pulled robots or
swarm of robots [10], [11], [12] is provided by the magnetic
field gradients of either Magnetic Resonance Imaging (MRI)
devices or magnetic setups (e.g. from Aeon Scientific or
Stereotaxis). So as to benefit both from a large motive force
in the macrovasculature and from a possible break up in
the microvasculature (so as to avoid undesired thrombosis
and to improve the targeting), a promising approach is to
consider aggregates. Such aggregates of magnetic nanorobots
are binded either by a biodegradable ligand [13] or by
self-assembly properties [14] as shown on Figure 1.
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Fig. 1. Aggregate of nanorobots in a blood vessel. (a) Aggregate binded by
ligand, including a payload; (b) aggregate binded by magnetic and interaction
forces.

Whatever the proposed design, these systems are subject
to different forces whom modelling is necessary in order to
estimate their dynamic behaviors in a fluidic environment
[15], [16]. The blood velocity is usually assumed to be known
or set to a constant mean value whilst it is a key nonlinear
parameter of the drag force which prevails at a small scale.
The measurement of the blood velocity is a difficult task that
is often assigned to ultrasonic sensors, at least in vessels
close to the sensor. This solution calls for an end-effector
servoing so as to track the aggregate position. Another
solution relies ona priori knowledge of the blood velocity.
Works related to the numerical resolution of the velocity
profiles using Computational Fluid Dynamics software had
been reported in the literature [17], [18]. But these studies
can not be used for real-time purposes because they are
based on the Navier Stokes equations whom resolution is
computational time consuming. In [15], the authors proposed
analytical expressions of the blood velocity profiles. These
expressions are valid in the neighborhood of a bifurcation
but require an accurate knowledge of the vessel geometry.
The blood velocity could also be considered as a disturbance
and be rejected in the control law, like in [19] for breathing
compensation. However the knowledge of the blood velocity
is relevant for the navigation since the main force depends on
it. Finally the on-line estimation of the blood velocity seems
to be an interesting approach to avoid the drawbacks of the
aforementioned methods.

The purpose of this paper is to propose anon-line state
estimation of the blood velocity. The latter is modeled by a
truncated Fourier series. The model of the nanorobot dynamics
taking into account the blood velocity behavior is proved to
be observable. Two different state observers are then designed
and combined with a backstepping law to achieve a reference



TABLE I
PHYSIOLOGICAL PARAMETERS[20], ACTUATION AND IMAGING . X STANDS FOR A COMPATIBLE DEVICE.

Physiological Parameters (mean values) System Design

Actuator (∇B in mT.m−1) Imager resolution in m

Cardiovascular Network

Arteries

Small
Arteries

Arterioles

Capillaries

Diameter
(m)

Blood
velocity
(m.s−1)

Required
gradient

Clinical
MRI

(< 80)

Pre-clinical
MRI

(≈ 100)

µ-MRI
(≈ 450)

Maxwell
Coils
Setup

MRI
<10−3

µ-MRI
<10−4

CT1

<10−3
µ-CT2

<510−5
OCT3,4

<10−6
US5,4

<10−3

10−2 2.510−1 60 X X X X X X X X X X

10−3 210−2 90 - X X X X X X X X X

10−4 10−3 250 - - X X - X - X X -

10−5 510−5 2800 - - - X - - - - X -

trajectory tracking. The paper consists in five sections. Section
II details the need for a blood velocity estimation and proposes
a generic blood velocity model. Then, in Section III, the
nonlinear model of an aggregate navigating in a blood vesselis
presented. Section IV is dedicated to the design of observers:
a high gain observer and a receding horizon estimator are
addressed toon-line reconstruct the blood velocity. Finally,
simulations illustrate the efficiency of the proposed approach
combining control and estimation in Section V. Conclusions
and discussions on open issues are summarized in Section VI.

II. W HY AND HOW TO ESTIMATE THE BLOOD VELOCITY?

Magnetically actuated robots are classically described
[11] by the motive magnetic force induced by the magnetic
field or gradient depending on the robot design [1], the
apparent weight and the drag force induced by a non
pulsatile blood flow. Hydrodynamic wall effects show that
a partial vessel occlusion by the particles results in an
optimal ratio between the microrobot and the vessel radii,
denoted r and R respectively. As suggested in [14], a
first approximation for dimensioning the actuators relies
on the study of the optimal ratio of motive over external
forces. Table I summarizes these technical constraints and
the consequences on the choice of both actuators and imagers.

Optimality requires that the robot goes smaller as it
enters smaller vessels. Recently the idea of using microscale
carrier made up of a biodegradable aggregate of iron-cobalt
nanoparticles and doxorubicin has been rendered possible
[13]. In large vessels, a millimeter-sized robot has an
important propelling force making possible to resist to the
blood drag. In small vessels where the blood flow is lower,
a micrometer-sized robot can ensure a sufficient thrust while
avoiding any injury caused by embolism or thrombosis.
Furthermore the motive force is volumetric whilst the drag
force is —at best— surfacic which implies an increasing
prevalence of the drag force as the vessel radius decreases.
Among the different forces affecting the robot navigation in

1CT stands for Computed Tomography device
2Cannot be used on living animals
3OCT stands for Optical Coherence Tomography device
4Limited penetration depth
5US stands for Ultrasound device
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Fig. 2. Blood velocityv (black solid line), mean valuev0 (gray solid line)
andnth order truncated Fourier seriesvn: v1 (blue dots),v2 (black dashes)
andv3 (green crosses).

the vasculature, the most disturbed by external time-varying
perturbations is the drag force because of the pulsatile
blood flow. Several possibilities to deal with this periodic
perturbation might be considered: direct measurement,
disturbance rejection or blood velocity estimation.

Physiological periodic perturbations are usual issues in
medical robotics and are often addressed using periodic
signal rejection: either using filtering of the output or using a
precompensation in the control law, like in [19] for breathing
rejection. For the present case, both solutions require theblood
velocity measurement. However the pulsatile blood velocity
is a local information and is consequently more difficult to
be measured. Studies have been carried out to measure the
blood velocity using the Doppler effect with ultrasound or
MRI devices [21], [22]. The quality of the measurement
depends on the ultrasound transducer orientation during the
acquisition and it would require to ensure the servoing of the
devoted imager on the robot position as it navigates through
the human body. When the robot penetrates deeper into the
human body, the device resolution, as well as the perturbations
induced by the different tissues separating the robot from the
sensor, may impact the measurement reliability. Finally the
poor spatial accuracy of such measurements is not compatible
with the precision required to discriminate the parabolic



blood velocity profile; yet the robot does not face the same
drag depending on its position in the vessel. The proposed
approach is different since it does not rely on the direct
measurement of this velocity but on the disturbance estimation.

Since an imager is already necessary to localize the robot
and thus provides an output of the system, one can exploit
a model of the system to reconstruct unmeasured states.
Observers of the robot velocity have already been studied in
[23]. We propose to extend this approach to estimate the blood
velocity. It requires to have a dynamical model of the blood
velocity behavior. Arterial pulsatile flow profiles are usually
modeled using the Womersley model [24], which results in a
truncated Fourier series as shown on Fig. 2. It is easy to show
that any velocityℵ1 expressed as a second-order truncated
Fourier series is a solution of the autonomous system:

(Sℵ1
)







ℵ̇1 = ℵ2

ℵ̇2 = −ω2(ℵ1 − ℵ3)

ℵ̇3 = 0

(1)

whereℵ3 is the average value of the blood velocity andω
is the pulsation of the blood flow assumed to be known. For
a blood velocityℵ1 defined as anth order truncated Fourier
series, (1) can be extended in the(2n+1)-dimensional form:
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ℵ̇1 = ℵ2

ℵ̇2 = −ω2(ℵ1 − ℵ3)
...

ℵ̇2k−1 = ℵ2k

ℵ̇2k = −ω2(k2ℵ2k−1 − ℵ2k+1)
...

ℵ̇2n+1 = 0

(2)

∀k ∈ {1, . . . , n} and where the mean value isℵ2n+1, up to a
constant factor. See the Appendix for technical details.

The objectif is then to link the disturbance dynamic exten-
sion (2) to the robot modeling.

III. M ODELING

Let us consider an aggregate navigating in the arterial net-
work. Any system immersed in a moving fluid is subjected to
two forces: the drag force and the buoyancy force. This section
is devoted to briefly introduce these forces and the magnetic
force that controls the robot along a pre-planned reference
trajectory (seee.g. [15] for more details). The internal forces
affecting the aggregate cohesion are not taken into account.

A. Forces

1) Hydrodynamic drag force:In a fluidic environment, any
system is subjected to the drag force which opposes its motion:
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whereA is the frontal area, the drag coefficientCd is given
by [25], β is a dimensionless ratio related to the wall effect
caused by the vessel occlusion by a spherical aggregate of
radiusr [26], andv denotes the relative velocity between the
aggregate and the fluid.η andρf denote respectively the blood
viscosity and density. In the case of a spherical aggregate,the
drag force can be rewritten as:

~Fd = −
(

a|v|+ bv2 + c
v2

1 + d
√

|v|

)

~v

||~v|| (4)

The parameters in (4) are inherited from (3):
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(5)

2) Magnetic force:The propulsion of the magnetic robot is
provided by the magnetic force~Fm induced by the magnetic
field gradients. This force can be written as:

~Fm = τmV ( ~M.∇) ~B (6)

whereV is the aggregate volume,~B the magnetic field,~M
the magnetization of the nanorobots andτm = Vm/V the
ferromagnetic ratio withVm the ferromagnetic volume.

3) Apparent weight:The apparent weight of the aggregate
results from the contribution of the weight and the buoyancy:

~Wa = V (ρ− ρf )~g (7)

with the aggregate densityρ = m/V wherem is the aggregate
mass. Since the aggregate is made of ferromagnetic nanorobots
and a payload (ligand, drugs, micelle...), the aggregate density
can be decomposed asρ = τmρm+(1−τm)ρp whereρm and
ρp are respectively the density of the magnetic nanorobots and
the density of the payload.

B. State Space Representation

Let us consider the system derived from (4), (6) and (7):

(S1)







ṗ1 = p2
ṗ2 = f(p2,ℵ1) +

τmM
ρ

u

y = p1

(8)

where p1 and p2 denote respectively the aggregate position
and velocity,u the control input andℵ1 the blood velocity.
The outputy is the position of the aggregate measured by the
imager. The expression of the functionf(p2,ℵ1) is given by:

f(p2,ℵ1)=

[

− σ(p2 − ℵ1)

(

a|p2 − ℵ1|+ b(p2 − ℵ1)
2

+c
(p2 − ℵ1)

2

1 + d
√

|p2 − ℵ1|

)

+ V (ρf − ρ)g

]

1

m
,

(9)

where the sign functionσ is defined by:

σ(ξ) =







−1 if ξ < 0
0 if ξ = 0
1 if ξ > 0.

(10)

The pulsatile periodic blood velocity is modeled by anth order
truncated Fourier series given by the system (2). Note thatℵ



belongs to a compact setKℵ. Let x = [pT ,ℵT ]T ∈ R
2n+3

denote an extended state vector. From (2) and (8), we obtain
an extended system in the single output control-affine form
ẋ = F (x) +Gu, y = h(x), ∀k ∈ {1, . . . , n}:

(S2)























































ẋ1 = x2

ẋ2 = f(x2, x3) +
τmM

ρ
u

...
ẋ2k+1 = x2k+2

ẋ2k+2 = −ω2(k2x2k+1 − x2k+3)
...

ẋ2n+3 = 0
y = h(x) = x1.

(11)

In order to implement a feedback control law, the state
vector of the system (11) is required to be known. Given
unmeasured variables, a state-observer has to be designed.
The next section is devoted to the synthesis of observers for
estimating the blood velocity.

IV. M AIN RESULTS

The controllability and the design of backstepping control
laws used to Lyapunov stabilize the system (8) have been
addressed in [23]. We briefly recap these results to point
out the necessity of estimating both the unmeasured robot
and blood velocities which are required for implementing the
control law. We then address the main results of the paper:
the observability of the extended system (11) and the design
of two classes of observers using either a high gain observer
or a receding horizon estimator.

A. Prerequisites

Proposition 1 Let Xref =
[

Xr(t), Ẋr(t), Ẍr(t)
]

denote any
continuous and bounded reference trajectory. The system(8)
is locally controllable along the reference trajectory.

Proof: The controllability of system (8) is inherited from
the controllability of its linearized time-variant systemalong
the reference trajectoryXref (t) [27], [28]. See [23] for more
details.

Proposition 2 Let θ denote any linear uncertain parameter
in (9) such thatf(p2,ℵ1) = f0(p2,ℵ1) + ϕ(p2,ℵ1)θ. Under
assumptions of Proposition 1 and forℵ1 bounded, the adaptive
backstepping control law










u= ρ
τmM

[−(k1 + k2)(p2 − Ẋr)− (1 + k1k2)(p1 −Xr)

− f0(p2,ℵ1)− ϕ(p2,ℵ1)θ̂ + Ẍr]
˙̂
θ=ΓϕT (p2,ℵ1)[(p2 − Ẋr) + k1(p1 −Xr)]

(12)

stabilizes the system(8) along anyC0 reference trajectory for
any initial estimateθ̂(0) with the controller gainsk1, k2 > 0
and a positive-definite matrix gainΓ.

Proof: The proof, given in [23], relies on a two steps
constructive proof of the Lyapunov stabilizing controller.

If no uncertain parameter is considered, Proposition 2 stands

with f0 = f and no updating that is˙̂θ = 0. In every instance,

the control law (12) needs to know the position and velocity
of the robot and the velocity of the blood. The former,i.e.
the position, is measured by the imaging device whereas the
velocities are not and consequently require to be estimated.

B. Observability of the Extended System

Lemma 1 Let K denote any compact subset of a neighbor-
hood of(Xr, Ẋr). ∀x ∈ K × Kℵ, the vector fieldF satisfies
the following properties:

P1) ∀i ∈ {1, . . . , 2n+ 1}, ∀j ≥ 2,
∂Fi(x)

∂xi+j

= 0;

P2) ∀i ∈ {1, . . . , 2n+ 2}, ∃αi, βi > 0: αi ≤
∂Fi(x)

∂xi+1
≤ βi;

P3) ∀i ∈ {1, . . . , 2n + 3}, ∃γi ≥ 0:

∣

∣

∣

∣

∂Fi(x)

∂xj

∣

∣

∣

∣

≤ γi,

∀j ≤ i+ 1.

Proof: From (11), it is straightforward that (P1) is
satisfied.

The property (P2) is easily obtained for the linear part of the
systemi.e. for i 6= 2 with
{

α2k+1 = β2k+1 = 1, ∀k ∈ {0, . . . n}
α2k+2 = β2k+2 = ω2, ∀k ∈ {1, . . . n}. (13)

α2 andβ2 are detailed hereafter. We have the following even
function by differentiating the expression in (11) and setting
v = x2 − x3:

∂F2(v)

∂x3
=

[

a+ b|v|+ 2c
|v|

1 + d
√

|v|
− cd|v| 32

2(1 + d
√

|v|)2

]

1

m
.

(14)
We consequently have∂F2(v)

∂x3
= a/m equivalent to

|v|
(

2b(1+ d
√

|v|)2 +2c(1+ d
√

|v|)− cd
√

|v|
2

)

= 0, (15)

whose solutions are










v = 0

|v| =

3c
2

√

1− 16b
9c − 4b− 3c

2

2bd
.

(16)

Since we have, from (5),c > 16b
9 , it is not difficult to show

that ∂F2(v)
∂x3

> a/m, ∀v 6= 0. Hence we obtainα2 = a/m.

The upper boundβ2 = max
x∈K

∂F2(x)
∂x3

is inherited from the

continuous differentiability of∂F2(v)
∂x3

on R
∗ which implies its

local Lipschitz continuity. The property (P2) is consequently
satisfied∀i ∈ {1, . . . , 2n+ 2}.

The property (P3) is easily obtained for the linear part of the
system:

{

γ2k+1 = 0, ∀k ∈ {0, . . . n}
γ2k+2 = ω2k2, ∀k ∈ {1, . . . n}. (17)

Using the previous result and noticing that∂F2(x)
∂x2

= −∂F2(x)
∂x3

,
the property (P3) is satisfied withγ2 = β2.



Remark 1 The property (P1) is related to the triangular
structure of the system. The existence of constantsβi andγi in
(P2) and (P3) are linked to the Lipschitz property of functions
Fi, at least locally. In this case, one can use globally Lipschitz
extensions of theC1 functionsFi.

Proposition 3 The system(11) is uniformly observable.

Proof: The observability matrix is

O =
∂Li

Fh(x)

∂xj

, 0 ≤ i ≤ 2n+ 2, 1 ≤ j ≤ 2n+ 3 (18)

whereLi
Fh(x) denotes theith Lie derivative of the outputh(x)

of the system (11) along the vector fieldF . Lie differentiating
the output of the system (11), we obtain,∀k ∈ {1, . . . , n}:

O =
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...

∗ . . . ω2(k−1) ∂f(x)

∂x3
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1 0
∗ 1

)

. . .
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0
0

)

. . .
...

∗ . . . ∗ . . . ω2n ∂f(x)

∂x3





























where∗ stands for bounded functions. It is straightforward that

the observability matrix is full ranked as
∂f(x)

∂x3
6= 0 from the

property (P2) of Lemma 1, hence the result.

Since it is possible to estimate the full state vector of the
extended system (11) using the sole output accessible to mea-
surement, observers for the system (11) can be designed. Two
different kinds of observers are studied in the next sections: a
high gain observer and a receding horizon estimator. The first
one is theoretically well founded and the second one is well
known for its easy implementation.

C. High Gain Observer

Since the vector fields are locally Lipschitz continuous,
high gain observers are a promising tool. Indeed, we have
already addressed high gain observers in [23] for system (8)
which can easily be written in the observability canonical form
[29]. Yet writing system (11) in the observability canonical
form requires an exact linearization feedback which is very
sensitive to output noise. To avoid this drawback, we would
consequently rather develop a high gain observer that directly
exploits the triangular structure [30] –related to property (P1)–
of the system (11).

Proposition 4 Let K denote any compact subset of a neigh-
borhood of (Xr, Ẋr) and U the compact set of admissible
control inputs. Then∀x(0) ∈ K × Kℵ, ∀x̂(0) ∈ K × Kℵ,
∀u ∈ U , ∀θ̂(0), ∃L0 > 1 such that∀L > L0,

˙̂x = F (y, x̂, θ̂) +Gu− δ∆ǫ∆S−1CT (C∆−1
ǫ x̂− y) (19)

is a high gain observer for system(11) on the com-
pact set K × Kℵ where ∆ = diag(L, . . . , L2n+3) and

∆ǫ = diag(ǫ1, . . . , ǫ2n+3) respectively denote the gain and a
normalization diagonal matrix.S is a tridiagonal symmetric
definite positive matrix such that the following Lyapunov
inequality is satisfied:

AT (t)S + SA(t)− δ0C
TC ≤ µI, ∀t ≥ 0 (20)

with δ0 > 0, µ(δ0) > 0, the parameterδ ≥ δ0
2 and

the matrixA(t) which nonzero entries are onlyai,i+1(t) ∈
[
αiǫi+1

ǫi
,
βiǫi+1

ǫi
], ∀i ≤ 2n+ 2.

Proof: We first perform a normalization step by defining
a new state vectorz = ∆−1

ǫ x where the choice of the nonzero
parametersǫi is related to both the conditioning matrixS
in (20) and the resulting minimal gainL0. In the sequel we
consider thez-systemż = Fz(z, t) +Gzu derived from (11):
∀k ∈ {1, . . . , n}

(S3)



















































ż1 = ǫ2
ǫ1
z2

ż2 = fz(z2, z3, t) +
τmM
ρǫ2

u
...

ż2k+1 = ǫ2k+2

ǫ2k+1
z2k+2

ż2k+2 = ω2ǫ2k+3

ǫ2k+2
z2k+3 − ω2k2ǫ2k+1

ǫ2k+2
z2k+1

...
ż2n+3 = 0

(21)

with fz(z2, z3, t) =
1

ǫ2
f(ǫ2z2, ǫ3z3, θ̂).

Let e = ẑ − z denote the observation error. Using (21) and
(19), we obtain:

ė = Fz(ẑ, t)− Fz(z, t)− δ∆S−1CTCe. (22)

The basic idea of the proof is to decompose the difference
Fz(ẑ, t)− Fz(z, t) as follows:
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= A(t)e+B(e, t).
(23)



Using the mean value theorem, we get the matrixA defined
in Proposition 4 with

ai,i+1(t) =
ǫi+1

ǫi

∂Fz,i

∂zi+1
(ẑ1, . . . , ẑi, zi+1 + φ(t)ei+1, t) (24)

for some (unknown)φ(t) ∈ [0, 1] and the vectorB(e, t) whose
nonzero components are even ones:



















b2(t) =
∂Fz,2

ǫ2∂z2
(ẑ1, z2 + φ(t)e2, z3, t)

b2k+2 = −ω2k2ǫ2k+1

ǫ2k+2
, ∀k ∈ {1, . . . , n}.

(25)

Bounds onai,i+1(t) and onb2(t) ≤ γ2 are inherited from
properties (P2) and (P3) of Lemma 1.

The usual change of coordinatesεi =
ei
Li leads to:

ε̇ = L(A(t)− δS−1CTC)ε+D(t)ε (26)

where the nonzero entries of the matrixD(t) are:

d2,2(t) = b2(t), d2k+2,2k+1 = b2k+2/L ∀k ∈ {1, . . . , n}.
(27)

The following upper bounds:






|d2,2(t)| ≤ γ2

|d2k+2,2k+1| ≤ ω2k2ǫ2k+1

ǫ2k+2
=

γ2k+2ǫ2k+1

ǫ2k+2

(28)

are satisfied sinceL ≥ 1.

A candidate Lyapunov function can be given by:

V (t) = εTSε ≤ λ‖ε‖2. (29)

Differentiating (29) using (26) leads to:

V̇ (t) = LεT
(

ATS + SA− 2δCTC
)

ε+ 2εTSDε. (30)

We recap the Lemma of [30]: assuming that property (P2) is
satisfied, then∀δ0 > 0, ∃µ > 0 and∃S a tridiagonal positive
definite matrix such that (20) holds. Using (20) in (30), we
obtain:

V̇ (t) ≤ −µL||ε||2 − (2δ − δ0)L||Cε||2 + 2εTSDε. (31)

Set2δ ≥ δ0 leads to

V̇ (t) ≤ −µL||ε||2 + 2εTSD(t)ε. (32)

SetM(γ, S, ǫ) = ||SD(t)||∞ involves

V̇ (t) ≤ −(µL− 2M)||ε||2 ≤ −(µL− 2M)
V (t)

λ
(33)

with λ the highest eigenvalue ofS. Let L0 = max
(

1, 2M
µ

)

,
it follows from (33) that∀L > L0, (19) is an exponential
observer for system (11).

TABLE II
PARAMETER VALUES

Blood viscosity η 16× 10−3 [Pa.s]
Blood density ρf 1060 [kg.m−3]

Nanorobot density ρm 7500 [kg.m−3]
Aggregate radius r 2.5 10−4 [m]
Vessel diameter D 3 10−3 [m]
Payload density ρp 1500 [kg.m−3]

Ferromagnetic ratio τm 0.75
Magnetization M 1.23× 106 [A.m−1]

Controller gains (k1, k2) (7, 14)
High gain L 3

TABLE III
INITIAL CONDITIONS FOR THE SYSTEM AND THE OBSERVER

(x1, x2, x3, x4, x5) (0 ; 0 ; 0.1075 ; 0 ; 0.05)
(x̂1, x̂2, x̂3, x̂4, x̂5) (0.001 ; 0.01 ; 0 ; 0.001 ; 0.01)

D. Receding Horizon Estimation (RHE)

Among the different approaches of state estimation, RHE
presents an attractive alternative to the theoretically well-
founded observers by proposing a systematic way to design an
optimization-based observer [31]. The estimation is formulated
as solving on-line a nonlinear optimization problem. The
principle of RHE is to minimize a cost function over a past
finite time interval, usually named estimation horizon and
denotedNe. The difference between the measured outputy
and the estimated outputŷ over the estimation horizon defines
the cost functionJ . Due to the sampled measurements (with
Te the sampling period), the state estimation problem is written
in discrete-time. At the current timek, the function J is
minimized with respect to the statex at time (k − Ne). The
estimated output̂y(k) is then computed thanks to the model
and the computed optimal state estimatex̂⋆(k−Ne). At each
sampling time, the past estimation horizon moves one step
forward and the whole procedure (model-based estimation and
optimization) is repeated to guarantee the robustness of the
approach in regard to disturbances and model mismatches. The
mathematical formulation of the RHE is given by:

min
x(k−Ne)

J(x) =

k
∑

j=k−Ne

[y(j)− ŷ(j)]TQ [y(j)− ŷ(j)] (34)

subject to:

{

x̂(k + 1) = Fk(x̂(k)) +Gku(k)
ŷ(k) = hk(x̂(k)).

(35)

Q is a symmetric definite positive matrix and the nonlinear
model (35) obtained by a second-order Runge-Kutta method
describes the dynamics of the process (11) in discrete time.

The main advantages of RHE are its capability to explicitly
take into account state constraints, its easy implementation
requiring the setting of two parameters (Ne,Q) and its ro-
bustness in regard to disturbances because of the repeated
optimization procedure. On the other hand, it suffers from a
lack of convergence proof since the solution is numerical.
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Fig. 3. Simulation without an estimation of the blood velocity.

V. SIMULATIONS

The first simulation illustrates that the tracking is highly
degraded when an incorrecta priori knowledge of the blood
velocity is considered, and consequently emphasizes the need
for an estimation of the blood velocity. In the two last simula-
tions the aggregate position is assumed to be measured within
an accuracy of100µm consistent with theµ-MRI resolution.
A Gaussian white noise with a standard deviation of100µm
is thus added to the measured output. The nominal values
of parameters are given in Table II and the initial conditions
of the system and the observer in Table III. Without loss of
generality, the dynamic of the blood velocity is modeled by a
second-order truncated Fourier series.

A. Simulation without an estimation of the blood velocity

In this simulation, we show that an error on the blood veloc-
ity estimation particularly affects the tracking. The simulation
is performed assuming a50% error on the blood velocity with
respect to its nominal value (see Figure 3(c)). Figure 3(a) show
that the tracking is degraded because of a wrong estimation of
the blood velocity. One can notice a tracking error greater than
1cm and a maximum position estimation error about1mm
on the Figure 3(c). Although the control input ensures the
stability of the system (see Figure 3(d)), the position error is
too large and compromises the access to a specific area of the
human body. The interest of estimating the blood velocity is
demonstrated in the two next simulations.
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(d) Aggregate velocity: real and esti-
mated velocities and estimation error.
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Fig. 4. Simulation with a high gain observer.

B. Simulation with a high gain observer

The estimation of the full state vector is performed by a
high gain observer with parametersδ = 2500 andS given by:

S =













0.13 −0.015 0 0 0
−0.015 0.01 −0.022 0 0

0 −0.022 0.1 −1.5 0
0 0 −1.5 100 −50
0 0 0 −50 60













(36)

The aim of the observer is twofold. First, it reconstructs
the aggregate velocity needed to compute the control inputs.
The control input, based on Lyapunov functions, ensures
the stability of the system along the pre-planned reference
trajectory. Second, the observeron-line estimates the blood
velocity in order to compensate for modeling errors or
incorrecta priori knowledge that affects the drag force.

Figure 4(a) illustrates that the tracking of the reference
trajectory by the aggregate is efficient and the system is
stable. One can notice a transient phase betweent = 0s and
t = 1s due to the different initial conditions (see Table III).
Figures 4(b), 4(c) and 4(d) show that the convergence of the
observer is not affected by the Gaussian white noise added to
the measured output. After a brief transient phase, the blood
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Fig. 5. Simulation with a Receding Horizon Estimation.

velocity is correctly reconstructed with an average error less
than1mm.s−1.

C. Simulation with a Receding Horizon Estimation

In order to show that the efficiency of the RHE does
not depend on the algorithm, we have deliberately chosen a
standard algorithm (fminsearch function in Matlab based ona
simplex method). The past estimation horizon is chosen equal
to 5 (with a discretization period of2ms) and the matrixQ
is the identity matrix. The estimated state vector converges
to the simulated one although the algorithm is basic and the
measured output is noised (see Figures 5(b), 5(c) and 5(d)).
The control law using the estimated state feedback is able to
achieve the reference trajectory tracking (see Figure 5(a)). As
can be seen in the figures, the estimator needs to acquireNe

measures before starting the optimization. This is illustrated
by the variations at the beginning. Results could be largely
improved by using a more sophisticated algorithm (Levenberg-
Marquardt) and consequently be more robust to noise and
modeling errors.

VI. D ISCUSSION ANDCONCLUSION

Many studies on the measurement of the average blood
velocity are available in the literature. Unfortunately, this

information is neither sufficient nor accurate enough for an
aggregate navigating in the vasculature. The drag force hasa
major impact on the dynamic behavior of the system and this
force strongly and nonlinearly depends on the relative velocity
between the aggregate and the time-varying blood flow. The
blood velocity is pulsatile and periodic. Since any periodic
signal has a Fourier series decomposition, it is then possible
to define a dynamic model of the blood velocity, yielding to
an extending system.

The core idea of the paper was to estimate both the blood
and the aggregate velocities using the sole measurement of
the aggregate position given by an imager. The extended
system (11) was proved to be observable and then two
different observers were proposed in order to estimate the
full state vector required to implement the control law.
The state observer was combined with a control law based
on Lyapunov functions. The simulations demonstrated the
benefits toon-line estimate the blood velocity in order to
ensure a precise stabilization of the aggregate of nanorobots
along any reference trajectory.
The high gain observer whose convergence is theoretically
well founded obtained satisfactory results. Yet the tuningof
the design parameters was difficult because of their sensitivity
in regard to noise and modeling errors. This phenomenon
depends on the choice of the high gainL and the matrixS. A
good conditioning of the matrixS is not always easy to obtain
and furthermore the matrix∆ is formed in ascending powers
of L in (19). It is therefore necessary to make a compromise
to ensure a fast convergence of the estimator with a high gain
L not increasing too much. The receding horizon estimator,
based on a nonlinear minimization problem, was very easy
to implement and provided an efficienton-line estimation but
without proof of convergence. The tuning parameters were
the estimation horizonNe and the symmetric matrixQ. The
obtained results can largely be improved by using an efficient
algorithm and also a time-varying matrixQ which can play
a role similar to a forgetting factor by weighting the recent
measurements.

This work can be very useful in therapeutic diagnosis where
the estimation of the blood velocity is a relevant information.
The use of aggregates can also be considered in the case of
clogged arteries with two objectives: firstly, nanorobots will
remove these plaques and in a second time, the medical team
canon-linecheck that the plaques have been correctly removed
by observing the evolution of the estimated blood velocity.

Some technical limitations of this approach have to be
noted. The access to hard-to-reach body’s area such as capillar-
ies requires a substantial reduction of the aggregate diameter,
yet the force of propulsion and the localization of the system
directly depend on its size (see Table I). The usual imagers
do not have sufficient resolution and the actuators encounter
power limitations for this kind of application in small vessels.
Spatial resolution of the imager can also be a limitation since
the noise measurement affects the quality of the blood velocity
estimation. Yet preliminary results indicate that these observers
are efficient even considering the modern clinical MRI or CT
devices,i.e. for a 500µm resolution.
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APPENDIX

Let ci(t) = ai cos (iωt) + bi sin (iωt) andℵ1 be defined as
a nth order truncated Fourier series:

ℵ1 = a0 +
n
∑

i=1

ci(t) (A.37)

We show that (A.37) is the solution of the linear system (2)
by induction on the following property∀k ∈ {1, n}:

(Pk)















ℵ2k+1 = (−1)k
n
∑

i=k+1

(

∏

j<k+1

(i2 − j2)
)

ci(t)

+a0
k
∏

i=1

i2

(A.38)
To show that the base case holds fork = 1, we differentiate
twice (A.37):

ℵ̈1 = −ω2
( n
∑

i=1

i2ci(t)
)

= −ω2(ℵ1 − ℵ3)
(A.39)

with ℵ3 defined by:

ℵ3 , a0 −
n
∑

i=2

(i2 − 1)ci(t). (A.40)

The property (A.38) consequently holds fork = 1.

The inductive step needs to differentiate twice the expres-
sion ofℵ2k+1 given in (A.38):

ℵ̈2k+1 = −ω2
(

(−1)k
n
∑

i=k+1

(

∏

j<k+1

(i2 − j2)
)

i2ci(t)
)

.

(A.41)
From system (2),ℵ2k+3 is:

ℵ2k+3 =
ℵ̈2k+1

ω2
+ (k + 1)2ℵ2k+1 (A.42)

and using (A.41), we obtain:

ℵ2k+3 =−(−1)k
n
∑

i=k+1

(
∏

j<k+1

(i2 − j2)
)

i2ci(t)

+
(

(−1)k
n
∑

i=k+1

(
∏

j<k+1

(i2 − j2)
)

ci(t)

+a0
k
∏

i=1

i2
)

(k + 1)2

= (−1)k
n
∑

i=k+1

(

(k + 1)2 − i2
)
∏

j<k+1

(i2 − j2)ci(t)

+a0
k+1
∏

i=1

i2

= (−1)k+1
n
∑

i=k+1

∏

j<k+2

(i2 − j2)ci(t)

+a0
k+1
∏

i=1

i2,

(A.43)

thereby proving that the property (A.38) holds fork + 1.

For k = n + 1 the property (A.38) implies thatℵ2n+1 =

a0
n
∏

i=1

i2, i.e. the mean value up to a constant factor. Using

the Cauchy-Lipschitz theorem, the solutionℵ1 is unique for a
given set of initial conditions, which concludes the proof.
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