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Estimation of the blood velocity for nanorobotics

Matthieu Fruchard, Laurent Arcese, Estelle Courtial

Nanorobots

Abstract—The paper aims at estimating the blood velocity to -
enhance the navigation of an aggregate in the human vascu- (a) Ligand+Payload
lature. The considered system is a polymer binded aggregate
of ferromagnetic nanorobots immersed in a blood vessel. The
drag force depends on the blood velocity and specially acts on

the aggregate dynamics. In the design of advanced control laws,

the blood velocity is usually assumed to be known or set to a zoom
constant mean value to achieve the control objectives. We prae _—
theoretical tools to on-line estimate the blood velocity from the
sole measurement of the aggregate position and combine the state
estimator with a backstepping control law. Two state estimation
approaches are addressed and compared through simulations: a
high gain observer and a receding horizon estimator. Simulations
illustrate the efficiency of the proposed approach combiningon-
line estimation and control for the navigation of an aggregate of

nanorobots. Fig. 1. Aggregate of nanorobots in a blood vessel. (a) Aggeebinded by
Index Terms—Blood velocity, high gain observer, receding ligand, including a payload; (b) aggregate binded by magreetd interaction
horizon estimator, magnetic nanorobots. forces.

=
Nanorobots

#(b)

|. INTRODUCTION Whatever the proposed design, these systems are subject

There has been a growing interest in the deve|opmentt@fdiffel’ent forces whom modelling is necessary in order to
therapeutic microrobots and nanorobots for some years [g@ptimate their dynamic behaviors in a fluidic environment
Such systems have the potential to perform complex surgi¢sb], [16]. The blood velocity is usually assumed to be known
procedures without heavy trauma for the patients [2], [3pr set to a constant mean value whilst it is a key nonlinear
[4], [5], [6]. Among the numerous prototypes developeddarameter of the drag force which prevails at a small scale.
those possessing a deported actuation are the most prgmisTrhe measurement of the blood velocity is a difficult task that
Indeed these robots do not embed any energy source tifu®ften assigned to ultrasonic sensors, at least in vessels
inducing smaller sizes. Untethered robots thus benefit faonclose to the sensor. This solution calls for an end-effector
possible better therapeutic targeting since they can adeesservoing so as to track the aggregate position. Another

hard-to-reach body’s area and also lessen medical sideteffeolution relies ona priori knowledge of the blood velocity.
linked to surgical operations. Works related to the numerical resolution of the velocity

profiles using Computational Fluid Dynamics software had

The kind of deported actuators required to control sudreen reported in the literature [17], [18]. But these stsdie
robots depends on the propulsion strategy. A variable ntagneean not be used for real-time purposes because they are
field is necessary for robots with elastic flagellum [7], [8pased on the Navier Stokes equations whom resolution is
or helical flagella [9]. The control of bead pulled robots ogomputational time consuming. In [15], the authors prodose
swarm of robots [10], [11], [12] is provided by the magneti@nalytical expressions of the blood velocity profiles. Ehes
field gradients of either Magnetic Resonance Imaging (MR@xpressions are valid in the neighborhood of a bifurcation
devices or magnetic setup®.g. from Aeon Scientific or but require an accurate knowledge of the vessel geometry.
Stereotaxis). So as to benefit both from a large motive ford&e blood velocity could also be considered as a disturbance
in the macrovasculature and from a possible break up @nd be rejected in the control law, like in [19] for breathing
the microvasculature (so as to avoid undesired thrombo§@mpensation. However the knowledge of the blood velocity
and to improve the targeting), a promising approach is t® relevant for the navigation since the main force depemds o
consider aggregates. Such aggregates of magnetic nat®roidoFinally the on-line estimation of the blood velocity seems
are binded either by a biodegradable ligand [13] or b be an interesting approach to avoid the drawbacks of the
self-assembly properties [14] as shown on Figure 1. aforementioned methods.

. . The purpose of this paper is to propose @mline state
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TABLE |
PHYSIOLOGICAL PARAMETERS[20], ACTUATION AND IMAGING . X STANDS FOR A COMPATIBLE DEVICE

Physiological Parameters (mean values)\

System Design

Actuator (VB in mT.m™1) Imager resolution in m
Cardiovascular Networl Diameter B|00_d Requiredcnmcal Pre-clinical nu-MRI MaX\.Ne" MRl u-MRI cT! ;J,-CTZ OCT34 Ush4
(m velocity gradient RI MRI (= 450) Coils | 193 Z107* <10-% <510~ <10-9 <10-°
) (m.s™1) (< 80) (= 100) Setup
~— T Atteries 10-2  2510-! 60 X X X X X X X X X X
N
Jo T
— —Small 10-3 2102 90 - X X X X X X X X X
5,/ Arteries
I/ -\
/] 4“\ ~ \Arterioles 10— 10-3 250 - - X X - X - X X -
\Capillaries  10=5 51075 2800 - - - X - - - - X .
. . . . . . . 0.129 §
trajectory tracking. The paper consists in five sectionstiGe | — Blood velocity
Il details the need for a blood velocity estimation and ps&Es 0104 A\ / ’L‘j e
a generic blood velocity model. Then, in Section Ill, the S AN S N R,
nonlinear model of an aggregate navigating in a blood véssel — oos| | | v3

presented. Section IV is dedicated to the design of obsgrver ‘3 1/
a high gain observer and a receding horizon estimator are = 0-06"/ \
addressed tmn-line reconstruct the blood velocity. Finally, £ | |
simulations illustrate the efficiency of the proposed appho

combining control and estimation in Section V. Conclusions

Blood velocit

ning ¢ ! B . 0021 Lo Lo g
and discussions on open issues are summarized in Section VI. ] U4 b
Vo L]
0 \\\l(i// “\‘-/f/’
II. WHY AND HOW TO ESTIMATE THE BLOOD VELOCITY? o2
Magnetically actuated robots are classically described 0 02 04 06 08T gt M4 16 18

[11] by the motive magnetic force induced by the magnetic
; i i i ig. 2. Blood velocityv (black solid line), mean valuey (gray solid line)
field or grad.lem dependlng on the I’Obpt dESIQH [1]’ thzéndnth order truncated Fourier serieg: vy (blue dots),v2 (black dashes)
apparent weight and the drag force induced by a N@fqy, (green crosses).

pulsatile blood flow. Hydrodynamic wall effects show that

a partial vessel occlusion by the particles results in an

optimal ratio between the microrobot and the vessel radihe vasculature, the most disturbed by external time-uaryi
denoted r and R respectively. As suggested in [14], gperturbations is the drag force because of the pulsatile
first approximation for dimensioning the actuators religgiood flow. Several possibilities to deal with this periodic

on the study of the optimal ratio of motive over externgberturbation might be considered: direct measurement,
forces. Table | summarizes these technical constraints afigturbance rejection or blood velocity estimation.
the consequences on the choice of both actuators and imagers

o _ _ Physiological periodic perturbations are usual issues in
Optimality requires that the robot goes smaller as fhedical robotics and are often addressed using periodic

enters smaller vessels. Recently the idea of using mic®scsignal rejection: either using filtering of the output orngsia
carrier made up of a biodegradable aggregate of iron-cobgfecompensation in the control law, like in [19] for breathi
nanoparticles and doxorubicin has been rendered possif@fection. For the present case, both solutions requirblte
[13]. In large vessels, a millimeter-sized robot has agelocity measurement. However the pulsatile blood vejocit
important propelling force making possible to resist to thig a local information and is consequently more difficult to
blood drag. In small vessels where the blood flow is lowese measured. Studies have been carried out to measure the
a micrometer-sized robot can ensure a sufficient thrustewhlood velocity using the Doppler effect with ultrasound or
avoiding any injury caused by embolism or thrombosisR| devices [21], [22]. The quality of the measurement
Furthermore the motive force is volumetric whilst the dragepends on the ultrasound transducer orientation duriag th
force is —at best— surfacic which implies an increasingcquisition and it would require to ensure the servoing ef th
prevalence of the drag force as the vessel radius decreagesoted imager on the robot position as it navigates through
Among the different forces affecting the robot navigation ithe human body. When the robot penetrates deeper into the

) _ human body, the device resolution, as well as the pertunhsiti
,CT stands for Computed Tomography device induced by the different tissues separating the robot frioen t
Cannot be used on living animals . L .

30CT stands for Optical Coherence Tomography device sensor, may impact the measurement rellab_lllty. Finally th

“Limited penetration depth poor spatial accuracy of such measurements is not comgatibl

5US stands for Ultrasound device

with the precision required to discriminate the parabolic



blood velocity profile; yet the robot does not face the sanwhere A is the frontal area, the drag coefficiefi; is given

drag depending on its position in the vessel. The proposky [25], 5 is a dimensionless ratio related to the wall effect

approach is different since it does not rely on the direchused by the vessel occlusion by a spherical aggregate of

measurement of this velocity but on the disturbance esitimat radiusr [26], andv denotes the relative velocity between the

aggregate and the fluig.andp; denote respectively the blood

Since an imager is already necessary to localize the rolwigcosity and density. In the case of a spherical aggregate,

and thus provides an output of the system, one can explditg force can be rewritten as:

a model of the system to reconstruct unmeasured states.

2 —
Observers of the robot velocity have already been studied in 7, — — (qo|+002+e—0 | -2 (4)
[23]. We propose to extend this approach to estimate thedbloo 1+ dv/|v] |||
veloc!ty. It requires to r_\ave a dy_nam|cal mo_del of the blooghe parameters in (4) are inherited from (3):
velocity behavior. Arterial pulsatile flow profiles are ubya )
modeled using the Womersley model [24], which results in a g - Omr p o O2psTr
truncated Fourier series as shown on Fig. 2. It is easy to show B ’2 B2 (5)
that any velocityX; expressed as a second-order truncated ¢ = 3pymr d = 2rps
Fourier series is a solution of the autonomous system: B2 Bn
R, = Ny 2) Magnetic force:The propulsion of the magnetic robot is
(Sx,) R, = —w?(Ry — Ng) 1) provided by the magnetic forcE,,, induced by the magnetic
' Ry = 0 field gradients. This force can be written as:
where R; is the average value of the blood velocity and Fp =7 V(M.V)B (6)

is the pulsation of the blood flow assumed to be known. Flhere v is the aggregate volumej the magnetic field N
a blood velocityX; defined as aith order truncated Fourier the magnetization of the nanorobots and = V,,/V the

series, (1) can be extended in thi + 1)-dimensional form: o omagnetic ratio with/;,, the ferromagnetic volume.

Ny = N 3) Apparent weight:The apparent weight of the aggregate
N, = —w?(R; —Ry) results from the contribution of the weight and the buoyancy
: Wa=Vi(p—pp)d (7)
(Sx) Rop—1 = Ry () with the aggregate density= m/V wherem is the aggregate
Rop = —w?(k™Nop—1 — Nogy1) mass. Since the aggregate is made of ferromagnetic narterobo
: and a payload (ligand, drugs, micelle...), the aggregatsitie
Rpoin = 0 can be decomposed as= 7,0, + (1 —7,,,) pp, Wherep,,, and
n+ -

pp are respectively the density of the magnetic nanorobots and
Vk € {1,...,n} and where the mean value¥®s,, 1, up to & the density of the payload.
constant factor. See the Appendix for technical details.

B. State Space Representation

The obijectif is then to link the disturbance dynamic exten- i )
sion (2) to the robot modeling. Let us consider the system derived from (4), (6) and (7):

o= p2
I1l. M ODELING (S1) Pr = fpa,R) + =My (8)
Let us consider an aggregate navigating in the arterial net- y = m

work. Any system immersed in a moving fluid is subjected to . .
two forces: the drag force and the buoyancy force. Thissﬂectiwhere p1 andp, denote respectively the aggregate position

is devoted to briefly introduce these forces and the magne%Ei (\)/e!{omtty,_u :Eg cgn_f[_r;):] 'er;eagm;eth;ebxgg V?L%ng' the
force that controls the robot along a pre-planned referen utputy 1S positi ggreg su y

trajectory (seee.g. [15] for more details). The internal forces'"2d€"- The expression of the functigiipz, Ny ) is given by:

affecting the aggregate cohesion are not taken into account
g the aggreg f<p2,m>=[—a(p2 —N1>(a|p2 Ny by — 82

A. Forces (p2 — ;)2 . 1 ©
1) Hydrodynamic drag forceln a fluidic environment, any +Cl +dy/|p2 — N1|) Vs = p)g] m’
system is subjected to the drag force which opposes its mOti9vhere the sign functiow is defined by:
SN2 = '
B, = _%PfACd <””|> 2 —1 if £<0
0 ] g/ vl o§)=¢ 0 if £€=0 (10)
Cqg = —+——=+04 3 1 if £€>0.
d Re 1oV 3) | o -5-
2rp || V]| The pulsatile periodic blood velocity is modeled byth order

Re = Bn truncated Fourier series given by the system (2). Note ithat



belongs to a compact séfy. Let z = [pT,RT]T € R?"*+3  the control law (12) needs to know the position and velocity
denote an extended state vector. From (2) and (8), we obtainthe robot and the velocity of the blood. The formee.
an extended system in the single output control-affine forthe position, is measured by the imaging device whereas the

& =F(z)+ Gu, y=h(x), Yk € {1,...,n}: velocities are not and consequently require to be estimated
.’i‘l = X2
By = flwg,xs) + Ty B. Observability of the Extended System

14
Lemma 1 Let £ denote any compact subset of a neighbor-

hood of (X,, X,.). Vz € K x Ky, the vector fieldF satisfies

S okl = T2ke2 11) the following properties:
(52) L2k+2 = —WQ(k2I2k+1—$2k+3) D g prop OF;(z)
: Pl) Vie {1,...,2n+ 1}, Vj > 2, —% = 0;
- 0 B R
Pants = P2) Vi€ {1,...,2n+2}, Jai, B > 0y < = < B;;
y _ h(l‘)le. ) ZG{, ,2n + }v a;, Bi O TAS I < B
In order to implement a feedback control law, the state OF.
vector of the system (11) is required to be known. Givep3) vi ¢ {1,...,2n + 3}, 3y; > O: ‘ i) < v,
unmeasured variables, a state-observer has to be designed.v_ <i+l Oz
The next section is devoted to the synthesis of observers for I+l
estimating the blood velocity. Proof: From (11), it is straightforward thatP() is
satisfied.

IV. MAIN RESULTS

The controllability and the design of backstepping contrathe property P2) is easily obtained for the linear part of the
laws used to Lyapunov stabilize the system (8) have begystemi.e. for i £ 2 with
addressed in [23]. We briefly recap these results to point
out the necessity of estimating both the unmeasured robot{ Qokpr = P = 1’2 vk €40, n} (13)
and blood velocities which are required for implementing th Qopy2 = Poryz =07, vk € {L,...n}.
control law. We then address the main results of the paper and g3, are detailed hereafter. We have the following even
the observability of the extended system (11) and the desigimction by differentiating the expression in (11) and isett
of two classes of observers using either a high gain observet 5 — z5:
or a receding horizon estimator. OF(v)

8563

ol cdf? } 1
A. Prerequisites d/|v|  2(1+dy/|v])?

Proposition 1 Let X,..; = [X (1), X, (1), X (¢ )} denote any e consequently hav8s2”) = a/m equivalent to
continuous and bounded reference trajectory. The sy$&m

is locally controllable along the reference trajectory. 2 cdy/|v]
2b(1+d 2¢(1+d - = 15
[o] { 26(1 + dv/[0])? + 2¢(1 + dv/]o]) 5 0, (15)

Proof: The controllability of system (8) is inherited from _
the controllability of its linearized time-variant systemong Whose solutions are
the reference trajector¥,.r(t) [27], [28]. See [23] for more v = 0

details. u 3 /11— 166 gp 3 (16)

Proposition 2 Let 8 denote any linear uncertain parameter ol = 2bd

in (9) such that/(pz, Ri) = fo(p2,R1) + ¢ (p2,X1)f. Under  gjnce e have, from (5); > 16 it is not difficult to show
assumptions of Proposition 1 and fd¢ bounded, the adaptive that aFQ(U) > a/m, Yv # 0. Hence we obtaims — a/m.

backstepping control law

= {a +blv| + 201
(14)

u==L7[— (k1 + k2)(p2 — X,) — (1 + kik)(p1 — X,) The upper bounds, = max 8F2(f) is inherited from the
N . S

. = fo(pz2,R1) __‘/’(pQ’ Ri)0 + Xr] (12) continuous differentiability ofM on R* which implies its

0= (p2,N1)[(p2 — X,) + k1(p1 — X)) local Lipschitz continuity. The propert}PQ) is consequently

stabilizes the syste(i8) along anyC° reference trajectory for satisfiedvi € {1,...,2n + 2}.

any initial estimated(0) with the controller gainsk,, ks > 0

and a positive-definite matrix gaif. The property P3) is easily obtained for the linear part of the

system:
Proof: The proof, given in [23], relies on a two steps
constructive progf of thg Lyapun[ov ]stabilizing controllem P Yokt =0, Yk €40,...n} a7)
Yok+2 = w2k2, Vk € {1 .. n}
(x) _ OFy(x
If no uncertain parameter is considered, Proposition Zistansing the previous result and noticing tf%z 82(3 ),

with fo = f and no updating that i8 = 0. In every instance, the property P3) is satisfied withy, =



Remark 1 The property P1) is related to the triangular A, = diag(e,...,€2,43) respectively denote the gain and a
structure of the system. The existence of constgnasid~y; in  normalization diagonal matrixS is a tridiagonal symmetric
(P2) and P3) are linked to the Lipschitz property of functionglefinite positive matrix such that the following Lyapunov
F;, at least locally. In this case, one can use globally Lipschiinequality is satisfied:
extensions of thé! functionsF;.

AT(H)S + SA(t) — 6CTC < ul, ¥t >0 (20)
Proposition 3 The systen{l11) is uniformly observable.

with do > 0, u(d) > 0, the parameters > % and

Proof: The observability matrix is the matrix A(¢) which nonzero entries are only; ;+1(t) €
‘ ai€ip1 Bi€iri, .
Lih(x —, —], Vi < 2n+ 2.
0:785(1)’ 0<i<2n+2 1<j<2n+3 (18) | €i € |
Tj

Proof: We first perform a normalization step by defining
a new state vector = A~z where the choice of the nonzero
parameters; is related to both the conditioning matri&
in (20) and the resulting minimal gaihy. In the sequel we

whereLt.h(x) denotes théth Lie derivative of the outputt(z)
of the system (11) along the vector field Lie differentiating
the output of the system (11), we obtairk € {1,...,n}:

I 0 0 consider thez-systemz = F,(z,t) + G,u derived from (11):
2o 2 0 Vke{1,...,n}
- 2(k—1) z) (10 0 Z = f.(20,23,t) + =My
@) * e W 6335 <* 1 0 .2 f<2 3 ) pe2
af(x) (S3) fok4l = o aopge
* ... * coowin= ; _ wlemnys w?kZear 41
O0xs 22k4+2 = Cokt2 22k43 — P 22k41
wherex stands for bounded functions. It is straightforward that :
the observability matrix is full ranked a(zg(—x) # 0 from the Zmts = 0 1)
X
property P2) of Lemma 1, hence the resu:it. | 1 .

with fZ(Zg, 23, t) = gf(GQZQ, €323, 9)

Since it is possible to estimate the full state vector of the
extended system (11) using the sole output accessible te med-
surement, observers for the system (11) can be designed. Tho):
different kinds of observers are studied in the next sestian . 5o B 1 AT
high gain observer and a receding horizon estimator. Thee firs ¢=F:(3,t) = Fo(2,t) - 0AS7C" Ce. (22)

one is theoretically well founded and the second one is welhe pasic idea of the proof is to decompose the difference

et e = Z — z denote the observation error. Using (21) and
we obtain:

known for its easy implementation. F.(2,t) — F.(zt) as follows:
C. High Gain Observer o e e
Since the vector fields are locally Lipschitz continuous, Fo(B2,2) = f(22, 23) fo(22, %) = fa(22, 2)
high gain observers are a promising tool. Indeed, we have : :
already addressed high gain observers in [23] for system (8) Z:ﬁe% 12 21]:%62’“ 42
which can easily be written in the observability canoniceair (wzgzkH . =
[29]. Yet writing system (11) in the observability canorica Jcakrz 2RHD .
form requires an exact linearization feedback which is very *%ng_i_l) %62]64_3
sensitive to output noise. To avoid this drawback, we would
consequently rather develop a high gain observer thattjirec '
exploits the triangular structure [30] —related to propéRl)— 0 0
of the system (11). 0
J=(22,23) — f2(22,23)
Proposition 4 Let K denote any compact subset of a neigh- :
borhood of (X, X,) and & the compact set of admissible n 0
control inputs. Thervz(0) € K x Ky, V#(0) € K x Ky, WPk eapri
Yu € U, ¥0(0), Lo > 1 such thatVL > Ly, T aanse  C2kHL
i=F(y,2,0)+ Gu—AANST'CT(CA ' —y) (19) 0
is a high gain observer for systenill) on the com- = A(t)e + B(e,t).

pact set KX x Ky where A = diag(L,...,L?"*3) and (23)



Using the mean value theorem, we get the mattixiefined
in Proposition 4 with

€i+1 OF, ; 2
Ls--

aiit1(t) = S EinZig1 F o(t)eiy1,t) (24)

€; 8zi+1

for some (unknown(¢) € [0, 1] and the vectoB(e, t) whose
nonzero components are even ones:

OF. 2,
ba(t) = 2 (21, 22 + p(t)ez, 23, 1)
62822 (25)
w2k2egp i1
boky2 = *W, Vk € {1, e ,n}.

Bounds ona; ;+1(t) and onby(t) < 72 are inherited from
properties P2) and P3) of Lemma 1.

The usual change of coordinates= 7% leads to:

¢ =L(A(t) — 6S7'CTC)e + D(t)e (26)
where the nonzero entries of the matfit) are:
dgyg(t) = bg(t), d2k‘+2,2k+1 = b2k+2/L Vk S {1, e ,TL}.
(27
The following upper bounds:
|da,2 (1)) < v
W k?€orq1 | Yokt2€2kt1 (28)
|dok+2,26+1] < =
€2k+2 €2k+2
are satisfied sincé > 1.
A candidate Lyapunov function can be given by:
V(t) =T Se < Me||. (29)
Differentiating (29) using (26) leads to:
V(t) = Le" (ATS + SA — 26CTC)e + 2¢7SDe.  (30)

We recap the Lemma of [30]: assuming that propeP)(is

satisfied, thervy, > 0, 3 > 0 and 3S a tridiagonal positive
definite matrix such that (20) holds. Using (20) in (30), we

obtain:
V(t) < —pLle||? — (26 — 6o)L||Ce||? + 2T SDe.  (31)
Set2§ > 4, leads to
V(t) < —uL|e||> 4+ 2eTSD(t)e. (32)
SetM (v, S,e) = ||SD(t)||~ involves
V(1) < ~(u —200)|e]? < ~(ur — 20010 (39

with X the highest eigenvalue &f. Let L, = max (1, %)

TABLE I
PARAMETER VALUES

Blood viscosity N 16 x 10~3 [Pa.s]

Blood density ps 1060 [kg.m—3
Nanorobot density Pm 7500 [kg.m™—3
Aggregate radius r 2.510~% [m]

Vessel diameter D 3102 [m]

Payload density Pp 1500 [kg.m ™3]
Ferromagnetic ratio Tm 0.75

Magnetization M 1.23 x 10 [A.m™1]

Controller gains (K1, k2) (7,14)

High gain L 3
TABLE Il

INITIAL CONDITIONS FOR THE SYSTEM AND THE OBSERVER

(0;0;0.1075; 0 ; 0.05)
(0.001 ; 0.01;0;0.001;0.01

(z1,®2, 3, 24, 5)
(%1, @2, 3, T4, T5)

D. Receding Horizon Estimation (RHE)

Among the different approaches of state estimation, RHE
presents an attractive alternative to the theoreticallyl-we
founded observers by proposing a systematic way to design an
optimization-based observer [31]. The estimation is fdatad
as solvingon-line a nonlinear optimization problem. The
principle of RHE is to minimize a cost function over a past
finite time interval, usually named estimation horizon and
denotedN,. The difference between the measured output
and the estimated outpgtover the estimation horizon defines
the cost function/. Due to the sampled measurements (with
T, the sampling period), the state estimation problem is anitt
in discrete-time. At the current timé, the functionJ is
minimized with respect to the stateat time (k — N.). The
estimated outpuf(k) is then computed thanks to the model
and the computed optimal state estimat¢k — N.). At each
sampling time, the past estimation horizon moves one step
forward and the whole procedure (model-based estimatidn an
optimization) is repeated to guarantee the robustnesseof th
approach in regard to disturbances and model mismatches. Th
mathematical formulation of the RHE is given by:

k
i J@) = > ) -0 b6) - 6] @4
’ ¢ Jj=k—Ne

subject to:

. . 35
§(k) = i (a(k) (39)
Q is a symmetric definite positive matrix and the nonlinear
model (35) obtained by a second-order Runge-Kutta method
describes the dynamics of the process (11) in discrete time.

{f@+n—&@mnaww

The main advantages of RHE are its capability to explicitly
take into account state constraints, its easy implementati
requiring the setting of two parameterd/((Q) and its ro-
bustness in regard to disturbances because of the repeated

it follows from (33) thatVL > Ly, (19) is an exponential optimization procedure. On the other hand, it suffers from a

observer for system (11). [ ]

lack of convergence proof since the solution is numerical.
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Fig. 3. Simulation without an estimation of the blood velocity

V. SIMULATIONS

Magnetic Field Gradients (T.m %)

The first simulation illustrates that the tracking is highly i
degraded when an incorreatpriori knowledge of the blood () Control input:V’ B.
velocity is considered, and consequently emphasizes thé ne
for an estimation of the blood velocity. In the two last simul Fi9- 4. Simulation with a high gain observer.
tions the aggregate position is assumed to be measuredwithi
an accuracy ofl00um consistent with the:-MRI resolution. ) ) ) ) )

A Gaussian white noise with a standard deviationi@fum B- Simulation with a high gain observer

is thus added to the measured output. The nominal valuesThe estimation of the full state vector is performed by a
of parameters are given in Table Il and the initial condisiorhigh gain observer with parameters= 2500 and.S given by:

of the system and the observer in Table Ill. Without loss of

generality, the dynamic of the blood velocity is modeled by a 0.13 ~ —0.015 0 0 0
second-order truncated Fourier series. —0.015  0.01 = —0.022 0 0
S = 0 -0.022 01 —15 0 (36)
0 0 -1.5 100 -50
0 0 0 —-50 60

) ) ) o ) The aim of the observer is twofold. First, it reconstructs
A. Simulation without an estimation of the blood velocity ¢ aggregate velocity needed to compute the control inputs
The control input, based on Lyapunov functions, ensures
In this simulation, we show that an error on the blood velothe stability of the system along the pre-planned reference
ity estimation particularly affects the tracking. The slation trajectory. Second, the observen-line estimates the blood
is performed assuming#% error on the blood velocity with velocity in order to compensate for modeling errors or
respect to its nominal value (see Figure 3(c)). Figure 3{ajws incorrecta priori knowledge that affects the drag force.
that the tracking is degraded because of a wrong estimation o
the blood velocity. One can notice a tracking error gredtant  Figure 4(a) illustrates that the tracking of the reference
lem and a maximum position estimation error abdutm trajectory by the aggregate is efficient and the system is
on the Figure 3(c). Although the control input ensures thetable. One can notice a transient phase betweerds and
stability of the system (see Figure 3(d)), the position eiso ¢ = 1s due to the different initial conditions (see Table ).
too large and compromises the access to a specific area ofigures 4(b), 4(c) and 4(d) show that the convergence of the
human body. The interest of estimating the blood velocity @bserver is not affected by the Gaussian white noise added to
demonstrated in the two next simulations. the measured output. After a brief transient phase, thedbloo



information is neither sufficient nor accurate enough for an
aggregate navigating in the vasculature. The drag forceahas
major impact on the dynamic behavior of the system and this
o force strongly and nonlinearly depends on the relativeargto

) ., Lo oo between the aggregate and the time-varying blood flow. The
; ’ blood velocity is pulsatile and periodic. Since any perodi
4 i s signal_ has a Fouri_er series decomposition, it i_s the_n ptassib

! e ¢ Tt ® e -+ to define a dynamic model of the blood velocity, yielding to
(a) Aggregate position: reference afft) Aggregate position: real and esti-an extending system.

real trajectories and tracking error. mated trajectories and estimation error.  The core idea of the paper was to estimate both the blood
and the aggregate velocities using the sole measurement of
the aggregate position given by an imager. The extended
system (11) was proved to be observable and then two
different observers were proposed in order to estimate the
full state vector required to implement the control law.

o 1z 3 4 _s s s
o Time(s) Time(s)
T2 3 4

Error(m)
Error(m)

T T o+ + » The state observer was combined with a control law based
g :L on Lyapunov functions. The simulations demonstrated the
5 e i ot i b 5 b bl wona s DENEfits toon-line estimate the blood velocity in order to

e s e 7 s e h 3 4 s
Time(s) Time(s)

ensure a precise stabilization of the aggregate of nantsobo
along any reference trajectory.
The high gain observer whose convergence is theoretically
well founded obtained satisfactory results. Yet the tunifig
the design parameters was difficult because of their seititi
w in regard to noise and modeling errors. This phenomenon
depends on the choice of the high gdirand the matrixS. A
good conditioning of the matri§ is not always easy to obtain
and furthermore the matrid is formed in ascending powers
=l of L in (19). It is therefore necessary to make a compromise
S to ensure a fast convergence of the estimator with a high gain
(e) Control input:V 5. L not increasing too much. The receding horizon estimator,
Fig. 5. Simulation with a Receding Horizon Estimation, based on a nonlinear minimization problem, was very easy
to implement and provided an efficieah-line estimation but
without proof of convergence. The tuning parameters were
velocity is correctly reconstructed with an average eress| the estimation horizonV, and the symmetric matrig). The
than 1mm.s 1. obtained results can largely be improved by using an efficien
algorithm and also a time-varying matri@ which can play

C. Simulation with a Receding Horizon Estimation a role similar to a forgetting factor by weighting the recent
measurements.

In order to show that the efficiency of the RHE does

not depend on the alg_orithm, we hgve Qeliberately chosen aryis work can be very useful in therapeutic diagnosis where
standard algorithm (fminsearch function in Matlab base@on, ¢ estimation of the biood velocity is a relevant inforroati
simplex method). The past estimation horizon is chosenleqygq se of aggregates can also be considered in the case of
to 5 (with a discretization period ofms) and the matrix)  ¢590ed arteries with two objectives: firstly, nanoroboti w

is the identity matrix. The estimated state vector CON@IGf,qye these plaques and in a second time, the medical team
to the simulated one although the algorithm is basic and g, jinecheck that the plagues have been correctly removed

measured output is noised (see Figures 5(b), 5(c) and (). gpserving the evolution of the estimated blood velocity.
The control law using the estimated state feedback is able t050me technical limitations of this approach have to be

achieve the reference trajectory tracking (see Figure) & nq The access to hard-to-reach body’s area such akcapil

can be seen in the figures, the estimator needs to acfireoq requires a substantial reduction of the aggregate diame
measures _be_fore starting the_ opt|m|zat|0n. This is ilated et the force of propulsion and the localization of the syste
by the variations at the beginning. Results could be largeliiectiy depend on its size (see Table I). The usual imagers
improved by using a more sophisticated algorithm (Levegery, ot have sufficient resolution and the actuators encounte

Marquardt) and consequently be more robust to noise and,er jimitations for this kind of application in small veds.

modeling errors. Spatial resolution of the imager can also be a limitatiorzein
the noise measurement affects the quality of the blood itgloc
VI. DISCUSSION ANDCONCLUSION estimation. Yet preliminary results indicate that thessesbers
Many studies on the measurement of the average bloack efficient even considering the modern clinical MRI or CT
velocity are available in the literature. Unfortunatelfist devices,i.e. for a 500um resolution.

(c) Blood velocity: real and estimate@) Aggregate velocity: real and esti-
velocities and estimation error. mated velocities and estimation error.

Magnetic Field Gradients (T.m %)

PN
Time(s)
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APPENDIX _ given set of initial conditions, which concludes the proof.
Let ¢;(t) = a; cos (iwt) + b; sin (iwt) andX; be defined as

a nth order truncated Fourier series:
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