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Abstract—Estimating the orientations of nodes in a pose graph
from relative angular measurements is challenging because the
variables live on a manifold product with nontrivial topology
and the maximum-likelihood objective function is non-convex
and has multiple local minima; these issues prevent iterative
solvers to be robust for large amounts of noise. This paper
presents an approach that allows working around the problem
of multiple minima, and is based on the insight that the
original estimation problem on orientations is equivalent to
an unconstrained quadratic optimization problem on integer
vectors. This equivalence provides a viable way to compute
the maximum likelihood estimate and allows guaranteeing that
such estimate is almost surely unique. A deeper consequence of
the derivation is that the maximum likelihood solution does not
necessarily lead to an estimate that is ‘“‘close” to the actual nodes
orientations, hence it is not necessarily the best choice for the
problem at hand. To alleviate this issue, our algorithm computes
a set of estimates, for which we can derive precise probabilistic
guarantees. Experiments show that the method is able to tolerate
extreme amounts of noise (e.g., o = 30° on each measurement)
that are above all noise levels of sensors commonly used in
mapping. For most range-finder-based scenarios, the multi-
hypothesis estimator returns only a single hypothesis, because the
problem is very well constrained. Finally, using the orientations
estimate provided by our method to bootstrap the initial guess of
pose graph optimization methods improves their robustness and
makes them avoid local minima even for high levels of noise.

I. INTRODUCTION

A pose graph is a model used in probabilistic robotics to for-
malize the Simultaneous Localization and Mapping (SLAM)
problem [1]. Each node in the graph represents the pose of a
mobile robot at a given time, whereas an edge exists between
two nodes if a relative measurement (inter-nodal constraint) is
available between the two poses. Relative measurements might
be obtained by means of proprioceptive sensors (e.g., wheel
odometry) or exteroceptive-sensor-based techniques (e.g., scan
matching or visual odometry).

The objective of pose graph optimization is to estimate
the nodes poses that maximize the likelihood of inter-nodal
measurements. Once the poses have been estimated, it is
possible to construct a map of the environment by placing
all measurements in the same global coordinate frame.

The difficulty in obtaining the maximum likelihood estimate
of robot poses is mainly connected with the angular com-
ponent: also in a planar case, the nodes orientations belong
to a product of manifolds (SO(2)", with n the number of
observable poses) that have a nontrivial topology. This makes
the maximum likelihood problem nonlinear and non-convex,
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with multiple local minima (see Wang et al. [2] for an
exhaustive analysis of a simple instance of the problem). In
fact, if the orientations were known, pose optimization would
be a linear problem, see e.g., [3].

This paper considers the problem of estimating the nodes
orientation from pairwise relative angular measurements,
which is referred to as the orientation graph optimization
problem. We provide a multi-hypothesis global optimization
method that does not suffer from local minima, even with
extreme amounts of noise. In the context of SLAM, we will
show that having a global estimate of the orientations improves
the robustness of iterative solvers such as g2o [4].

Related work in robotics: The formulation of SLAM as
a nonlinear optimization problem on a graph traces back to
Lu and Milios [5]. Gutmann and Konolige [6] discuss how
to build a pose graph in incremental fashion from laser scan
measurements. A large amount of subsequent work focuses
on speeding up computation. Duckett et al. [7] use a Gauss-
Seidel relaxation to minimize residual errors. Konolige [8]
describes a reduction scheme to improve efficiency of non-
linear optimization. Thrun and Montemerlo [1] describe a
conjugate gradient-based optimization that enables large scale
estimation. Frese et al. [9] propose a multilevel relaxation
technique that considerably reduces the computation time by
applying a multi-grid algorithm. Olson et al. [10] propose
an alternative parametrization for the problem, which entails
several advantages in terms of computation and robustness.
Grisetti et al. [11] extend such framework, proposing a method
(Toro) that is based on stochastic gradient descent and uses
a tree-based parametrization to optimize the poses in both
planar and three-dimensional scenarios. Kaess ef al. [12]-[14]
present a very elegant formalization of SLAM using a Bayes
tree model and investigate incremental estimation techniques.
Several recent papers focus on the manifold structure of
the problem: the domain of the problem is a product of
manifolds SE(2) or SE(3), and this aspect requires a suitable
treatment when using iterative optimization techniques [15],
or closed-form problem-specific methods [16]-[18]. Kuem-
merle et al. [4] describe the g2o framework for solving general
optimization problems with variables belonging to manifolds.
Olson and Agarwal [19], and Siinderhauf and Protzel [20],
[21] propose relevant extensions of this framework, with the
purpose of increasing estimation robustness in the presence
of outliers. The theoretical analysis of the problem is slightly
behind applications; see Knuth and Barooah [22], Huang et
al. [23], and the previously mentioned Wang et al. [2].

The state-of-the-art techniques for pose graph optimization
are iterative approaches that minimize a cost function starting
from an initial guess. None can guarantee convergence to a
global minimum, and it is observed that they get easily trapped



in local minima in presence of large orientation noise.

Related work in other fields: In this paper we limit ourselves
to the robotics perspective of pose graph optimization and
relative benchmarks, but one must point out that there exist
many other applications, such as attitude synchronization [24]
and calibration of camera networks [25], which consider
problems that are formally equivalent or very similar to pose
graph optimization. It is common for these problems to be
formulated in a multi-agent context, where the problem is
to estimate in a distributed way some local state of the
agent (pose, position, orientation, etc.) with many variations
according to the kind of measurements available (relative
distance, relative bearing, etc.). For example, Barooah and
Hespanha [3], [26] consider the problem of estimating posi-
tions of robots in a team from relative position measurements,
assuming known orientations. Knuth and Barooah focuses on
distributed computation [27]. The case in which the nodes
positions have to be estimated from bearing measurements
was pioneered by Stanfield [28] and further developed in more
recent work [29]-[31]. Another common setup is the one in
which nodes positions are estimated from pairwise distance
measurements [32]-[35].

Paper outline: Our results derive from the joint application
of graph theory, differential geometry, and integer program-
ming. We do not assume any prior knowledge and Section II
recalls all necessary preliminaries.

Section III recalls the usual maximum likelihood formaliza-
tion for the orientation estimation problem, with extra care to
the assumptions and the problem symmetries.

Section IV proves that the maximum likelihood optimization
problem with domain SO(2)", where n is the number of
observable nodes, is equivalent to an unconstrained quadratic
integer optimization problem on Z‘, where / is the number
of cycles in the graph (Theorem 16). First, we show that it is
possible to map the nonlinear maximum likelihood estimation
problem from the manifold to a vector space, by including
integer-valued unknowns (regularization terms). The corre-
sponding maximum likelihood problem becomes a mixed-
integer program [36]. Further, the objective function for this
problem can be separated into two terms in a way that allows
a two-stage optimization, in which one first optimizes over
the regularization terms, and then the maximum likelihood
estimate of the nodes orientation is computed in a closed form.
The conclusion, given in Theorem 16, is that the maximum
likelihood estimate is unique with probability one, and that
the global maximum of the likelihood function can be found
by solving an unconstrained quadratic integer program.

Section V describes several properties of the probability
distribution of the maximum likelihood estimator that imply
that the estimate may suffer from a bias. As a simple example
demonstrates, since the problem is highly nonlinear, minimiz-
ing the data error does not imply that the estimation error is
low. By contrast, in a linear problem, the maximum likelihood
estimator is also unbiased and a minimum variance estimator.
Our conclusion is that in this problem the maximum likelihood
estimate is not necessarily the most useful information when
the noise is large. Motivated by this result we look for a multi-
hypothesis estimator for which we can derive stronger results.

Section VI and Section VII describe the MOLE2D algorithm,
which returns a set of multiple hypotheses for the nodes orien-
tations. We can give probabilistic guarantees on the output of
this algorithm, namely that at least one hypothesis is “close” to
the actual nodes orientations within a given confidence level.
The algorithm is able to return only a small set of plausible
hypotheses, provided that the “frame of reference” is chosen
appropriately. The frame of reference is given by the free
choice of a cycle basis matrix that must be supplied. It can be
proven that choosing the minimum cycle basis minimizes the
expected number of hypotheses. However, because the exact
minimum cycle basis is expensive to compute, it is worth
exploring several approximations as alternatives. With the right
choice of cycle basis, in common problem instances the set
of estimates contains a single element, because the problem is
very well constrained. In this case, we are able to completely
characterize the distribution of the estimator, which is rare in
the context of nonlinear estimation.

Section VIII discusses the performance of MOLE2D on stan-
dard SLAM datasets, both for orientation estimation and for
full pose optimization. For the case of orientation estimation,
we explore the trade-off in performance implied by the choice
of the cycle basis matrix used by MOLE2D. The results confirm
the theoretical predictions. For the case of pose optimization,
we show that simply substituting the orientation estimate
computed by MOLE2D in place of the odometric initial guess
greatly enhances the robustness to noise in an iterative solver
such as g2o.

Relation with previous work: Previous work by the first
author and colleagues [37], [38] highlighted the importance of
orientation estimation in pose graph optimization and proposed
a fast approximation for solving for the orientations, and
then solving for the translations given the orientations. Such
previous work motivated this development, but the approach
of the present work follows a different route. This paper
presents a formal treatment of the orientation-only estimation
problem; rather than proposing an approximation, we care
about finding the exact maximum likelihood (orientation)
estimate. In hindsight, the results of this paper allow to
conclude that the rounding operation proposed to solve the
wraparound problem in [38] is only a heuristic to solve a
quadratic integer program, which does not necessarily lead to
the optimal solution [39]. This paper also asserts in Section
V that, after all, the maximum likelihood estimate may not be
the best choice for the problem at hand, hence it proposes
to switch to a multi-hypothesis approach. More in detail,
the proof of equivalence to a quadratic integer program, the
MOLE2D algorithm, and the experimental results are original
and have not been published in previous work or submitted to
conferences.

II. PRELIMINARIES

This section introduces some preliminaries of graph theory,
differential geometry, and modulus algebra. Table I summa-
rizes the most important symbols appearing in the paper.



TABLE 1
SYMBOLS USED IN THIS PAPER

Graph

G=WV,¢) Directed graph

m Number of edges

n+1 Number of nodes

n Number of observable variables

1% Vertex set; |V|=n+1

£ Edge set; €] =m

e=(i,j) €& Edge between nodes ¢ and j

L Number of cycles; { =m —n

wij Weight associated to edge (3, j)

A ¢ R(ntl)xm Incidence matrix of G

A € Rrxm Reduced incidence matrix of G

Cycle bases

Cg The set of all cycle basis for G

ce {-1,0,41}™  Row vector describing a circuit

W (c,w) Weight of a cycle

W(C,w) Weight of a cycle basis

MCB(G, w) Minimum cycle basis for a given weight function

C e 7txm Matrix describing a cycle basis

Cr,Cr Canonical ordering of C' according to a spanning
tree T’

FCB Fundamental cycle basis built from a spanning tree

Geometry of angles

SO(2)
Exp : R—S0(2)

2D rotation matrices
Exponential map

Log : SO(2) = P(R) Logarithmic map

Log, : SO(2) =R

Principal logarithmic map

()or : R=(—m,+x] 27 modulus operation

Orientation estimation (intrinsic formalization)

7o €S0(2)
7 € S0(2)

d;; € SO(2)
gi5 € SO(2)
€5 € R

i

Unknown node orientation

Optimization variables for node orientation
Relative orientation measurement
Measurement error

Gaussian noise producing €;;

Standard deviation of €;;

Orientation estimation (in (—7, 4| coordinates)

0° € (—m, +m|™

Unknown orientations

0 ¢ (—m,+nal” Optimization variables for orientations

d € (—m,+m|™ Relative orientation measurements

Ps ¢ R™M*™ Measurement covariance

Mixed-integer formalization in k and 6

6 € R™ Real-valued optimization variables for orientations

kczm Regularization vector

oIk Estimate of 8° given k € Z™

Reduced formalization in cycle space

~ ezt Integer vector living on the cycles

yezm Estimator for

o* Real-valued estimate of 8° given

0+ = (6*17)o, Wrapped estimate of 6° given ~y

0 = =" Max. likelihood estimate of 6°

r Set of estimates for - returned by INTEGER-
SCREENING

© Set of estimates of 6° returned by MOLE2D

Miscellanea

P(S) Power set of the set S

|S| Cardinality of the set .S

L, n X n identity matrix

0, (column) Vector of all zeros of dimension n

1, (column) Vector of all ones of dimension n

L] Floor operator

Trace{P} Trace of the matrix P

X? o quantile of the x? distribution with ¢ degrees of

freedom and upper tail probability equal to «
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Fig. 1. A toy graph with vertex set V' comprising nodes from A to H, and
edge set £ comprising edges 1 to 9. For our example we assume that each
edge has a unitary weight. A spanning tree (which is also a spanning path in
this case) is given by edges {1, 2, 3,4, 5,6, 8}; the corresponding chords are
edge 7 and edge 9 (reported as dashed lines in the figure). The figure also
shows the incidence matrix of the graph, while the reduced incidence matrix A
is obtained from A by deleting the first row. C7 is a cycle basis matrix
for the graph, whose first circuit includes edges {1,2,3,4,5,6,8,9} and
second circuit includes edges {3,4,5,6,7}. C2 is a minimum cycle basis,
whose first circuit includes edges {3,4,5,6,7} and second circuit includes
edges {1,2,7,8,9}.

A. Computational graph theory

Chen [40] is a popular reference for standard concepts of
computational graph theory. Our notation is compatible with
Kavitha er al. [41], from which we take the more specific
results about cycle bases.

A directed graph G is a pair (V, ), where V is a finite set
of elements, called vertices or nodes, and £ is a set containing
ordered pairs of nodes. A generic element e € &, referred to as
edge, is in the form e = (7, j), meaning that edge e, incident
on nodes ¢ and j, leaves node ¢ and is directed towards node j
(¢ is called tail and j is called head).

A weighted graph has also a nonnegative weight associated
to each edge; we denote with w the weight function that
associates a weight w;; to each edge e = (3, j).

The number of nodes and edges are denoted with n + 1
and m, respectively, i.e., |V| = n+1 and |€| = m. Our graph
has n 4+ 1 nodes, rather than n, because only n independent
variables will be observable, and this choice will simplify the
notation later on.

The incidence matrix A of a directed graph is a matrix
in {~1,0,+1}" "™ that describes the structure of the
graph. Each column of A corresponds to an edge, and the
column corresponding to edge e = (i,7) has only two non-
zero elements, one on the ¢-th row (equal to —1) and the other
on the j-th row (equal to +1). Figure 1 shows an intuitive
example.

The reduced incidence matrix A is obtained from A by
removing one row. Without loss of generality, in this paper
we assume that it is the first row, which corresponds to the



first node that is set to the origin of the reference frame. If A
has dimensions n + 1 x m, A has dimension n X m.

A spanning tree of a graph is a subgraph with n edges that
contains all the nodes in the graphs. For a given spanning
tree, the edges of the original graph that do not belong to the
spanning tree are called chords.

A cycle is a subgraph in which every node appears in an
even number of edges. A circuit is a cycle in which every
node appears exactly in two edges. A (directed) circuit can be
described by a vector of m elements in which the e-th element
is +1 or —1 if edge e is traversed respectively forwards (from
tail to head) or backwards, and 0O if it does not appear in the
circuit. Therefore, a circuit can be represented by a vector
in {—1,0,+1}™. In a cycle, instead, an edge can appear
twice or more. Correspondingly, a cycle is represented by a
vector ¢ € Z™. If the graph is weighted, then we can associate
a weight to any cycle, by summing together the weights of
the edges traversed by the cycle. If a cycle is described by a
vector ¢ € Z™, then the weight of the cycle is given by

VV(C7 U}) = Z wij|cij|. (1)
(i,7)€E

A cycle basis of a graph is a minimal set of circuits such
that any cycle in the graph can be written as a combination
of the circuits in the basis. We define Cg as the set of all
cycle basis of the graph. The number of independent circuits
in the cycle basis is called cyclomatic number and it is equal
to £ =m —n.

A cycle basis matrix is a matrix C € Zt>™_ such that each
row ¢ describes one of the circuits in the cycle basis:
1)

o

C=| o | ez>m )

c®

The weight of a cycle basis is the sum of the cycles weights:

‘
W(C,w) =Y W, w). 3)
t=1
If there is a weight associated to every cycle basis, then we
can look for a basis that has minimum weight. This is called
minimum cycle basis (MCB):

MCB(G, w) = argmin W (C, w). “)
Cecg
In the rest of the paper we consider a weight function w
that associates to each edge the variance of the corresponding
measurement, as formalized in Section III. Therefore, we use
the notation “MCB” omitting the dependence on the graph
and on the weight function, and implying that we consider a
minimum uncertainty cycle basis.
Cycle bases matrices and incidence matrices have an array
of interesting properties.

Lemma 1 (Orthogonal complements [42]). For a connected
graph G, the transpose of the cycle basis matrix CT s
an orthogonal complement of the transpose of the reduced
incidence matrix AT, i.e.,

1) (AT C7") is a square matrix of full rank; and
2) CA" = 0pxp.

In order to simplify the notation, and without loss of
generality, we order the edges such that the first n edges belong
to a spanning tree 7" and the remaining ¢ edges are chords with
respect to T'. This allows to write the cycle basis matrix C' as

C=(CrCy), ®)

where Cr € Z**™ contains the columns in C' corresponding
to edges in T, and C}, € 7>t contains the columns in C
corresponding to chords with respect to 7.

B. Modulus operation
The map (), is a function from R to the interval (—, +7]:
<'>27r R — (77T7+7T]7 (6)
which can be written explicitly as

T —

”Je(—m+wL (7)
i

(@%iw+%{

where |-] is the floor operator. Therefore, for a given w, it is
well defined the value k., € Z such that

(W)or = w + 27k, (8)

The integer k., = | %] is the regularization term necessary
for the result to be in (—7, +7] [43].

Notice that for all k € Z, it holds |w + 27k,,| < |w + 27k,
since (w)er = w + 27wk, € (—m,+x| (by definition of the
map (-)2.) and we cannot further reduce the absolute value
of a quantity in (—m, +n| by adding or subtracting a multiple
of 27. Therefore, it also holds that

k, = argmin |w + 27k|, )
keZ

and, for the same reasoning,

[ (W), | = |w+271ky| = Il?el% |w + 27k|. (10)
This is a simple property of (-)or:
(w1 + wa)or = ((Wi)ar + (W2)or)2r- (11)

C. Differential geometry of angles

The exponential map for the manifold SO(2) is a map from
the tangent space so(2) ~ R to the manifold:

Exp:R — SO(2). (12)

This map is onto (surjective) but not 1-to-1 (bijective).

The logarithmic map is the right inverse of the exponential
map, and it maps an angle in SO(2) to all possible elements
in the tangent space that have the same exponential:

Log : SO(2) — P(R). (13)

Here, “P(R)” denotes the power set of R. Note that the
fact that the exponential map is not invertible is an intrinsic
property and does not depend on the choice of a particular



parametrization. The logarithmic map satisfies the Lie group
property

Log(s™!) = —Log(s) (14)
and the Abelian property
Log(s182) = Log(s1) + Log(sz). (15)

The principal logarithm map Log is a 1-to-1 function that
chooses one particular element on the tangent space:

Log, : SO(2) — R, (16)

namely, the closest to the origin. A property of the principal
logarithm is that

Log(s) = (Log(s)), -

If we parametrize the manifold SO(2) with angular co-
ordinates in (—m, 4], then the coordinate version of Exp
is simply the modulus (-), , while the principal logarithm
maps a rotation matrix to the corresponding angle of rotation
in (—m,4mn).

a7

D. Wrapped Gaussian distribution on the circle

The wrapped Gaussian distribution on the circle is the
generalization of a Gaussian distribution [44], [45], in the
sense that it is the solution of the heat equation on the circle,
and has several other analogous properties. It can be obtained
by applying the exponential map to a Gaussian variable that
lives on the tangent space:

e = Exp(e), with e ~ NV(0,0?). (18)

The probability density function for a wrapped Gaus-
sian W,2 : SO(2) — R™ can be written as

+oo
Woe(e) = 21— - exp<—(LOg0(€)+2ﬂk)2>. (19)

o 202

k=—o00

Note that Log, returns a value in [—m, +).

A wrapped Gaussian may show a very different behaviour
w.r.t. a Gaussian density. For instance, as the noise increases, a
Gaussian density would tend pointwise to 0, while the wrapped
Gaussian distribution tends to the uniform distribution on the
circle:

lim W2 = 5. 20
02500 0 2 ( )
Other properties are instead maintained, such as the closure

with respect to convolution [45].

Lemma 2. [fs; ~ WU% and so ~ Wo‘%’ then the product s1 82
has distribution W2 , ;2.

III. PROBLEM STATEMENT: MAXIMUM LIKELIHOOD
ORIENTATION ESTIMATION

Let G be a directed graph with n + 1 nodes and m
edges, and call £ the set of edges in G. Let each node be
assigned an unknown orientation represented by a rotation
matrix 7 € SO(2). Suppose that it is possible to measure
the relative orientation of two nodes sharing an edge. For

any edge (i,7) € &, the observation d;; € SO(2) is a noisy
measurement of the relative orientation:
di; = (r‘?)*lr; gi; € SO(2),

K2

2

where 7 is the true (unknown) orientation of the i-th node
and €;; is a random variable on SO(2) that represents the noise
in the measurements, and that we assume to be distributed
according to a wrapped Gaussian with variance o;; > 0 (see
Section II-D).

The graph G is weighted, and the corresponding weight
function is w : (4, j) — 07;, so that the weight of an edge is set
to the variance of the corresponding orientation measurement.

For now, all quantities are members of the manifold SO(2).
This first formalization of the orientation estimation problem
is thus intrinsic on the manifold.

Problem 1 (Intrinsic formulation of maximum-likelihood
orientation estimation in the absolute frame). Given the set
of relative observations {d;;} € SO(2)™, for (i,5) € &
and the corresponding variances o;; > 0, find the set of
minimizers S* C SO(2)"! that satisfies

St =

arg min (22)

— logWazv(d;jlri_lrj).
{r:}€S0O(2)n+1 Y

(i,5)€€

We are using the symbol r; to denote the optimization
variable associated to the orientation of the i-th node, while r?
is the true orientation of the node. Adding Gaussian priors
is easy by using virtual measurements, but we do not do it
explicitly.

In this paper, we pose all optimization problems as finding
a set of minimizers, rather than the “optimal solution”. The
set of minimizers is indicated as S for Problem i. Only in
some cases we will be able to conclude there is a unique
solution, and hence S* has only one element. We need to be
careful about keeping track of the set of minimizers, because
the first part of the paper (Section IV) consists in transforming
one problem to another, sometimes changing the domain or
introducig extra variables. To facilitate bookkeeping, we use
the concept of symmetry: a symmetry of an optimization prob-
lem is an invertible transformation of the unknown variables
that preserves the value of the objective function. Speaking
of symmetries is a formal way of speaking of unobservability
from the algebraic/geometric point of view.

Problem 1 has one symmetry that corresponds to the well-
known fact that the absolute orientations are not observable
from only relative measurements: the relative measurements
do not change if the nodes orientations are rotated by the
same amount. Formally, for any rotation matrix s, the objective
function (22) is invariant if we apply the invertible function

fs: SO(2)nH
{ri}

Following standard procedures, to avoid this ambiguity we
fix the orientation of the first node to the arbitrary value ro =
§9). This corresponds to setting the absolute frame aligned
with the first robot pose. Therefore, we can restate the problem
considering only n nodes instead of n + 1.

— SO(2)" !
— {sm;}.

(23)
(24)



TABLE 11
RELATIONS AMONG PROBLEMS DEFINED IN THIS PAPER

problem variables solutions  symmetries of solutions set
Problem 1 {r;} € SO(2)"*! St For any s € SO(2), {r;} — {sr;}.
|
Fixing
reference frame
1
Problem 2 {r;} € SO(2)" S? none
|
Choice of
coordinates Log, | T Exp
1 )
Problem 3 6 € (-7, +7]" S3 none
|
Real-valued 3
parametrization eil
I
Problem 4 0 cR" G4 For any p € Z", 6 + § — 27p.
|
Introduction of "
regularization ("2 T
terms
1
Problem 5 (6,k) € R" x Z™ S° For any p € Z", (0,k) — (6 — 27p, k + ATp).
|
Separability of 5
error function “6 T
I
Problem 6 keczm 56 Forany p € Z", k— k + ATp.
|
Minimality of 6
parametrization er T
1
Problem 7 ~ €7t S7 none

Problem 2. (Intrinsic formulation of maximum-likelihood
orientation estimation) Given a set of relative observa-
tions d;; € SO(2)™, for (i,7) € &, and the corresponding
variances o;; > 0, find the set of minimizers S* C SO(2)"
that satisfies

S% =

arg min

—logW,2 (d;;'r 7)),
{r;}€S0(2)" (i,§)€E Y

(25)

having fixed ro = (3 9).

It is easy to see that the function must admit a minimum, as
it is bounded below and defined on the compact set SO(2)".

Does this problem admit a unique minimum? This is cer-
tainly the case in a noiseless setup and for a connected graph,
as proven by Proposition 3.

Proposition 3. (Observability of orientations) In the noiseless
case, S? contains exactly one element if and only if the graph
is connected.

Proof: If the graph is not connected, then there are clearly
an infinite number of solutions. Assume then that the graph
is connected. In this case there exists a spanning tree. In the
spirit of other proofs regarding the observability of multi-agent

localization [31], [46], we proceed to show that the constraints
along the spanning tree are sufficient for observability.

A minimum of the objective (25) corresponds to a maximum
of Z(i,j)eg log Wa?j (d;jlri_lrj); moreover, the maximum of
a sum of functions cannot exceed the sum of the maxima, i.e.,

Y logW,e (dij'r;'ry) <
i,j)€EE

max (26)
{r;}€SO(2)" (

max  logW,2 (di_jlri_lrj) =J.
(i)eE 7,7, E€S0(2) “J
We will now show that, in the noiseless case, there exists a
solution, say {r}} € SO(2)", that attains the upper bound J
(i.e., for {r}}, eq. (26) holds with equality), and that such solu-
tion is unique. This implies that {r}} € SO(2)" is the unique
global maximum of the likelihood, and, in turn, it is the unique
global minimum of the cost (25). For this purpose we notice
that the peak of each wrapped Gaussian Wa,,.?j (d;jlr; Lrj) s
attained at for di_jlri_ l'r'j = I, [45]. Therefore, we want to

show that there exists a solution that satisfies
—1,.—1
dij T, T;= 12 (27)

for all (i,7) € £ and that such solution is unique. Consider a



spanning tree rooted at node 0, that has orientation ro = I.
This spanning tree exists for the hypothesis of connectivity.
Consider a branch of the tree and call 77 the first node
encountered after the root, along this branch. Impose the
condition (27) for the edge connecting node 0 and node i;:

—~1,.—1
dOilT‘O r, = IQ.

Recalling that 7y = Iy, we conclude that the only orientation

for node i satisfying the previous equation is 7}, = dy;, (i.e.,

the orientation is equal to the relative measurement w.r.t. the

root). Call i3 the second node along the spanning tree and

impose the condition.
d;br-

G142 41 riz =I.
Again, this leads to a unique solution r;, = 7r;,d;;, =
dy;, d;,;,. Repeating the same reasoning along all nodes in
the branch of the spanning tree we obtain a unique orientation
for each node that assure the satisfaction of equation (27)
for all edges of the spanning tree. Now, we notice that, in
a noiseless setup, the measurements corresponding to chords
of the spanning tree are redundant, in the sense that if
equation (27) is satisfied for all edges of the spanning tree,
then, it needs be satisfied for the chords, too. Therefore, we
found a (unique) solution {r}} € SO(2)™ that is feasible for
the original problem and attains J, and this solution needs
to be the global maximum of _; ;¢ log Woz, (di_jlri_lrj),
and, therefore, it is the unique global minimum of (25). |
Because of the observability condition of Proposition 3, in
the rest of the paper we take the following assumption.

Assumption 4. The graph G is connected".

A. Choosing coordinates

As a first step, we make a choice of coordinates for the
nodes orientation and measurements. We include this passage
in the Problem Statement section since it leads to the problem
formulation that is commonly adopted in literature.

We use the coordinates §° € (—m,+7]" for the true
unknown orientations, the coordinates @ € (—m, +7]™ for the
optimization variables, and the coordinates 6 € (—m,47]™
for the relative measurements. Formally, these are defined as
the principal logarithm of quantities that live on SO(2):

<

> = Log,(ry), (28)
0; = Logy(r:), (29)
dij = Logy(dij). (30

The 6° is the estimand, i.e., what we want to estimate (also
later the mark “°” will label unknown quantities that need be
estimated). We now want to write the objective function (25)
as a least-squares cost, depending on the coordinates 6 and 4.

This is one of the first passages in which we must be
careful. It is only possible to write the likelihood as a quadratic
function if o;; is small enough. As o;; grows, the likelihood
of the measurement (i, j) tends to a constant that cannot be
represented as a quadratic function.

1 As in related work, the notion of connectivity is referred to the undirected
version of G; for this reason, it is also referred to as weak connectivity [3].

Assumption 5. The uncertainty of a single relative orientation
measurement does not “spill over” the £m boundaries:

30'ij L . 31

This is not a strict assumption in robotics because angular
measurements are usually much more precise than the given
threshold.

In any case, if the uncertainty of some relative measurement
is larger, we can use a simple trick. Because the convolution of
two wrapped Gaussians is still a wrapped Gaussian (Lemma
2), we can replace one edge with a large varlance 0 . with two
edges with smaller variances whose sum is or Consequently,
we can assume without loss of generality that Assumption 5
is satisfied.

Assumption 5 allows to write the log-likelihood function as
a quadratic function.

Lemma 6 (Quadratic approximation of wrapped Gaussian
likelihood). If Assumption 5 is satisfied, then

[Logy(e:)|?

—logW (67]) =) (32)
9ij

+ log (aij \/ﬂ) .

Proof: The proof is a direct consequence of the expression
of the wrapped Gaussian distribution (19):

+oo 2
_ 1 —(Logy(ei;j) + 27k)
Wo2 (€i5) = %,mkz eXP( 207
BoigLm —(Logy(e45))*
- oiyvar P ( 20% ’
which implies (32). [ |

Lemma 6 allows writing the likelihood using only the
coordinates 6,6 and the modulus operation (-),_.

Lemma 7 (Quadratic approximation in coordinates). If As-
sumption 5 is satisfied, then

—log W,z (di'ry 7))~ 50 (60— —bii)y | e (33)

_20

with the constant c equal to log (aij vV 27T).

Proof: From (32), and recalling the definition of d;; in
(21) it follows that

—log W, (dw riir)) riir) 2 4e (34)

2

The rest of the proof consists of algebraic manipulation based



on properties that we have already introduced:
[Logy(dy;'r 7))
1 2
|<L0g(dijlri 17’]')>27T|
(Using the property of Log, in (17).)
|(Log(d;;") + Log(r; ') + Log(r; 27r|
(Using the property of SO(2) in (15).)
|(—Log(di;) — Log(r:) + Log(r; >2w|
(Using the property of SO(2) in (14).)
2
= [(—(Log(dij))2n — (Log(ri))2r + (Log(r;))2x ) 2r |
(Using the property (11).)

2
= [(Logy(di;) — Logy(ri) 4 Logy(7;))2x]
(Using the property (17).)

< . « 2
= ’<5U + ﬂj — 0@>2ﬂ|
(Using the definition (28).)

|

Based on Lemma 7, we can restate Problem 2 as the

minimization of a quadratic function (but still with the (-),
nonlinearity).

Problem 3 (Angular coordinates formulation of maxi-
mume-likelihood orientation estimation). Given the observa-
tions d;; € (—m,+7l, for (i,7) € &, and the corresponding
variances c;; > 0, find the set of minimizers S® C (—m, +m]™
that satisfies

S3 =

s (0; = 0i -

arg min
oec(—m,+m" (i,5)€E

(35)

having fixed the first node orientation to 6y = 0.

For clarity, and without loss of generality, the constant term
in (33) is omitted in (35).

This formulation is the same as the one used in related
work [15], [38], however, rather than tacitly assuming that the
uncertainty of each measurement does not “spill over” the =
boundary, we will be explicit on how to deal with the modulus
operation.

1) From Problem 3 to Problem 2: The conversion between
the solutions of the two problems is just a change of coordi-
nates:

$? =
S3

Exp(5?),
L0g0(52)-

(36)
(37

2) Symmetries of Problem 3: If Assumption 5 is satisfied,
Problem 3 is just a restatement in different coordinates of
Problem 2, so they have the same symmetries. In the noiseless
case, the solution is unique (Proposition 3). We still do not
know what happens in the noisy case, but we can anticipate
(Proposition 14) that, for general data, the solution is unique.

B. Why is Problem 3 hard?

Besides the exponential mapping, Problem 3 appears to be
close to a standard linear estimation problem. Actually, this is
not the case. In standard linear estimation the cost function

to minimize (to obtain the maximum likelihood estimate)
is quadratic, hence it has a single minimum. Convexity, in
the linear case, guarantees that (most) iterative optimization
algorithms can efficiently compute the global minimum. The
cost function (35), instead, is non-convex and has several local
minima (Figure 2).

Moreover, we will show in Section V that the problem is
actually even more challenging: even if one is able to compute
a global minimum of the cost function (35) (which quantifies
the data error, i.e., the mismatch between the expected and
the actual measurements) this does not guarantee that the
corresponding orientation estimate is accurate (in the sense of
having small estimation error, which is the mismatch between
the estimate and the actual orientations).
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Fig. 2. Value of the cost (35) as a function of two robot orientations, while
the remaining orientations are kept fixed. The data is taken from the INTEL
dataset (Section VIII-A).

IV. MAXIMUM LIKELIHOOD ESTIMATION ON SO(2):
FROM ANGLES TO INTEGERS

This section shows that the nonlinear, nonconvex, con-
strained Problem 3 is equivalent to an unconstrained quadratic
integer optimization problem.

Table II shows our strategy: we will convert Problem 3,
which is defined on (—m, +7]", where n is the number of
nodes, through a series of intermediate formulations, until
we arrive at Problem 7, which is defined on the integers 7L,
where ¢ is the number of cycles in the graph. The final result
of this section, Theorem 16 on page 13, says that the solution
of Problem 3 is almost surely unique, and that we can obtain
such solution by solving Problem 7.

The road towards that result is quite long, and it goes
through different reformulations of the optimization problem,
defined on different domains, according to two principles:
sometimes it is convenient to solve a simpler problem in a
larger space; and sometimes it is possible to shrink the domain.

The set S° is the set of minimizers of the i-th problem.
At each step on the road we characterize the properties of
this set, and in particular we derive its symmetry group. This
is important because some of the intermediate formulations,
namely Problem 4 to Problem 6, have multiple solutions.



These are not ambiguities of the original problem, but rather
artifacts of our choice of using a redundant representation.
Describing the symmetry groups formally makes us able to
quantify the redundancy and make sure we are not forgetting
any solution or introducing new spurious solutions.

The maps ¢} project the solutions S/ to the solutions S*.
These maps are not all invertible. The final conclusion, how-
ever, is that the composition of these maps is surjective, so
that we are sure that, by solving Problem 7 and then applying
the composition, we recover all solutions of Problem 3.

Structure of the section: Section IV-A formulates Prob-
lem 4, whose optimization variable 6 is defined on the set
of real numbers (hence not constrained in (—m, +7]", as it is
for Problem 3). Here, we work on a larger domain, and hence
we introduce an additional ambiguity, which is that each entry
of @ is determined only modulo 2.

Section IV-B formulates Problem 5, which is defined
on (6,k) € R" x Z™, m being the number of edges in
the graph. The new variable £ € Z™ can be interpreted
as compensation terms that we introduce to keep track of
“angular excess”.

Section IV-C shows that, given the value of k, the value of 8
can be recovered in a closed form using linear estimation: in
fact, if we knew k, the problem would be linear.

Section IV-D formulates Problem 6, which is defined only
on k € Z™. The insight is that the integer and the real part
of the problem can be solved separately, thus allowing a two-
stage optimization procedure.

Section IV-E formulates Problem 7, which is defined on
an integer variable v € Z°. While k lives on the edges, v
lives on the cycles of the graph. We show that -+ is a minimal
parametrization for our problem.

Finally, Section IV-G puts together the chain of implica-
tions, and shows that the solution set S” can be mapped
surjectively to S3, and we can easily compute S® once we
know S7.

A. Real-valued formulation

The first step is the reformulation of Problem 3 as an
unconstrained optimization problem for real variables @ € R".

Problem 4 (Real-valued formulation of maximum-likeli-
hood orientation estimation). Given the observations 0;; €
(—m,+m), (4,7) € & and the corresponding variances o;; > 0,
find the set S* C R™ that satisfies
S4 = argn}}n Z é| <9] — 01 — 5ij>2ﬂ. |27
OER™ (i j)ee
having fixed 6y = 0.

(38)

We use a check mark ( 7 ) to label quantities belonging to
(=, +7] in order to distinguish them from quantities in R".
For example, § € (—,+7] and 8 € R™.

1) From Problem 4 to Problem 3: While Problem 4 has
multiple solutions due to the symmetry, they are all equivalent
when they are projected down to the manifold using the
exponential map

©3:R" = (—m, 47"

(0)5r -

(39)

0 — (40)

More formally, the set S* can be obtained from S* by applying
the map 3, as stated in the following proposition.

Proposition 8. 53 = ¢3(5%).

Proof: In order to prove the claim, we have to show
that (i) for any 6* € S* the variable (8*), is in S3,
and (ii) for any solution 0* < S3 there exists at least
one 6% € S, such that 6* = (%), . Let us start from the
first implication. We note that problems (38) and (35) have
the same objective and we use the notation J (x), to denote
the value of this objective for a given vector x; therefore,
for any 6* € S*, J(0*) is the optimal objective of (38),
while for any 6* € S° J(0*) is the optimal objective
of (35). Therefore, we want to prove that for any 8* € S4, it
holds J ((8*),,) = J (%), i.e., (*),. attains the optimal
objective in (35). Let us prove this equality. First of all we
notice that (6*),__ satisfies the constraints in (35), by definition
of exponential map; therefore, (49*)27r is a feasible solution
for problem (35) and it must hold (a) J ((8*),,) > J (6*)
((6*),,. cannot be better than the optimal solution). Now we
notice that problem (38) is the same as (35) but without the
constraints for the angles to belong to (—, +7]; therefore, it
must hold (b) J (6*) < J (é*) (relaxing constraints can only
improve the objective). Finally, using property (11), we can
easily see that (c) J ((0*), ) = J (6*). Combining relations
(a), (b), and (c) we obtain:

()

@ ®
J(0") < J((0%),,) = J(07) < J(6") @D

which implies .J ((6*),,) = J (6*), proving the first state-
ment. For the second claim, we notice that relation (41) also
implies J (6*) = J (0*). This fact tells us that any solu-
tion 8* € S3 also attains the minimum of (38), i.e., 0* € 54,
Moreover, since 8* € (—, +7]", it holds that * = <é*>2w,
therefore, for each * € S3, we can choose an element of S4,
namely 6* = 6*, such that (§*), = 6* belongs to S°, which
proves the second claim. ]

Using this result, we can solve the unconstrained Problem 4,
obtaining a solution * € R"™, and then compute an optimal
solution of Problem 3 as 0* = (8*), € (—m,+7]".

2) Symmetries of Problem 4: Note that this problem has
more solutions than Problem 3. This is an artifact of the real-
valued parametrization. In particular, if @ € R™ is a solution,
also @ — 27p is a solution, for any integer vector p € Z".
Note, instead, that if @ is a solution, not necessarily 8 + s1,,
is a solution, because we have fixed the first node (unless s is
a multiple of 27).

B. Mixed-integer formulation

Problem 4 is an optimization problem in real variables, but
its residual errors are still nonlinear and difficult to minimize.
We now get to the core idea of this paper: instead of solving
a nonlinear problem in real variables, we choose to solve a
linear problem in mixed (integer and real) variables.

The “trick” is that one can get rid of the exponential map
in the expression of the residuals

1{0; — 0 — 8i5),_ 1%, (42)



by the introduction of a 27 factor that depends on an inte-
ger k;j: 5
10; — 0; — bij + 27k | (43)
More precisely, by using the property (10), it holds that
(65 = 05 = 65,

With the introduction of the regularization terms, the error
function (38) can be written as

> =105 —0;

(i,5)€€

—mln 9 70 Si]‘+2ﬂ'ki]“2.

J

(44)

S 2
— 6ij + 27Tkij| . (45)
This can be written in a more compact form using the reduced
incidence matrix A of the graph (Section II-A). Suppose that
there is an ordering of the edges from 1 to m, so that the
measurements can be written as an m-dimensional vector

o€ (—m +7™ (46)
Define accordingly the regularization vector
k=(k ko - kyn)" €2™, (47)
and the measurement covariance
Ps = diag(0?,02,...,02) € R™*™, (48)

If A € {—1,0,+1}™"*™ is the incidence matrix of the
graph, its transpose A e {71,0,+1}mx("+1) is a linear
operator that transforms a quantity on the nodes (in R™)
to a quantity on the edges. Using this vector notation, and
recalling the definition of the reduced incidence matrix given
in Section II-A, we obtain the following reformulation that
uses both integer and real-valued variables.

Problem 5 (Mixed-integer formulation of maximum-likeli-
hood orientation estimation). Given the vector § € (—m, +r]™
and the diagonal positive definite matrix Py € R™*™, find the
set of minimizers S° C R™ x Z™ that satisfy

% = |ATO — 6+ 2rk|% . (49)
3

arg min
(6,k)ER™ xZ™

Problem 5 has quadratic objective and includes both con-
tinuous and discrete variables, hence belongs to the class of
mixed-integer convex programs [36].

1) From Problem 5 to Problem 4: From the solutions of
Problem 5 we can obtain the solutions to Problem 4 using the
projection map

s R x Z™
(6,k)
Proposition 9. 2(S°) = S4.

- R"

— 0.

(50)
(G

Proof: We show how to transform Problem 4 into Prob-
lem 5. Using property (10) we can rewrite (38) as

min

-4 2k
GoRn ij T2 U|

which corresponds to

min

— (Sij -+ 27‘(]%]“2.
OcR™, ki;€Z,(i,5)€E

>

(i,5)e€

=0, — 0; (52)

Therefore, k;; are only slack variables that substitute the
exponential map, and finding the optimal 0 for (52) is the same
as finding the optimal 8 for Problem 4. Then, we conclude the
proof by noting that in Problem 5, we only wrote (52) using
a compact matrix notation. |
2) Symmetries of Problem 5: Note that we are now working
on a larger space R" x Z™: we are overparametrizing the
problem in order to make the corresponding cost function
quadratic. Therefore, we might have enlarged the number of
solutions. In fact, we introduced the following symmetry. For
any vector p € R”, such that ATp is an integer vector, the
following transformation leaves the error function invariant:

(6,k) — (0 —27p,k + ATp). (53)

Because AT has full column rank, this is the only symmetry.
We note that, for the particular structure of the matrix AT
(having —1 and +1 as only nonzero elements in each row,
and having some rows with a single nonzero element being
either —1 or +1) only integer vectors p € Z" may produce
an integer A" p.

C. Solving for 0 given known k

Before further manipulation of Problem 5, we introduce
formulas for the estimation of € in the case k was known.

Once the regularization vector k is known, say k = k,
the optimization problem becomes an unconstrained quadratic
problem in § € R™:

min ||A 0 — 6+27Tk}

OcR™ S

!Pgl )
This problem can be solved in a closed form. Denote by 8*/*
the optimal @ for a fixed k:

0k = (AP, 'AT) T AP

L6 — 2nk). (55)

D. Separating the integer-valued and the real-valued problems

This section shows that the cost function (49) is separable
into two terms, enabling a two-stage optimization in which the
cost is first optimized with respect to k and then the optimal
choice of @ is computed in closed-form.

The following lemma gives the separability result. It uses
a cycle basis matrix C, and it is valid for any cycle basis. In
Section VI-C we discuss the implications of the choice of a
particular cycle basis matrix.

Lemma 10. For any given cycle basis matrix C, minimizing
the cost (49) is the same as minimizing

10 = 0512 s ps ar) + [27Ck — 3| 2

leperyrs (59

lAT)
where 0*\% is a function of k and is given in (55).

Proof: The proof consists of straightforward algebraic
manipulations. For compactness, we name the matrices

X =AT(AP;'AT)'A, Y =CT(CPCT)"'C. (57)
Expand the term ||AT@ — & + 27k||%, 1 in (49) to obtain

2 N —_ p—
161 %ap 1 a7 — 26T Py P ATO + dxk Pyt ATO

A\ k||% -, — 4né T P K + |62 ©8)
+ 4m”|| Hpgl 7o Pk + || IIP;



Because |6 Hi,_l does not depend on the optimization vari-
ables, minimiz?ng (58) is the same as minimizing
F1(8,k) = |0’y pr ar — 26" Py ' ATO + dnkT Py ATO
+ 47|\ Kk||%_ — 470" Py k.
)
(59)

To show that minimizing f;(0,k) in (59) is the same as
minimizing (56), we rewrite the latter as

161 p 47 — 2(0°)T (AP AT)0

V (60
O s g+ 47 (]~ 4mTY o 8113

Using the matrices X and Y, and recalling the definition
of 8*1% in (55), (60) can be rewritten as

2 < _
101 AP AT —2(8 — 2rk) Pyt ATO

o 2
+ 18 = 27k 51y o 61)

+4n? ||k|3 — 478TY k + || 6]%.

We can further develop the previous expression, computing
the products in the second and in the third summand:

||9||?4P(;1AT —20TPlATo

Tp-14T 5112
+47Tk7 P§ A 9+||5||P671XP671 (62)
+ 47 k| poi x po1 — 476" Py X Py ke
+ 47 ||k||3 — 478 Yk + |63

Because |4 p-1 and |6]|13- are constant and do not

2
P XP;
depend on 6 and k, minimizing (62) is the same as minimizing
f2(0,k) = HOHZP;IAT ~20"P;'ATO
Tp-—14T 2 2
+ 47k PzS A'Q+ 4 Hk||P5_1XP5_1
—4nd" Py X Pk o+ 4n? ||K|5 — 478 Yk
(63)

Comparing (59) and (63), one concludes that the first three
terms in f1 (0, k) and f2(0, k) coincide, and it only remains
to show equality for the last terms. Rewrite (63) as

161 s p 1 ar — 26 P51 ATO + 4nkT P ATO
+ 4’k (Py ' X Py + Y )k
—4rd" (P X Py + Yk,

(64)

Since Pj is positive definite, the technical result of Lemma
23 (in appendix) implies that

P;' =P, 'AT(AP;'AT) AP + CT(CPsCT) !
(65)
Hence P(;_1 = P5_1X Pa_l + Y, and (64) becomes
161 s p 1 ar — 26T Py P ATO + dnkT Py ATO
+4n?k" Py 'k — And " Py 'k,

(66)

which can be easily seen to coincide with (59). Since the
objective functions f1 (0,k) and f2(0,k) coincide, prob-
lems (49) and (56) have the same solutions. [ |

A consequence of writing the error function as in (56)
is that a separability principle holds: we can obtain the
maximum-likelihood solution using a two-stage approach: first
we estimate the k, and then we estimate 6 given k. This
aspect is formalized later, in Proposition 11. Intuitively, the
cost function (56) comprises two terms, the first that can be
made equal to zero choosing 8 = 0*1%, and the second, that
does not depend on @ and can be minimized by working on k.
Since we already have a closed-form expression for 8 given k
the only problem that we have to solve is finding k.

Problem 6 (Integer formulation of maximum-likelihood ori-
entation estimation in edge space). Given the vector & €
(=m,+7])™ and the diagonal positive definite matrix Ps €
R™X™ and a cycle basis matrix C € Z**™, find the set of
minimizers S® C Z™ that satisfy

S6 = arg min HCk: — (67)

<12
g min Ok — £C o, cry 1

Notice that (67) is the same as the second summand in (56),
and we only rearranged the 27 term.

1) From Problem 6 to Problem 5: Proposition 11 assures
that solving Problem 6 is the same as solving Problem 3, if
we convert the solutions using the map

(pg Sgm Ly R™ x 7M™
E — (0% k).

(68)
(69)

Proposition 11. ¢3(S%) = S°.

Proof: Since AP(;_lAT is positive definite, the first term
in (56) is non-negative. This implies that, for any k, the
minimum is attained for & = 6*/* (which annihilates the
first summand in the objective function). Moreover, the second
summand in (56) does not depend on 6. [ |

Summarizing the chain of implications presented so far, we
conclude that for any solution k* of Problem 6 we can obtain
a solution (6*,k*) of Problem 4. Moreover, from 8* we can
easily obtain the solution of our original problem (Problem 3)
by applying the modulus operation to 6*.

2) Symmetries of Problem 6: Because (49) and (56) are
completely equivalent, they have the same symmetries. How-
ever, it is interesting to find the symmetries of Problem 6
directly. Notice that the reorganization of the terms made the
term Ck explicit. Because the CPsC™ is positive definite,
the only symmetries are described by the kernel of C'. For any
integer vector g € ker C, this transformation does not change
the value of the objective function:

k—k+q, for g e kerCNZ™. (70)

Recall that C is a full-row-rank ¢ x m matrix, where ¢ is
the dimension of the cycle space. Its kernel ker C' has thus
dimension m — £, which is equal to n. As it happens, AT is
an orthogonal complement of C, so that it provides a base

for its kernel. Therefore, any g € ker C' N Z™ can be written



as ¢ = A'p, for some p € Z". Therefore, the symmetry can
be written as

k—k+ ATp, for p € 2", 71

which confirms the symmetry in (53).

E. From k towards a minimal parameterization ~

The cycle basis matrix C' is a “fat” ¢ x m matrix, because
the number of cycles ¢ is much less than the number of
edges m. Therefore, there will be an infinite number of k*
such that the product C'’k* attains the minimum of (67). This
infinite number is precisely described by the symmetry (71).
Consequently, we will have an infinite number of optimal
orientation estimates 8*/*". Fortunately, the next proposition
assures that the infinite cardinality of solutions is an artifact
created when passing from SO(2) to the reals. In, particular,
we show that all vectors k having the same product C'k lead
to orientation estimates 6** that differ by integer multiples
of 27, hence corresponding to the same estimate, after an
exponential map is applied.

Proposition 12 (Equivalence of k satisfying Ck = ~).
Consider a k and the corresponding orientation estimate o*lk;
then any k such that Ck = Ck satisfies

6** = 9*F L 2rD(k — k), (72)

where D is a suitable integer matrix.

Proof: Consider two regularization vectors ki and ko
such that Ck; = Cky; = ~. Recall that g*lk1 =
(AP;'AT)"YAP; (6 — 27k;) and similarly 6*1k2 =
(AP;'AT)"YAP; (6 — 27k,). Define 6*1F1 = AT@*k:
and 0*%2 = AT@*I*>_ If the orientation of the first node is
set to zero, 6*/*1 and 6*1%2 uniquely identify 8*/%* and §*/¥2,
since @*F can be rewritten as an integer-valued linear com-
bination of &*%i § = 1,2; for instance, the orientation
of node j can be rewritten as 0;““"‘ = Zeep(o,j) >\652‘k"’,
where p(0,7) is the set of edges along a path connecting
node 0 and node 5 and ). is +1 if the edges e is traversed in
forward direction along the path, —1 otherwise. In general, we
have 9*/ki = D§*I*i j = 1,2, where D is an integer-valued
matrix (D is a left integer pseudoinverse of AT). Therefore,
determining 6*/*¢ is the same as determining 0*/%, i = 1,2.

The difference §*/¥2 — §*I*1 can be written as

otk g b — 2r AT(AP;AT) AP (ki — ko) (73)
(By Lemma 23)
2r(ky — ka) + (74)

—21PsCT(CP;CT)"Y(Ck, — Cky).

Since by assumption C'k; = Cks, the second term in (75)
disappears, and one obtains

otk — 51k = o7 (ky — ko). (75)

Therefore, elements of §*/*1 and §*I*2 only differ by multiples
of 27; then, 8*%2 —@*k2 = D(§*IF2 —§*1k1) = 27 D (k1 —ko),
and since D is an integer-valued matrix, also the elements

of *1%1 and 0*%> only differ by multiples of 2w, which
concludes the proof. |

The previous result enables to solve Problem 6 directly on
the slack variable

~=CkeZm. (76)

In fact, all k producing the same v = Ck are equivalent, in
the sense specified in Proposition 12. Because C' is an integer
matrix and k is an integer vector, also ~ is an integer vector.
The vector -« clearly depends on the particular choice of the
cycle basis matrix C.

The final formulation of the problem uses only ~.

Problem 7 (Integer formulation of maximum-likelihood ori-
entation estimation in cycle space). Given the vector § €
(=7, +7|™ and the diagonal positive definite matrix Ps €
R™*™ and a cycle basis matrix C € Z**™, find the set of
minimizers ST C 7 that satisfy

S7 = argmin [y — 4|[p.+ (77)

~YEZ*
with 4 = 2=C9, and P, = 2 CP;CT.

1) From Problem 7 to Problem 6: Given a -, there is a
simple way to compute a k satisfying C'k = -y, assuming that
the rows of C' are ordered appropriately as in (5).

Lemma 13. Given a vector v € Z* and a cycle basis matrix
written as C = (Cr Cp), an integer solution to Ck = v can

be computed as
07L
o ( Crly > '

Proof: From Liebchen [47, Lemma 3 and Theorem 7] it
follows that C, is invertible and det(C) = £1. Moreover,
because C', is an integer matrix with unitary determinant, nec-
essarily C;l is itself integer (see Schrijver [48], or just think
that the inverse is the adjoint matrix over the determinant).
Therefore, Cglfy is an integer vector. Finally, we can show
that Ck = ~ by inspection:

(78)

Ck = (Cr C)(0; (C;'y))T =Cr(Crly) =~. (19)
| ]
We use the notation
0
T n
(&)

to remark that C'T is a right (integer) pseudoinverse of C.

2) Symmetries of Problem 7: The objective function (77)
is convex so it would be tempting to just say that there is
only one minimum. However, we should be careful because
the intuitions of convex optimization often fail in integer
programming. For example, Figure 3 shows a case in which
a convex objective function has two integer solutions.

What we can say is that this cannot happen for general data.

Proposition 14. |S7| = 1 with probability 1.

Proof: The set S” is the set of minimizers of (77), which
is an objective function of the form

Iy - ple, 1)



4(x —0.5)?

Fig. 3. Unconstrained quadratic integer program ming¢z 4(z —0.5)?
in the scalar variable x. The optimal objective is +1 and is attained
at the integer solutions z7 = 0 and z5 = 1.

with P € R a positive definite matrix, and p € R a
random variable which depends on the measurements, and
can be seen to be a Gaussian vector. Consider the set of
values M C R’ such that if p € M, then (81) has
multiple solutions for ~. Then it is easy to show that the
set M has measure 0 in R (For example, we can see
how for an infinitesimal perturbation of the mean of the
parabola in Figure 3, the solution set goes from {0,1} to
either {0} or {1}.) For demonstrating this claim, consider a
generic i € M. Since p € M there exist v > 2 discrete

values {~!,..., 4"} € Z* such that
2 v 2
v =plp==I" —nlp. (82)
If we fix {v!,...,~"}, and take p as the independent variable,

the constraints in (82) define an algebraic variety of dimension
at most £ — 1, which has measure 0 in RY. |

F. Inception

Let us link Problem 7 with the other problems presented so
far. From a solution ~ of Problem 7 we can find a solution k
of Problem 6 using the formula (78). We call this map ¢%:
(83)
(84)

R A AL
v = Cly.

However, there are much fewer v € Z¢ than k € Z™,
therefore, using this map on S” we will not be able to cover
all of SS:

p2(ST) ¢ S°. (85)
Likewise, further projecting down to using @2 we will still
lose solutions:

w5 0 p2(87T) & 5. (86)
Another step is not enough, as we still have
5005 007(S7) & 8% (87)

We have to go four levels deep. When we finally arrive back
to Problem 3, we do obtain all solutions.

Proposition 15 (Inception). 3 o o2 0 2 0 8(S7) = S3.

Proof: We first prove the relation 3 o 2 030 p8(S7) C
S3. Consider a v* € S”. By construction, k* = ¢$(v*)

attains a minimum of Problem 6, since ~ is only a slack
variable that substitutes Ck. Therefore, k* € S°. Then,
according to Proposition 11, ¢ (k*) = ¢2 o ©8(~*) belongs
to S, since p3 maps an optimal solution of Problem 6 to
an optimal solution of Problem 5. Similarly, Proposition 8
and Proposition 9 imply that ¢3 o ¢# 0 3 0 PS(y*) € 3.
Now, we want to prove o3 o @i o @2 o p8(S7) D 53,
that, together with the relation proved in the previous para-
graph, demonstrates Proposition 15. Pick a 6* € S%. As
shown in the proof of Proposition 8, 8* = 6* also belongs
to S, and it is such that (a) ¢3(6*) = 6*. Now, we
have already seen that k is only another way of writing
the exponential map (see Section IV-B), therefore, if we
choose k* = |(n1,, — (AT@* —§))/27] (compare with
equations (7) and (49)), then the pair (6*,k*) solves Prob-
lem 5; moreover, (6*,k*) is such that o3 (0%, k*) = 6*,
that, using (a), implies (b) ¢} o i (0*, k*) = 0*. According
to Proposition 11, if (8*, k*) € S5, then k* € S%, and then,
from (b), we get (c) ©3 o ¢t 0 @3 (k*) = 0*. Finally, if k* is
an optimal solution for Problem 6, we can pick v* = Ck*
and guarantee that +* is an optimal solution for Problem 7
(there is only a change of variables between the two problems),
ie., ~* € S7. Concluding, for a given 8* € S*, we found
a~* € 87, that is such that % = 3 o o P2 o (7). W

G. Conclusions

The following theorem, whose proof is a direct consequence
of Proposition 14 and 15, summarizes what we have learned
so far.

Theorem 16 (Mixed-integer maximum likelihood estimation
on SO(2)). The solution of Problem 3 is almost surely unique,
and, given the solution v* of

~* = argmin ||’y — %05 ;,1 , (88)
~YEZL v
can be computed as
6* = ((AP;'AT) AP, (6 —27CTyY)), . (89)
. . Op
with Ct = <C;1)' O

It is easy to see that (89) is a closed-form expression for
the mapping o3 o 2 0 3 0 S (7*), hence the result is a more
explicit version of Proposition 15.

In contrast with iterative optimization techniques, the pro-
posed computation of 8*7" does not suffer from local minima,
assuming that we are able to compute ~v*.

Although this seems a good conclusion, we are not yet done
with our estimation problem for two main reasons.

First, Problem 7 is NP-hard [36]. Several algorithms have
been proposed in literature to solve integer quadratic pro-
gramming (see, e.g., [39], [49], [50] and references therein);
however, for the hardness of the problem, one cannot expect to
solve exactly and quickly large-scale problems; for example,
Chang and Golub [51] report computational times above 10
seconds in problem instances with less than 50 variables.
Similar numerical results are reported by Jazaeri et al. [50].



Second, as explained in the next section, computing only
the maximum likelihood estimate does not guarantee to have
an accurate orientation estimate.

V. LIMITATIONS OF THE MAXIMUM LIKELIHOOD ESTIMATE

Section IV has shown that the maximum likelihood opti-
mization problem on the orientations, which lie on the product
manifold SO(2)", is equivalent to an optimization problem
in the variable ~, which lies on the integers lattice Z’. The
variable v can be thought of an alternative reparametrization
of the problem.

This section shows that, if the maximum likelihood solu-
tion v* is different than the “true” value +°, then there is
a bias in the corresponding estimate of @ (Lemma 17). This
bias raises the mean square estimation error of the maximum
likelihood estimate. Section V-B discusses a simple practical
example for a circle graph. In the next section we will describe
an algorithm that, instead of estimating only one value for -,
returns multiple hypotheses for v which contain +° with a
given probability, so that we will be able to prove that at least
one of the hypotheses gives a small estimation error.

A. Distribution of maximum-likelihood estimate

To define the “true” value of v we rewrite the measurement
model as

8= (ATO° + €)an, (90)

where 0° is the “true” value of the nodes orientations. From @)
the measurement model can be written as

d=AT0° + 2k°T + €, 91)

where k° is the “true” regularization vector, and has the
expression k° = | (1, — AT6° — €)/27| . Define the “true”
value of ~ as

~° = Ck°. (92)
For a given ~, define the real-valued estimate 0*!7 as
01" = (AP AT) AP (8 - 27Cly) € R™. (93)
and the corresponding (wrapped) estimate 6*17 as:
61" = (015, € (—m, 47" (94)

We call 0*17" the real-valued maximum likelihood estimate (it
is 8*17 computed for 4*). Comparing with (89), the reader can
notice that real-valued maximum likelihood estimate is simply
the maximum likelihood orientation estimate before applying
the exponential map. We can give a full characterization of the
distribution of the real-valued maximum likelihood estimator.

Lemma 17. The real-valued maximum likelihood estima-
tor 01" can be written as

o*" 0° + (95)
27p + (96)
(AP, 'AT) 'AP; e + 97)

2m(AP;'AT)TTAPTICT (v — %), (98)

where the term (95) is the true value of the orientations;
the term (96) contains some integer vector p and has no

effect once the exponential map is applied to 6*17"; the
term (97) contains the noise which would appear even if the
problem were linear; and, finally, the term (98) contains an
additional bias, which is proportional to the mismatch between
~* and ~°. In particular, if ¥v* = ~°, then the vector 6*17
is Normally distributed with mean 6° + 2p and covariance
matrix (AP; 'AT)~L

Proof: Substitute d from (91) in the expression of the
real-valued estimator to obtain

0" = (AP;'AT)TAP; ! (AT6° + e+ 21(k° — C'y)) .

99)
Rewrite k° = CT'YO + kL, as to separate k° into two
vectors: the first is CTVO, which, by construction, satis-
fies C(C'y°) = ~°. The second belongs to the kernel of C,
and then satisfies CkL = 0,. Note that k= is an integer vector,
since both k° and CT~° are integer vectors by construction.
According to the result in Proposition 12, the term k- only
adds multiples of 27 to the estimate

0" = (AP AT AP

(AT6° +e+2nCT (v — 7)) +27p,  (100)

with p = Dk, for some integer matrix . Multiplying the
parentheses gives the desired result. |

One consequence of this result is that the maximum-
likelihood estimate of 8 computed from ~* is not necessarily
the one with the minimum estimation error, because one
cannot guarantee in general that the optimal solution ~*
of Problem 7 is such that v* = ~°. Consequently, in order to
attain a small estimation error, one should look for «°, instead
of simply computing ~*.

B. A simple example

Consider the pose graph of Figure 4. The robot traveled
along a circle and came back to the starting position (0,0)
after 18 time steps. Robot poses at each time step are plotted
as black triangles (rotated according to the true robot orien-
tations °). The positions are shown only for representation
purposes, while we are only interested in estimating the orien-
tations from the relative orientation measurements. We build
the relative orientation measurements as & = <ATé° + e>27r,
where AT is the incidence matrix of the graph, and € is
the noise. For sake of repeatability we fixed the noise on
each edge to 0.2 rad. Now, we want to compare the real-
valued maximum likelihood orientation estimate 8*7" and
the real-valued orientation estimate 8*7°, obtained using ~°.
In this toy example, v* and ~° are scalar quantities, since
the cycle basis matrix is a vector, i.e., C = 1;. In a real
problem, one cannot compute «° since it is a function of the
noise; however, in simulation, we can simply apply the defi-
nition 7v° = C | (71,, — AT6° — €)/27| (we obtain v° =1
in our example). The vector v* can be instead computed as
solution of Problem 7. In this case the problem is solved over a
scalar unknown, and its solution corresponds to rounding 4 to
the closest integer; in the example we obtain v* = 2. Then, we
use the expression (89) to obtain 0*1"" and 6*1"°. Let us now
compute the likelihood of these vectors using the cost (35)



(lower cost corresponds to higher likelihood). According to
the property (11) the cost is the same for the real-valued
estimate and for the corresponding wrapped estimate. As
expected, 0*"7*, which is the real-valued maximum likelihood
estimate, gives the smallest value of the cost function (35) (the
value is 0.4 in our example). Computing the cost function (35)
in 6*17° we obtain a higher cost (i.e., a lower likelihood): 0.72
in our example. Everything suggests that 8*/7" is a better
estimate of 6° is compared with o*°, Figure 4, however,
tells another story: the estimate 6*7° (represented as blue
arrows) is a very good estimate of 6°, while the maximum
likelihood estimate 6*7" (represented as red arrows) is far
from the actual orientations.

05 /\ v

Fig. 4. A counterexample to the use of the maximum likelihood orientation
estimate. The figure shows a simple pose graph in which the robot is travelling
along a circle and is coming back to the starting position (0, 0) after 18 time
steps. Robot poses are shows as black triangles. The real-valued maximum
likelihood orientation estimate 8*!7" is represented as red arrows. The blue
arrows are the orientation estimate 8*17° obtained from ~°.

One may argue that this problem arises only for the
particular realization of the noise we considered. However,
this is not the case: the same issue appears whenever the
sum of the orientation noises along the cycle is larger (in
absolute value) than 7, and this is going to happen also in
presence of Gaussian noise (i.e., it cannot be disregarded as
an improbable event). In our toy example we can explicitly
derive the probability of this event. The probability that the
sum of the noises along the cycle c is bigger than 7 is

IP’< pCT

(i,j)€c
where €cyce 1S a Gaussian random variable with variance
2 _ 2 . .
Oiele = D_(i,j)ce O1j- Using standard results on Gaussian
distributions we conclude

(101)

> 71') = P(|ecyete] > ),

P (Jecyete] > m) =1 — erf (102)

7r
Ucycle\/§ ’
where erf denotes the error function. The relation (102) un-
derlines how the probability of “wraparound” (i.e., mismatch
between ~v* and +°) increases with ocyce, Which, in turns,
depends on the length of the cycle (number of edges belonging
to the cycle) and on the uncertainty of the corresponding
measurements.

C. Interpretation

These results are not surprising, if we realize that the
problem is nonlinear. In fact, only in linear Gaussian models
one can guarantee that the maximum likelihood estimator is
unbiased and achieves the minimum estimation error, while it
is not necessary true in the general nonlinear case.

Ultimately, we are led to conclude that in the case of
high sensor noise, orientation estimation is a problem whose
structure is not particularly suited for a maximum-likelihood
formalization. More abstractly, for a suitable distance function
“dist” on the manifold, minimizing the data error [52],
ie., dist(ATG, 5), does not ensure to have a low value for
the estimation error, which is dist(6, 6°).

Consequently, rather than finding the maximum likelihood
estimate for «y, we devised an algorithm, presented in the next
section, that tries to find the value ~°, or, more precisely, it
finds a set of integer vectors that is guaranteed to contain ~°
with a given probability.

VI. A MULTI-HYPOTHESIS ESTIMATOR FOR ~°

This section describes an algorithm that we call INTEGER-
SCREENING which is able to find a set I' of integer vectors
that contains ~° with a desired probability.

Section VI-A describes how to derive an estimator for ~°
which allows building a confidence set.

Section VI-B describes the INTEGER-SCREENING algo-
rithm, which builds a set of integer vectors I' that contains ~°
with desired probability.

Section VI-C discusses the influence of the cycle basis
matrix in the construction of I'" and formally proves that the
minimum cycle basis matrix MCB is the optimal choice that
minimizes the expected size of the set I'.

A. An estimator of ~°

From the knowledge of a cycle basis matrix C, the mea-
surements 0, and the covariance matrix Ps we can design an
estimator 4 for the unknown integer vector v°.

Proposition 18. The real-valued vector

=2+£Ch (103)
is a Normally distributed estimator of ~°, with covariance
matrix

P, = L CPC". (104)

Proof: Multiply both members of (91) by C' to obtain

Cd=C(AT0° + 27k° +¢). (105)
By Lemma 1, the term C AT is equal to zero. Reordering the
remaining terms, we get Ck°® = %05 — %Ce. Using the
definition v° = Ck° given in Section V, this implies v° =
%CS — %Ce, from which the thesis follows. [ |

The availability of the estimator of Proposition 18 enables
the computation of the set I', as described in the following
section.



B. The INTEGER-SCREENING algorithm

The INTEGER-SCREENING algorithm (Algorithm 1) com-
putes a finite set of integer vectors that contains ~° with a user-
specified probability. The algorithm is based on two simple
ideas: marginalization and conditioning. We use marginaliza-
tion to exclude non-plausible values for the elements of ~°.
Since 4 is Normally distributed, i.e., ¥ ~ N(v°, Py), also
the marginal distribution of the i-th element 4; is a Gaussian
with mean ;. Therefore we easily derive a confidence interval
for the single element, based on a given confidence level.
If the interval contains only one integer, then we can assign
that value to the element with the specified confidence. Once
we are sure of the value of one element, say 7, = u;, we
use conditioning to reduce the plausible values of the others,
by conditioning on 7; = wu;. These two ideas suggest an
iterative algorithm that looks for elements of ° that can be
determined unambiguously, and then uses those constraints to
further shrink the uncertainty on the remaining elements.

The input to Algorithm 1 consists of the real vector 4, the
positive semidefinite matrix P, and the confidence level a.
It is assumed that 4 is a Normally distributed estimator
of v° € Z' and that P, is its covariance. The output of the
algorithm is a set I' of integer vectors that has probability
no smaller than « of containing ~°; the probability bound is
derived in Proposition 19 and Corollary 20.

Throughout the execution, the set {(*) contains the indices
of the elements of ° that are uniquely identified at iteration k,
and, conversely, the set R that contains the indices that are
still ambiguous. At the beginning (line14), R*) = {1,...,¢}
as no element has been identified.

We use the notation 7, to indicate the subvector of v° at
the indices given by /(¥), and the notation Yo to denote the
elements of v° at the 1ndlces given by R(¥). The algorithm
updates two variables (r) and Ppx. The invariant that
holds is that

Crar ~ N (Y, Prav),

i.e., they describe a Normally distributed estimator of the
elements v, that have not been identified yet. The in-
variant holds at the beginning as the variables are initialized
to {ray =4 and Pruy = P, (line 15).

At a generic iteration k, the algorithm computes the con-
fidence set for each 77, i € R(’“) Slnce $r is Normally
distributed, also each component C is Normally distributed
with mean 7; and variance given by the ¢-th element of the
covariance matrix P( ) . Therefore, with probability 7, it holds
that

(106)

c [ ¢® Py | =1®, (107)

with b = 4/ P, Z(Z X3 n (hnes 21-22). Note that the confidence

interval depends on 1 = . The relation between o and n is
justified by Proposition 19.

Then, the algorithm computes all the integers within the in-
terval Z", obtaining T'") = Z¥ N7 (line 23). If the set T'"
contains a single integer, say w;, then with probability 7 it
holds that 7 = u;, and the algorithm adds the index ¢ to the
set of uniquely determined elements 2/(*) (line 26).

After checking all sets I‘Ek), i e RK (line 27), we have
the set 24(®), that contains all the elements in ~° that we
uniquely determined at the current iteration. Clearly, these
indices can be removed from the ones that are still ambiguous
(line 34). Moreover, we can exploit this information to infer
the value of the remaining elements of °. In particular, we can
compute the probability density P({r ) |Gy = Tym ), i€
the conditional probability density of the elements that are still
ambiguous, given the values that we found for the elements
in 4*) (line 38). Since the original density is a Gaussian,
also the conditional density is a Gaussian, with mean (z (k41
and covariance Py +1). Therefore, at the end of the iteration,
we have a unique value for the elements in /() and a
probabilistic description (i.e., mean and covariance) of the
elements in R(*+1)_ Since the conditioning may have shrunk
the uncertainty on some element, we proceed to the next
iteration. If the set /(¥ is empty, it means that we are not able
to make any progress and the loop exits (line 36). Otherwise,
the algorithm shrinks the uncertainty by conditioning the
current estimate on the information ;' = w; for all ¢ € U (k)
and proceeds to the next iteration. Notice that when condi-
tioning on some component of v° we reduce the size of
the mean vector and the covariance matrix. At iteration k,
it holds Cray € RR™I and Pray € RIR™IXIR®I The
algorithm performs at most K < / iterations because at
each iteration, at least one additional element of v° € R’
is determined.

After the algorithm stops we have a collection of confidence
sets FZ(.K) CZ,ie{l,...,¢}. If the admissible elements ~;
has to belong to FEK), then it must hold that

(K)

7 e i) s ox 1 =T, (108)

where X denotes the Cartesian product of sets (line 40).
Corollary 20 bounds the probability of v° € I'.

Proposition 19 (Probability bounds for the confidence inter-
vals in INTEGER-SCREENING). At each iteration k of Algo-
rithm 1, the computed intervals Ii(k), i={1,...,4} are such
that all elements of ~v° belong to the corresponding intervals
with probability at least o:

]P’(7f€

Proof: The proof is based on the technical result
of Lemma 24, reported in Appendix. Let us first manipulate the
claim (109) to make it closer to the result (130). In Lemma 24
we discuss the probability of the random variable belonging
to an interval centered on the mean, in (109) we have the
probability of the mean belonging to the interval obtained from
the random estimator. This is a minor problem, since we can
“center” the confidence interval on the mean, i.e., we can write
the event

= |:Cl(k) _ /I)i(ik)xin’ Cl(k) 4 P(k)Xl 7’:| (110)

in the equivalent form

M e {%" — VB, e+ PP n} :

T A A € I,E’“)) > a. (109)

(111)



Call this centered confidence intervals Z;. Therefore, we
rewrite the claim (109) as

IP(/\%(? € I}k)) - P(/\g}’“) € f}’“)).

%

(112)

Before starting the analysis of the algorithm, note that, at the
end of each iteration k = {1,..., K}, the following relation
holds between the sets of indices /(*) and R(*):

U .o y® yRKHD) — {1,...,¢}.

This relation is a consequence of the definition of RE+D)
which contains the indices of the elements that have not
been uniquely determined at iteration k. Moreover, by con-
struction, a given index can only be contained in one of
the sets V), ... . Y*®) RFE+) which implies another useful
relation (valid at any iteration k):

UD |+ (UP |+ | REFD| = ¢,

(113)

(114)

Let now start our analysis from the first iteration of Algo-
rithm 1. The quantity (1) has been initialized to 4, therefore
it is a random vector with mean value v° and covariance
matrix P,. For this reason we can use Lemma 24 to conclude
that

PV =P (Ve A ndV V) 20" =a (15)

which proves the claim of the proposition for the first iteration.
Before proceeding to the next iteration, we notice that Lemma
24 can be also applied to a subset of variables (1) (since the
overall vector is Normally distributed, also every subvector is
Normally distributed). In particular, it is interesting to notice

that o
P A ¢V ez®) =g, (116)
icU )
At the second iteration, we need to bound
e ip(gf) eI® A nc? eff)). 117)

Using relation (113) we rewrite the previous probability as

p=P( A\ P ez® n N\ (P ez?), s
e ieR@)

where we simply grouped the events in two classes, that are
such that (Y UR®) = {1,... ¢}. The algorithm does not
further updates the quantities referred to the indices i € &)
(the intervals that already contain a single integers remain
untouched, see lines lines 30-31 of Algorithm 1), and it
holds fi(Q) = fi(l), and Q(Q) = Ci(l) for all i € YY), Therefore,
we rewrite (118) as

p(Q):IP’( A Ve A N P eii(?)). (119)
e ™ iER(2)
Applying the chain rule, p(®) becomes
@) IP’( /\ (@ 7™ /\ W e j{l)) %

p =
i€ER2) ied (D)

<B( N\ (eI,

ied™)

(120)

We can then apply the bound (116):

p@ =y BN (P ez A (VeV). a2

ieR(2) el (1)

By definition, all indices ¢ € U () are such that the confidence
interval fi(l) contains a single integer, say u;, which is the only
candidate for ;. Therefore, the event Ci(l) € 7:-1(1) implies 7y, =
u; and we can write

) > 77'“(1”19’( A @ Efi(z)‘ A 7%= uz) (122)
ERE@ e

Furthermore, the vector C7(12<)2> was obtained by conditioning

over the values found for the elements in i € UV (line 38
of Algorithm 1), therefore another conditioning on the same
event produces no effect:

) - o
P 2 g (A P eZ?| A =)
ieR() e ™)
(A P e1®). (123)
i€ER(2)
Since Cg()z) is again, by construction, a Gaussian random

vector with mean 52y and covariance matrix P7(5()2> we can
apply again Lemma 24 obtaining the bound

p(2) > n|M(1)| . 77\73(2)| - n\u(1)|+\73(2)\7 (124)

which becomes p? > ¢ = «, using (114) for k = 1. Iterating
the same reasoning, at iteration k, we can easily obtain the
desired bound

p(k) > n‘u(l)l+m+|u(k)|+lR(k+l)| _ 772 = . (125)

Corollary 20 (Correctness of INTEGER-SCREENING). The
integer vector ~° is in the set I returned by Algorithm 1 with
probability no smaller than .

Proof: Assume that Algorithm 1 performs K < ¢ iter-
ations. Since I' = FEK) X ... X I‘EK) the following equality
holds:

P(y° €T) :P('yf eTIA. Arpe FE,K)) . (126)
All the integers that are in Ii(K) are also in I‘EK), then the
previous expression is the same as

P(4° €T) :P(vf cITF A AAS eI,SK)). (127)

From Proposition 19 it follows that P (y° € T) > «. [ |

C. Optimal choice of the cycle basis matrix

So far we have not discussed how to choose the cycle
basis matrix C' and if there is a particular selection that turns
out to be more convenient in the screening of admissible
vectors v°. Note that the choice of C' influences the quality
of the estimator 4, appearing in both the expression of the
estimate and in its covariance P, as per (103) and (104).
Therefore, we are now interested in investigating the choice
of C that leads to the most informative estimate of ~°.



Algorithm 1: INTEGER-SCREENING

1 input:

2 areal vector 4 € R*

3 a positive definite matrix P, € R***

4 a confidence level o € (0,1)

5 precondition: i ~ N (~°, P,)

6 output: a subset of Z° containing v° with probability at least «
7 variables:

8 U™ C{1,...,£} # Indices determined at iter. k

9 RW™ C{1,...,£} # Indices that are still ambiguous at iter. k

10 (Crx), Prxy) # Current estimate of 7, ¢ € R"

11 IZ@ CR # Current confidence interval for 7, i={1,...,¢}
12 ng) CZ # Current admissible values for 7, i={1,...,¢}
13

14 RW «{1,...,0}

15 (Crys Pray) < (7, Py)

16 for kin {1,2,...}:

17 # Compute confidence sets using marginal probabilities
18 UM =0

19 for iin R™:

20 n= ot

21 b; < \/Piik)xin, with = /¢

2 I e (g - b ¢ 1)

23 '™ 1™ nz

24 # Check if the set contains a single integer

25 it TV =1

26 UP —u® U3}

27 end

28 # Preserve the previous confidence sets

29 foriin {1,...,4} \ R":

30 I e 7Y

31 rEM - Flﬁ’“*“

32 end

33 # Update the set of indices that are still ambiguous

34 REFY) (k) \u(k)

35 if ™) = (): # Break if there is no progress

36 break

37 # Otherwise condition on the elements that we determined
38 (Cre+1,Prie+1)) ¢~ CONDITION(Cr (00, P () ) Yoy =Ly
39 end

40 TP 51 x1...7H

41 return I

External functions:
e CONDITION({(, P),~y; = u;) computes the conditional distribution
given the constraints that some components are known.

Proposition 21 (Optimal choice of cycle basis matrix).
Choosing C' to be the minimum (uncertainty) cycle basis
matrix MCB makes 4 a minimum variance unbiased estimator
of v° within the class of estimators {¥ = %C’g : Celgl

Proof: We already know that 4 is unbiased. For an
unbiased estimator, the variance is equal to the mean square
error. For a Normally distributed estimator, the mean square
error is propertional to the trace of the covariance matrix.
Therefore, we have to show that choosing C = MCB min-
imizes Trace(P,) = 15 Trace(CP;CT).

The ¢-th term on the main diagonal of C PsCT is ¢; Psc! =
2 ij)eer 07, where the notation (i,7) € ¢; means “for all

edges that belong to the ¢-th cycle”. The previous expression
coincides with the weight of the cycle ¢; under the weight
function w : (i,5) = o3}

Therefore, the trace of P, = CP;CT is equal to the sum
of the weights of the cycles in the cycle basis, which by
definition is W(C, w). Therefore the minimum cycle basis,
which minimizes W (C, w), also minimizes Trace(P,). ®

What is the practical advantage of having a minimum
variance estimator in our problem? The confidence set I' that
we build in Algorithm 1 is directly influenced by the variance
of the estimator 4; in Algorithm 1 the diagonal elements of P,
define the width of the confidence intervals, therefore, since
the minimum cycle basis matrix minimizes the sum of the
diagonal elements of P, (i.e., its trace), then it also minimizes
the widths of the confidence intervals used for the INTEGER-
SCREENING algorithm. Therefore, it enables the determination
of a small set I' of admissible integer vectors.

VII. OVERALL ORIENTATION ESTIMATION ALGORITHM:
THE MOLE2D ALGORITHM

We can now summarize the findings we presented so far in
a single algorithm, that allows computing a (multi-hypothesis)
estimate of robot orientations, which we call MOLE2D (Multi-
hypothesis Orientation-from-Lattice Estimation in 2D). The
algorithm computes the set of integers I' using INTEGER-
SCREENING, and then for each vector v € I', it computes
the corresponding orientation estimate *7. The output is the
set of estimates © = {6*17 : v € T'}.

In the section we show that the MOLE2D algorithm solves the
two limitations of the maximum likelihood estimator of Sec-
tion IV (computation efficiency and need of an assessment
for the resulting estimate). In particular, in Section VII-A we
show that one of the orientation hypotheses returned by the
algorithm is “close” to 6° (with desired probability); then,
in Section VII-B we show that the algorithm includes only
worst-case polynomial operations. The MOLE2D algorithm is
reported as a pseudocode in Algorithm 2, and described in the
following section.

1) Algorithm 2 overview: The input to Algorithm 2 is the
reduced incidence matrix A (which exhaustively describes the
graph), the measurements &, their covariance matrix Pj, and a
tuning parameter o which gives the desired confidence level.
The output is the set of estimates O.

The first step (line 9) is the computation of a cycle basis of
the graph. Any cycle basis will do, but Section VI-C tells us
that the choice of the cycle basis can be improved if informed
by the covariance Pjs, and the best choice is the minimum
cycle basis matrix of the graph. Without loss of generality, we
assume that the rows of the cycle basis are ordered according
to (Cr; CL), as described in (5).

The next step (lines 11-13) consists in the computation
of a set I' which contains +° with confidence a using the
INTEGER-SCREENING algorithm, described in Section VI-B.

The “for” loop in line 14 computes, for each integer
vector v € T, the corresponding real-valued estimate 6*Y
(line 15), and obtain the wrapped estimate 6*!7 by applying the
exponential map to 8*17 (line 16). The collection of wrapped



estimates is then returned in the set {6*/7}, which is the output
of the algorithm.

Algorithm 2: MOLE2D

input:

reduced incidence matrix A (topology of the graph)
measurements &

covariance Pjs

confidence level « € (0,1)

output: set of estimates of 6°

O LW~

# Compute a cycle basis matrix in canonical form

9 C=(C} C])" +~ COMPUTE-CYCLE-BASIS(A, Ps)
10 # Compute set I', containing admissible vectors for ~°
11 4+ £C6

12 P, 5CPCT

13 T < INTEGER-SCREENING(%, Py, @)

14 for v in I':

15 6" = (AP;lAT)*MPgl(é - QW( C?Lﬁl )7)
]6 é*l"/ = < 0*"‘/ >27r

17 end

18 return © = {6*!7}.

External functions:
e COMPUTE-CYCLE-BASIS(A, Ps) computes a cycle basis for the
graph, possibly informed by the covariance matrix Pj.

A. Assessment of the estimator

This section is aimed at evaluating the quality of our
estimator. More precisely, we want to assess how the set of
estimates {é*'“’}, which is the output of Algorithm 2, relates
with @°. The assessment of the estimator is given in the
following proposition.

Proposition 22. Consider the set of estimators © returned
by Algorithm 2. Then, with probability no smaller than o, one
of the estimators in ©, say 0*17' € ©, satisfies the following
statements:

1) the real-valued estimator o+ s Normally dis-

tributed with mean 0° + 27wp and covariance ma-
trix (AP; AT ‘

2) the wrapped estimator 6*17 = <6’*|"YJ>27r is distributed
according to a wrapped Gaussian with mean 0° and
covariance matrix (AP; ' AT)71;

Proof: These are direct consequences of Lemma 17
and Corollary 20. Lemma 17 assures that the event v° € I is
the same as the event “at least one real-valued (respectively,
wrapped) orientation estimate is distributed according to a
Gaussian (respectively, wrapped Gaussian)”, and Corollary 20
assures that such event happens with probability a. [ ]

A straightforward consequence of Proposition 22 is that,
in the case |[I'| = 1, the single estimate contained in ©
is distributed according to a wrapped Gaussian around 6°.
Therefore, in the case of |I'| = 1, we can draw conclusions that
are peculiar of linear estimators and are very rare in nonlinear
estimation problems (e.g., Normality). In the experimental
section we will show that most of the problem instances

that constitute a benchmark for state-of-the-art approaches to
SLAM satisfy the condition |I'| = 1. Therefore, in common
problem instances, our multi-hypothesis estimator returns a
single guaranteed orientation estimate.

B. Complexity

This section analyzes the worst-case complexity of the
operations included in Algorithm 2. The results help assessing
the worst-case performance of the algorithm, although they are
very conservative in practice, as we will remark at the end of
this section and in the experimental analysis. Let us study the
complexity of each step of the algorithm.

Computation of the cycle basis matrix (line 9): The
complexity of computing C' heavily depends on the choice of
the cycle basis. In the experimental section we will consider
four potential choices of the cycle basis: (i) the fundamental
cycle basis built from the odometric spanning tree, (ii) the
fundamental cycle basis built from the minimum uncertainty
spanning tree, (iii) the minimum cycle basis, and (iv) an ap-
proximate minimum cycle basis. The fundamental cycle basis
built from the odometric spanning tree implies a complexity
that is O(n ¢): the odometric spanning path can be considered
a given of the problem and the complexity reduces to fill in
the matrix C € R™_ which has at most n + 1 nonzero
elements in each row. The fundamental cycle basis built from
the minimum spanning tree requires the computation of the
minimum spanning tree, which amounts to O(m +n) and the
construction of the matrix C (O(nm)), therefore the overall
cost is O(nm). When using the minimum cycle basis matrix
the dominating cost is the actual computation of the cycle
basis, which is O(m?3), and becomes O(n3* %) for a (2v—1)-
approximate algorithm.

Computation of the set I' (lines 11-13): The computation
of the estimator 4 requires at most ¢ m operations, while the
covariance matrix requires £2m operations (exploiting the fact
that P; is diagonal). For the INTEGER-SCREENING algorithm,
the worst case is when only one index is added to the set of
uniquely determined elements at each iteration. Conditioning
is an operation that has cubic operation for general matrices
(O(£3)). Therefore, in the worst case, the complexity is O(£*)
(the algorithm performs ¢ conditioning).

Computation of © (line 18): This step requires the com-
putation of @*17 for each v € I'. Let us first evaluate the
complexity of computing a single estimate 8*7. The complex-
ity of computing 8*7 from 6*17 (i.e., applying the modulus
operation) is O(n). The expression of 8*17 is given in (93)
and contains the two matrix inverses CEl and (APglAT)_l;
in practice, one would not perform these matrix inversions,
but would rather solve two linear systems. The solution of the
first linear system implies a (worst-case) complexity of O(£3),
while the second implies O(n?®) complexity. Therefore, the
worst-case complexity of line 18 amounts to O(m?) (recall
that £ < m and n < m).

Assuming that the cardinality of I' does not grow with
problem dimension, the complexity of Algorithm 2 would
be O(m*). Note that the cardinality of T'" depends on the
size of the loops and on the measurement uncertainty rather



than on the problem dimension: we already observed in the
proof of Proposition 21 that the diagonal elements of Pj (that
determine I') are essentially the sum of the variances of the
measurements along each cycle.

We do not refine this bound because this worst-case analysis
is a poor indicator of the actual complexity of algorithm, for
two main reasons. First, the matrices involved in the various
steps of the algorithm are sparse, therefore the computation
of 6*17 (line 14) has a complexity that is far below the upper-
bound. Second, if we are careful about the choice of the
cycle basis matrix from which P, is computed, the INTEGER-
SCREENING algorithm is able to compute a small set I" in few
iterations, therefore the average complexity is essentially that
of doing one conditioning.

VIII. EXPERIMENTAL EVALUATION

This section presents an experimental analysis of the pro-
posed approach and its application to pose graph optimization.

Section VIII-A describes the experimental setup.

Section VIII-B discusses the performance of MOLE2D algo-
rithm in the problem of orientation estimation. The objective
is to evaluate how important is the choice of the cycle
basis matrix in practice, what is the cardinality of the set of
candidate vectors I in real applications (recall that |T'| = |©)),
and how fast is the algorithm on common problem instances.

Section VIII-C discusses the use of the orientation esti-
mate produced by MOLE2D as the initial guess for iterative
techniques for pose graph optimization, such as Toro and g2o.
Results show that MOLE2D improves the robustness of such
techniques, making them able to produce a good pose estimate
also in scenarios with extreme levels of noise, in which they
would usually fail.

A. Benchmark setup

We used three standard datasets:

INTEL This dataset, acquired at the Intel Research Lab in
Seattle?, includes odometry and range-finder data.
Relative pose constraints are derived from scan match-
ing. Data processing details are given in previous
work [38].

This dataset was acquired at the MIT Killian
Court. Data processing details are given in previous
work [37].

MITb

M3500
This simulated dataset, also known as Manhattan
world, was created by Olson et al. [10].

To test MOLE2D in more challenging scenarios, we obtained
other datasets by adding extra Gaussian noise (with standard
deviation o) to the M3500 orientation measurements. These
new datasets are called M3500a (¢ = 0.1rad), M3500b (o =
0.2rad), and M3500c (o = 0.3 rad).

2The dataset is provided by Dirk Hihnel and available online [53].

B. Effect of different cycle bases on orientation estimation and
practical computational cost

Here we only consider the orientation measurements in
the pose graph and the corresponding covariance matrix.
Regarding the MOLE2D algorithm, we chose a confidence
level a = 0.99. For the computation of the cycle basis ma-
trices, we used Michail’s C++ implementation [54]. The rest
of the MOLE2D algorithm is instead implemented in Matlab,
which makes extremely simple sparse matrix manipulation.

Four cycle bases are considered, listed here from computa-
tionally cheap to expensive (Table III):

FCB, This is the fundamental cycle basis built from the
odometric spanning tree. Call T, the odometric
spanning tree, which is also a spanning path for the
graph. Each cycle of FCB(T,) comprises a chord
in the graph with respect to T,, say (,7), and the
unique path in T, from node ¢ to node j

This is the fundamental cycle basis built from the
minimum uncertainty spanning tree.

A (2v — 1)-approximation of the minimum cycle
basis is computed using the algorithm proposed by
Kavitha ef al. [55] (in our tests v = 2).

The minimum uncertainty cycle basis, computed us-
ing the method by Mehlhorn and Michail [56].

In the scenarios INTEL, MITb, and M3500, the INTEGER-
SCREENING algorithm is able to identify a single possible
value for +°, regardless the choice of the cycle basis matrix
(Table IV, last column). In the scenarios characterized by
extreme noise levels (M3500a—c), the choice of the cycle basis
truly matters. If one uses the fundamental cycle basis FCB,
the size of T" is too big to be tractable; the explosion of |T'|
is partially mitigated by the use of FCB,,, that, however,
fails to produce a reasonably small number of vectors in
I' in the scenario M3500c. Using a minimum cycle basis
gives a small cardinality of I', respectively, 1, 3, and 16,
for the cases M3500a, M3500b, and M3500c, with no observed
difference between the exact minimum cycle basis MCB and
the approximation MCB,.

FCBm

MCB,

MCB

TABLE III
COMPUTATION TIME FOR CYCLE BASIS MATRICES (SECONDS)

| n m | FCB, FCBm MCB, MCB

INTEL | 1228 1505 <0.01 <0.0l  0.09 0.20
MITo | 808 828 <0.01 <001 001 001
M3500 | 3500 5599 <0.01 030 111  1.54

As predicted by Proposition 21, the minimum cycle
bases minimize the number of iterations in the INTEGER-
SCREENING (Table IV, second column). Moreover, the mini-
mum cycle bases are able to determine most of the components
of v° (e.g., 95%) in the first iteration (Table IV, third column).
Finally, the minimum cycle bases require to manage matrices
with lower density, when computing matrix inverse (Table IV,
fourth column).

All these elements provide a computational advantage when
using the minimum cycle bases in the INTEGER-SCREENING
(Table V, third column). The minimum cycle basis matrices
are usually more sparse, and this also constitute an advantage



TABLE IV
PERFORMANCE OF INTEGER-SCREENING

TABLE V
COMPUTATION TIME FOR MOLE2D (SECONDS)

This table reports a set of statistics for each scenario and for each choice of
the cycle basis matrix:

1) the number of iterations K performed in the INTEGER-SCREENING,
reporting details of each iteration when significative;

2) the percentage of elements that are uniquely determined at k-th
iteration, i.e., u = |Z/{(k) |/ (in percentage);

3) the density d of the matrix to be inverted to compute the conditional
Gaussian probability in line 38 of INTEGER-SCREENING. The density
is defined as the number of non-zero elements in the matrix over the
total number of elements (in percentage);

4) the number of admissible vectors (k) at iteration k, and the
cardinality of the resulting set I'.

The symbol “n/a” denotes that there is no matrix to invert (the algorithm
exits the main loop because all elements of v° have been determined). In the
cells with “—” we omitted the details of the iterations for brevity.

in the computation of 4 and P, (Table V, second column).
Finally, since the minimum cycle bases produce a smaller set
of hypotheses in I, they require to solve a smaller number
of linear systems for passing from I' to © (Table V, fourth
column).

While it is clear that the minimum cycle bases have better
performance in MOLE2D, they are usually more expensive to
compute (Table III). In conclusion, if the noise is moderate
the FCB,, offers a good compromise between performance

cycle basis K u (%) d (%) T phase Computation  INTEGER- Computation | -
FCB, 1 100.00 n/a 1 of 4 and P,  SCREENING of O from I
g | FCBn 1 10900 /2 ! anée; 316;2 (1)304 <lo4gi6 0.10
Z£| MCB, 1 100.00 n/a 1 _ ° ’ ’ = :
MCB 1 100.00 n/a 1 o FCBm <0.01 0.03 <0.01 0.04
Z| MCB, <0.01 0.05 <0.01 0.05
FCB. 2{ iter. 1 80.00 25.78 16 MCB <001 0.04 <0.01 0.04
- iter 20.00 n/a 1 FCB,  <0.01 0.04 <0.01 0.04
S| FCBm 1 100.00 n/a 1 £ | FCBm  <0.01 0.03 <0.01 0.03
MCB, 1 100.00 n/a 1 = MCB, <0.01 0.03 <0.01 0.03
MCB 1 100.00 n/a 1 MCB <0.01 0.03 <0.01 0.03
iter. 1 52.92 1.69 >10100 FCB, 0.72 0.79 <0.01 1.52
iter. 2 21.54 15.61 <10100 3| FCBm  <0.01 0.47 <0.01 0.47
FCB, 59 iter.3  20.06 100.00 >1050 g| MCB, <001 0.21 <0.01 0.22
ier. 4 5.12 100.00 972 MCB  <0.01 0.21 <0.01 0.22
§ iter. 5 0.36 n/a 1 T FCBo 0.72 0.80 (" too large to continue)
g iter. 1 98.62 2.41 >10° 3| FCBm <001 0.36 0.04 0.4
FCBm 2 iter. 2 1.38 n/a 1 "E" MCB, <0.01 0.21 <0.01 0.22
] MCB  <0.01 0.21 <0.01 0.22
MCB, 2 iter. 1 99.95 048 3 FCBo 0.71 1.19 (" too large to continue)
fter.2 0.0 n/a ! S| FeBn  <0.01 0.51 0.12 0.64
MCB ) iter. 1 99.95 0.44 3 § MCB, <0.01 0.23 0.03 0.26
iter. 2 0.05 n/a 1 MCB  <0.01 0.23 0.03 0.26
© FCBo 6 — — >1030 o FCBo 0.72 0.72 (" too large to continue)
§ FCBm 3 — — 8 § FCB, <0.01 0.48 (T too large to continue)
2| McB, 2 _ _ 1 2| MCB, <0.01 0.23 0.15 0.38
MCB ) _ _ 1 MCB  <0.01 0.23 0.14 0.37
o | FCBo 29 - - >1010
S| FCBm 4 — - 27 . . .
§ MCB, 3 B B 3 agd .computatlonal e.ffort. F.or extreme. noise, t.he approximate
MCB 3 7 _ 3 minimum cycle basis matrix MCB; is a ch01f:e that assures
FCB. 5 — — 10100 a similar performance to the MCB while being cheaper to
§ FCBm 7 - - >10% compute.
2| MCB, 4 - — 16
MCB 4 _ _ 16 C. Robustness of MOLE2D-based pose graph optimization

In this section we show how to exploit the results of
this paper in pose graph optimization. The tested scenarios
are the ones of Section VIII-A, but now we also consider
the relative position measurements (and the corresponding
covariance). The first two columns of Figure 5 report the
pose graphs estimated with Toro [11] and g2o [4] (together
with the corresponding x? value). It is easy to notice that
Toro is more robust to noise than g2o. Generally, gradient
methods are known to have a larger basin on convergence [57].
Both methods fail for larger noise as they get stuck in local
minima (MITb, M3500a—c). It is interesting that the local minima
correspond to incorrect wraparounds in long loops (Figure 5k).

Now we compare these state-of-the-art techniques with a
third one that exploits our results: we use the MOLE2D algo-
rithm to compute nodes orientations from relative orientation
measurements, and then we substitute this estimate as a first
guess for g2o. Note that initial guess of nodes position in
MOLE2D+g20 is the odometric one (we only bootstrapped the
orientation guess). Following the recommendation of the pre-
vious section, we used the approximate minimum cycle basis
matrix within the MOLE2D algorithm. If MOLE2D returns more
than one hypothesis, we run MOLE2D+g2o for each possible
initial guess and choose the one that achieves the minimum.
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Fig. 5. Estimated pose graphs and corresponding x? values for each

benchmarking scenario. The first column reports the results obtained from
Toro. The second shows the results obtained from g2o. The third column
reports the results obtained by bootstrapping g2o with the orientation estimate
of MOLE2D (MOLE2D+g20).

The third column in Figure 5 shows that this bootstrapping
greatly improves the robustness of the iterative solver. In all
cases the combination of MOLE2D and g2o attains the smallest
observed x? value, and, visually, enable the computation of a
correct pose graph estimate.

IX. CONCLUSION

In this work we discussed the problem of estimating the
orientations of nodes in a pose graph from relative orientation
measurements. We showed that is possible to recast maximum
likelihood orientation estimation in terms of quadratic integer
programming. This derivation allowed concluding that the
maximum likelihood estimate is almost surely unique and
provides a viable solution for computing it without the risk
of being trapped in local minima. A deeper consequence
of the derivation is that the maximum likelihood orientation
estimate does not necessarily lead to an estimate which is
“close” to the actual orientation of the nodes. Starting from
this observation we devised a multi-hypothesis estimator that
enables efficient computation and has guaranteed performance
(at least one of the computed estimates is guaranteed to be
“close” to the actual orientation of the nodes). We elucidated
on the theoretical derivation with some numerical experiments
on real and simulated data. As a result, we showed that
on common problem instances the multi-hypothesis estimator
returns a single estimate. Moreover, a suitable choice of the
matrices involved in the estimation enables the computation
of a small set of estimates in problems with extreme levels
of noise. Finally, we showed that the proposed approach
can be used to bootstrap state-of-the-art techniques for pose
graph optimization and allows a remarkable boost in their
performance, extending their applicability.

Future work includes the analysis of the estimation problem
in a 3D setup, which is challenging because SO(3) is not
Abelian, so that a nontrival extension of current results is
necessary. A second line of research consists in deriving
probabilistic guarantees on the pose estimate (the results of this
paper only guarantee the quality of the orientation estimate).
Regarding pose graph optimization, a third line of research
consists in understanding how the limitations of the maximum
likelihood framework manifest their influence (if any) on the
estimation of the full poses.

APPENDIX

Lemma 23 (Orthogonal projections). Given a cycle basis
matrix C and a reduced incidence matrix A of a connected
graph G, for any symmetric positive definite matrix P, it holds
that

PlAT(AP AT AP +CT(CcPCT)'Cc =P

Proof: Because P is symmetric and positive definite,
there exists two symmetric and positive definite matrices N
and M such that M? =P, N2 =P~ !, and N = ML

Following Meyer [58, equation (5.13.3)], the orthogonal
projector of NAT is NAT(ANNAT)"'AN and the or-
thogonal projector of MCT is MCT(CMMCT)"'CM.



Because IN and M are full rank and C7 is an orthogonal
complement of AT (Lemma 1), also NAT is an orthogonal
complement of MCT.

Meyer [58, equation (5.13.6)] gives a condition that relates
the projectors of two matrices that are orthogonal complements
of each other. For our matrices, the relation is

NAT(ANNAT) AN

T Ty—1 (128)
+ MCT(CMMC™)"'CM =1,

where I, is the identity matrix of size m. Pre-multiplying and
post-multiplying by IV, and recalling that M? = P and N? =
P! we get

P lAT(AP AT tAP!

(129)
+NMCT(CPC")"'CMN =P

By noting that N = M !, we obtain the desired result. W

Lemma 24 (Multiple confidence intervals). Let * € R" be
a Normally distributed random variable with mean p and
covariance matrix P. Given the confidence intervals

Ii = |:IU/’L_ \/Rﬁixin ’ /ul+ \/Hix%,n} ’ i:{la"'an}a

then

Py €T A... Ay €T,) > (130)

Proof: The problem of determining multiple confidence
sets for possibly correlated random variables has been exten-
sively studied in statistics [59]. In particular, the lemma can
be seen as a direct consequence of Theorem 1 in [60]. [ |
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