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Nonlinear Oscillations for Cyclic Movements in

Human and Robotic Arms
Dominic Lakatos, Florian Petit, and Alin Albu-Schäffer

Abstract—The elastic energy storages in biologically inspired
Variable Impedance Actuators (VIA) offer the capability to
execute cyclic and/or explosive multi degree of freedom (DoF)
motions efficiently. This paper studies the generation of cyclic
motions for strongly nonlinear, underactuated multi DoF serial
robotic arms. By experimental observations of human motor
control, a simple and robust control law is deduced. This
controller achieves intrinsic oscillatory motions by switching the
motor position triggered by a joint torque threshold. Using
the derived controller, the oscillatory behavior of human and
robotic arms is analyzed in simulations and experiments. It is
found that the existence of easily excitable oscillation modes
strongly depends on the damping properties of the plant. If the
intrinsic damping properties are such that oscillations excited
in the undesired modes decay faster than in the desired mode,
then multi-DoF oscillations are easily excitable. Simulations and
experiments reveal that serially structured, elastic multi-body
systems such as VIA or human arms with approximately equal
joint damping, fulfill these requirements.

Index Terms—Nonlinear Oscillations, Variable Impedance Ac-
tuators, Underactuated Robots, Biologically-Inspired Robots,
Motion Control.

I. Introduction

C
YCLIC movements such as running or drumming or

explosive motions such as throwing, hitting or jumping

can be easily executed by humans. To approach athletic

performance and efficiency, robot design evolved recently from

classical, rigid actuation towards actuators with tunable in-

trinsic stiffness and/or damping, so called Variable Impedance

Actuators (VIA). These elastically actuated robots are strongly

inspired by the biological musculo-skeletal system [1]. They

are motivated by biomechanics research which reveals the

importance of the elasticity for robustness and energetic ef-

ficiency as well as for the maximization of peak force and

velocity [2]. The goal is to achieve highly dynamic motions

by exploiting intrinsic mechanical resonance effects of the

systems. For very clearly defined tasks such as running, the

hypothesis is that intrinsic oscillation modes of the mechanical

system exist and correspond to meaningful gaits, which only

need to be excited. Similar to the ideas of [3], where passive

leg compliances are varied to optimize the gait speed, the

stiffness variability of the VIA joints and the initial joint

posture might be further used to shape these oscillation modes.

The generation of motor trajectories and the tuning of joint

stiffness during highly dynamic motions are often addressed

as an optimal control problem. While for single joints an

analytical solution is feasible [4], [5], for the multi-joint
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case numerical, multi-variable constrained optimizations need

to be performed [6], [7]. The approach is currently limited

to systems with few degrees of freedom (DoF). With an

increasing number of degrees of freedom (for example in

the case of a humanoid body (> 30 DoF) or even one arm

(7 DoF)) the computational complexity and the number of

local minima explodes. A further related approach to control

periodic running or swimming movements of systems with a

large number of degrees of freedom is presented by Ijspeert

et al. [8], [9] and [10]. As observed in neuro-control units of

amphibians, periodic trajectories are generated by nonlinear

(phase) coupled oscillators. The periodic motion replicating

this behavior in a robotic system is generated in an isolated

(feed-forward) unit (known as central pattern generator) and

commanded as joint positions. However, in contrast to the

optimization based approaches (mentioned above) and the

motivation of the present work, the intrinsic system dynamics

is disregarded and a rigid robot design without intrinsic reso-

nance is used. This motivates the investigation of alternative

approaches.

On the basis of our initial work [11], this paper focuses

on the generation of cyclic motions. It is a known fact that

un-damped, elastic multi-body systems tend to show chaotic

behavior [12], [13]. This motivates us asking under which con-

ditions VIA robotic (and human) limbs can display periodic

motions, how easily can they be induced and how robustly can

they be stabilized. Simple experiments with passive systems

(Fig. 1) suggest that humans can easily induce such nonlinear

oscillations. Despite the complexity of the associated optimal

control problem, humans seem to be able to excite independent

nonlinear oscillatory modes of the system without difficulty.

The above hypothesis is verified by means of hardware

in the loop simulations, where a human controls a real-

time simulation of a compliantly actuated arm using a force

feedback device. The visco-elastic parameters of the joints

are varied within consecutive trials to evaluate their influence

on the limit cycles. An important finding of the experiments

is that the existence of easily excitable cyclic motions is

predominantly determined by the damping properties of the

system. A damping analysis of the eigenmodes, based on

instantaneous values of the inertia, stiffness, and damping

matrix at the equilibrium point, already allows to predict

whether the intrinsic system behavior tends to first mode cyclic

motions or not, although the open-loop system is strongly

nonlinear. If the modal damping is such that oscillations

excited in the other modes decay faster than oscillations of the

first mode, a simple multi-step bang-bang feedback controller

achieves coordinated cyclic motions.

Here, we extend our previous work [11]: since this study
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Fig. 1. Human induces cyclic movements for a rod consisting of rigid links,
which are connected via nonlinear, elastic elements.

is strongly motivated by biomechanics of humans, the above

hypothesis is verified also for the human arm dynamics.

Therefore, mechanical properties of the human arm, previ-

ously identified in [14], are used within simulations. Similar

identification work has been reported in [15], [16], [17], [18]

and [19]. In contrast to [15]–[19], our method [14] takes

the numerical stability of the identification procedure and the

closed-loop behavior of the human arm dynamics (i.e. reflexes)

into account. In this study, we apply the method presented

in [14] and interpret the results in a modal representation.

The analysis of the measurements from nonlinear oscillation

perspective confirms that modal damping of the human arm

is such that it can easily exhibit first mode cyclic motions.

Finally, we verify the approach on a real VIA system. This

way, we close the loop from hypotheses to verification using

simulations, human data, and robotic experiments. Although,

in this paper, the investigations are done for arms because of

the availability of arm hardware and human arm models, the

results are of course equally valid for legs and other serially

structured elastic multi-body systems.

This paper is organized as follows: First, the considered

robotic system is introduced and the model nonlinearities are

emphasized. Then, the problem is stated in Section II and main

hypotheses are posed in Section III. Furthermore a simple

bang-bang controller is proposed based on the analysis of the

human behaviour. To validate our hypotheses in experiments,

three main steps are performed (see Fig. 2): In Section IV

qualitative system requirements for multi degree of freedom

oscillations are deduced from experiments, where a human

controls a robotic arm. In Section V and VI the case where the

bang-bang controller induces oscillations in a robotic arm is

considered and the influence of modal parameters on nonlinear

oscillations is analyzed by both, simulation and experiment.

Section VII covers the case where the controller stabilizes

cyclic motions of a human arm simulation. The presented

approach is introduced for fixed stiffness presets. Therefore,

Section VIII concludes the work and looks out on possible

exploitations of the stiffness variability.

II. Problem statement

This paper aims to understand periodic motions of compli-

antly actuated systems for controlling robots. In this section

we state the problem: First, we introduce the model of the

compliantly actuated multi-joint system. Second, we consider

Human
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Controller
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Human
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Fig. 2. Main contributions of this paper: constellations considered for the
analysis of nonlinear oscillations in human and robotic arms.

a single joint and discuss the difference between a linear and

a nonlinear spring characteristic. Finally, we briefly discuss

the additional difficulties due to the multi degree of freedom

structure.

A. Modeling assumptions

We consider multi-joint VIA systems that can be generally

modeled by Euler-Lagrange equations [20], [21], satisfying:

d

dt

(

∂L(x, ẋ)

∂ẋ

)

− ∂L(x, ẋ)

∂x
= τgen + τdis . (1)

The Lagrangian L(x, ẋ) = T (x, ẋ)−U(x) comprises the kinetic

energy T (x, ẋ) and potential energy U(x). Due to the design

of VIA systems, not all of the system states x, ẋ ∈ Rm+n are

directly actuated. Therefore, let us partition the generalized

coordinates x = (θT , qT )T as θ ∈ Rm being directly actuated

states (motor positions) and q ∈ Rn being indirectly actuated

states (link positions). Accordingly, the generalized force

τgen = (τT
m, τ

T
ext)

T is composed of the control input τm and

externally applied torques τext. Furthermore, τdis represents a

generalized, dissipative force, satisfying ẋTτdis ≤ 0.

In the following, we consider the motor PD control

τm = −KDθ̇ − KP (θ − θd) , (2)

with symmetric and positive definite gains KD, KP ∈ Rm×m,

and suppose that the controlled plant fulfills the following

assumptions:

• The coupling inertias in between motor and link side can

be neglected1.

• The motor side dynamics are sufficiently fast to be

neglected2.

These simplifying assumptions are fully justified, for instance,

for the DLR Hand Arm System [25] and yield dynamic

equations of the form:

M(q)q̈ + (C(q, q̇) + D) q̇ +
∂U(θ, q)

∂q
= 0 . (3)

The matrices M(q) (symmetric and positive definite) and

C(q, q̇) represent inertia and Coriolis/centrifugal matrix of the

rigid-body dynamics, respectively, and D denotes a symmetric

and positive definite damping matrix. Considering the above

assumptions, we define the motor position θ as control input,

i.e. u ≔ θ ≈ θd. The potential energy U(θ, q) = Ug(q) +

Uψ(θ, q) is in general composed of the gravity potential Ug(q)

and the elastic potential Uψ(θ, q). Throughout the rest of

1This assumption is fulfilled in the presence of high gear ratios, cf. [22].
2Singular perturbation assumption, cf. e.g. [23], [24].
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Fig. 3. Description of the arm of the DLR Hand Arm System. Fig. 3(a)
highlights the VIA joints implemented as sketched in Fig. 3(b). Fig. 3(c)
depicts the stiffness characteristic for adjuster positions σ = {0, 0.02, . . . , 0.18}.
Herein, the most outer curve corresponds to σ = 0.

this work, we change the spring characteristic only statically.

Therefore, we consider the case m = n and introduce the

parameters σ ∈ Rm that change the characteristic of the

deflection-force relation, i.e.

ψ(θ − q,σ) ≔ −
∂Uψ(θ, q,σ)

∂q
. (4)

B. The arm of the DLR Hand Arm System

As an example of a VIA system, we introduce the arm of

our prototypical VIA robot DLR Hand Arm System shown

in Fig. 3 and comprehensively described in [25]. The arm

(excluding the lower arm rotation and the wrist) consists of a

4 DoF kinematics chain. Thereby, each joint is equipped with

a VIA mechanism implemented as a main motor in series

with a nonlinear spring and a much smaller motor to adjust

the stiffness characteristic [26]. The deflection-force relation

of the nonlinear, adjustable springs can be approximated by

cubic functions of the form:

ψi(θi − qi, σi) = αi(σi) (θi − qi) + βi(σi) (θi − qi)
3 . (5)

This relation results from the mechanical design of the VIA

joints, detailed in [26]. The order of nonlinearity introduced

due to the mechanically implemented floating spring joint is

depicted in Fig. 3(c) for several stiffness presets. In the case

of the lowest preset σ = 0 the variation of the stiffness

is about 1400% between minimum and maximum spring

deflection. Note that the joint stiffness is changing with the

joint deflection.

C. Single-joint case

Consider the model

Iq̈ + dq̇ = ψ(u − q) , (6)

of a single compliantly actuated joint. The control input u ∈ R
(motor position) acts via the spring ψ(u−q) (defined in (5)) on

the link inertia I, with joint position q ∈ R. Further, d specifies

the viscous damping force.

The objectives of the paper are:

• Deriving a control u such that q(t) = q(t+∆t) for a certain

∆t;

• Exploiting mechanical resonance effects of the system.

Therefore, we consider a sinusoidal control signal u(t) and

compare qualitatively the behavior of a system consisting of a

linear spring (i.e., α > 0, β = 0 in (5)) and a nonlinear, cubic

spring (i.e., α, β > 0 in (5)):

1) Linear spring: The resulting system is a forced, linear

oscillator. A resonance oscillation can be reached either by

exciting the system with a frequency close to the natural

frequency or in case of a VIA joint with a linear and adjustable

spring by adjusting the stiffness such that the resulting natural

frequency is close to the desired frequency of the task and

excitation.

2) Nonlinear, cubic spring: The system represents a

forced, nonlinear, parametrically excited oscillator with multi-

frequency excitation. Approximative solutions can be obtained

partly using perturbation methods [27], [28]. The qualitative

behavior is discussed in [12]:

• Cubic nonlinearity: the system exhibits multiple reso-

nances; The amplitude and frequency of the steady-state

response depend on the excitation (amplitude, frequency)

and the initial conditions.

• Parametric excitation: the system consists of rapidly vary-

ing parameters; small excitation amplitudes can produce

large responses, even if the excitation frequency is not

close to the linear, natural frequency.

• Multi-frequency excitation: more than one type of exci-

tation may occur simultaneously.

These observations highlight that there is a substantial differ-

ence, even in the single-joint case, between the well known

linear case and the nonlinear case, making the prediction of

cyclic motions non-trivial.

D. Multi-joint case

This paper aims to investigate multi-joint periodic motions,

i.e. trajectories for which q(t) = q(t + ∆t), for a certain ∆t.

Thereby, the goal is to derive a control u that exploits the

elastic energy storage Uψ(u, q) of systems, satisfying (3). In

our previous work [29], we achieved the above objectives

by slightly changing (by feedback linearization) the original

dynamics of the plant. In this work, we aim to avoid changing

the intrinsic dynamical behavior of the plant.

Let us clarify the problem by means of the linear system:

Mq̈ + Dq̇ + Kq = Ku , (7)

where M, D, K ∈ Rn×n are constant, symmetric, and positive

definite matrices. According to Lemma 1 given in Appendix A,

the control law

u(t) = K−1Q−T

[

ûz cosω1t

0

]

, (8)
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achieves a resonance excitation along the first eigenmode of

the linear system (7) in a well known way.

In contrast, the system (3) considered in this work is

strongly nonlinear. Therefore, a resonance-like excitation sim-

ilar to (8) would require to extend the notion of linear

eigenmodes to so-called nonlinear normal modes [30]. In the

particular case of (3), the method proposed in [30] requires

to solve a system of nonlinear partial differential equations in

2n−2 dependent variables. This seems unfeasible in our case,

since an analytic solution does not exist in general [30]. In the

following, we are looking to the strategies used by humans

exiting oscillations and derive a simple control law based on

these observations.

III. Controller design based on control strategies of humans

In this section, based upon human experiments we derive

a control law to stabilize periodic motions for compliantly

actuated systems (3) introduced in Section II-A. Despite the

current theoretical difficulties discussed in Section II-C, II-D,

humans are able to stabilize periodic motions easily, even

in the presence of strong nonlinearities and multiple degrees

of freedom. This has been confirmed by simple experiments,

where a human induces oscillations into a rod (see, Fig. 1).

Stable oscillations could be achieved even for the case of large

deflections (i.e. in the presence of strong nonlinearities). The

human does not need a long training phase to do so. This

demonstrates the ability of humans to control periodic motions

of nonlinear multi degree of freedom systems. From these

observations we hypothesize that:

• The motor control of humans is able to stabilize periodic

motions even in the presence of strong nonlinearities.

• The underlying control law has a simple and very robust

structure.

On the basis of experimental observations from strategies used

by humans, a control law will be derived that confirms these

hypotheses.

Accessing and measuring control and feedback signals of

humans during natural motions is difficult and largely unre-

solved [31]. We circumvent this problem by using hardware

in the loop simulations with human control. Using a force

feedback device, a human operator can be coupled in the

feedback control loop with either a robotic plant or a simulated

system. The latter allows to adjust the system parameters

arbitrarily as done in the following experiments.

A. Experimental setup and procedure

To include the force feedback device in the control loop

of the system (3), the k-th motor position of the robot is

considered as control input, i.e., u ≔ θi if i = k, otherwise

θi = const. The spring torque (cf. (4)) of the same joint is

considered as system output. With states x = (qT , q̇T )T , the

system (3) turns into the single-input single-output system:

ẋ = f (x, u) =

[
q̇

−M(q)−1
(
∂U(θ,q)

∂q
+ (C(q, q̇) + D) q̇

)

]

, (9)

y = ψk(u − qk) . (10)

force feedback
device

real-time
simulated

system
ẋ = f (x, u)

y = ψk(u − qk)

position u

torque y

display

link position q

Fig. 4. Experimental setup to include a human in the control loop of a real-
time simulated VIA system. Haptic feedback is provided by a force feedback
device. Visual feedback is given by a display showing a real-time simulation
of a robot.

θ1

link 1

nonlinear spring

force-feedback device

nonlinear spring

link 2

θ2

q2

q1

ψ1

ψ2

Fig. 5. Technical scheme of the hardware in the loop simulation. The
complete system: double pendulum including nonlinear visco elasticities is
simulated in real time. Position of the feedback device is the control input of
the simulated system, i.e., u ≔ θ1 and θ2 = const.. The spring torque (of the
first joint) ψ1 acts as force feedback.

As sketched in Fig. 4, the real time simulation of (9) and

(10) was interconnected with a direct drive (torque controlled)

motor with a handle mounted on the rotor. This motor acts as

force feedback device. An optical encoder provides the angular

position of the motor as control signal u ≔ θ1 for the simulated

VIA arm (9). The joint torque y = ψ1(u−q1) computed by the

VIA arm simulation is commanded to the current controller

of the force feedback device and thereby provides feedback

to the human operator. This setup allows to emulate arbitrary

dynamic systems that are controlled by a single position input

/ torque output, and interface them to a human operator.

In a series of experiments, the oscillatory behavior of a

planar VIA double pendulum (i.e., q ∈ R2, θ ∈ R2, u ≔ θ1, and

θ2 = 0) was analyzed (see, Fig. 5). The double pendulum has

been oriented w.r.t. the gravity vector such that ∂Ug(q)/∂q =

0. Besides inertial dynamics, strong nonlinear cubic springs

(see (5)) were considered, where the ratio of linear and cubic

spring constants was chosen as βi/αi = 70 (similar to the most

nonlinear case of the floating spring mechanism, cf. Fig. 3(c)).

To comply with the range of maximum torques of the force

feedback device τmax = ±1 Nm, inertia and spring parameters

were adjusted, see Table I. Furthermore, damping parameters

D = diag(0.008, 0.008) Nms/rad have been considered. The

system (9) was integrated (forward Euler method, time steps

0.001 s) on the same real time computer on which the force

feedback device was controlled. Additionally, the motion of
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TABLE I
System Parameters for the hardware in the loop simulation

i mass mi link length li center of mass lci linear spring αi

1 0.6 kg 0.1 m 0.05 m 0.03 Nm

2 0.6 kg 0.1 m 0.05 m 0.03 Nm

the double pendulum was visualized on a screen.

One skilled participant3 was tested. To initialize the tests,

the subject grasped the handle of the force feedback device

and rested in a centred, initial position (cf. Fig. 4), while

the integrator was reset. Then the subject moved the handle

to induce oscillations. The goal was to achieve and stabilize

coordinated, cyclic movements.

B. Experimental results: derivation of the control law

Fig. 6 shows measurements of the motor position θ1(t)

(control signal), spring torque ψ1(t) (feedback signal), and link

position q1(t) corresponding to the first joint. The oscillation

of θ1(t) and ψ1(t) is synchronized, while the motion of q1(t)

is shifted by half an oscillation period. At a certain level of

the spring torque ψ1, the motor position θ1 reaches approx-

imately a plateau, which lasts as long as the spring torque

ψ1 undershoots another level. These observations indicate

that the human tries to synchronize the energy input to the

torque respectively link position peaks. When a certain spring

deflection (torque) is detected, the human countered it by

moving the motor (control signal) in the opposite direction

of the link deflection and thereby inducing energy into the

system. Such a behavior can be approximately replicated by

the discontinuous control law

θd(∆τ) = θe,1 +

{

sign(∆τ)|θ̂| if |∆τ| > ǫτ
0 otherwise

. (11)

This multi step bang-bang controller is triggered by the

deviation of the spring torque ψ1(θ1−q1) w.r.t. the equilibrium

torque ψe,1(θe,1 − qe,1), i.e. ∆τ = ψ1(θ1 − q1) − ψe,1(θe,1 − qe,1),

where the equilibrium positions θe and qe satisfy

∂U(θ, q)

∂q

∣
∣
∣
∣
∣
θ=θe,q=qe

= 0 . (12)

Note that the system considered in this section fulfills con-

dition (12) if θe = qe. Therefore, ψe = 0. Fig. 7 shows the

action principle of the controller (11) connected exemplary to

the same system as considered in the experiments. When the

torque ∆τ = ψ1 exceeds a certain threshold ǫτ, the controller

induces a fixed amount of energy into the system. This is

achieved by a step θ̂ in the motor position w.r.t the initial

position θe. Thereby, the step like elongation is in the opposite

direction of the current link deflection q1.

C. Comments on the control law

The control signal generated by the human operator is

continuous (see, Fig. 6). In contrast, the output of the bang-

bang controller is discontinuous (see, Fig. 7). The step-like

3The participant was involved in the experimental background.
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Fig. 6. Two periods of motion recorded in the steady-state phase of the
oscillation experiment, where a human operator controls a real time simulated
VIA double pendulum. The progress of the motor position θ1(t) (control action
of the human), spring torque ψ1(t) (feedback signal), and the link position q1(t)
is depicted. For clarity of presentation the second link position is omitted.
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Fig. 7. Action principle of the multi-step bang-bang controller derived from
experimental observations. The controller is connected to the same system as
considered in the experiments where a human operator is in the control loop
(cf. Fig. 6). The controller parameters are adjusted such that the frequency of
the link motion is similar to the motion plotted in Fig. 6.

excitation is required, since the controller lacks the knowledge

of the intrinsic oscillation frequency of the plant. Therefore,

the controller parameters threshold ǫτ and switching amplitude

θ̂ can be adjusted such that the resulting oscillation is either

close to the intrinsic, oscillatory behavior of the plant or fits (in

a certain range) the desired frequency of the considered task.

Furthermore, it should be noted that the original control signal

of the human operator acts on the muscles and not directly

on the handle of the feedback device. That means that there

are filter dynamics between the original control signals and

the signal measured during the experiment (motor position).

Therefore, the original control signal might be discontinuous,

even if the motor position is continuous.

IV. Experimental study: Influence of the damping on human

controlled oscillations

The experiments described in Section III-A revealed that

given the considered setup, it is straightforward for a human

operator to stabilize multi-degree of freedom cyclic move-

ments. Even more, the system tends to show only first mode

motions, where the motion of the first and second link is

periodic and in phase. Preliminary experiments indicate that it

might be a result of the damping distribution in the considered

plant. For equal and constant joint damping, the modal analysis

of the linearized system (at the equilibrium point) revealed that

the first eigenmode is less damped than the second one. (Defi-

nitions 1 and 3 of the linearized system respectively the modal

damping are given in the Appendix A.) We hypothesize that

the existence of easily excitable oscillation modes depends on

the distribution of the modal damping. Therefore, the objective
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Fig. 8. Phase plots of human controlled oscillations. Blue lines represent the pair (q1, q̇1) and red lines the pair (q2, q̇2). The plotted data is recorded after a
run-in period of approximately 8 sec. The eigenfrequecies ω1(0) = 1.9 (rad/s) and ω2(0) = 20.9 (rad/s) were constant over all trials, while the modal damping
factors ξ(0) had been varied.

of the following experiments is validating this hypothesis by

directed tests.

A. Experimental procedure

The same experimental setup and procedure as described

in Section III-A, were considered. Except the stiffness and

damping parameters, the parameters of the real-time simulated

system were equal. The stiffness parameters were α1 =

0.02 Nm/rad, α2 = 0.01 Nm/rad and the ratio for the cubic

coefficients remained βi/αi = 70. Modal damping ξi of the

linearized system (at the equilibrium point) was adjusted such

that D = const. during each trial using Definition 4 given in

the Appendix A. The damping of the first mode was held low

and constant, while the damping of the second mode has been

varied between trials.

B. Experimental results

Phase plots of the joint motion q(t) vs. q̇(t) are displayed

in Fig. 8.

1) The influence of modal damping: Nonlinear effects—

induced by inertia couplings, Coriolis/centrifugal effects, and

the progressive stiffness characteristic of the springs—increase

when the damping factor of the second mode converges to the

one of the first mode. These effects are expressed in form of

strong notches towards the center in the shape of circular or

elliptical paths. Severe changes occur when the damping of the

second mode falls below approximately 0.5; then bifurcation

arises and the system tends to non-periodic behavior, causing

numerical instabilities of the simulation (cf. 8(f)–(h)).

2) The steady-state of cyclic motions: For ideal cyclic

motions a phase plot trajectory of one position-velocity pair

is a single closed path. For trajectories depicted in Fig. 8,

the motion of each joint is at most bounded by an inner and

outer closed path (and not a single closed path). The reason

therefore can be limitations in the range and sensitivity of

feedback signals given to the human operator. Additionally, the

control signals generated by humans may not be sufficiently

accurate and repeatable. The deterministic controller derived

in Section III-B allows to avoid these uncertainties.

V. Simulation study: influence of the stiffness and damping

on multi-step bang-bang controlled oscillations

In the last section it was demonstrated that even in the

presence of strong nonlinearities, multi degree of freedom

cyclic movements can be induced easily by a human. Now,

we investigate intrinsic system properties, which ensure that

the system tends to periodic motions. The goal of this section

and the following Sections III-A and VII is showing whether

the proposed controller is able to excite and sustain periodic

motions in serial type elastic systems as appearing in robotics

and biology. The following study will provide a qualitative

validation for human and robotic arms and possibly legs.

Thereby, the interpretation of the results will require to clarify

some nomenclature.

A. Nomenclature: oscillation modes

We consider the notion of oscillation modes for 2n-th order

nonlinear systems introduced in [30]. Therefore, it is assumed

that the motion in the state space (q, q̇) ∈ R2n can be expressed
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in terms of an arbitrary single coordinate-velocity pair (v,w) ∈
R

2 such that
(

q

q̇

)

= g(v,w) ∈ R2n . (13)

Choosing, for instance, v = q1 and w = q̇1, the 2n−2 remaining

constraints in (13) define a surface of dimension 2. The motion

that takes place on this 2-dimensional surface (and satisfies

the differential equation of the considered system) is called

an oscillation (or normal) mode. In general, seeking functions

g(v,w) leads to a system of nonlinear partial differential equa-

tions, where exact solutions cannot be computed. However,

it can be shown that in a neighborhood of an equilibrium

point there exist n solutions gi(v,w), each corresponding to

a mode of the considered system [30]. On the basis of these

considerations, we propose the following nomenclature:

• If the trajectory q̇(t) vs. q(t) represents a closed path in

the state space, we denote this motion an oscillation mode

of the system. In that case, evidently, the projections of

the motion for each joint j onto the plane (i.e. q̇ j(t) vs.

q j(t)) are periodic.

• The period of one cycle determines the frequency of the

oscillation mode. If for one cycle each of the projected

joint motions is unique (the closed paths do not intersect

themselves), we refer to this motion as a first mode

motion4.

• If for one cycle at least one of the projected joint motions

is not unique, we refer to this motion as a first mode

motion, where additional modes are excited5. In that case,

multiple oscillation frequencies are present. Note that if

more than one oscillation mode is excited, either the

frequencies have to be multiples of each other, or the

oscillation of the faster (higher frequency) modes have

to decay sufficiently fast, otherwise the resulting motion

becomes non-periodic.

Throughout, we use the terminologies of eigenfrequency

and modal damping. Thereby, we refer to quantities of the

linearized system (at the equilibrium point) defined in the

Appendix A. It should be emphasized that these quantities

are only used as points of reference to qualitatively discuss

the behavior of the nonlinear systems and are not intended to

explain the results.

B. Simulation details

Again, as in Section III and IV, the system considered is the

compliantly actuated double pendulum of the form (9) with

cubic springs defined by (5) in the joints, where the motor

position u ≔ θ1 of the first joint acts as control input and the

elastic torque ψ1(u − q1) is used as feedback. The remaining

4Note that if each of the projected joint motions is periodic and unique, it is
possible to parametrize the 2n-dimensional motion in terms of the coordinate-
velocity pair of any joint according to (13).

5If one of the projected joint motions is not unique (for one cylce), the
corresponding coordinate-velocity pair cannot serve as parametrization of the
2n-dimensional motion. Since in that case, the choice of the coordinate-
velocity pair is not arbitrary, this contradicts the definition of an oscillation
mode in (13). Therefore, at least an additional coordinate-velocity pair must
be considered to describe the 2n-dimensional motion.

TABLE II
Inertial parameters of the DLR Hand Arm System

i mass mi link length li center of mass lci

1 5.0 kg 0.4 m 0.2 m

2 5.0 kg 0.4 m 0.2 m

motor position θ2 = 0 is hold constant. To obtain repeatable

results, oscillations are induced by means of the control

law (11) derived in the last section instead of the human

operator. The controller parameters are set to θ̂ = 0.3 rad

and ǫτ = 30 Nm for all simulations. Although the considered

system is nonlinear, the stiffness and damping parameters will

be adjusted based on modal analysis of the linearized system

(at the equilibrium point) where αi = const., βi = const., and

D = const. during each simulation run. For the link side mass

matrix at zero position M(0) fixed, desired eigenfrequencies

are assigned (given below for specific cases), in order to

compute the linear spring coefficients αi (see, Problem 1 and

Definiton 5 in Appendix A). Then the physical damping matrix

D is computed based on the linearized stiffness matrix and

given modal damping factors (see, Definition 4 in Appendix

A). Finally, coefficients of cubic spring terms are chosen such

that β1/α1 = β2/α2 = 70.

All simulations were performed in Matlab/Simulink R©. The

differential equations were integrated by means of the vari-

able step solver ode23t for moderately stiff problems with a

maximum step size of 0.0005 sec. Initial conditions were set

(0.6, 0) for joint angles and (0, 0) for joint velocities.

C. Limit cases of modal properties

Based on the inertial properties of the DLR Hand Arm

System given in Table II, two substantially different cases of

eigenfrequency distributions are considered:

1) Different eigenfrequencies: As in the case of the DLR

Hand Arm System and most VIA robots, mono-articulation

is assumed, i.e. no coupling springs between multiple joints

are present. As such, a displacement in direction of one joint

generates solely a reaction force in the opposite direction of

the same joint:

−
∂Uψ(θ, q)

∂qi

= ψi(θ, qi) . (14)

Linearizing these elastic force functions leads to a diagonal

stiffness matrix:

K(θ, q) = diag





∂2Uψ(θ, q)

∂q2
i



 . (15)

Then, as a consequence of the coupled mass matrix (and

for q ∈ R2) there exists a minimum ratio of assignable

eigenfrequencies ω2/ω1 > νmin(M), which can be realized by

a diagonal stiffness matrix (see, (A19) in Appendix A), i.e. for

a given mass matrix M and first eigenfrequency ω1 the second

eigenfrequency ω2 must be larger than ω1νmin(M), otherwise

a coupled stiffness matrix is required. Throughout the rest of

this work we refer to the case of different eigenfrequencies

if ω2/ω1 > νmin(M). This case was considered for human

controlled oscillations described in the last section and will be
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Fig. 9. Phase plots of simulated motions, where the controller proposed in Section III-B is in the loop. Blue lines represent the pair (q1, q̇1) and red lines
the pair (q2, q̇2). Simulations displayed correspond to the mass distribution of the DLR Hand Arm System.

analyzed in the following using the deterministic bang-bang

controller.

2) Similar eigenfrequencies: In contrast to the case of

different eigenfrequencies, we refer to the case of similar

eigenfrequencies if the ratio of eigenfrequencies ω2/ω1 re-

quires to introduce coupling springs, i.e. ω2/ω1 < νmin(M).

Coupling springs have the effect that a displacement in one

coordinate direction can cause a reaction force in a different

coordinate direction:

−
∂Uψ(θ, q)

∂qi

= ψi(θ, q) (16)

and consequently the stiffness matrix for the instantaneous

linearized system contains nonzero off-diagonal entries:

Ki, j(θ, q) =
∂2Uψ(θ, q)

∂qi∂q j

, 0 . (17)

Note that nonlinear coupling elasticities are not present in

most of today’s VIA robot arms, therefore we introduce this

artificial case of similar eigenfrequencies here for sake of

theoretical insight and comparison with the human arm.

D. Simulation results

1) Different eigenfrequencies: Fig. 9(a)–(d) depict phase

plots of simulated motions in the case of different eigenfre-

quencies. For each simulation run eigenfrequencies ω1(0) =

2 rad/s and ω2(0) = 21 rad/s corresponding to ω2/ω1 >

νmin(M) were assigned, while the modal damping varies w.r.t.

each run. Note that ω1 was chosen arbitrarily and ω2 results

due to νmin(M). For all presets of modal damping, phase plots

of both coordinate directions are closed paths—indicating the

tendency of the system to cyclic movements. As in the case

of human controlled oscillations the effects of nonlinearities

(manifested by strong notches towards the center in the phase

plot paths) increase, when the value of the second mode

damping converges to the value of the first mode damping.

But in contrast to human controlled oscillations (see, Fig. 8(j))

the bang-bang regulator (11) avoids non-periodic, numerically

unstable behavior—even in the case of equal and low modal

damping (cf. Fig. 9(d)).

To demonstrate the strong occurrence of nonlinearities, time

series of the control input θ1(t), joint angles q(t), joint veloci-

ties q̇(t), as well as instantaneous values of the modal damping

ξ(t), eigenfrequencies ω(t), and potential / kinetic energy U(t)

/ T (t) corresponding to the phase plot Fig. 9(a) are depicted

in Fig. 10. It can be observed that only in the equilibrium

point q = θ = 0 eigenfrequencies and modal damping equal

the assigned values. At these points the modal damping has its

maximum and the eigenfrequency its minimum. For increasing

magnitudes of spring deflections |qi − θi| both instantaneously

linearized eigenfrequencies increase and the modal damping

factors decrease. When spring deflections are maximal, the

eigenfrequencies / modal damping factors approach their max-

ima / minima. Additionally, one can identify points where the

Hamiltonian energy is almost completely kinetic. This is a

typical property for coordinated cyclic movements [32].

2) Similar eigenfrequencies: In the following, we treat

the case of similar eigenfrequencies corresponding to the

linearized system (at the equilibrium point). Therefore, we

consider the mass matrix M(0) as given and tune the entries

of the stiffness matrix

K0 =

[

α1 + α3 −α3

−α3 α2 + α3

]

. (18)
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Fig. 10. Time series corresponding to the simulation plotted in Fig. 9(a).
Herein u ≔ θ1 is the motor position of the first joint, i.e. the control action.
Link positions, link velocities, and spring torques corresponding to the first
(blue) and second (red) joint, are denoted by q, q̇, and τ, respectively.
Instantaneous values of damping and eigenfrequency corresponding to the first
(blue) and second (red) mode of the linearized system (cf. (A2) are denoted
by ξ and ω, respectively. The kinetic energy T (blue) and potential energy U

(red) of the system are depicted in the last plot.

The resulting entries of the above stiffness matrix correspond

to the linear coefficients αi of the springs. In more detail, first,

the condition ω2/ω1 < νmin(M) is tested. Then it is decided if

the eigenfrequencies can be achieved by a diagonal or coupled

stiffness matrix6. For each case (diagonal or coupled stiffness

matrix) there exist an analytical relation to determine αi. The

resulting potential function (A10) as well as the force and

stiffness functions are given in the Appendix A. Although we

adjust the linear spring coefficients αi based on linearization

(in the equilibrium point), we consider the nonlinear joint

elasticities in simulation.

In simulations the procedure given in the Appendix A is

applied to assign ω1 = 2 rad/s, ω2 = 5 rad/s, which correspond

to the case of similar eigenfrequencies. Therefore, the value

of the cubic spring coefficient is chosen β3/α3 = 70/4. Phase

plots of simulated motions for the same damping adjustments

as used above are depicted in Fig. 9(e)–(h). It can be observed

that even for the case in Fig. 9(e) where the first mode is

weakly and the second mode is strongly damped, in addition

to first mode motions, the second mode is excited (see, con-

siderations in Section V-A). This is a result of modal coupling

6Note that for a coupled mass matrix the stiffness matrix has to be also
coupled and even K ∝ M to have n repeated eigenvalues [32]

effects, which are constituted in form of loop-like notches

in the circular or elliptic shapes of curves. For decreasing

values of the second mode damping, abrupt energy exchanges

between the modes induce non-periodic behavior.

3) Remarks on steady-state oscillations: Compared to os-

cillations induced by a human operator, the bang-bang regula-

tor achieves ideal cyclic motions. While phase plots depicted

in Fig. 8 deviate from ideal closed paths within a certain “error

band”, stable steady state motions in Fig. 9 display single,

exactly closed curves for each joint coordinate. It remains open

to further research, if the humans behavior is due to control

imprecisions or has some other benefits.

E. Summary

Under specific conditions considered in this work, sim-

ulation results demonstrate that the modal parameters, i.e.

eigenfrequency and damping, for the linearization of the

system already provide a hint about the periodic behavior of

this type of strongly nonlinear systems. Best preconditions for

cyclic movements are different eigenfrequencies and different

modal damping. This case applies to the robotic VIA arm in

the absence of coupling springs. Therefore a simple controller

is able to stabilize cyclic movement. Furthermore, the intrinsic

system behavior is tending to first mode motions, even for sim-

ilar eigenfrequencies, as long as the first eigenmode is weakly

damped and the second eigenmode is strongly damped7.

VI. Experiments: controlled oscillations for a real VIA

robot arm

In the following, the insights obtained from simulations

and the developed controller are experimentally tested and

verified. Therefore, we used the first four variable impedance

actuator joints of the DLR Hand Arm System. As the described

analysis considers two joints, the robotic arm was configured

such that only two joint axes (joint 2 and 4) were parallel

and therefore coupled. Two initial configurations have been

tested: #1 qe = (0, 0) rad and #2 qe = (−0.27, 0.64) rad.

#1 corresponds to an outstretched configuration, where the

arm pointed in the direction of the gravity vector (down to

the floor). Thereby, condition (12), given in Section III, is

trivially fulfilled, i.e. θe ≈ (0, 0) rad. In the case #2, the

condition (12) requires θe = (−0.35, 0.7) rad. Thus, for the

experiments the robotic arm structurally corresponded to the

system analyzed in the last sections, except that gravitational

effects are included.

The bang-bang regulator (11) was used to generate the

desired motor position of the first joint, while the measured

spring torque of the same joint was the input of the controller.

The desired motor position of the second joint (and all other

joints not involved in motions) were constant. Since motor

positions are not directly accessible, a motor PD controller

tracked the desired trajectory (desired motor torques were

commanded to the current controllers of the motors). Nonzero

7A generalization of the notion of eigenfrequencies and damping for the
nonlinear case would be desirable here. In absence of such definitions in
the literature, we observed that the values for the linearization of the system
provide already a substantial amount of information.
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Fig. 11. Phase plots of joint motion q(t) vs. q̇(t) obtained from experiments on
the DLR Hand Arm System. The bang-bang controller (11) is connected to the
first joint. Approximately, four cycles in the steady-state phase of oscillations
are depicted. Joint positions are sampled at 1 kHz and low-pass filtered (cut-off
frequency 10 Hz) before deriving the joint velocities, numerically.

initial conditions were set manually by pushing the robot by

hand.

Phase plots of joint motions q(t) vs. q̇(t) are depicted in

Fig. 11. Here, approximately four periods in the stationary

phase of oscillations are plotted. Furthermore, joint velocities

are derived from measured and low-pass filtered joint positions

(10 Hz cut-off frequency).

#1: The shape of closed paths obtained by experiments is

similar to simulations (cf. Fig. 9). The modal properties of

the linearized system (in the initial configuration) are about

ω = (6.6, 34.1) rad/s for eigenfrequencies and ξ = (0.03, 0.28)

for modal damping factors resulting from the natural, low

damping in the spring mechanism.

#2: As can be seen from Fig. 11(b) the equilibrium point

is not in the center of the closed paths. This is as in the initial

configuration the (nonlinear) springs are already elongated due

to the gravity forces. Even in that case the resulting motion

is periodic. Moreover, the modal properties of the linearized

system (in the initial configuration) are slightly different com-

pared to #1: ω = (8.0, 35.0) rad/s and ξ = (0.03, 0.2).

As a consequence of eigenfrequency and modal damping

distributions also the real robotic system tends to coordinated

cyclic motions, while a simple controller is able to stabilize

these oscillations. Thus one can observe that a planar, two joint

VIA arm with approximately human like dimensions naturally

fulfills the conditions for stable cyclic motions.

VII. Simulation study based on experimental data of the

human arm

VIA robotic arms are strongly inspired by the biological

musculo-skeletal system. Therefore, we can expect that also

the human arm is predestined to execute such cyclic motions.

In this section we verify this interesting hypothesis. Instead of

accessing human motor control signals, mechanical properties

of the human arm are identified and then considered in

simulation, as for the VIA robotic arm in Section V.

A. Estimation of mechanical properties of the human arm

The method utilized here is described in [14] in detail. Thus,

only a brief introduction of the method and results will be

presented in the following.

1) Model of the musculo-skeletal system: The musculo-

skeletal system of the human arm is modeled by a slight

generalization of the dynamic equations (3):

M(q)q̈ + C(q, q̇)q̇ +
∂Ug(q)

∂q
= τ + τext , (19)

where forces generated by muscles are introduced by joint

torques

τ = − h(q, q̇, a) . (20)

Similar to θ in the case of VIA robots, the vector of muscle

activations a can be seen as control input to the musculo-

skeletal system. A detailed description of (20) is beyond the

scope of this paper8; consequently we assume that the map

(20) is continuous and we linearize it w.r.t. the equilibrium

point x0 ≔ (q(t = 0), q̇(t = 0), a(t = 0)):

h⋆ = h|x0
︸︷︷︸

τ0

+
∂h(q, q̇, a)

∂q

∣
∣
∣
∣
∣
x0

︸           ︷︷           ︸

K0

q̃ +
∂h(q, q̇, a)

∂q̇

∣
∣
∣
∣
∣
x0

︸           ︷︷           ︸

D0

˙̃q

+
∂h(q, q̇, a)

∂a

∣
∣
∣
∣
∣
x0

ã + . . . (21)

Herein τ0 is a vector of static joint torques at the equilibrium

state x0. The Jacobians K0 and D0 are the positive definite

and symmetric stiffness and damping matrices, respectively.

Furthermore, q̃ = q−q0 and ã = a−a0 are small deviations. For

the last term on the right hand side of (21) it is assumed that

ã ≈ 0, i.e. muscle activations remain constant. This is fulfilled

by choosing proper experimental conditions [14]. Finally, the

mechanical properties of the human arm (in the vicinity of x0)

are determined by

M(q, ζ)q̈ + c(q, q̇, ζ) + D0
˙̃q + K0 q̃ = τ̃ext, (22)

where ζ is a vector of constant, identifiable inertial parameters.

Notice that the model (22) is linear in the unknown param-

eters (cf. [35]); consequently ζ, D0 and K0 can be estimated

by means of common, linear least squares methods.

8Muscle models are discussed e.g. in [33] and [34] in detail.
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Fig. 12. Eigenfrequencies and normalized modal damping based on ζ̂, D̂0 and K̂0. Columns of figures correspond to initial configurations depicted in the
first row. The square marks represent ξ1(q0) or ω1(q0) and the circle marks ξ2(q0) or ω2(q0) (here q0 denotes the initial configuration). The x-marks represent
ξ1(0) or ω1(0) and the plus-marks ξ2(0) or ω2(0).

2) Material and methods: The experimental setup used for

parameter identification consist of the following parts: the

main part is a position/torque-controlled light-weight robot,

which is used to perturb the human arm and measure the

arm position via the joint sensors (i.e., manipulator forward

kinematics). The participant is fixed to a body-contoured seat

to allow only motions of the subject’s arm. Both, the robot

and the seat are attached to a metal frame standing on the

ground. To measure the interaction forces between the robot

and the human arm, a six-axis JR3 force/torque sensor (FTS)

is used. The robot end effector is connected to the human arm

via a plastic cuff, which includes a metal beam supporting the

arm against gravity. Both FTS and position data are recorded

synchronously at the sampling rate of 1 kHz.

The whole experiment was performed in the human’s

transversal plane (i.e., perpendicular to the gravity vector). One

healthy subject was tested. The subject’s arm was held in one

of four initial configurations by the robot. Furthermore, the

subject was instructed to exert a predetermined force in distal

direction with amplitudes ‖F0‖ ∈ {0, 5, 10, 15, 20} (N), while

the desired and actual force was displayed. After a random

waiting time the robot had displaced the human arm in one

of six randomly chosen (human arm’s) joint space directions.

For each initial configuration and force amplitude, data of 30

perturbations has been recorded (six directions, five times), to

estimate one parameter set ζ̂, D̂0 and K̂0.

3) Experimental results: To compare mechanical properties

of human and robotic arms, estimated parameters are displayed

in modal coordinates of the linearized system (see, Ap-

pendix A). Eigenvalues of estimated stiffness and damping ma-

trices are linearly related to equilibrium torques τ0 = J(q0)F0

(see, Appendix B). These relations indicate that joint stiffness

and damping are independent of the initial configuration q0.

This is also the case for the robotic arm (cf. (5)). Thus,

estimated eigenfrequencies and modal damping are computed

w.r.t. inertia matrices M(q0, ζ̂) and M(0, ζ̂), respectively (see,

Fig. 12).

The difference between the first and second eigenfrequency

monotonically increases for increasing forces exerted by the

arm of the subject. Same tendencies can be observed for the

damping of the first and second eigenmode. Even for the out-

stretched configuration M(0, ζ̂) the first eigenmode is strongly

under-critically and the second eigenmode is over-critically

damped. These intrinsic damping properties are important

requirements for coordinated, first mode cyclic motions.

B. Simulated cyclic motion of the human arm

To analyze the ability of the musculo-skeletal system for

cyclic motions an assumption for the displacement dependent

impedance term is required. The estimated stiffness matrix

K0 determines the deflection / force relation in the vicinity

of a stationary point, while the motion considered in this

work requires large spring deflections. Therefore we assume a
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(d) ξ = 0.33, 0.80; ω = 2.4, 18.9

Fig. 13. Phase plots of simulated motions, where the controller proposed in Section III is in the loop. Blue lines represent the pair (q1 , q̇1) and red lines the
pair (q2 , q̇2). Simulations displayed corresponds to a human arm like mass distribution, where the spring and damping parameters are estimated from human
measurements (cf. Fig. 12).

nonlinear, cubic characteristic (equal to the VIA robotic arm)

to describe the (global) behavior of elasticities. The choice of

such a progressive spring characteristic can be justified with

the analysis done in [36]. Herein a static torque / angle relation

for the elbow joint (measured during movements where the

deflection velocity is negligible) was estimated, which can be

approximated by a cubic polynomial function.

In simulation, estimated stiffness and damping matrices, and

an average of estimated human arm like mass distributions

are considered. These parameter sets correspond to modal

properties shown in Fig. 12. In contrast to the procedure

applied in Section V, (where eigenfrequencies and modal

damping factors are assigned,) here, the experimentally esti-

mated human stiffness and damping matrices are directly used,

i.e. α1 = K̂0,11 + K̂0,12, α2 = K̂0,22 + K̂0,12, and α3 = −K̂0,12

such that K0(αi) = K̂0 (cf. (18)) and D = D0. Note that

eigenfrequencies ω2/ω1 > νmin(M) can be also assigned with

α3 , 0 (stiffness coupling). Since the stiffness matrices,

estimated for the human arm, are all coupled, but partially

match the case of different eigenfrequencies, this study differs

from what was done in Section V. Finally, it should be

noted that all other simulation settings including the controller

settings equal those considered in Section V.

As shown in Fig. 13 by simulation, also the musculo-

skeletal system has modal properties required for cyclic move-

ment tendencies. Let us first discuss the limit cases: Phase

plots of simulated motions depicted in Fig. 13(b) correspond to

a large difference of eigenfrequencies and strongly over-critical

damping of the second mode. In contrast, Fig. 13(d) corre-

sponds to closer eigenfrequencies and closer modal damping.

While in the former case notches are weakly developed, in

the latter case a periodic motion is not achieved. Notice that

stiffness and damping parameters corresponding to Fig. 13(b)

were estimated in a kinematically non-singular configuration

(i.e., due to large lever arms Cartesian forces act with high

gains on joints) for the highest pretension force, while stiffness

and damping parameters corresponding to Fig. 13(d) were

estimated near a singular configuration (low joint torques for

all Cartesian pretension forces). Since the stiffness (and damp-

ing) increase with increasing pretension forces (cf. Fig. 14 in

the Appendix B), we can conclude that the musculo-skeletal

system can be stiffen up by internal co-contraction of an-

tagonistic muscles—resulting in best preconditions for cyclic

motions. Furthermore, the cases depicted in Fig. 13(a) and (c)

lie in between the limit cases, while phase plots displayed in

Fig. 13(a) are most similar to simulated motions for the robotic

arm in Fig. 9(a).

VIII. Conclusion

This work investigates main principles and requirements

of cyclic motions in strongly nonlinear, compliantly actuated

robotic systems. Starting with simple observations of humans

controlling oscillations of serial type passive elastic systems,

the human motor control and elastic system properties are

analyzed. These experiments revealed that humans are able

to control nonlinear, multi degree of freedom oscillations

easily. Furthermore, extensive experiments with human in the

loop simulations, hardware simulations, experiments on a real

robotic system, and simulations of human arms are conducted.

Afterwards, basic control principles observed in humans are

transferred to compliantly actuated robotic arms and utilized

to identify some basic system requirements for intrinsic cyclic

motion tendencies.

The main contributions and findings are:

1) A simple and very robust control law to induce and sta-

bilize multi degree of freedom oscillations that changes

the intrinsic dynamics of the plant to a minimal extend

and requires no model knowledge.

2) A qualitative analysis that identifies basic properties

of compliantly actuated systems for cyclic motion ten-

dencies. For desired motions in a specific mode, the

damping of the system has to be such that oscillations

excited in the remaining modes must decay faster than in

the desired mode. In the case of serial type compliantly

actuated systems, an eigenvalue analysis for the lin-

earization of the system already provides a hint whether

the system satisfies this damping property.

3) The human and the robotic arm DLR Hand Arm System

are shown to fulfill these conditions.

The proposed bang-bang controller can excite and hold

periodic motions for compliantly actuated robotic systems

in a closed loop manner. Since the controller modifies the

dynamics of the plant to a minimal extend, intrinsic oscillation

properties of the system are exploited. In the current version
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of the approach, the stiffness preset of the VIA joints are

kept constant. The controller parameters threshold and step

amplitude can be tuned to adjust the amplitude and frequency

of resulting oscillations in a certain range. However, for

periodic tasks such as hammering or walking it could be

desired to change the frequency and amplitude of oscillations

in a wider range. To improve the adaptability of the resulting

limit cycle to a certain task, the variability of the stiffness

might be exploited. Thereby, the intrinsic resonance properties

of the system might be varied by adjusting the characteristics

of the springs.

In this work, the control law and the oscillation analysis

are introduced for serial structured multi-body systems such

as robotic and human arms, but the results can be straight-

forwardly transferred to robotic legs. For a legged system,

the task is very clearly defined and the usage of these results

are even of larger potential impact. Assuming the mechanical

design is such that emerging oscillations correspond to useful

gaits, then the proposed approach can be used to excite these

cyclic movements. The stiffness variability and the initial joint

configuration might be further used to tune the shape of the

oscillation mode, e.g. to tune the frequency of the gait or to

generate a transition from walking to running. Conversely, the

analysis of the modal damping distribution might be used as

rules of thumb for the mechanical design.

Furthermore, the proposed controller is introduced for a

single-input single-output system (the controller is connected

to a single joint). To improve the performance of the controlled

system, the energy input to the system should be distributed

to all of the (active) joints. The exploitation of the stiffness

variability and the extension of the control method to the

multiple-input multiple-output case are promising ongoing

extensions of the current approach.

Appendix A

Definitions of modal quantities

In the following, we define modal quantities that are used

as points of reference to discuss the oscillatory behavior of

the system:

M(q)q̈ + (C(q, q̇) + D) q̇ +
∂U(θ, q)

∂q
= 0 . (A1)

The definitions of these modal quantities are based on a

instantaneous linearization of (A1) w.r.t. the system states at

time instance t0, i.e. q0 ≔ q(t0) and θ0 ≔ θ(t0). Furthermore,

we assume in our definitions that q̇0 = θ̇0 = 0.

Definition 1: The instantaneous linearization of (A1) at q0

and θ0 is defined as

M0 q̈ + D0 q̇ + K0q = τ0 , (A2)

where M0 = M(q0), D0 = D,

K0 =
∂2U(θ, q)

∂q2

∣
∣
∣
∣
∣
∣
θ=θ0,q=q0

, and τ0 = −
∂U(θ, q)

∂q

∣
∣
∣
∣
∣
θ=θ0,q=q0

.

The definitions of the modal quantities are based on the

following lemma:

Lemma 1 ( [37]): Given a symmetric and positive definite

matrix A ∈ Rn×n and a symmetric matrix B ∈ Rn×n. Then there

exist a non-singular matrix Q ∈ Rn×n and a diagonal matrix

BQ ∈ Rn×n, such that Q−T Q−1 = A and Q−T BQQ−1 = B.

Corollary 1: Given the matrices of Lemma 1 and a sym-

metric and positive definite matrix C ∈ Rn×n. Then there exist

a diagonal matrix CQ ∈ Rn×n such that Q−T CQQ−1 = C if

C = c1 A + c2B .

Proof: The proof follows directly from Lemma 1, i.e.

CQ = QT CQ = QT (c1 A + c2B) Q = c1I + c2BQ .

According to Lemma 1, with A , M0 and B , K0,

z̈ + Dmod(θ0, q0) ż + Λ(θ0, q0)z = τz , (A3)

represents the modal dynamics, corresponding to the linearized

system (A2), where z = Q(θ0, q0)−1q are modal coordinates

and Λ(θ0, q0) is a diagonal matrix composed of real, positive

eigenvalues (if K0 is positive definite). The modal damping

matrix Dmod(θ0, q0) = Q(θ0, q0)T D0Q(θ0, q0) is assumed to

be diagonal dominant. This implies that the condition of

Corollary 1 is approximately satisfied: D0 ≈ c1 M0 + c2 K0.

In that case, the off-diagonal elements can be neglected9,

i.e. dmod(θ0, q0) = diag(Dmod(θ0, q0)). Furthermore, τz =

Q(θ0, q0)Tτ0 represents a generalized, modal force.

Definition 2: The eigenfrequency of the i-th mode is de-

fined as

ωi(θ0, q0) =
√

diag(Λ(θ0, q0))i . (A4)

Definition 3: The normalized damping factor of the i-th

mode is defined as

ξi(θ0, q0) =
dmod,i(θ0, q0)

2ωi(θ0, q0)
. (A5)

Using the Definitions 2 and 3, the modal dynamics (A3),

corresponding to the linearized system (A2), yields:

z̈i + 2ξi(θ0, q0)ωi(θ0, q0)żi + ωi(θ0, q0)2zi = τzi
. (A6)

Definition 4: The damping matrix D that specifies the vis-

cous damping force Dq̇ in (A1) is referred to as physical

damping. Given the desired modal damping factors ξi and

eigenfrequencies ωi(θ0, q0) (resulting from K0 and M0 of the

linearized system (A2)), the corresponding, constant, physical

damping matrix is defined as

D = 2Q(θ0, q0)−T diag
(

ξiωi(θ0, q0)
)

Q(θ0, q0)−1 . (A7)

In the following, we tread the assignment of desired

eigenfrequencies corresponding to the linearized, conservative

system (cf. (A2))

M0 q̈ + K0q = 0 . (A8)

9Note, for the linear system (A2) an exact modal decomposition is proposed
in [30] and will not be further detailed for simplicity.
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Therefore, we consider the following problem10:

Problem 1: Given a symmetric and positive definite matrix

M ∈ Rn×n and n desired eigenfrequencies ωi, find a real,

symmetric, and positive definite matrix K0, such that

det (−λM + K0) =

n∏

i=1

(

λ − ω2
i

)

(A9)

holds.

Definition 5: If a matrix K0 can be found that solve the

Problem 1, the corresponding eigenfrequencies are referred to

as assigned eigenfrequencies of the linearized system (A2) (at

the point (θ0, q0)).

Solving Problem 1 involves dependencies in the choice

of ωi and the structure of K0. Multiple eigenfrequencies ωi

(multiplicity n) require the stiffness matrix K0 to be fully

coupled [32], while the stiffness matrix of most VIA robot

arms is diagonal.

In the following, the case n = 2 is worked out. Therefore, a

nonlinear coupled spring function is derived from the potential

function:

U(θ, q) =
1

2
α1 (q1 − θ)2 +

1

4
β1 (q1 − θ)4 +

1

2
α2q2

2 +
1

4
β2q4

2

+
1

2
α3 (q2 − (q1 − θ))2 +

1

4
β3 (q2 − (q1 − θ))4 ,

(A10)

where the negative gradient:

−
(

∂U(θ, q)

∂q

)T

= ψ(θ, q) ,

ψ1(θ, q) = − α1 (q1 − θ) − β1 (q1 − θ)3

+ α3 (q2 − (q1 − θ)) + β3 (q2 − (q1 − θ))3 ,

ψ2(θ, q) = − α2q2 − β2q3
2

− α3 (q2 − (q1 − θ)) − β3 (q2 − (q1 − θ))3 ,

(A11)

represents the force field and the negative Jacobian:

−
∂ψ(θ, q)

∂q
= K(θ, q) ,

K11(θ, q) = α1 + 3β1 (q1 − θ)2 + α3 + 3β3 (q2 − (q1 − θ))2 ,

K22(θ, q) = α2 + 3β2q2
2 + α3 + 3β3 (q2 − (q1 − θ))2 ,

K12(θ, q) = K21(θ, q) = −α3 − β3 (q2 − (q1 − θ))2 , (A12)

the stiffness matrix.

Problem 1 is solved for αi by substituting the linearized

stiffness matrix

K0 =

[

α1 + α3 −α3

−α3 α2 + α3

]

, (A13)

in (A9) and equating powers of λ:

−det (−M + K0) − det(M) − det(K0)

det(M)
= ω2

1 + ω
2
2 , (A14)

det(K0)

det(M)
= ω1ω2 . (A15)

10This problem is similar to pole placement for linear state-feedback control
(cf. [38]).

We obtain quadratic equations in powers of αi, which are

solvable for α1 and α2, while α3 is a free parameter:

α1 =
1

2M22

((

ω2
1 + ω

2
2

)

det(M) − 2 (M22 + M12)α3 ±
√
µ
)

,

(A16)

α2 =
1

2M11

((

ω2
1 + ω

2
2

)

det(M) − 2 (M11 + M12)α3 ±
√
µ
)

,

(A17)

µ =
(

ω2
1 − ω

2
2

)2
det(M)2 − 4ω2

1ω
2
2M2

12 det(M)

− 4 det(M)
(

M12

(

ω2
1 + ω

2
2

)

+ α3

)

α3 . (A18)

The spring constants α1 and α2 have to be real. Additionally,

the stiffness matrix K0 has to be positive definite; consequently

α3 has to be chosen such that the discriminant µ ≥ 0 and the

minor eigenvalue of the stiffness matrix min(eig(K0)) > 0.

As a consequence of the coupled mass matrix, the stiffness

matrix has to be non-diagonal (i.e., α3 , 0) if the ratio

of the assigned eigenfrequencies ν = ω2/ω1 undercuts the

greatest lower bound νmin(M). This property can be proven by

substituting α3 = 0 in (A18) and solving for the ratio ω2/ω1
11:

νmin(M) =

√

det(M) + 2M2
12
+ 2M12

√

M2
12
+ det(M)

√
det(M)

.

(A19)

Appendix B

Stiffness and damping of the musculo-skeletal system

The eigenvalues of joint stiffness and damping matrices are

linearly related to the equilibrium torques τ0. This is validated

by means of linear regression based on the model

ai,0 + ai,1τ0,1 + ai,2τ0,2 = λi , (B1)

where ai, j are constant coefficients. τ0 = J(q)T F0 is a vector

of equilibrium joint torques resulting from initial forces F0.

Estimated eigenvalues and approximations are displayed in

Fig. 14. The quasi-linear relation indicates that joint visco

elasticities of the musculo-skeletal system are independent of

the limb configuration.
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