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Abstract

As sampling-based motion planners become faster, they can be re-executed more frequently by a 

robot during task execution to react to uncertainty in robot motion, obstacle motion, sensing noise, 

and uncertainty in the robot’s kinematic model. We investigate and analyze high-frequency 

replanning (HFR), where, during each period, fast sampling-based motion planners are executed in 

parallel as the robot simultaneously executes the first action of the best motion plan from the 

previous period. We consider discrete-time systems with stochastic nonlinear (but linearizable) 

dynamics and observation models with noise drawn from zero mean Gaussian distributions. The 

objective is to maximize the probability of success (i.e., avoid collision with obstacles and reach 

the goal) or to minimize path length subject to a lower bound on the probability of success. We 

show that, as parallel computation power increases, HFR offers asymptotic optimality for these 

objectives during each period for goal-oriented problems. We then demonstrate the effectiveness 

of HFR for holonomic and nonholonomic robots including car-like vehicles and steerable medical 

needles.

Index Terms

motion and path planning; motion planning under uncertainty; sampling-based methods

I. Introduction

In many robotic tasks such as navigation and manipulation, uncertainty may arise from a 

variety of real-world sources such as unpredictable robot actuation, sensing errors, errors in 

modeling robot motion, and unpredictable movement of obstacles in the environment. The 

cumulative effect of all these sources of uncertainty can be difficult to model and account 

for in the planning phase before task execution. We leverage the increasingly fast 

performance of sampling-based motion planners available for certain robots, combined with 

stochastic modeling, to enable these robots to quickly and effectively respond to uncertainty 

during task execution.
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In this paper we consider tasks in which the objective is to maximize the probability of 

success (i.e., avoid collision with obstacles and reach the goal), or to minimize path length 

subject a lower bound on the probability of success. We consider holonomic and 

nonholonomic robots with linear or nonlinear (but linearizable) discrete-time dynamics and 

with motion and sensing uncertainty that can be modeled as zero-mean Gaussian 

distributions. We also assume obstacle locations are known or can be sensed. Our approach 

is applicable to robots for which fast, subsecond sampling-based motion planners are 

available, including medical steerable needles [30], [31] (see Fig. 1).

We investigate and analyze the approach of high frequency replanning (HFR), where the 

robot executes a motion plan that is updated periodically with high frequency by executing 

fast sampling-based motion planners in parallel during each period. The replanning 

computation occurs as the robot is executing the current best plan. If any of the computed 

plans is better than the plan currently being executed, then the current plan is updated. To 

select the best plan, we focus on maximizing probability of success or minimizing path 

length subject a lower bound on the probability of success. We note that for these cost 

metrics, previous optimal motion planners such as RRT* and related variants [17] cannot be 

used since the optimal substructure property does not hold. This is because, as shown in Fig. 

2, the optimal plan from any configuration to a goal is dependent on the plan chosen to reach 

that configuration [42]. This substantially complicates the motion planning challenge for the 

uncertainty-aware cost metrics considered in this paper.

HFR combines the benefits of global motion planning with the responsiveness of a 

controller. By executing multiple sampling-based rapidly-exploring random tree (RRT) [21] 

motion planners in parallel, under certain reasonable assumptions, HFR will compute at 

each a period a motion plan that asymptotically approaches the globally optimal plan as 

computation power (i.e., processor speed and number of cores) increases. For practical 

problems with finite computational resources, we add a heuristic to HFR to consider newly 

generated plans as well as the best plan from the prior period adjusted based on the latest 

sensor measurements and a linear feedback controller. Asymptotic optimality in each period 

of HFR comes not from generating more configuration samples in a single RRT but rather 

from generating many independent RRTs (where each RRT terminates when it finds plan 

and launches a new RRT to begin construction). Another benefit of HFR is that it 

automatically handles control input bounds since the sampling-based motion planner 

enforces kinematic and dynamic constraints during plan generation. HFR only applies to 

goal-oriented problems that do not require returning to previously explored regions of the 

state space for information gathering, and hence does not address the general POMDP 

problem [20].

This paper makes three main contributions. First, we show that generating multiple RRTs 

and selecting the one that optimizes the chosen metric is asymptotically optimal at each 

period under reasonable assumptions. Asymptotic optimality is important for many 

applications that require high quality solutions, and gives the user confidence that increasing 

the computational hardware applied to the problem will result in better and better solutions 

that improve toward optimality. Second, we present an approach for handling uncertainty by 

using high-frequency replanning that considers the impact of future uncertainty and uses a 
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heuristic to efficiently adjust the prior best plan based on the latest sensor measurements. 

Third, we experimentally show that HFR is effective for many problems with uncertainty in 

motion, sensing, and kinematic model parameters. Evaluation scenarios include a holonomic 

disc robot navigating in a dynamic environment with moving obstacles whose motion are 

not known a priori, a nonholonomic car-like robot maneuvering with uncertainty in motion 

and sensing, and a nonholonomic steerable medical needle [39] maneuvering through tissues 

around anatomical obstacles to clinical targets under uncertainty in motion, sensing, and 

kinematic modeling.

II. Related Work

Motion planning under uncertainty has received considerable attention in recent years. 

Approaches that blend planning and control by defining a global control policy over the 

entire environment have been developed using Markov decision processes (MDPs) [2] and 

partially-observable MDPs (POMDPs) [20]. These approaches are difficult to scale, and 

computational costs may prohibit their application to robots navigating using non-discrete 

controls in uncertain, dynamic environments. Sampling-based approaches that consider 

uncertainty [1], [4], [13], [26], [37] or approaches that compute a locally-optimal trajectory 

and an associated control policy (in some cases in belief space) [32], [36], [41], [43], [46] 

are effective for a variety of scenarios. But these methods are currently not suitable for real-

time planning in uncertain, dynamic, and changing environments where during task 

execution the path may need to change substantially, potentially across different homotopic 

classes. Approaches have also been developed to efficiently estimate the probability of 

collision of plans (and associated control policies) under Gaussian models of uncertainty [8], 

[33], [42].

An alternative to precomputing a control policy is to continuously replan to account for 

changes in the robot state or the environment. Several approaches have been suggested for 

planning in dynamic environments [14], [19], [34], [45], [48], [49] but they do not explicitly 

account for robot motion and sensing uncertainty. Majumdar et al. [25] use a pre-defined 

library of motion primitives, which depending on the application can be effective or 

restrictive. Our work is also related to model predictive control (MPC) approaches [38], 

which account for state and control input constraints in an optimal control formulation. HFR 

can be viewed as a variant of MPC control where the goal is always within the horizon and 

global optimality is achieved (in an asymptotic sense) at each time step using a sampling-

based motion planner. In this regard, Du Toit [8] introduced a new method for planning 

under uncertainty in dynamic environments by solving a nonconvex optimization problem, 

although this method for some problems is computationally expensive and suffers from local 

minima. In contrast, HFR is based on an efficient, global motion planner and takes 

uncertainty into account, resulting in higher probabilities of successful plan execution.

Asymptotically optimal motion planners such as RRT* and related variants [11], [16], [17], 

[23] return plans that converge toward optimality for cost functions that satisfy certain 

criteria. In this paper we focus on cost metrics based on probability of success, for which the 

optimal substructure property does not hold, e.g., the optimal solution starting from any 

robot configuration is not independent of the prior history of the plan (see Fig. 2). 
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Consequently, RRT* and related variants cannot guarantee asymptotic optimality for our 

problem without modification. CC-RRT* [24] utilizes RRT* to generate asymptotically 

optimal motion plans that satisfy user-defined chance constraints. Each node of the CC-

RRT* tree explicitly stores a sequence of states and uncertainty distributions of the prior 

path that leads to the node, enabling optimal substructure. But unlike our approach, CC-

RRT* does not consider sensing uncertainty and hence grows the uncertainty distributions in 

an open-loop fashion by evolving the stochastic dynamics forward in time. In HFR, we 

explicitly consider the motion and sensing uncertainty and grow the uncertainty distributions 

in a closed-loop manner using LQG control and an Extended Kalman Filter.

HFR takes advantage of the fact that the speed and effectiveness of sampling-based planning 

algorithms [6], [22] has improved substantially over the past decade due to algorithmic 

improvements and innovations in hardware. One source of speedup has been parallelism, 

including the use of multiple cores or processors (e.g., [5], [7], [10], [15], [28], [35]) and 

GPUs (e.g., [3], [29]) to achieve speedups for single-query sampling-based motion planners 

(e.g., RRT and RRT*). Wedge and Branicky showed that periodically restarting sampling-

based tree construction can improve the mean and the variability of the runtime of RRT 

[47]. Our method extends the OR RRT approach [5], [7] to solve a class of problems with 

asymptotic optimality rather than solely feasibility. Also, unlike prior approaches that 

leverage parallelism, we explicitly focus on motion planning problems that involve 

uncertainty in robot motion and sensing and moving obstacles.

III. Problem Statement

Let q ∈  ⊂ ℝl denote the robot state which consists of parameters over which the robot has 

control, such as the robot’s position, orientation, and velocity. Let x ∈  ⊂ ℝn, n ≥ l, denote 

the system state which includes the robot state and also relevant parameters that can be 

sensed, such as obstacle positions and velocities, as well as robot-specific parameters over 

which the robot does not have direct control, such as robot kinematic parameters (e.g., a 

steerable needle’s maximum curvature in a particular tissue). Note that the robot’s state q is 

a subset of the whole system’s state x. We define the initial state of the system as x0.

We assume that continuous time τ is discretized into periods of equal duration Δ such that 

the t’th period begins at time τ = tΔ. A motion plan π is then defined by a sequence of 

discrete control inputs π = {ut: t = 0, …, T}, where ut ∈  ⊃ ℝm is a control drawn from the 

space of permissible control inputs. Starting from x0 and applying a control sequence π with 

number of steps T, the state of the robot at time τ, where 0 ≤ τ ≤ TΔ, is expressed as x(τ, π). 

For simplicity, we define xt = x(τ, π), when τ = tΔ.

The whole system evolves according to a stochastic dynamics model

(1)

where mt models the cumulative uncertainty, including uncertainty in robot and obstacle 

motion. We assume mt is from a Gaussian distribution mt ~ N(0, Mt) with variance Mt.
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During task execution, the robot obtains sensor measurements according to the stochastic 

observation model

(2)

where zt is the vector of measurements and nt is noise which is from a Gaussian distribution 

nt ~ N(0, Nt) with variance Nt.

In addition, our method also requires as input an estimate of the initial system state x̂0 with 

corresponding variance Σ̂
0, a cost function c(π, x) that defines the expected cost of a motion 

plan π from an initial system state x, the period duration Δ, a set of obstacles  that may 

move over time, and a goal region  such that xt ∈  signifies success at time step t. We 

consider two optimization objectives:

1. Maximize the probability of success, i.e., the probability of avoiding collision with 

obstacles and reaching the goal. We define the cost function c(π, x) as the negative 

of the probability of success estimated for plan π.

2. Minimize path length subject to a lower bound on the probability of success. We 

define c(π, x) as the length of the nominal plan resulting from executing π if the 

path satisfies the chance constraint (i.e., a lower bound on the estimated probability 

of success) and as ∞ if the plan violates the chance constraint.

Our approach aims to compute and execute a control input ut at each time step based on the 

chosen optimization objective.

IV. Approach

We outline HFR in Algorithm 1. The outer loop of the HFR algorithm (lines 3–17) runs at a 

high frequency with a period of Δ to address uncertainty in robot motion, obstacle motion, 

and the robot’s kinematic model. In each period, the bulk of the computation is computing a 

motion plan. In each period, the robot estimates the system state using a filter, updates the 

current motion plan with a better motion plan if a better plan is found (as determined by the 

optimization objective), and then executes the first control input of the current best plan. We 

assume that except for the inner loop at line 7, other steps are sufficiently fast for real-time 

computing.

A. Parallel Sampling-Based Replanning

For motion planning, we use a rapidly-exploring random tree (RRT), a well-established 

sampling-based motion planner [22]. When properly implemented, a RRT provides 

probabilistic completeness guarantees that, as computational effort increases, a plan will be 

found if one exists. In HFR, at time step t the RRT is rooted at the system state x̃t+1, the 

estimated state of the robot at the next time step (as discussed in Section IV-B). At each 

iteration of the RRT algorithm, we sample a robot state qsample ∈ , find its nearest neighbor 

qnear in the tree, and compute a control u ∈  that grows the tree from qnear toward qsample 

using the RRT’s “extend” function, i.e., (qnew, u) = extend(qnear, qsample) where qnew 

requires no more than Δ time to reach from qnear [21]. Although motion planning is 
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conducted in the robot’s state space , collision detection may depend on the system state xt 

∈ , especially for cases with moving obstacles. For any qt ∈ , we can estimate the 

corresponding xt ∈  by augmenting the robot state vector at time t to incorporate missing 

entries from the prior system state and then evolving the vector through the stochastic 

dynamics function with zero noise. The output of the RRT is a motion plan, π = [ut+1, ut+2, 

…, uT], that specifies a sequence of control inputs to reach the goal.

Algorithm 1

HFR Algorithm

During each period, our objective is to compute a motion plan that minimizes the cost 

function c. Prior asymptotically optimal sampling-based methods (e.g., [17]) are not suitable 

for cost metrics such as maximizing probability of success for which the optimal 

substructure property does not hold in configuration space, as shown in Fig. 2.

Our approach to finding an optimal plan is to simultaneously execute a large number of 

independent RRTs and then select the RRT with the lowest cost plan. By evaluating the cost 

metric over an entire plan we avoid requiring the optimal substructure property. We refer to 

lines 7–10 and line 15 as Multiple Parallel RRTs (MPRRT). Specifically, during each period 

of duration Δ, we execute independent RRTs in parallel on each available processor core. As 

soon as an RRT finds its first solution, we add the plan to a set Π (line 9) and start executing 
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a new independent RRT on that processor core. As parallel computation power increases, 

the number of RRT solutions obtained in time Δ rises. We note that any individual RRT, 

with probability 1, will not compute an optimal plan for a general motion planning problem 

regardless of how many robot state samples are generated [17]. We show in Sec. V that, for 

goal-oriented problems with our cost functions and with a finite (although not necessarily 

known) number of periods, the plan computed by MPRRT will asymptotically approach the 

optimal plan as computational power increases.

B. Predicting System State for Motion Planning

Since the robot is in motion during replanning and we desire a full period of time Δ for 

replanning, the computation of the motion plan for period t + 1 must occur during period t. 

Hence, at the beginning of period t we must predict the system state at the next time step 

x̃t+1, which is used to seed the RRTs. Due to uncertainty, the exact state of the system at 

time (t + 1) Δ cannot be perfectly predicted at time tΔ. To estimate x̃t+1, we evolve the 

estimated system state distribution using the system dynamics function (Eq. 1). More 

formally, we compute x̃t+1 = f(x̂t, u), where u is the first control input of the current plan π* 

that is being executed. To represent the uncertainty distribution, we truncate the portion of 

the Gaussian distribution of system state in collision with obstacles [33].

Near the end of each time step t (line 12), we obtain sensor measurement zt+1 and estimate 

the system state x̂t+1 for the next time step. In our implementation, we use an Extended 

Kalman Filter (EKF). Since the estimated state x̂t+1 may not equal the state x̃t+1 that was 

predicted at the beginning of time step t (line 4), the RRT plans may be rooted at a state that 

is slightly incorrect. Since HFR plans at high frequency and Δ is small, the deviation in the 

initial system state in each RRT is expected to be small. We analyze this difference in Sec. 

V.

C. Optional Heuristic for Adjusting the Prior Best Plan

To improve HFR performance when limited finite computation power is available, we 

include the prior best motion plan in the set of motion plans considered by the optimization 

in line 15. However, the prior best plan may have been computed multiple periods earlier, 

and hence did not consider any of the sensed information from recent periods. For example, 

the system may be at a significantly different state from the state implied by the prior best 

motion plan without any adjustments. To incorporate the recently sensed information into 

the prior best plan in an effective manner, in line 13 of Algorithm 1 we adjust the prior best 

motion plan to start from x̃t+1 and adjust the control inputs to the values that would most 

likely have been performed by a linear quadratic Gaussian (LQG) controller used in 

conjunction with a Kalman filter.

Specifically, given a prior motion plan π = [ũt+1, …, ũT] from the predicted system state 

x̃t+1, the corresponding nominal trajectory of the RRT plan based on the system dynamics 

with zero noise is given by Γ = [x̃t+1, ũt+1, …, x̃T, ũT]. We linearize the dynamics and 

sensing functions around the trajectory Γ and compute an LQG control policy and a Kalman 

filter [4], [42]. This computation provides a sequence of feedback matrices {Lt} and a 
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sequence of Kalman gains {Kt}. We then compute the maximum likelihood simulated 

trajectory (MLST) as

(3)

where x̂t+1 is updated by the Kalman Filter by assuming each future observation is obtained 

without sensor noise (maximum likelihood observation [36]),

(4)

Starting from , we compute an adjusted motion plan π′ = [Lt+1(x̂t+1 − x̃t+1) + 

ũt+1, …, LT−1(x̂T−1 − x̃T−1) + ũT−1, 0] and corresponding . In 

Algorithm 1, π′ is generated in line 13 and is added into the plan set in line 14 for 

consideration as the best plan for the next period.

D. Estimating the A Priori Probability of Success of a Plan

Both cost functions introduced in Sec. III require a priori estimation of the probability of 

success of a motion plan, and this computation needs to be completed very quickly for HFR 

to operate at high frequency. Under the assumption of Gaussian uncertainty, the a priori 

distributions of the robot state at each time step over the course of executing a plan can be 

estimated quickly [4], [33], [42], [46]. These methods typically assume that the robot will 

execute the plan with an optimal linear feedback controller and use a Kalman Filter variant 

for state estimation [40], as we assume in our implementation of HFR.

Formally, given a plan π, a nominal trajectory [x̃t, x̃t+1, …, x̃T], and an initial belief N(x̂t, 

Σ̂
t), the above methods can be used to estimate a sequence of Gaussian distributions {N(x̃t′, 

Σ̃
t′)}, for t ≤ t′ ≤ T. For each time step t′, the mean of the Gaussian distribution is the original 

nominal system state x̃t′, while covariance Σt̃′ captures the possible deviation from x̃t′ when 

the robot is at time step t′ during execution. This sequence of Gaussian distributions captures 

the distributions of the deviations from the nominal trajectory during the execution of the 

plan π with the LQG feedback controller. In our implementation, we truncate the Gaussian 

distributions at each time step to remove portions of the distribution for which collisions 

would occur and then only propagate the truncated Gaussian distribution to future time steps 

[33] for computing an accurate, yet conservative, estimate of the probability of success (Fig. 

3). More formally, at any time step t′, let us assume the state of the system xt′ ~ (x̃t′, Σ̃
t′). 

Before propagating the distribution to time step t′ + 1, we truncate the Gaussian distribution 

against obstacles to remove the parts of the distribution that collide with obstacles. The 

truncated distribution captures the possible states of the system that are collision free at time 

step t′. Before propagating the uncertainty distribution to the next time step, we fit a 

Gaussian distribution to the truncated distribution. By propagating the new Gaussian 

distribution to time step t′ + 1, we only propagate to the next time step states that are 

collision free. Hence, we properly consider the dependency of uncertainty on previous time 
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steps. Namely, the possible states of the system at time step t′ + 1 should be conditioned on 

the fact that the system is collision free at time step k, where 0 ≤ k ≤ t′.

Using the approach above for estimating the a priori probability of success of a candidate 

plan, we have the tools necessary to evaluate both of the cost functions c in Sec. III.

V. Analysis

Our analysis of HFR applies to goal-oriented problems: we require the optimal plan π* to 

have the property that state  along the plan π* is closer (based on the distance metric used 

by the RRT) to the state  than to any state  where t′ < t − 1. For goal-oriented 

problems, the robot will never return close (i.e., reachable in Δ time) to a previously 

explored state. There are problems where the optimal solution might not satisfy the 

requirement above of a goal-oriented problem. For instance, in active information gathering 

problems, the optimal path may revisit previously explored states. HFR cannot provide any 

guarantees on performance for problems that are not goal-oriented problems.

We first analyze MPRRT, our approach for executing multiple RRTs in each planning 

period Δ as described in Sec. IV-A. Our analysis applies to holonomic and nonholonomic 

robots. We show that for a goal-oriented problem in which a plan is represented by control 

inputs over a finite number of periods, for the cost functions considered in this paper the 

plan returned by MPRRT asymptotically converges toward the optimal plan π* with 

probability 1.

We then analyze HFR in comparison to following a precomputed plan with an associated 

closed-form linear control policy (e.g., an LQG controller). We show that, as computational 

power increases, at each time step t the method will select a control input ut that is equal or 

better than a control input generated by a linear feedback controller with respect to the cost 

metrics considered in this paper, which involve probability of success.

A. Asymptotic Optimality of MPRRT

We first show this MPRRT is asymptotically optimal for goal-oriented problems. To 

simplify notation we present the analysis assuming  = , although the results can be 

extended to the case where these spaces are distinct by applying the analysis below solely to 

the elements in . We call a plan α-collision free if all states along the plan are a distance of 

at least α from any obstacle. We consider cost functions for which α for an optimal solution 

is non-zero, which is reasonable for safe motion planning under uncertainty and is satisfied 

by the cost functions considered in this paper.

Given starting state x0 and two feasible plans π1 and π2, we define the distance between π1 

and π2 as ||π1 − π2|| = maxζ∈[0,1]||x(ζT1Δ, π1) − x(ζT2Δ, π2)||, where T1 is the number of 

periods of π1 and T2 is the number of periods of π2.

Assumption A—The cost function c is Lipschitz continuous, i.e., there exists some 

constant K such that starting from x0, for any two feasible sequence of controls π1 and π2, ||

c(π1, x0) − c(π2, x0)|| ≤ K||π1 − π2||.
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Assumption A expresses that two plans that are close to each other have similar cost.

Assumption B—The discrete-time dynamics function xt+1 = f(xt, ut, 0)

• is locally Lipschitz continuous, and

• can be approximated as xt+1 = xt + Δẋt for a sufficiently small duration Δ.

The second point of assumption B assumes that the system dynamics can be locally 

approximated as linear, which is also assumed by many previous methods (e.g., [33], [42]) 

for motion planning under uncertainty.

Given a plan π = [u0, u1, …, uT] and x0, we define Γ = [x0, u0, x1, u1, …, xT, uT] as the 

nominal trajectory when executing π from x0 with zero process noise.

Assumption C—There exists an optimal plan such that the corresponding optimal 

nominal trajectory can be expressed in a discrete form as  for some 

finite T, where , and there exists a constant α ∈ R+ such that Γ* is α-collision free.

Assumption C requires that the optimal trajectory Γ* has a finite (but possibly unknown) 

number of steps and is some nonzero distance away from obstacles. Assumption C is 

satisfied for the optimization objectives considered in this paper.

Using Assumption B, we show the following lemma.

Lemma V.1— , where , there exists constants δ and L 

such that, for any (xt, ut), if  and , then

• , i.e., , and

•  for any time t′ ∈ (t, t + 1).

The first part of lemma V.1 is derived from the first part of assumption B. The second part 

of assumption B implies the second part of lemma V.1.

Inspired by the ideas in [18] and based on lemma V.1, we can build “balls” along the 

optimal trajectory Γ*. Given any ε ∈ (0, min(α, δ)), for any ( ), we define ε, t-ball 

as  centered at  and we define ε, t-ball  as 

centered at . At time step t, if the robot is at a state within  and executes a control input 

within , then based on lemma V.1 the robot will reach a state within . Based on the 

latter result of lemma V.1 and the choice of ε, any state between time t and t+1 belongs to a 

bounded space centered at the corresponding state on the segment ( ), and hence is 

collision free as well. Given a path π that has the same number of periods as the optimal 

path π*, we call path π an ε, t-ball path if and only if for any (xt, ut) on π,  and 

.

We consider the RRT algorithm as described in Sec. IV-A, where the RRT terminates as 

soon as the first path is found. We require that the sampling strategy cover the state space 
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and that the RRT node expansion/steering function adequately covers the control input space 

as described below.

Assumption D—Consider a robot at state x for which there exists a ball of controls BU of 

nonzero volume that can feasibly move the robot in Δ time to a state inside a ball Bx′ with 

nonzero volume centered at x′. The extend(x, x″) function in RRT is implemented such that 

there is a non-zero probability that, for a sample x″ sampled from Bx′, the extend function 

returns a control u ∈ BU to a next state x‴ ∈ Bx′.

We note that many commonly used implementations of the RRT extend function satisfy the 

assumption above, such as the simple strategy of randomly generating several controls and 

selecting the control that moves the robot closest to the sampled state.

Theorem V.2—(MPRRT is asymptotically optimal) Let πi denote the best plan found after 

i RRTs have returned solutions. Given the assumptions above and assuming the problem is 

goal-oriented and admits a feasible solution, as the number of independent RRT plans 

generated in MPRRT increases, the best plan almost surely converges to the optimal plan π*, 

i.e., P(limi→∞||c(πi, x0) − c(π*, x0)|| = 0) = 1.

Proof: Without loss of generality, we assume ε is sufficiently small (ε < min(α, δ)). We 

build ε, t-balls along Γ* for any ε. Consider a sequence of events that can generate a ε, t-ball 

path. In a single RRT tree, we start from the initial state . From Assumption D, we know 

there is non-zero probability that RRT can generate a control in  to extend to a new state 

in . RRT then samples a state. The probability of the newly sampled state ending in 

is non-zero since  has non-zero volume. Because of the goal-oriented assumption, the 

sampled state is closest to the newly generated state in  and the extend function extends 

the tree from the state in  to the sampled state. Again, based on Assumption D, there is 

non-zero probability that RRT can generate a control in  to extend to a new state in . 

The process keeps going until the final state ends up in . Since we assume the optimal 

plan has finite steps and in each step we have non-zero probability to generate a control that 

leads to a new state ending inside the next ε, t ball centered around the corresponding state 

of the optimal plan, the probability of generating an ε, t-ball path by one execution of RRT 

is nonzero. Note that an ε, t-ball path must be an ε-close path, i.e., for any (xt, ut) on π, 

 and . Thus the probability of generating an ε-close path is non-

zero as well, which we express as Pε ∈ R+. Hence we have . 

Thus, . Based on a Borel-Cantelli argument [12], 

we have P(limi→∞||πi − π*|| = 0) = 1. Since the cost function is Lipschitz continuous based 

on assumption A, P(limi→∞||c(πi, x0)−c(π*, x0)|| = 0) = 1.

Although each independent RRT is not asymptotically optimal as the number of 

configuration samples rises [17], we have shown that when the above assumptions hold, as 

the number of feasible plans from independent RRTs approaches infinity, the best plan 

returned by MPRRT will almost surely converge to an optimal plan. However, as in RRT* 
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and related methods, MPRRT will not exactly generate the optimal plan since optimal plans 

have zero-measure volume [17].

B. Analysis of HFR

We analyze HFR assuming replanning from scratch each period (i.e., without using the 

MLST heuristic). Continuing with the results of Sec. V-A, we assume computation power 

approaches infinity in lines 7–10 in HFR and assume Δ is small such that the difference 

between x̃t+1 and x̂t+1 is small.

We define  as the optimal plan that starts from x̂t. The plan  has a finite number of 

periods T and is αt-collision free where αt ∈ R+. Let ηt be the shortest distance between the 

system state at the last period and the goal region . Let  and build εt, t-

balls along , resulting in a ball centered at x̂t with radius . We define πx̃tas a plan 

starting at x̃t with the sequence of controls in .

We first generalize theorem V.2 as follows.

Theorem V.3—For any plan π′, if it has a finite number of periods and there exists an α ∈ 

R+ such that π′ is an α-collision free plan, then MPRRT will generate a plan that almost 

surely converges to π′.

The proof for theorem V.3 is similar to that of theorem V.2 and requires defining a sequence 

{πi}i∈N+ of plans where πi is a plan that is the closest to π′ after i RRT plans are generated. 

Using theorem V.3, properly accounting for collisions, and assuming the cost of the paths 

are computed after estimating the state (line 15 of HFR), we can show that if ||x̂t − x̃t|| ≤ rt, 

asymptotic optimality is retained in each period. We note that the threshold rt may be small 

but does not need to be zero.

Theorem V.4—Assume Δ is small such that at any time step t in HFR, ||x̂t − x̃t|| ≤ rt holds. 

Let π* be the plan with least cost returned by HFR and let πc be any possible plan (a 

sequence of controls) that would have been executed by a linear feedback controller. Then, 

at time step t, executing the first control of π* is better than or at least equal to executing the 

first control of πc with respect to the cost metric.

We can prove theorem V.4 by computing the control input ut that would be executed at time 

step t using the closed form formula for a linear controller. We define πc as the best plan that 

could be executed with the first control input being ut. Since the optimal plan π* computed 

by HFR satisfies c(π*, x̂t) ≤ c(πc, x̂t), HFR is at least as good as a linear controller with 

respect to the cost metric at each time step t.

Theorem V.4 holds only as computation power increases. For practical problems where 

computation power is limited, we optionally add the MLST of the prior best plan (lines 13 

and 14) to the set of considered plans. If MPRRT does not find a better plan than the MLST 

during the planning period, then by the construction of the MLST, the robot will execute a 

control that is the same as the control that would have been executed if an LQG controller 

was applied.
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VI. Experiments

We apply HFR to three robots: (1) a holonomic robot, (2) a nonholonomic car-like robot, 

and (3) a nonholonomic steerable medical needle. We tested our C++ implementation on a 

PC with two 2.00 GHz Intel (R) Xeon (R) processors (12 processor cores total).

A. Holonomic Robot with Two Moving Obstacles

We consider a scenario, based on Du Toit et al. [8], [9], where a holonomic robot moves to a 

goal state while two dynamic moving obstacles cross the space between the robot and the 

goal (see Fig. 4). Following the setup of Du Toit [8] (Sec. 4.1.4.3), we define the robot state 

by its position and velocity, qt = (x, y, vx, vy). The heading of the robot θ can be computed 

from vx and vy. The control input u is a 2-D vector that encodes change in velocity. We 

define the obstacle’s state as o = (ox, oy, ovx, ovy), which consists of the 2-D position and the 

2-D velocity. Then, the system state at any time step t is defined as x = (q, o1, o2) where q is 

the state of the robot and oi is the state of the i’th obstacle (i ∈ {1, 2}). The robot does not 

have direct control on the parameters oi. The dynamics of the robot are governed by

(5)

where

The 4-D noise term wt−1 ~ (0, W), where W = 0.01 × I. We set Δ to 0.5 seconds. We 

assume the system can receive observations of the robot’s position and the obstacles’ 

positions, which gives the sensing model

(6)

where the 6-D sensing vector consists of the robot’s position and the two obstacles’ 

positions, corrupted by a 6-D noise vector n ~ (0, N), where N = 0.01 × I.

Following Du Toit et al. [8], [9], we set the robot’s initial pose q0 = (x, y, v cos θ, v sin θ) by 

setting x = 0, sampling y uniformly from [−2, 2], sampling θ uniformly from [−22.5°, 22.5°] 

(where θ = 0 represents the direction of horizontal to the right), and setting the initial 

velocity v to 1.2. The goal  is at (12, 0), so the robot moves roughly to the right. For both 

obstacles, the initial x position is uniformly sampled from [4, 6]. The initial y positions for 

the two obstacles are fixed to 6 and −6. The initial heading of the top obstacle is uniformly 

sampled from [−120°, −75°] while the initial heading of the bottom obstacle is uniformly 

sampled from [75°, 120°]. The initial velocity for both obstacles is set to 1. Hence, the 

crossing obstacles start from random locations near the top and bottom of the environment 
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and move at random headings roughly up/down. The obstacles move based on the dynamics 

model in equation 5 with the control inputs set to 0:

(7)

Using this scenario, we compare HFR to Partially Closed-Loop Receding Horizon Control 

(PCLRHC) [9], which is a receding horizon control approach specifically designed for 

dynamic, uncertain environments. As in [8], for given motion plans of the robot and the 

moving obstacles, we use the EKF with the maximum likelihood observation assumption to 

propagate the uncertainty modelled as a Gaussian distribution from the first step of the plan 

to the end of the plan. Identical to the setup in [8], we use a cost function related to shortest 

path subject to a chance constraint of less than 1% probability of failure at each time step. 

Control magnitude is constrained to be less than 1 at each step. At each time step, each 

velocity component is subject to chance constraints of P (vx > 2) ≤ 1% and P (vx < −2) ≤ 

1%, and similarly for vy.

We randomly simulated 200 executions using HFR, and in 176 cases the robot reached the 

goal while satisfying the constraints, implying an 88% success rate. We verified that the 

chance constraint of a 1% maximum failure rate at each period was achieved. We show a 

simulated run of HFR in Fig. 4. We compare the path lengths achieved by HFR to the path 

lengths achieved by PCLRHC [8] in Fig. 5. HFR more regularly achieves lower path 

lengths, even though PCLRHC in some cases stops short of the goal when the local 

optimization criteria are satisfied. HFR achieves a lower average path length because, unlike 

PCLRHC, HFR automatically explores multiple homotopic classes and is not sensitive to 

local minima.

B. Nonholonomic Car-like Robot

We also apply HFR to a nonholonomic car-like robot with 2nd-order dynamics in a 2-D 

environment with obstacles. The state of the robot q = (x, y, θ, v) consists of the robot’s 2-D 

position (x, y), its orientation θ, and its speed v. Here the system state x and the robot state q 
are the same. Its control input u = (α, ϕ) is a 2-D vector consisting of an acceleration α and 

the steering wheel angle ϕ, corrupted with noise m = (α̃, ϕ̃) ~ (0, M). This gives the 

nonlinear dynamics model

(8)

where τ is the time step and d is the length of the car. The robot can sense its position and 

speed, giving us the stochastic sensing model
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(9)

where the 3-D observation vector consists of the robot’s (x, y) position and its velocity v, 

corrupted by a 3-D sensing noise vector n ~ (0, N). We evaluate HFR for this car-like 

nonholonomic robot in two environments shown in Fig. 6 to demonstrate HFR’s 

convergence to optimality and performance with respect to the planning period Δ.

1) Environment with Known Optimal Plan—We applied HFR to the car-like robot in 

the environment shown in Fig. 6(a) for which the the optimal plan is known. The 

optimization objective for this scenario is to minimize path length subject to a chance 

constraint that P (collision free) ≥ 90%. We set M = 0.001 × I and N = 0.0001 × I. With this 

cost function and this low uncertainty, the optimal plan for the environment in Fig. 6(a) is to 

move in a straight line from the initial position to the goal region while passing through the 

middle narrow passage. For this environment, when executed a single time to find only a 

feasible solution, the RRT is more likely to find a suboptimal solution moving through a 

wider passage than to find the optimal solution moving through the narrow passage.

We evaluate the performance of HFR as parallel computation power increases, i.e., as the 

number of CPU cores increases. For each given number of available cores, we executed 

HFR 100 times and computed the average path length of all successful executions. We 

provide HFR 2 seconds to compute an initial plan and we set Δ = 0.5 seconds. We computed 

the relative error e between the average path length L̄ and the optimal path length L* as 

. As shown in Fig. 7, the robot using HFR moves along a path that is closer to the 

globally optimal solution as the number of processor cores increases. The relative error 

drops to below 3% when the number of CPU cores rises to 12.

2) Performance with Respect to Δ—We also applied HFR to a more complex scenario 

for which the optimal solution cannot be computed analytically. We consider the 

environment shown in Fig. 6(b) and use the optimization objective of maximizing the 

probability of success (i.e., reaching the goal while not colliding with obstacles). To model a 

more realistic car-like robot operating at higher speeds, we also set the process uncertainty 

to be linearly dependent on the robot’s velocity. Specifically, we set N = 0.005 × I and M = 

v × 0.001 × I.

Using this scenario, we ran HFR for different values of Δ and measured the probability of 

success over 100 simulated runs. For comparison, we also ran LQG-MP [42] for the same 

scenario and computed the probability of success over 100 simulated runs. Both HFR and 

LQG-MP were allowed 2 seconds for pre-computing plans and selecting the best plan as the 

initial plan. As shown in Fig. 8, decreasing the value of Δ improves the probability of 

success for HFR since the predicted start of the robot for planning each period is more 

accurate and the robot can respond more quickly to uncertainty. This result is consistent with 

Theorem V.4. Fig. 8 also shows that HFR consistently has a higher probability of success 

than LQG-MP. We also show an example execution of HFR with Δ = 0.25 in Fig. 6(b).
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C. Nonholonomic Steerable Needle

We also apply HFR to a flexible bevel-tip steerable medical needle [39], a type of steerable 

needle that bends in the direction of the bevel when inserted into soft tissue. By axially 

rotating the needle, the direction of the bevel can be adjusted, enabling the needle to follow 

curved trajectories in 3D tissue environments with obstacles. The motion of the steerable 

needle tip has non-linear dynamics and can be modeled as a nonholonomic robot.

Following the derivation in [44], we describe the state of the needle q by the 4×4 matrix 

 where R ∈ SO(3) is the rotation matrix and p ∈ ℝ3 is the position of the 

needle tip. The system state x consists of the robot’s state q and a kinematics parameter 

κmax, which represents the maximum curvature of the needle. The curvature of the needle 

can be varied by applying duty cycled spinning during the needle’s insertion [27]. The 

control inputs u = [v, w, k]T ∈ ℝ3 consist of the insertion speed v along the z axis, the twist 

angular velocity w, and the curvature κ. We describe the dynamics of the needle tip in terms 

of the instantaneous twist U ∈ se(3) expressed in a local coordinate frame attached to the 

needle tip: , where w = [vκ, 0, w]T, v = [0, 0, v]T, and the notation [s] for a 

vector s ∈ ℝ3 refers to the 3 × 3 skew symmetric cross product matrix. The instantaneous 

twist U′ encodes the additive motion noise m = [v′, w′]T ~ (0, M) in a similar way.

Given time step duration Δ, the stochastic discrete-time dynamics of the needle tip is given 

by the model

(10)

where the control input u cannot directly control κmax, which is fully determined by the 

physical properties of the needle and the tissue the needle tip is moving through. Below, we 

consider two different scenarios: (1) a scenario where κmax is a priori known, and (2) a 

scenario where κmax is not known and needs to be estimated online during needle insertion.

We assume that noisy observations of needle tip pose are obtained my medical imaging or 

electromagnetic sensing. The noise in the sensing measurement is modeled as n ~ (0, Q). 

This gives the stochastic measurement model

(11)

The steerable needle has non-linear dynamics, and van den Berg et al. provide details about 

linearizing the needle dynamics and sensing models for LQG control [44].

1) Artificial Environment Scenario—We apply HFR under two optimization 

objectives: maximizing probability of success and minimizing path length with a chance 

constraint of P (Collision free) ≥ 80%. We set the needle motion and sensing model 
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parameters to vmax = 1.5 cm/s, wmax = 2π rad/s, Δ = 0.5 s, κmax = 2 (cm)−1, Q = 0.1 × I, and 

M = 0.005 × I.

In Fig. 9 we show the environment and a simulated successful run under each of the cost 

functions. A plan through the passage between red obstacles (i.e., the slightly wider 

passageway) offers the highest probability of success. A plan next to the yellow obstacle 

minimizes path length under the given chance constraint.

Table I shows that our method outperforms other methods based on LQG control. For each 

run with LQG-MP [42], we generate 1000 RRT plans, select the best plan using the LQG-

MP metric, and then execute an LQG controller along the selected plan. For each run with 

Preplan+LQG, we generate 1000 RRT plans, select the best plan using a truncated Gaussian 

approach [33], and then execute an LQG controller along the selected plan. Approximately 5 

seconds are required to generate 1000 feasible plans. We ran each method for 100 runs. HFR 

performed best on both metrics due to its ability to refine plans during execution.

2) Liver Biopsy Scenario—We consider steering a needle through liver tissue while 

avoiding critical vasculature. We use the same needle model as before except we assume the 

maximum curvature of the needle varies by tissue type and is a priori unknown to the robot. 

For muscle/fat tissue outside the liver, , and for the liver tissue, . 

Although the curvature  is a priori unknown to the robot, we assume the system can 

accurately sense the needle tip pose (with Q = 0.0001 × I) to assist in curvature estimation. 

HFR can easily be integrated with curvature estimation by replanning with the latest 

estimated maximum curvature at each time step.

Since the curvature κ of the needle is linearly dependent on the proportion β of time spent in 

duty cycled spinning in one insertion duration [27], we model the relationship between β and 

κ as  where κmax is the maximum curvature feasible in the tissue. The high level 

control u = [v, w, κ]T thus can be transformed to a low level control u(κmax) = [v, w, (1 − β) 

κmax]T parameterized by κmax.

Since  is unknown to the robot, in each time step the robot estimates  on the fly 

using an optimization-based method that fits the nominal needle curve to the most recent 

sensor measurements. We then use the estimated  for motion planning at that time step.

We evaluated the performance of HFR in the liver scenario (see Fig. 1) using the 

optimization objective of maximizing probability of success. Fig. 10 shows results for a 

different needle insertion location. In Fig. 11, we compare HFR to LQG-MP and Preplan

+LQG. Because the maximum curvature in this scenario’s tissue is a priori unknown, LQG-

MP and Preplan+LQG perform poorly. HFR has a 98% success rate by estimating the 

maximum curvature on the fly and using the latest estimated maximum curvature at each 

replanning time step.
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VII. Conclusion

As sampling-based motion planners become faster, they can be re-executed more frequently 

by a robot during task execution to react to uncertainty in robot motion, obstacle motion, 

sensing noise, and uncertainty in the robot’s kinematic model. We investigated and analyzed 

high-frequency replanning (HFR) for discrete-time systems with stochastic nonlinear (but 

linearizable) dynamics and observation models with noise drawn from zero mean Gaussian 

distributions. In HFR, during each period, RRT-based motion planners are executed in 

parallel as the robot simultaneously executes the first action of the best motion plan from the 

previous period. We considered two objectives relevant to problems with uncertainty: 

maximizing the probability of success (i.e., avoid collision with obstacles and reach the 

goal) and minimizing path length subject to a lower bound on the probability of success. We 

show that, as parallel computation power increases, HFR offers asymptotic optimality for 

these objectives during each period for goal-oriented problems. We demonstrated the 

effectiveness of HFR for three scenarios: (1) maneuvering a holonomic robot to a goal while 

avoiding moving obstacles, (2) steering a nonholonomic car-like robot with motion and 

sensing uncertainty, and (3) autonomously guiding a nonholonomic steerable medical needle 

whose curvature in different tissues types is not known a priori.

In ongoing and future work we would like to integrate new uncertainty-based cost functions 

with the HFR framework. One limitation of our current cost functions for considering 

uncertainty is that they assume Gaussian distributions. Although Gaussian distributions are 

commonly used for modeling uncertainty in a broad class of problems, they are not an 

acceptable approximation in some domains, such as problems in which uncertainty has a 

multi-modal distribution. For non-Gaussian problems, we will consider integrating particle 

filter approaches with the HFR framework. We also plan to investigate cost functions that 

efficiently estimate the probability of collision for geometrically complex robots, which will 

enable HFR to be used effectively for articulated manipulators. With the above future work, 

we hope to extend the applicability of the HFR approach to a broader class of robots.
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Fig. 1. 
We apply high frequency replanning (HFR) to medical needle steering in the liver for a 

biopsy procedure. The objective is to access the tumor (yellow) while avoiding the hepatic 

arteries (red), hepatic veins (blue), portal veins (pink), and bile ducts (green). To reach the 

tumor, the needle (white) must pass through several types of tissue: muscle/fat tissue and 

then liver tissue. The maximum curvature of the needle in the liver is not known a priori and 

must be estimated during task execution. HFR (a, b) in simulation successfully guided the 

needle to the tumor by estimating online the needle’s maximum curvature and replanning 

with high frequency. Using an approach based on preplanning and LQG control (LQG-MP) 

(c), the needle veered away from the goal and the LQG controller was unable to correct the 

trajectory.
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Fig. 2. 
Consider two paths from configuration q′ to a configuration q‴, with ellipsoids representing 

uncertainty at stages along the paths. RRT* and related asymptotically optimal motion 

planners assume that the optimal substructure property holds, i.e., if q″ is along the optimal 

path from q′ to q‴, the subpath from q′ to q″ is itself an optimal path from q′ to q″. While 

this is true for shortest path problems, optimal substructure does not hold for some 

uncertainty-aware cost metrics such as maximizing probability of success. Between q′ and q
″, the probability of collision for the purple path is larger than the probability of collision for 

the blue path due to lesser clearance from the obstacles. But the purple plan has lesser 

estimated uncertainty in state estimation at q″, which will lead to a smaller probability of 

collision when the robot passes through the narrow passage between q″ and q‴. The lack of 

optimal substructure when planning in configuration space makes achieving asymptotic 

optimality more difficult.
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Fig. 3. 
Consider a path from the initial position (black dot) to the goal region (cyan circle). To 

evaluate the probability of the success of this motion plan, we estimate uncertainty 

distributions along the motion plan. The probability of collision at each time step is 

conditioned on the previous stages being collision free. We truncate a Gaussian distribution 

(gray ellipses) propagated from the previous step against obstacles and then use a Gaussian 

distribution (black ellipse) to approximate the truncated distribution. We then propagate the 

new Gaussian distribution (black ellipse) to the next time step.
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Fig. 4. 
HFR applied to a holonomic robot with two moving obstacles. The robot (dark blue) is 

moving to a goal (sky blue) and must avoid two moving obstacles (red) that travel roughly 

up-down and cross the robot’s intended path. In each period of execution shown, the solid 

lines represent past motions and the dashed lines represent planned motions. Until period 5, 

the robot was planning to react to the upper moving obstacle by passing from below. 

Between periods 5 and 7, the robot found a new, better plan passing the upper moving 

obstacle from above. The robot avoided local minima by successfully finding a new, better 

plan in a different homotopic class.
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Fig. 5. 
Histogram of executed path lengths for HFR and for PCLRHC [8]. Note that the length of 

the shortest path that connects the start position and the goal position is at least 12. PCLRHC 

occasionally returns values that are less than 12, which is likely due to the robot not exactly 

reaching the goal. HFR achieves a lower average path length because, unlike PCLRHC, 

HFR is not sensitive to local minima.
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Fig. 6. 
We evaluate HFR for a car-like robot in two environments: (a) an environment with a 

known optimal motion plan, and (b) a more complex planar environment previously used by 

Patil et al. [33]. The environments include the robot’s initial position (black dots), the goal 

region (sky blue discs), and obstacles (red rectangles) that divide the environment into 

several different homotopic classes.
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Fig. 7. 
Convergence to the optimal solution for the car-like robot in environment 1 as the number of 

processor cores increases.

Sun et al. Page 29

IEEE Trans Robot. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
The performance of HFR and LQG-MP for different values of Δ for the car-like robot in 

environment 2. HFR performs replanning with period Δ, and for LQG-MP Δ is used to 

determine the time step size of the computed LQG controller.
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Fig. 9. 
(a) The artificial environment for the steerable needle has two narrow passages in a 10 cm × 

10 cm × 10 cm box. The goal region (sky blue sphere) is defined in ℝ3 with radius 0.5 cm. 

(b) The passage between the two red boxes (1.2 cm) is wider than the passage between the 

yellow box and the middle red box (1.0 cm). The goal is closer to the narrower passage. (c) 

For highest probability of success, HFR guided the needle to pass through the wider passage 

in order to acheive a higher probability of success. (d) For minimizing path length with the 

defined chance constraint, HFR guided the needle to pass through the passage between the 

yellow box and the middle red box to acheive a shorter path while still satisfying the chance 

constraint.
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Fig. 10. 
HFR applied in simulation to medical needle steering in the liver for a biopsy procedure at a 

different site from Fig. 1. The needle is inserted from the front. (a) HFR successfully guides 

the needle (white) to the tumor (yellow). Using LQG-MP (b), the needle collides with portal 

veins (pink).
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Fig. 11. 
The percent of successful executions (i.e., reaching the goal and no collisions with 

obstacles) for the HFR, Preplan+LQG, and LQG-MP for the steerable needle liver biopsy 

scenario.
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