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Abstract—This paper presents a geometric approach to the
problem of steering a robot subject to nonholonomic constraints
through a door by using only visual measurements coming
from a single fixed on-board monocular camera. The door is
represented by two landmarks located on its vertical supports.
After exploring the geometric structure that naturally emerges
from the problem statement, e.g. bundle of hyperbolae, ellipses
and circles, we exploit this planar geometry to provide stabilizing
feedback control laws to drive the vehicle through the middle
of the door. Using visual servoing we prove that this geometry
can be directly measured in the camera image plane. Hence,
we provide an image–based control scheme, avoiding the use of a
state observer. Simulations in a realistic scenario and experiments
are provided to show the effectiveness of the feedback control
laws.

I. INTRODUCTION

This paper shows how a single camera is enough to design
effective visual feedback control laws for a mobile robot
to go through a door. The approach is derived from the
natural geometry induced by the presence of a door in the
environment, e.g. bundle of hyperbolae, ellipses and circles.

Visual servoing techniques are often used both to drive a
robot towards a target, with and without obstacles and for
indoor navigation, as e.g. along a corridor. For instance, in [1]
two control strategies based on measurements coming from
a pan camera and a 2D laser range sensor for steering the
vehicle towards a target amidst obstacles has been provided.
In [2] a landmark-based navigation approach among obstacles
has been developed for humanoid robots. It integrates high-
level motion planning capabilities and a stack of feasible visual
servoing tasks based on footprints following. The motion
planning is based on the shortest path synthesis provided
in [3], [4] where the limited Field–Of–View (FOV) problem
is taken into account. In [5], [6] control laws to follow the
shortest paths are also provided. In [7], a robust control strategy
w.r.t. uncertainty on the depth of the target points and that takes
into account the limits of actuator dynamics and the visibility
constraint has been provided. On the other hand, in [8] authors
provided a visual-based control strategy to steer the vehicle
along a corridor by using the vanishing point defined by the
intersection of the corridor guidelines. For the same problem,
in [9] the optic flow was also used in combination with the
perspective lines of the corridor. In [10] the temporal derivative
of the optic flow has been exploited to determine the system
state (orientation of the wall and distance to the wall), that is
required to drive the robot through the center of the corridor.
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Steering a vehicle through a door is one of the basic problem
in visual servoing widely addressed in the literature. In [11] a
framework for vision-based autonomous indoor navigation in a
wheelchair capable of following a corridor and passing through
doors using a single doorpost is provided. In particular, once
a door is detected, the nearest doorpost is considered and a
control laws able to steer the vehicle in front of the doorpost
with a preassigned tolerance m is provided. Then, a circular
path of radius m and centered at the doorpost is performed.
In [12] door crossing is solved combining vision and ultrasonic
sensor information. The robot approaches the door until an
adequate distance is reached. Door traversing is then performed
using sonar sensors. A similar problem has been solved in [13]
for a large indoor surveillance robot equipped with a Kinect
while crossing narrow doors. After detecting and locating the
door, the robot is steered through it by a nonlinear adaptive
controller. A sensor based algorithm for guiding a wheelchair
through a doorway has been proposed also in [14]. The
controller uses a camera and a laser range finder to perform the
navigation. The problem of limited field-of-view constraints is
also taken into account. In [15] the same problem is solved by
dynamically generating Bézier-curve based trajectories while
in [16] the door crossing problem in unknown environment
for a wheelchair has been solved by a dynamic path planning
algorithm based on successive points determination. Finally,
in [17] authors propose a solution to a door crossing problem
for an autonomous wheelchair equipped with a laser by solving
a dynamic path planning algorithm based on successive points
determination. An adaptive trajectory tracking control is then
implemented to steer the wheelchair motion along the path in
a smooth movement.

The approach used in this paper is different from the
previous ones and the literature therein. Indeed, our method
does not consist in a pre-planned path among via-points or
a multi-stage strategy. On the contrary, we designed static
feedback control laws (the vehicle velocities) that are functions
of the current state of the system that is expressed in suitable
coordinate systems that in turn can be directly measured in
the image. As a consequence, the method avoids the computa-
tional cost of a state observer and the localization problem is
automatically solved. Moreover, no delay is added due to the
time of convergence of a state observer to the true values. The
use of static feedback control laws instead of dynamic ones
simplifies the implementation of our method and the analysis
of the overall controlled systems in discrete time. Moreover,
being a feedback and not a feedforward control or a planning,
it intrinsically possesses robustness against disturbances and
uncertainties. Finally, as our method does not need the depth
information, only a fixed monocular camera is needed as
opposed to several other approaches where the camera data
are often fused with other sensor data as e.g. sonar and laser.



In particular, the method we propose takes benefits from the
geometry that naturally emerges from the problem statement.
Seen from above, in the plane of the robot motion, the door is
determined by two points: the footprints of its vertical supports.
The originality of our approach is to introduce coordinate
systems relative to these two points. The plane around the
door is hence foliated by using confocal (the footprints of
the door being the foci) hyperbolae and ellipses (a.k.a. elliptic
coordinates system) and confocal circles that intersect at right
angles (a.k.a. bipolar coordinates system). Using visual servo-
ing we prove that these coordinates can be directly measured
in the camera image plane. In other words, there exists a
direct link between the geometry described by hyperbolae,
ellipses and circles and the projection in the image plane of
two landmarks located on the door supports and at the same
height w.r.t. the the plane of the robot motion. We then provide
feedback control laws based on these coordinate systems as
well as proofs of asymptotic stability of the controlled system
by using the Lasalle-Krasowskii principle. As both coordinates
systems are immediately available in the image plane, we
provide a so called Image–Based control schemes (see [18],
[19] and [20]). As a consequence, neither a state observer
nor other sensors, apart from the camera, are necessary to
execute our visual servo control. Part of this work can be also
found in [21]. In this paper we provide a more exhaustive
description of control laws and strategies to drive the vehicle
through a door, we extend the simulation part and we report
in the appendix a complete analysis of the FOV constraints
and strategies to cope with them. It is important to note that in
this paper no door detector algorithm is considered, reasonably
assuming that they will be always able to provide two points
in the image plane corresponding to e.g. the top corners
of the door. Moreover, the generalization of this method to
other navigation problems between other type of landmarks is
also possible. Both elliptic and bipolar coordinate systems are
particularly appropriated to express the configuration of the
vehicle w.r.t. any couple of points. In case of points at the
same height from the plane of motion, they also provide the
advantage of avoiding the use of a state observer – basically, in
this case, elliptic and bipolar coordinates do not depend on the
height of the landmarks but only on their positions in the image
plane. For example, if it is possible, for any two obstacles,
to identify two points at the same height, as for the door,
the application of the proposed approach is straightforward
also in obstacle avoidance problems. However, in general, it
could be difficult to guarantee this assumption which is strictly
related to the geometry of the environment around the vehicle.
In these cases, the control laws developed in this paper can
still be used as they assume that the heights of the landmarks
are known constant parameters or they include a procedure
to estimate them. Indeed, in case of landmarks at different
heights, both bipolar and elliptic coordinates depend not only
on the positions of the landmarks in the image plane but also
on their heights.

The paper is structured as follows. The problem statement
is given in section II. In section III elliptic coordinates are
introduced and the direct link between these coordinates and
the image plane is established. In section IV the control law

able to steer the vehicle through the door by using these coordi-
nates is proposed, and the stability of the closed–loop system is
shown. A second coordinates system, aka bipolar coordinates,
is then introduced in section V and the link with the image
plane is established. A control law to accomplish the task by
using these coordinates is then provided in section VI and the
stability of the controlled system is shown. In sections VII and
VIII simulations and experiments to illustrate the effectiveness
of our control laws are shown. Some conclusions and a resume
of perspectives and open problems close the paper. Finally, in
the Appendix the limited FOV problem is analyzed providing
some strategies to overcome it.

II. PROBLEM STATEMENT

Let us consider a vehicle moving on a plane where a right-
handed reference frame 〈W 〉 is defined with origin in OW and
axes XW ,ZW . The configuration of the vehicle is described by
q(t) = (x(t),z(t),θ(t)), where (x(t),z(t)) is the position in 〈W 〉
of a reference point of the vehicle, and θ(t) is the vehicle
heading with respect to the XW axis. Moreover, we assume that
the dynamics of the vehicle is negligible. Using this notation,
and denoting by ν(t) and ω(t) the robot linear and angular
velocity, respectively, the kinematics exposes ẋ

ż
θ̇

=

[cosθ 0
sinθ 0

0 1

][
ν

ω

]
. (1)

This is the so-called unicycle in the literature [22]. The vehicle
is equipped with a rigidly fixed pinhole camera with reference
frame 〈C〉 = {Oc,Xc,Yc,Zc} such that the optical center Oc
corresponds to the robot’s center [x(t),z(t)]T and the optical
axis Zc is aligned with the robot’s forward direction.

The main objective of this paper is to steer this nonholo-
nomic vehicle through a door by using measurements coming
from the on–board camera. The door is represented by two
visual landmarks located on each of its two vertical supports,
at the same height hw w.r.t. the plane of the robot motion.
We denoted them by FL and FR (apices R and L indicate
the “Right” and “Left” support of the door). Without loss of
generality, we assume that the cartesian coordinates of these
two points w.r.t. 〈W 〉 are FR = (0,hw,a) and FL = (0,hw,−a),
respectively.

Based on the pinhole camera model [23], the position of the
projection of the landmark in the image plane is given by

Ixi = αx

cxi
czi

, (2)

Iyi = αy
h

czi
, (3)

with i = {R,L} and where cxi and czi are the coordinates of
the i–th landmark in the camera frame 〈C〉, h is the height
of the landmarks w.r.t the plane Xc×Zc, while αx and αy are
the camera intrinsic parameters, achievable by a calibration
procedure and representing the focal length of the camera in
terms of pixel dimensions in the x and y direction respectively.
Notice that, plane Xc×Zc usually does not coincide with the



plane XW ×ZW . Finally, the velocity of the landmark w.r.t. the
camera reference frame due to vehicle movements is given by

cẋi = ω
czi

cẏi = 0
cżi =−ν−ω

cxi ,

(4)

with i = {R,L}.

Fig. 1. Objective: to steer a vehicle through a door using only visual
measures. The door is represented by two landmarks, FL and FR and the
vehicle, represented as a directed point, has an on-board camera and is subject
to nonholonomic constraints.

Remark 1: In next sections, we assume a camera with a
large FOV so that the problem of keeping the landmarks
in view is alleviated. This assumption does not impact the
use of the control laws provided in next sections on a real
system where the camera has a limited FOV. However, in the
Appendix, the FOV limits in case of a fixed on–board camera
will be taken into account and analyzed.

Remark 2: Even if the methodology used in this paper
to design the control laws can be used also for different
nonholonomic system, e.g. unicycle, car-like and trailers, the
feedback control laws developed in next sections work only
with the unicycle. However, the obtained trajectories can be
directly used as reference trajectories for those nonholonomic
vehicles as long as a tracking controller is provided.

III. SOME BASIC GEOMETRY AROUND THE DOOR

In this section we describe the intrinsic geometry that
naturally emerges around the door and we show how this
geometry is useful to design a feedback control law that steers
the vehicle through it.

Referring to Fig. 1, assume that the forward velocity of the
vehicle is constant, e.g. ν = 1, and the angular velocity is such
that

IxR(t)≡−IxL(t) , (5)

for all t ∈ [0, T ]. In this case the vehicle is aligned with the
bisector of angle ̂FLOcFR. In other words, the bearing angles1

αR(t) and αL(t) w.r.t. each landmark have equal values but
opposite signs. Indeed, from (2) and (5) we have

cxR
czR
≡−

cxL
czL

⇒ tanαR(t)≡− tanαL(t) (6)

and hence αR(t) = −αL(t) =
α(t)

2 . Moreover, by deriving the
first equality in (6) and substituting (4) with ν = 1, we obtain
the control ω that steers the vehicle along a path where (6) is
satisfied, i.e.

ω =−
cxL

cz2
R +

cxR
cz2

L
cxRcxLcz2

R +
cx2

R
cz2

L +
cz2

R
czL(czR + czL)

. (7)

By using this strategy, the vehicle moves along a hyperbola,
i.e. the locus of points where the absolute value of the differ-
ence between distances to the two foci (i.e. the projections on
the motion plane of the two landmarks), is constant. Indeed, let
us consider the distances between the robot and each landmark
ρR =

√
cx2

R +
cz2

R and ρL =
√

cx2
L +

cz2
L and their dynamics. By

using (4) with i = R,L, respectively, and by setting ν = 1, the
dynamics of ρR and ρL reduces to

ρ̇R =− zR

ρR
, ρ̇L =− zL

ρL
.

As zR = ρR cosαR and zL = ρL cosαL, if the control ω given
by (7) is applied, αR = αL = α/2 and hence

ρ̇R− ρ̇L =−cosαR + cosαL = 0.

We conclude that ρR − ρL = K = const. along the path.
Constant K is equal to 2a, i.e. the distance between the two
landmarks. The parametric equations of a generic hyperbola
with foci FR and FL are given by

x = acosη sinhξ

z = asinη coshξ
(8)

with ξ ∈ [0,∞] and η constant with values in [−π,π). In the
canonical form we have z2

a2 sin2 η
− x2

a2 cos2 η
= cosh2

ξ−sinh2
ξ =

1 . Hence, curves with constant η form hyperbolae. In the
special case of η ∈ {0,±π}, the hyperbola degenerates into
a straight line passing perpendicularly through the middle of
the segment between FR and FL (see Fig. 2).

Notice that, by using the strategy described above, the
vehicle definitely goes through the door. Indeed, any hyperbola
crosses the segment between the landmarks. However, among
all hyperbolae, the one followed by the vehicle depends on
initial conditions. As a consequence, the vehicle might pass
too near to the left or to the right jamb of the door. However,

1The bearing angle w.r.t. a goal is the angle between the heading of the
robot and the direction to the goal.



a good behavior would be to go as close as possible to the
middle of the door. We will address this issue in section IV.

Coming back to parametric equations of the hyperbola (8),
let us consider the case in which ξ is constant and η varies.
Such curves, which are known as ellipses, can be expressed in
the canonical form as x2

a2 sinh2 ξ
+ z2

a2 cosh2 ξ
= cos2 η+sin2

η = 1 .
The bundle of hyperbolae, obtained for different values of

η and the bundle of ellipses, obtained for different values
of ξ , form an orthogonal coordinate system, a.k.a. elliptic
coordinates, in which the coordinate lines are confocal ellipses
and hyperbolae.

A. Elliptic Coordinates

Denoting by ρR =
√

(z−a)2 + x2 and ρL =
√
(z+a)2 + x2

the distance from the foci, i.e. the projections in the plane of
the robot motion of the landmarks FR and FL, respectively,
the elliptic coordinates (ξ ,η) can be expressed as

ξ = arccosh
(

ρR +ρL

2a

)
, η =

π

2
− arccos

(
ρL−ρR

2a

)
(9)

Fig. 2. Elliptic coordinate system. Ellipses and hyperbolae intersect perpen-
dicularly.

Notice that, at the limit a → 0, elliptic coordinates re-
duce to polar coordinates (ρ, ψ). In particular, η → ψ and
acoshξ→ ρ . This also happens when the vehicle is sufficiently
far from the door. To complete this set of coordinates and to
univocally describe the vehicle configurations, let us introduce
a generalization of the bearing angle that is the angle between
the heading of the vehicle and the tangent to the hyperbola
passing through the vehicle position:

βe = arctan(tanhξ tanη)−θ +π . (10)

Remark 3: Assuming a calibrated camera, elliptic coordi-
nates can be directly computed from the measurements of
features in the image plane, hence basically without a state

observer, even if h is unknown. Indeed, from (2) and (3) we
have

ρi =
αy

αx

h
Iyi

√
Ix2

i +α2
x , i = R,L .

while the distance between the two landmarks is given by

2a =
αyh

αxIyRIyL

√
(IxRIyL− IxLIyR)

2 +α2
x (

IyL− IyR)
2 .

Hence,

ξ = arccosh

 IyL

√
Ix2

R +α2
x +

IyR

√
Ix2

L +α2
x√

(IxRIyL− IxLIyR)
2 +α2

x (
IyL− IyR)

2

 (11)

η =
π

2
− arccos

 IyL

√
Ix2

R +α2
x − IyR

√
Ix2

L +α2
x√

(IxRIyL− IxLIyR)
2 +α2

x (
IyL− IyR)

2


(12)

that does not depend on h. Notice that, (11) and (12) come
from the definition of the elliptic coordinates (9). For geometric
properties, ρR + ρL ≥ 2a and ρR − ρL ≤ 2a and hence, the
arguments in (11) and (12) are always well defined. Moreover,
for the particular 3D positions of landmarks, the denominators
cannot be equal to zero.

Finally, it is easy to prove that the bearing angle βe is given,
in the image plane, by

βe =−
1
2

(
arctan

( IxR

αx

)
+ arctan

( IxL

αx

))
(13)

Notice that, in case of landmarks at different height, results
in Remark 3 do not hold anymore, as coordinates (ξ , η)
depend also on those values. However, the heights are constant
and can be considered known or estimated by an observer.

B. Kinematic Model of the vehicle in Elliptic Coordinates
The vehicle kinematic model in elliptic coordinates ζ =

(ξ ,η ,βe), with ξ ∈ [0, ∞] and η ∈ (−π/2,π/2) is

ξ̇ =− ν cosβe secη sechξ

a
√

1+ tan2 η tanh2
ξ

η̇ =
2ν cosη coshξ (sinγ + cosγ tanη tanhξ )

a(cos(2η)+ cosh(2ξ ))

β̇e =−ω− 2ν(cosβe sechξ sinη− sinβe secη sinhξ )

a(cos(2η)+ cosh(2ξ ))
√

1+ tan2 η tanh2
ξ

(14)

and γ = βe−arctan(tanη tanhξ ). Notice that the denominators
of previous equations is equal to zero if cos(2η)+cosh(2ξ ) =
0. However, as cosh(2ξ )≥ 1, being exactly 1 when the vehicle
is on the segment FRFL, the expression can be zero only on
FRFL if and only if η =±π/2. Being η =±π/2 only on the
half-lines from FR and FL to infinity, i.e. along the ZW axis,
outside the segment FRFL, the denominators of the kinematic
model in elliptic coordinates can never be zero.

Next section is dedicated to the design of a feedback control
law that steers the vehicle through the middle of the door



by exploiting the planar geometry that has been previously
described.

Remark 4: The problem to be solved can be viewed as a
stabilization problem in ζ = 0 by a smooth and time invariant
feedback control law. However, the existence of such control
law for this kind of nonholonomic systems is subject to the
Brockett’s result [24]. In the special case of (14), i.e. a driftless
affine-in-control system, the input vector fields are linearly
independent at the origin. Moreover, the number of controls is
less than the number of state variables. Hence, we can conclude
that there exists no solution to the stabilization problem by
a smooth and time invariant feedback control law. Notice
that, in polar coordinates, i.e. the degenerate case of elliptic
coordinates in case of a→ 0, a solution to the stabilization
problem at the origin exists, as proved in [25].

IV. FEEDBACK CONTROL LAW IN ELLIPTIC
COORDINATES

Let us consider the problem of designing a feedback control
law that steers the vehicle through the door as close as possible
to the middle. To design a such control law, let us first consider
the following change of inputs

ν = wa cosη coshξ

√
1+ tan2 η tanh2

ξ (15)

ω =−ωo +
2u(cosβ sechξ sinη− sinβ secη sinhξ )

a(cos(2η)+ cosh(2ξ ))
√

1+ tan2 η tanh2
ξ

(16)

where w and ωo are new control variables. By substituting (15)
and (16) in (14) the kinematic model reduces to

ξ̇ =−wcosβe

η̇ = wsinβe

β̇e = ωo .

(17)

The objective is now to design w and ωo such that η and βe
converge to zero. Let us hence assume w = w̄ and consider the
following candidate of Lyapunov

V (η ,βe) =
1
2
(
λη

2 +β
2
e
)
,

where λ is a positive constant parameter. Its time derivative,
after substituting (17), V̇ (η ,βe) = w̄λη sinβe +βeωo , and by
choosing

ωo =−Kβe− w̄λη
sinβe

βe
(18)

with K > 0 a constant parameter, we obtain

V̇ (η ,βe) =−Kβ
2
e ,

that is negative semi-definite. However, the control ωo is
well definite and smooth everywhere. Let us define R =
{(η ,βe)|V̇ = 0}: in this case, we have that R = {(η ,βe)|βe =
0}, i.e. βe is constantly zero. As a consequence, in R, also
β̇e = 0. Hence, it is straightforward to observe that the only
trajectory of (17) in R with control input given by (18) is such
that β̇e = 0 = ωo =−w̄λη . By assuming that w̄ and λ are not
zero, the previous equality is verified only if η is equal to

zero as well. In conclusion, R does not contain any trajectory
of the system, except the trivial trajectory (η ,βe) = (0,0).
All conditions of the local Krasowskii-Lasalle principle are
satisfied. We hence conclude that every trajectory starting
from inside a given level curve of V that contains the origin,
converges to the origin as t → ∞. Moreover, as V is radially
unbounded, we can conclude on the global asymptotic stability
of the origin. Of course, other nonlinear control approaches
could be used with system (17) to steer the vehicle through
the door. For example, an input-output feedback linearization
with η as measurement.

The control law (18), basically solves a path following
problem in elliptic coordinates. A similar solution can be
obtained in cartesian coordinates to stabilize the vehicle along
the ZW axis (models (1) and (17) are very similar). How-
ever, elliptic coordinates have some advantages: they can
be obtained directly from measurements in the image plane
(hence basically a state observer is not required). Moreover,
all hyperbolae pass through the door, hence guaranteeing that
the vehicle goes through it.

Remark 5: Each hyperbola intersects each ellipse in two
points, symmetric w.r.t. the ZW axis. The control laws de-
veloped in this paper are immune to this fact as long as in
remarks 3 the order of the landmarks is respected: the landmark
on the left side, labelled by “L”, and the landmark on the
right side, labelled by “R”. On the other hand, by using this
strategy, the vehicle cannot go through the door from the half-
plane characterized by x > 0 starting from the half-plane with
x < 0 and vice-versa. However, in a real scenario this is not a
standard situation.

V. THE BUNDLE OF CIRCLES

The feedback control laws provided in previous section is
not able to steer the vehicle through the middle of the door
but only near to it. The distance between the middle of the
door and the point where the vehicle crosses the door depends
on both initial conditions and hence, the values of the constant
parameters K and λ in (18) should be suitably chosen to reduce
as much as possible this error.

In this section, we will provide a feedback control law
able to drive the vehicle exactly to the middle of the door,
independently from the initial configuration. We will start by
analyzing the angle between the directions towards the two
landmarks (angle α in Fig. 3) and its first time derivative.
Then, we will show how this study brings to a particular
geometry, i.e. two mutually orthogonal bundles of circles, that
can be exploited to solve the problem at hand, overcoming all
drawbacks of the control law furnished in the previous section.

For any point Oc = (x, z) there always exists a circle Cα

passing through Oc and the projections of landmarks FL and
FR in the motion plane (see Fig. 3). Angle α = ̂FLOcFR is
constant along Cα (a.k.a. angle at the circumference).

Of course, on the contrary, for each value α ∈ [0, π] there are
two circles passing through FR and FL and symmetric w.r.t. the
ZW axis whose angle at the circumference is α: by varying α ∈
[0,π] we obtain a bundle of circles Cα that, with the previous



Fig. 3. For any point Oc = (x, z) there always exists a circle Cα passing
through Oc and the projections in the motion plane of landmarks FL and FR.
The angle at the circumference α is constant along Cα . Notice that, the tangent
and perpendicular line in Oc to the hyperbola through Oc, intersect the XW
axis in points A and B, respectively. The segment AB is the diameter of circle
Cα .

defined bundle of hyperbolae, form a skew coordinates system.
Indeed, circles and hyperbolae do not intersect orthogonally.

The expression of α in terms of ξ and η is

α = arccos
(

1− 4cos2 η

cos(2η)+ cosh(2ξ )

)
. (19)

while its time derivative α̇ , which is not reported here for the
sake of space, assumes the maximum value when

βe = βmax =−sgn(η)arccos

( √
2cosη coshξ√

cos(2η)+ cosh(2ξ )

)
,

(20)
hence necessarily βe 6= 0. Indeed, if βe ≡ βmax the vehicle is
aligned to the perpendicular to the circle Cα passing through
the current position of the vehicle. Of course, this happens
for all values of α and for all points in Cα . The set of all
possible curves orthogonal to all members of Cα constitutes a
second bundle of circles C⊥α , as shown in Fig. 4. In other
words, for any point Q ∈ Cα there always exists a circle
C⊥α of C⊥α , perpendicular to Cα in Q. Moreover, C⊥α crosses
perpendicularly all circles of Cα .

A. Bipolar Coordinates

The orthogonal bundles of circles previously introduced can
be regarded as an orthogonal coordinates system also known
as bipolar coordinates. The relationships between bipolar co-
ordinates τ and α and the cartesian coordinates x and z are

x =
asinα

coshτ− cosα
, z =

asinhτ

coshτ− cosα
,

assuming poles FR and FL on the ZW axis. Moreover, τ and
α assume values in the following ranges −∞ ≤ τ ≤ ∞ and
0≤ α ≤ π .

Fig. 4. The bipolar coordinate system consists of two orthogonal bundles of
circles. Starting from the same point Oc, circle C⊥α crosses segment FLFR in
a point which is closer to the middle of the door than the one reachable by
following the hyperbola through Oc.

The bipolar coordinates expressed in terms of Cartesian ones
are

τ = log
(

ρL

ρR

)
α = arccos

(
ρ2

R +ρ2
L−4a2

2ρRρL

)
.

(21)

From previous equations, after some algebra, it is possible
to show that curves with constant τ are given by x2 +(
z− a

tanhτ

)2
= a2

sinh2 τ
, which is the equation of a circle whose

center is on the ZW axis with coordinates (0, a
sinhτ

) and radius
R = a

|sinhτ| . These circles have been previously denoted by
C⊥α ∈C⊥α . On the other hand, if α is constant, we obtain curves
given by

(
x− a

tanα

)2
+ z2 = a2

sin2 α
which is the equation of a

circle passing through the projection in the motion plane of
landmarks FR and FL, centered on the XW axis at ( a

tanα
,0) and

radius R = a
|sinα| . These circles have been previously denoted

by Cα ∈ Cα .
To describe the position of the vehicle in the motion plane

w.r.t. the door, let us consider a slightly different pair of
coordinates, i.e. τ and α̂ = π−α . Notice that, α̂ is the sup-
plementary angle of the angle at the circumference. Moreover,
the middle of the door is the origin of those coordinates.
Finally, as for elliptic coordinates, to univocally describe the
vehicle configuration, let us introduce the angle βb between
the heading of the vehicle and the tangent to the circle C⊥α
passing through the vehicle position. The expression of this
angle w.r.t. α and τ and θ is

βb = arctan
(

sinα sinhτ

1− cosα coshτ

)
−θ +π . (22)

Remark 6: Assuming a calibrated camera, bipolar coor-
dinates can be computed directly from the image plane



measurements. Indeed, τ can be expressed in terms of
image coordinates of the couple of features as τ =

log
(

IyL
√

Ix2
R+α2

x
IyR
√

Ix2
L+α2

x

)
. Moreover, α̂ can be easily obtained as

α̂ = π −
(

arctan
(

IxL
αx

)
− arctan

(
IxR
αx

))
, while βb can be de-

termined from (22), where θ can be obtained combining (10)
with (13). Hence, also βb can be found directly from image
plane measurements.

B. Kinematic model of the vehicle in bipolar coordinates
The kinematic model of the vehicle in bipolar coordinates

λ = (τ, α̂, βb) is

τ̇ =
ν

a
((1+ cos α̂ coshτ)sin(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))+

+cos(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))sin α̂ sinhτ)

˙̂α =
ν

a
(−cos(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))(cos α̂ coshτ +1)+

+sin α̂ sin(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))sinhτ)

β̇b =−ω− ν

a
(cos α̂ + coshτ)2(cosβb csc α̂ + cschτ sinβb)

(cos α̂− coshτ)
√

1+(cot α̂ cothτ + csc α̂ cschτ)2
.

(23)
Based on (19) and (20) the maximum value ˙̂αmax of ˙̂α is

obtained along circles of C⊥α , i.e. with βb = 0. By the second
of (23) we have

˙̂αmax = ˙̂α
∣∣
βb=0 =−

ν(cos α̂ + coshτ)

a
. (24)

For positive values of ν , function (24), is negative and is zero
if τ = 0 and α̂ = π (or α = 0), i.e. very far from the door.

C. A simple strategy to steer the vehicle through the door
exploiting the geometric properties of the bundle of circles

A strategy to steer the vehicle through the middle of the
door follows from these geometric facts: for any point Q∈C⊥α
the tangent line to C⊥α passes through the center of the circle
Cα through Q. Moreover, the center of Cα is in turn at the
intersection between axis XW and the circle C2α (i.e. a circle
of Cα whose angle at the circumference is 2α). In particular,
the center of circle Cπ/2 coincides with the middle of the door
(see Fig. 4). Hence, starting from points Q such that α < π/2,
a possible strategy is to follow a circle C⊥α of bundle C⊥α until
the circumference characterized by α = π/2 is reached. Then,
it is sufficient to move along a straight line to pass through
the middle of the door.

Even if the strategy previously described is able to steer the
vehicle through the middle of the door, it has some drawbacks
w.r.t. the feedback control law given by (28) and (27). Indeed,
while during the first phase a feedback control law guarantees
that the vehicle follows a circle of C⊥α until Cπ/2, during the
second phase, a feedforward control with ω = 0 and u= const.
is applied. Moreover, the crossing angle, which is not π/2,
depends on the point reached on the circle Cπ/2. Finally,
if at the beginning α > π/2, the vehicle has to reach Cπ/2
backward. Next section is dedicated to the design of a feedback
control law in bipolar coordinates overcoming all drawbacks
of the simple strategy described in this subsection.

VI. FEEDBACK CONTROL LAW IN BIPOLAR
COORDINATES

The main idea of designing the feedback control law in
bipolar coordinates is to define a smooth vector field E(·)
obtained by derivation of an appropriate potential function
F(·). Let us hence consider the following function

F(τ, α̂) =
(−cos α̂ +K coshτ)

a
, (25)

where K is a positive constant. This function is always positive
and has global minimum at the middle of the door, i.e. with τ =
0 and α̂ = 0 (see also Fig. 5). Notice that, function F(·) is very
similar to (24). Considering F(τ, α̂) as a potential function,
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Fig. 5. Function F(τ, α̂) for different values of α̂ and τ and K = 1. The
minimum is at the origin, i.e. at the middle of the door.

the associated vector field is

E(τ, α̂) = ∇F(τ, α̂) =
coshτ− cos α̂

a2

[
K sinhτ

−sin α̂

]
. (26)

Fig. 6(a) shows level curves of F(τ, α̂) as well as the vector
field. Notice that, all flow lines converge toward point (τ, α̂) =
(0,0), that, in Cartesian coordinates, corresponds to the middle
of the door. In Fig. 6(b), the same potential field and associated
vector field in Cartesian coordinates is also reported.
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Fig. 6. Vector field obtained as the gradient of F(τ, α̂) with K = 1.



The objective is now to determine a feedback control law
that steers the vehicle along the vector field represented in
Fig. 6(a) by means bipolar coordinates, or represented in
Fig. 6(b) by means Cartesian ones. Let φ be the bearing angle
βb when the vehicle is aligned with the vector field at any
point (τ, α̂). The angle φ can be easily obtained from (26),

φ =−arctan2(K sinhτ, sin α̂) .

Let us define the error σ = βb−φ and force the dynamics of
σ to be σ̇ =−Kβ σ , Kβ > 0, by

ω = Kβ (βb−φ)+ φ̇+

− ν

a
(cos α̂ + coshτ)2(cosβb csc α̂ + cschτ sinβb)

(cos α̂− coshτ)
√

1+(cot α̂ cothτ + csc α̂ cschτ)2
.

(27)
Once the vehicle is aligned with the vector field, it should
reach the middle of the door. To do that, let us consider the
following continuously differentiable function V in terms of τ ,
α̂ and σ ,

V =
1
2
(τ2 + α̂

2 +σ
2) ,

and consider its time derivative along the trajectories of the
system. By using (27) we obtain

V̇ =−Kβ (βb−φ)2−ν
(cos α̂ + coshτ)(α̂ cosβb− τ sinβb)

a
.

and, by choosing the forward velocity as

ν = Kν(α̂ cosβb− τ sinβb) , (28)

we finally have

V̇ =−K1 (βb−φ)2− (cos α̂ + coshτ)(α̂ cosβb− τ sinβb)
2

a
≤ 0 ,

which is negative semi-definite. As the function V is posi-
tive definite, according to the Lasalle’s invariance principle,
the system trajectories converge to the largest invariant set
R = {λ |V̇ (λ ) = 0}. By simple computation, R = R1 ∨ R2
where R1 = {λ |{α̂ cosβb − τ sinβb = 0} ∧ {βb = φ}} and
R2 = {λ |{α̂ = 0,τ = 0}∧{βe = φ}}. After simple algebra, we
obtain that R1 = {λ |{α̂ = π}∧{τ = 0}} while R2 = {λ |λ = 0}.
It is possible to show that, if K 6= 0, R1 is not an invariant set.
Indeed, for λ = [0, π, 0]T we have ν 6= 0 and thus the system
can escape from R1. As a consequence, point λ = (0, 0, 0)
is the only invariant set and we can conclude on the local
asymptotic stability of the origin. Moreover, as the Lyapunov
function is radially unbounded, we can conclude on the global
asymptotic stability of the origin. Differently from the control
law developed in Section IV, the control law developed in this
section is able to steer the vehicle exactly through the middle
of the door.

As for hyperbolae and ellipses, each circle of bundle Cα

intersects each circle of bundle C⊥α in two points, symmetric
w.r.t. the ZW axis. Also the control laws in bipolar coordinates
are immune to this fact by following the same reasoning as in
Remark 5.

VII. SIMULATIONS

In this section, simulations showing the effectiveness of
control laws proposed in Sections IV and VI are presented.
For both cases, two virtual scenario are considered. In the
first one, the robot is inside a room and the objective is to
leave the room passing through the door. In the second one,
the robot is in a corridor and the objective is to enter a room
passing through the door. The door is represented by two 3D
points located at (0, 70, 40) cm and at (0, 70,−40) cm w.r.t. a
global reference frame. These points are at the same height
above the plane of the robot motion. The 3D points of the
scene are projected in the image plane through a simulated
pinhole camera. The size of the image is 640× 480 and the
characteristic angle of the camera is almost π . Moreover, the
image frames are captured with a frequency of 15 frames per
second. If possible, both elliptic and bipolar coordinates are
computed through image measurements and different level of
white gaussian noise with standard deviation σ = 5, 15 pixel
to points in the image plane is also added. Indeed, as in this
paper the camera is fixed on the robot, it is not possible in the
second scenario (see Figs. 7(c) and 8(c)) to perform the task
without loosing at least one landmark, even if a very large FOV
has been considered. For this reason, in the second scenario we
directly assume that elliptic or bipolar coordinates are available
and some white Gaussian noise, equivalent to have a 5 pixel
Gaussian noise in the image plane, is directly added to the
state variables.

In Figs. 7 and 8 trajectories of the vehicle are shown
with and without noise for the two cases, chosen among
the several trajectories analyzed for each case. The absolute
average error w.r.t. the middle of the door is also reported in
the caption of each picture with and without noise, i.e. εw and
εwo, respectively. The simulations confirm that both feedback
control laws work properly in spite of image noise. Moreover,
while the control law in elliptic coordinates is only able
to steer the vehicle near the middle of the door (the error
depends on the constant parameters in the control law), the
one in bipolar coordinates can drive the vehicle exactly to the
middle of the door. However, this is not the only difference.
In particular, in bipolar coordinates the behavior of the vehicle
is more suitable to accomplish the task of entering in a room
from a corridor. On the other hand, both methods are able
to accomplish the task of going out of a room even if the
trajectories followed by the vehicle are quite different, being
more suitable the one in elliptic coordinates. Indeed, in elliptic
coordinates, small variations in the control parameters traduce
in very different shape of the trajectories. However, to reduce
as much as possible the crossing error at the entrance of
the door, this parameters should be selected as a function
of the initial conditions. It is important to note that both
the control laws in elliptic and bipolar coordinates guarantee
good performance with levels of image noise up to 15 pixels,
which constitutes a very high amount of noise. The use of a
feedback control expressed in elliptic and bipolar coordinates
seems to play a very important role in reducing the effects
of noise. Future works will be dedicated to deeply analyze
this aspect. However, the control law in bipolar coordinates
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(a) σ = 5 pixel: εw = 2.00±1.15 cm and εwo =
1.79±1.02 cm.
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(b) σ = 15 pixel: εw = 2.61± 1.43 cm and
εwo = 1.88±1.03 cm.
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(c) σ = 5 pixel: εw = 4.43±4.68 cm and εwo ≈
6.85±2.92 cm.

Fig. 7. Simulations with the feedback control law in elliptic coordinates: trajectories of the vehicle without and with white gaussian noise, continuous and
dashed lines, respectively. The vehicle leaves a room in (a), (b) and (c) and enters a room from a corridor (d), by passing through a door.
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(a) σ = 5 pixel: εw = 0.0028± 0.096 cm and
εwo = 0.0017±0.0011 cm.
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(b) σ = 15 pixel: εw = 0.14± 0.70 cm and
εwo = 0.0017±0.001 cm.
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(c) σ = 5 pixel: εw = 0.1±0.33 cm and εwo ≈
0 cm.

Fig. 8. Simulations with the feedback control law in bipolar coordinates: trajectories of the vehicle with and without white gaussian noise, continuous and
dashed lines, respectively. The vehicle leaves a room in (a), (b) and (c) and enters a room from a corridor (d), by passing through a door.

seems to be more sensitive to image noise than the control
law in elliptic coordinates when the vehicle is far away from
the door, making difficult the tuning of the control parameters.
On the other hand, the control laws in bipolar coordinates work
very well near the door, especially while entering a room from
the corridor. This may suggest a possible strategy: use elliptic
control laws when the robot is far away from the door and
bipolar ones when it is sufficiently near the door or when the
vehicle is very near the wall.

As a final observation, it is important to point out that, even
if the method relies on the assumption that the two landmarks
are at the same height, we have simulated our method also
in case of differences in height up to 10 cm, observing that
the method works quite well also in this case. For the sake of
space, we have not reported these simulations.

Both control laws depend on parameter a which is half of
the width of the door. This parameter is constant and can be
assumed to be known or estimated via a suitable observer.
However, Fig. 9 shows how errors in the estimation of a
influence the trajectories of the vehicle. In particular, starting
from the same configuration, we have considered three cases:
a= 40 cm (the actual value), a= 80 cm (twice the actual value)
and a= 20 cm (half of the actual value). Simulations show that

errors in the estimation of parameter a do not compromise the
effectiveness of the control laws. The feedback control law in
elliptic coordinates seems to be more sensitive to variations of
the parameter a than the one in bipolar coordinates.

VIII. EXPERIMENTAL RESULTS

Referring to Fig. 10, the experimental setup was com-
prised of a Vivotek Wireless Network Camera with Pan–
Tilt (PT7137) fixed at the middle of the wheel axel of the
RobuLAB–10 (by Robosoft) mobile platform. The image res-
olution was 640×480 and the camera horizontal and vertical
FOV amplitude are around 50 deg and 40 deg, respectively.
Moreover, in our experiments, the pan–tilt mechanism is
not used. The camera has been calibrated by the Matlab c©

calibration toolbox. The result of this procedure, has furnished
the focal length: αx = 712.28±3.32 pixel and αy = 711.93±
3.27 pixel; the principal point: Pcc = [330.98, 273.42] ±
[6.69, 6.06] pixel; the skew: αc = 0, angle of pixel axes is π/2;
the distortion: Kc = [−0.40, 0.24, 0.0018, −0.00011, 0]±
[0.02, 0.09, 0.0015, 0.0012, 0]; the pixel error: perr =
[0.35, 0.29] pixel. Notice that, the camera presents a radial
distortion. The noise level has been estimated to have a
standard deviation σ = 0.05 pixel and the controller rate was
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(a) Control laws in elliptic coordinates developed in
section IV.
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(b) Control laws in bipolar coordinates developed in
section VI.

Fig. 9. Trajectories of the vehicle starting from the same initial configuration
q = (200,−50,7π/6), but considering in the control law a = 40 cm (the actual
value), a = 80 cm (twice the actual value) and a = 20 cm (half of the actual
value).

around 20 Hz. The distance between the two landmarks is
68 cm.

Without loss of generality and to simplify the experimental
setup, we have decided to avoid the use of door detection
algorithms from which the two landmarks characterizing the
door can be obtained. The door is indeed represented by two
circular landmarks at the same height from the plane of the
robot motion. The algorithms have been developed in C++.
Two scripts were running in parallel, communicating with each
other by ROS Hydro. The first one was dedicated to grab an
image from the wireless camera, filter it and detect the position
of the landmarks in the image plane by using tools available
in the OpenCV library. Once the landmarks are detected, we
used functions provided by the VISP library to smoothly and
robustly track the features in the image plane. The second
script was dedicated to receive the landmarks position in the
image plane, to use it to compute the control inputs ν and ω

and to send them to the vehicle.
Because of the limited FOV aperture, the robot loses the

landmarks while passing through the door. Indeed, as shown in
the Appendix, there is a region around the door where the robot
can not maintain in view the landmarks. To circumvent this
problem, in our experiments, the parameters in the control laws

are chosen in order to aligned the vehicle to the line passing
through the middle of the door perpendicularly to the segment
FLFR, just before losing the landmarks. Starting from this
configuration, which is quite near to the door, depending on
the FOV amplitude, an open loop control law with ω = 0 and
ν = const. is applied. Of course, other solutions might be used.
For example, if the heights of the landmarks are available, by
using the last measurements of the landmarks in the image
plane (just before going outside) and the pinhole camera
model, a prediction of the future positions of the landmarks
in the image plane can be obtained. These predictions can be
used in the feedback control laws provided in this paper to
steer the vehicle through the door even if the landmarks are
outside of the image plane. The heights of the landmarks can
be assumed known or estimated by a suitable procedure or
observer.

In Fig. 11 and Fig. 12 the trajectories of the robot starting
from different initial configurations and obtained by applying
the feedback control laws based on elliptic and bipolar coor-
dinates, respectively, are reported. The state variables of the
robot and hence the trajectories towards the door have been
measured by using the Motion Analysis Capture system. Of
course, no information coming from this sensor system are
used in the control laws which provide a purely Image-Based
visual servo control. A video of the experiments is available
(Video).

IX. CONCLUSIONS AND FUTURE WORKS

In this paper, a geometric approach to steer a robot subject
to nonholonomic constraints through a door by using visual
measures coming from a fixed on-board monocular camera, has
been provided. The planar geometry that, in a natural way, has
been built around the door consists of bundle of hyperbolae,
ellipses and orthogonal circles. Moreover, feedback control
laws and some strategies able to drive the vehicle through
the door by exploiting this geometry have been established.
Realistic simulations and experiments have been also reported
to show the effectiveness of our solutions.

This work can be easily extended to other navigation and
control problems, as e.g. controlling the vehicle amidst obsta-
cles, under the condition that pairs of features that correspond
to 3D points that in turns belong to different obstacles can be
extracted from the image plane.

The vision-based strategy presented in this paper can also be
related to human locomotion. In [26], by modeling the human
locomotion as a unicycle ([27]), an inverse optimal control
approach for understanding the cost functional that humans
minimize during a rest–to–rest task, as e.g. to approach a
door, has been used. The results enlighten the role of the
bearing angle, and by consequence the role of vision, in
the formation of locomotor trajectories. In Fig. 13(c) some
examples of trajectories followed by humans are reported.
Subjects, starting from the same initial configuration, have
to reach different final positions with the same orientation,
i.e. 120 deg in Fig. 13(c). A similar experiment has been done
here simulating the unicycle vehicle controlled by the feedback
control laws in elliptic and bipolar coordinates developed in

http://projects.laas.fr/gepetto/uploads/Members/ICRA2015_video.mp4


FRFLRobulab 10

On-board 
camera

Robulab 10

Door

DoorFR FL On-board 
camera

From behind the door

Fig. 10. Experimental setup.

0 100 200 300 400 500
−150

−100

−50

0

50

100

150

200

250

FL

FR

XW [cm]

Z W
 [c

m
]

(a) Trajectories followed by the vehi-
cle.

0 5 10 15 20 25
0

100

200

300

400

500

600

t [s]

X 
[c

m
]

(b) x.

0 5 10 15 20 25
−40

−20

0

20

40

60

80

100

120

140

160

t [s]

Z 
[c

m
]

(c) z

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t [s]

θ 
[r

ad
]

(d) θ .

Fig. 11. Experimental results obtained applying the control law in elliptic coordinates. The control parameters are w = 0.0012, K = 0.7 and λ = 310. Average
linear velocity of 0.3 m/s.
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Fig. 12. Experimental results obtained applying the control law in bipolar coordinates. The control parameters are K = 2, K1 = 4 and Kν = 0.15. Average
linear velocity of 0.4 m/s.

this paper. Results of this simulation are reported in Figs. 13(a)
and 13(b). Even if the trajectories followed by the vehicle
resemble the human ones, the choice of the values of the
constant parameters that appear in the control laws are chosen
by hand after several trials. Future works will be dedicated
to better determine these values, and to introduce a pan–tilt
mechanism to take into account that humans can turn the head
and gaze [28]. However, when a human subject goes toward
a target at a constant velocity it is shown that it behaves as
a nonholonomic system: its velocity remains tangent to its
sagittal plane ([27]).

For all these reasons, it would be interesting to integrate
this methodology in the classical walking pattern generators
to steer humanoid robots, e.g. the HRP-2, towards a target,
especially if, after a suitable analysis, the trajectories generated

by using the control laws developed in this paper turn out to
really be human-like. In this perspective, we will take also into
account other biological results on how human use their visual
sensor system in locomotion. In particular, we will study how
our geometry allows to combine both the bearing angle and
the focus of expansion to generate a visual feedback control
of locomotion as humans do [29].
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The point of view addressed in this paper differs from the
previous ones. We do not consider neither the sensory in-
puts nor the complexity of mechanical system modeling the
human body. The point of view is complementary and more
macroscopic than the standard biomechanics approaches.
We want to take advantage of the observation of the shape
of the locomotion trajectories in the simple 3-dimensional
space of both the position and the orientation of the body.
We show that the shape of the human trajectories can be
described by a simple differential system. The differential
model we propose opens an original bridge between the
researches performed in the human physiology and the
mathematical background developed on the nonholonomic
systems in mobile robotics. This point of view consti-
tutes the first contribution of the paper. The most popular
nonholonomic system is a rolling vehicle. This vehicle
rolls without sliding. This non-sliding constraint defines
the distribution of Eq. (1). Motion planning and control for
rolling vehicles is an active research area in mobile robotics
[2], [8]. The controls of a vehicle are usually the linear
velocity (via the accelerator and the brake) and the angular
velocity (via the steering wheel). The question addressed
in this paper can be roughly formulated as: where is the
“steering wheel” of the human body located? Several body
frames have been considered on the human skeleton (head,
pelvis and trunk). The conclusion of our experimental study
is to show, first that there exists a body frame that accounts
for the nonholonomic nature of the human locomotion and
second that the trunk is the best “steering wheel” compared
to the head and the pelvis.

The following section presents the experimental proto-
col. This protocol is original. This is the first one that
considers the problem of the shape of the human loco-
motion trajectories just defined by a goal to be reached
in both position and orientation. Then we present the data
analysis and processing in Section III. A comparative study
involving head, pelvis and trunk frames is presented in
Section IV. The differential model of Eq. (1) is instantiated
with the trunk frame in Section V. By integrating such a
differential model we show that the simulated trajectories
fit with the real ones from a statistical study including 1,560
trajectories performed by seven subjects. The conclusion
develops the interest of the proposed differential model for
future research directions.

II. APPARATUS AND PROTOCOL

We used motion capture technology to record the trajec-
tories of body movements. Subjects were equipped with 34
light reflective markers located on their head and bodies.
The sampling frequency of the markers was 120 Hz using
an optoelectronic Vicon motion device system (Vicon V8,
Oxford metrics) composed of 24 cameras. It is important
to mention that we do not apply any kind of filter to raw
data in our analysis (see Fig. 1).

(a) (b)

(c) (d)

Fig. 1. Some examples of actual trajectories with the same final
orientation. (a), (b), (c) and (d) show all actual trajectories where the
final orientation is 330 deg., 120 deg., 90 deg. and 270 deg. respectively.

To examine the geometrical properties of human loco-
motor paths, actual trajectories were recorded, in a large
gymnasium in seven normal healthy males who volunteered
for this study. Their ages and heights ranged from 25 to
30 years and from 1.60 to 1.80 m respectively.

In order to specify the position of the subject on the plane
we established a relationship between the laboratory’s fixed
reference frame and the trajectory’s reference frame which
can be computed using either head, trunk or pelvis markers
as we explain in Section III. Hence, the configuration A of
the subject is described as a 3-vector (xa, ya, θa).

(c) By humans (From
[27], courtesy of the au-
thors).

Fig. 13. Some examples of trajectories with the same final orientation,
generated by the control laws in elliptic and bipolar coordinates and by
Humans. In (d), (e) and (f) the final orientation id 120 deg.
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APPENDIX

The control laws developed in this paper do not take into
account the Field–Of–View (FOV) limits of the on–board
camera. In this appendix we will study and analyze this aspect.



(a) Horizontal FOV limits. (b) Vertical FOV limits. (c) Subdivision of the motion plane in regions
according to the FOV limits in case of γ <
2arcsin(Rb/a).

(d) Subdivision of the motion plane in
case of γ ≥ 2arcsin(Rb/a).

Fig. 14. Analysis of the FOV limits.

A. Analysis of FOV limits

Let us first consider the region of points that violate the
FOV limits for any orientation of the robot. In other words, in
this region, both landmarks can not be maintained inside the
FOV, whatever the orientation of the vehicle.

Let γ and γ̂ be the horizontal and vertical FOV aperture,
respectively. Because of horizontal FOV limits, there exists a
region Z1 around the door such that the two landmarks can not
be contemporary maintained between the left and right bounds
of the image plane. It is straightforward to show (see [3]) that
Z1 is bounded by two arc of circles (Ca

γ and Cb
γ ) whose angle

at the circumference is exactly equal to γ (see Fig. 14(a)).
Because of vertical FOV limits, considering each landmark

separately, there is a region around it that the vehicle can
not reach while maintaining the landmark between the upper
and lower bounds of the image plane. Also in this case, it is
easy to show (see [30]) that this regions is bounded by two
circumferences (CR

γ̂
and CL

γ̂
for the right and left landmark)

centered at the projection of the landmark on the motion
plane and with radius equal to Rb =

h
tan(γ̂/2) (see Fig. 14(b)).

However, if we consider the problem of maintaining both
landmarks between the upper and lower bounds of the image
pane, the region Z2 that the vehicle can not reach is a planar
capsule delimited by two straight line sI and two semicircle
ends (see Fig. 14(b)). This is a direct consequence of the fact
that when the landmark is on the upper (or lower) bound of
the image plane, the vehicle is aligned with the tangent to
the involute of circle passing through the current position of
the vehicle (see [30]). These involute of circles, named by
IR and IL (see Fig. 14(b)), have CR

γ̂
and CL

γ̂
, respectively, as

base circles. When both features are on the upper (or lower)
vertical border of the image plane, the vehicle is aligned
with the tangent line to both involutes IR and IL. Moreover,
by geometrical construction, the perpendicular line to each
involute in any point of it, is tangent to the base circle.

Considering now horizontal and vertical FOV limits to-
gether: the region of point that the vehicle can not reach
while maintaining both landmark inside the image plane is

Z1∪Z2. In Fig. 14(c) the subdivision of the motion plane based
on previous analysis is shown in case of γ < 2arcsin(Rb/a),
i.e. along the XW axis, the horizontal FOV limits are activated
before the vertical ones while approaching the door.

B. Control strategy in case of FOV limits
From previous section, it is clear that the vehicle can not

reach the middle of the door maintaining both landmarks in
sight. To avoid this problem, the control law developed in
Section VI can be modified in order to reach the configuration
λ̄ = [0, π − γ, 0]T , i.e. point λ̄ in Fig. 14(c), instead of the
configuration λ̄ = [0, π, 0]T . This can be done by considering
the modified potential function

Fγ(α̂, τ) =
(−cos(α̂− (π−δ ))+K coshτ)

a
and vector field

Eγ(τ, α̂) =
coshτ− cos(α̂− (π−δ ))

a

[
K sinhτ

−sin(α̂− (π−δ ))

]
.

and finally the following candidate Lyapunov function

V =
1
2
(
τ

2 +(α̂− (π−δ ))2 +σ
2) , (29)

where δ = γ . Once the vehicle reaches λ̄ , an open loop control
can be applied, e.g. with controls ν = const. and ω = 0.
However, especially from a practical point of view, depending
on both the value of γ (and hence the distance between the
reached point and the door) and the final error which depends
also in the image noise, this strategy might steer the vehicle
very far from the middle of the door. In this case, an estimation
of the landmark positions based on the camera model can be
used until a new pair of landmarks is available. To do that, the
height of the landmarks must be known, e.g. by an observer
that estimate h during the first phase in which the vehicle is
approaching λ̄ . Once h is obtained, it can be used to estimate
landmark positions on the image plane (even if their are outside
it) that can be in turn used in the feedback control laws.



Finally, when the vehicle is sufficiently far away from the
door, the horizontal limits of the FOV become more restrictive
than the vertical ones. From results reported in [3], when the
landmark moves on the right or on the left border of the
image plane, the vehicle moves along a logarithmic spiral
rotating counterclockwise or clockwise, respectively, around
the projection on the motion plane of the landmark position.
Depending on the value of γ , there exist two logarithmic
spirals, T R and T L in Fig. 14(c), passing through λ̄ , whose
characteristic angle2 is constant and equal to γ/2. The spirals
are tangent in (τ, π − γ) and subdivide the motion plane in
three regions. Referring to Fig. 14(c), starting from Region
II and III with an orientation such that both landmarks are
in view, the vehicle can not reach point λ̄ maintaining both
landmarks inside the FOV along the whole trajectory. From
these regions, a preliminary maneuver that steers the vehicle
in Region I is needed to achieve the task. Indeed, from Region
I the control law obtained from (29) might be able to steer the
vehicle in λ̄ by appropriately choosing the control parameters.
If one feature reaches the right or left border of the image
plane, the vehicle can moves along the logarithmic spiral until
point λ̄ is reached. In this case, the value of δ to be used in
the Lyapunov function (29) is 2arcsin(Rb/a).

Previous analysis is valid even if Rb ≥ asin(γ/2), or γ ≥
2arcsin(Rb/a). In this case, point λ̄ is in the middle of the line
sI where logarithmic spiral are not tangent (see Fig. 14(d)).

In particular, if γ = π , Ca
γ and Cb

γ reduce to the segment
FRFL while the logarithmic spirals become two circles cen-
tered at the projection on the motion plane of each landmark
and passing through the middle of the door.
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