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Inversion Symmetry of the Euclidean Group:
Theory and Application in Robot Kinematics

Yuanqing Wu, Harald Löwe, Zexiang Li

Abstract—Just as a three dimensional (3-D) Eu-
clidean space can be inverted through any of its points,
the special Euclidean group SE(3) admits an inver-
sion symmetry through any of its group elements. In
this paper, we show that the inversion symmetry of
SE(3) can be systematically exploited to study the
kinematics of a variety of kinesiological and mechanical
systems, and therefore has many potential applications
in robot kinematics. The motion sets of these systems
are inversion invariant (or symmetric) submanifolds of
SE(3) that resemble a 2-D plane in the 3-D Euclidean
space. Symmetric submanifolds, unlike Lie subgroups
of SE(3), inherit unique geometric properties from in-
version symmetry. They can be generated by kinematic
chains with symmetric joint twists and joint variables.
The main contribution of this paper is: (i) to give a
complete classification of symmetric submanifolds of
SE(3); (ii) to investigate their geometric properties
for robot applications; and (iii) to develop a generic
method for synthesizing their kinematic chains.

I. Introduction
The special Euclidean group SE(3) refers to the Lie

group of all proper rigid displacements of 3-D Euclidean
space. It admits both a 6-D manifold structure and a
compatible group structure under composition and inverse
of displacements. Theory and application of Lie groups
from a kinematics viewpoint is initiated by the work of
Hervé ([2]) and Brockett ([3]), and is successfully applied
to various aspects of robotics (kinematics [4], dynamics [5],
control [6], localization [7], bio-inspired robotics [8], etc).

(Lie) subgroups of SE(3) are subsets closed under group
multiplication and inverse. A complete classification of ten
classes of Lie subgroups of SE(3) can be found in [2,9].
These subgroups can often be used to represent task spaces
of mechanisms and robots with less than six DoFs: 1-DoF
lower pairs or primitive joints such as helical, revolute
or prismatic joint generate one-parameter subgroups of
SE(3); planar robots have a configuration space of SE(2),
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the 3-D planar Euclidean group; orientation space of
satellites and UAVs are represented by the 3-D special
orthogonal group SO(3); pick-and-place robots generate
the 4-D Schönflies group.

The Lie algebra se(3) of SE(3) also plays an important
role in robot kinematics. As infinitesimal transformations
of SE(3), elements of se(3) (called twists) give rise to rigid
displacements (elements of SE(3)) via the exponential
map ([4]). se(3) is often identified with the tangent space
TISE(3) at the identity I ∈ SE(3), or identity tangent
space for short ([10,11]). The exponential map restricted
to a 1-D subspace of se(3) generates a one-parameter
subgroup of SE(3). There is a one-to-one correspondence
between Lie subalgebras (i.e., subspaces that are closed un-
der the Lie bracket) of se(3) and connected Lie subgroups
of SE(3) (see for example [10]-Ch IV, Theorem(8.7)).
Besides, a twist also corresponds to the geometric notion
of a screw; a subspace of se(3) corresponds to a system of
screws, or a screw system ([12]–[15]).

Recent advances in type synthesis of parallel robots
([16]–[24]), in particular, can be attributed to successful
exploitation of the algebraic and geometric properties of
se(3). On the one hand, given a set of joint twists as a
basis of se(3), the corresponding kinematic chain or serial
robot has the motion pattern of SE(3) by the product
of exponentials (POE) formula ([3,4], see also canonical
coordinates of the second kind in [11]). The POE formula
directly generalizes to Lie subgroups of SE(3), such as
in the Euler angle parametrization for SO(3). These pa-
rameterizations are natural in the sense that a change of
basis leaves motion pattern of the generated task space
unaltered. In screw theory, the naturality of POE formula
for SE(3) and its Lie subgroups is also referred to as full
cycle mobility ([13,23]). On the other hand, synthesis of
parallel robots involves intersection of screw systems, or
dually, sum of reciprocal screw systems ([12,13,21,23,24]).

Not all motion patterns can be modelled by Lie sub-
groups of SE(3). The motion patterns of two DoF robot
wrists or orientation devices ([25]–[27]), three to five DoF
haptic devices ([28]), and five-axis machines ([29,30]) for
example, can only be modelled by submanifolds of SE(3).
General submanifolds of SE(3) lack group structure and
Lie algebraic properties, and in general defy a systematic
classification. The tangent spaces evolve in an unpre-
dictable way, making it difficult to infer full cycle mobility
from the screw system at any particular configuration
([21,23,24]). Notable exceptions include Hervé’s dependent
product of two Lie subgroups (POS, [31]), which subse-
quently found great success in type synthesis of novel
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Fig. 1. (a): Listing’s law of eye saccadic movement: rp, rg rb denote
the primary direction (perpendicular to the Listing’s plane), the
gaze direction and their angle bisector (perpendicular to the velocity
plane); (b): principle of constant-velocity shaft coupling: ωi, ωo and
ωr = ωo − ωi are the input, output and CV coupling velocities
respectively; (c): Leonardo Da Vinci’s “Proportion of man”; (d):
Mark Rosheim’s Omni-wrist III (Courtesy of Mark Rosheim)

parallel robots ([24,32]). Meng et al. proved that POSs
are well defined and classifiable submanifolds, and can
be naturally represented by the POE formula too (see
Category II submanifolds in [24]-Table II). Therefore POSs
can be generated by kinematic chains of primitive joints.
Carricato et al. [33,34] showed that the tangent spaces
of a POS are all mutually congruent, thus defining what
is called a persistent screw system. When a persistent
screw system exists, the corresponding submanifold may
be generated by the envelop of a tangent space smoothly
moving in SE(3) like a rigid body ([33]–[37]).

Although the POE formula unifies the study of Lie
subgroup and POS motion patterns, it may fail to model
the motion patterns of the following systems. First, con-
sider human’s eye saccadic movement. Donders (1848)
noticed that human eyes only have 2 DoFs because its
orientation is uniquely determined by the line of sight
([38]). This 2-DoF motion pattern, however, is not the
same as that of the 2-axis Hooke’s joint, which is a
POS of two one-parameter subgroups. The instantaneous
velocity of the latter violates the so called Listing’s law 1

([38], see Fig.1(a)). Similarly, consider a constant-velocity
(CV) shaft coupling that allows a drive shaft to transmit

1The Listing’s law about human eye movement, also called the half-
angle law, states that: as the line of sight turns away from the normal
of the Listing’s plane (identity configuration), the instantaneous
velocity plane turns away from the Listing’s plane half in magnitude.

revolute motion, through a variable angle, at a constant
rotational speed ([16], see Fig. 1(b)). Such device has
recently found applications in robotic wrists ([25,39,40]),
robotic surgical tool ([41]), and hyper-redundant robot
arms ([42]). A CV coupling does not have the same motion
pattern as a Hooke’s joint, since the latter is a well known
non-CV joint. Unlike a Hooke’s joint, the instantaneous ve-
locity of a CV coupling (for intersecting shafts) always lies
in the bisecting plane 2. As the output shaft represented
by ωo turns away from the input shaft represented by ωi,
the bisecting plane turns in the same direction and half in
magnitude. Third, consider the human shoulder complex
movement. Rosheim ([43]) observed that the shoulder
complex movement cannot be modeled as ball-in-socket
motion, for otherwise it would not fit the geometrical pro-
portions as depicted in Da Vinci’s Proportion of man (see
Fig. 1(c)). Instead, he claimed that the omni-wrists ([25])
give a better approximation of shoulder movement ([43]).
An example of these wrists is given in Fig. 1(d), which
employs a parallel kinematic structure with four identical
U · U chains (U stands for universal joint) satisfying a CV
coupling arrangement ([16,44]). Therefore, the shoulder
complex motion pattern is neither a Lie subgroup nor a
POS.

Progresses toward understanding the aforementioned
motion patterns are very limited. Hunt [16] developed
a general theory for analysis and synthesis of CV shaft
couplings using screw theory. He observed that their joint
screws obey a mirror or bilateral symmetry about the
bisecting plane. Typical generators include U · U , R · S · R
(R stands for revolute joint and S for spherical or ball
joint) and R · PL · R (PL denotes planar gliding joint)
kinematic chains (see also [45]). But he did not specify
the underlying submanifolds. Bonev approached several
parallel CV couplings with the so called tilt and torsion
angles (or modified Euler angles), a parametrization for
SO(3) different from the POE formula ([46]). He noticed
that the torsion angles for these mechanisms are always
zero (hence the name zero-torsion mechanisms). Carricato
[45] used CV coupling chains connected in parallel to
design orientational parallel manipulators with special
decoupling properties. The submanifolds depicting their
motion patterns have not been fully investigated yet.

Inspired by Hunt ([16]) and Bonev’s ([47]) works, we
intend to develop in this paper a holistic model for the
aforementioned exceptional motion patterns. We shall
show that the Listing’s law of eye saccadic movement,
the mirror symmetric arrangement of joint screws of a CV
shaft coupling, and the vanishing of torsional motions can
all be linked to a special property called the inversion sym-
metry of the special Euclidean group SE(3). Mathemat-
ically, SE(3) is called a symmetric space ([10]-Definition
(8.1),[48,49]). We shall show that the exceptional motion
patterns are inversion invariant (or symmetric) subsets

2The red plane shown in Fig.1(b): (i) it is perpendicular to the
plane of input and output velocity ωi and ωo (the yellow plane in
Fig.1(b)); and (ii) it bisects the complement of the working angle
formed by ωi and ωo.
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of SE(3), which we call the symmetric submanifolds.
There is a similarity between Lie subgroups and sym-
metric submanifolds of SE(3): a symmetric submanifold
is generated by the exponential of its identity tangent
space (compared with a Lie subgroup being the exponen-
tial image of its Lie subalgebra); symmetric submanifolds
preserve the inversion symmetry (while Lie subgroups
preserve group multiplication and inverse) and retain a
natural coordinate known as the canonical coordinates
of the first kind ([11], compared with the POE formula
for Lie subgroups). The only revelation that comes close
to our discovery is Selig’s attempt to study full cycle
mobility using totally geodesic submanifolds of SE(3) (see
[50]-Chapter 15.2). Both Lie subgroups and symmetric
submanifolds are totally geodesic ([49]).

This paper is organized as follows. In Section II, we give
a brief review of Lie group theory which is much needed
in the introduction of inversion symmetry on SE(3). In
Section III, we introduce the notion of symmetric subman-
ifolds, and investigate their geometric properties through
the study of eye saccadic movement and constant-velocity
coupling motion; a systematic classification of symmetric
submanifolds is presented shortly after. In Section IV, we
propose a systematic approach for synthesizing kinematic
chains for symmetric submanifolds. Finally, we conclude
our work in Section V.

II. Inversion symmetry on SE(3)
In this section, we shall first give a brief review of

Lie group theory of SE(3). Our presentation is similar
to that in [24,30]. Then we shall give an introduction to
inversion symmetry of SE(3), which is an adaption from
an elementary treatment of symmetric space in [48].

A. Lie group of rigid displacement: SE(3)
An element g of the special Euclidean group SE(3)

represents the displacement of a rigid body with respect
to a reference configuration. It is convenient to introduce
a reference frame a and attach its copy b (the body frame)
to the rigid body. Then g corresponds to the homogeneous
transformation matrix from b to a:

g =

[
A p

0 1

]
∈ R

4×4, A ∈ SO(3), p ∈ R
3. (1)

with the proper rotation A being an element of the special
orthogonal group SO(3):

SO(3) �
{

A ∈ R
3×3|AAT = I3×3, det A = 1

}
.

Here I3×3 denotes a three-by-three identity matrix.
Given the Lie group 3 structure of SE(3), define the left

(right) translation Lg (Rg), g ∈ SE(3) by:

Lg : SE(3) → SE(3), h �→ gh,

(Rg : SE(3) → SE(3), h �→ hg.)
(2)

3A Lie group is a differentiable manifold with a compatible group
structure such that the group multiplication and inverse are differ-
entiable mappings [10].

g

g
Cg(h)

h

Lg(h)

R−1
g (h)

a

a′

b

b′

Fig. 2. Rigid body displacement and change of coordinate frames
(ai’s: reference frame; bi’s: body frame; dashed lines: change of body
frame; dotted lines: change of reference frame).

and also the conjugation transformation Cg � Lg ◦ Rg−1 :

Cg : SE(3) → SE(3), h �→ ghg−1. (3)

These are invertible differentiable maps (or diffeomor-
phisms) and satisfy the following properties:

Lg ◦ Lg′ = Lgg′ ,

(Lg)−1 = Lg−1 ,

Rg ◦ Rg′ = Rgg′ ,

(Rg)−1 = Rg−1 ,

Cg ◦ Cg′ = Cgg′ ,

(Cg)−1 = Cg−1 .

where g, g′ ∈ SE(3). Physically speaking, a left (right)
translation corresponds to a change of reference (body)
frame. Changing the reference frame by g ∈ SE(3) trans-
forms a rigid motion h to its conjugation Cg(h) (see Fig.2).

A subset H of SE(3) is called a (Lie) subgroup if it is
closed under group multiplication and inverse:

∀g, h ∈ H ⊂ SE(3) ⇒ gh−1 ∈ H. (4)

SO(3) and the additive group R
3 are Lie subgroups of

SE(3) under the homogeneous representation (1). The
diffeomorphic image Cg(H) of H retains group structure
and is called a conjugate subgroup. Two subgroups are said
to be equivalent if one is the conjugate of the other:

H ∼ H ′ iff H ′ = Cg(H), g ∈ SE(3).

Reference [24] gives a complete classification of Lie sub-
groups of SE(3) up to conjugacy classes.

B. Differential analysis on SE(3)
The tangent space TgSE(3) of SE(3) at a point g ∈

SE(3) is defined as the space of all tangent vectors ġ(0)
with g(t) ∈ SE(3), t ∈ R and g(0) = g. Define the Lie
algebra se(3) to be:

se(3) � TISE(3) =

{
ξ̂ =

[
ω̂ v

0 0

]∣∣∣∣∣ ω, v ∈ R
3

}
(5)

where ω̂ is a skew symmetric matrix such that ω̂u = ω ×
u, ∀u ∈ R

3. An element ξ̂ of se(3) is called a twist. It is
identified with an element ξ in R

6 via:

∧ : ξ =

[
v

ω

]
∈ R

6 �→ ξ̂ =

[
ω̂ v

0 0

]
∈ se(3).
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(a) ρ = 0
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(b) ρ = ∞
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(c) ρ �= 0

Fig. 3. Screw coordinate of a twist ξ̂ representing rigid body motion,
with solid curve indicating the motion of a point on the rigid body
(graphical notation inspired by [23], courtesy of Dr.Xianwen Kong).

x y

z

ê1 ê2

ê3

ê4 ê5

ê6

Fig. 4. Canonical basis of se(3): ê1, ê2, ê3: unit translation velocity
along x, y and z axis; ê4, ê5, ê6: unit rotation velocity about x, y and
z axis.

ξ is referred to as the screw coordinate of ξ̂. Therefore, ξ̂ de-
fines a screw passing through the base point (ω ×v)/‖ω‖2,
with unit direction ω/‖ω‖ and pitch ρ � (ωT · v)/‖ω‖2.
When ω = 0, the pitch is said to be infinite (see Fig.3).

The isomorphic image of the canonical basis of R
6

defines a basis of se(3), which we denote by {êi}6
i=1.

They correspond to infinitesimal translations along and
rotations about the x, y and z axes (see Fig.4).

The dual vector of a twist is called a wrench ([4]). Its
screw coordinate is given by:

ξ∗ =

[
f

τ

]
�

[
ω

v

]
.

where f is the linear force component and τ is the torque
component. We shall denote the wrench space by se(3)∗.
Given two screws ξi = (vT

i , ωT
i )T , i = 1, 2, the natural

pairing 〈ξ1, ξ∗
2〉 of a twist ξ1 and a wrench ξ∗

2 is given by
the reciprocal product:

〈ξ1, ξ∗
2〉 = ξ1 � ξ2 � vT

1 · ω2 + vT
2 · ω1.

Two screws ξ1, ξ2 are said to be reciprocal if ξ1 � ξ2 = 0.
Physically speaking, the wrench about ξ2 does no work on
the twist about ξ1.

se(3) is equipped with a Lie bracket [·, ·], defined by:

[·, ·] : se(3) × se(3) → se(3),
(ξ̂1, ξ̂2) �→ [ξ̂1, ξ̂2] � ξ̂1ξ̂2 − ξ̂2ξ̂1.

(6)

It is bilinear, skew symmetric and satisfies the Jacobi
identity ([10]):

[[ξ̂1, ξ̂2], ξ̂3] + [[ξ̂2, ξ̂3], ξ̂1] + [[ξ̂3, ξ̂1], ξ̂2] = 0. (7)

A vector subspace h of se(3) is said to be a Lie subalgebra
of se(3) if it is closed under the Lie bracket:

∀ξ̂, ξ̂′ ∈ h ⇒ [ξ̂, ξ̂′] ∈ h. (8)

The Lie algebra h � TIH of a Lie subgroup H of SE(3)
is automatically a Lie subalgebra of se(3).

Left (right) translate of se(3) gives the tangent space
TgSE(3) at a generic configuration g:

TgSE(3) = Lg(se(3)) =
{

gξ̂|ξ̂ ∈ se(3)
}

.(
= Rg(se(3)) =

{
ξ̂g|ξ̂ ∈ se(3)

}
.
)

The (spatial) velocity ξ̂ of a rigid motion g(t), t ∈ R is
defined as the “pullback” of ġ(t) by R−1

g(t):

ξ̂ = R−1
g(t)ġ(t) = ġg−1 ∈ se(3).

We shall also refer to se(3) as the velocity space of rigid
motions on SE(3).

Given ξ̂ ∈ se(3), we define a left (right) invariant vector
field ξ̂l (ξ̂r) on SE(3) by:

ξ̂l(g) = Lg(ξ̂) = gξ̂.

(ξ̂r(g) = Rg(ξ̂) = ξ̂g.)
(9)

Its integral curve passing through an initial point g is given
by getξ̂, t ∈ R (etξ̂g, t ∈ R), with the exponential map
exp : ξ̂ �→ eξ̂:

exp : ξ̂ �→ eξ̂ = I + ξ̂ +
ξ̂2

2!
+ · · · =

∞∑
k=0

ξ̂k

k!
.

being a local diffeomorphism from a neighborhood N0 of
0 ∈ se(3) onto a neighborhood NI of I ∈ SE(3). We also
denote Lg ◦ exp by expg, which maps onto Ng � Lg(NI).
The integral curve of ξ̂l (ξ̂r) passing through I ∈ SE(3) is
called a one-parameter subgroup, with group multiplication
and inverse given by:

esξ̂etξ̂ = e(s+t)ξ̂, (etξ̂)−1 = e−tξ̂.

We shall denote the one-parameter subgroup by exp(ξ̂),
where ξ̂ denotes the subspace spanned by ξ̂ (see Fig.5(a)).
The Lie bracket of left and right invariant vector fields 4

admits the following rule ([48]):⎧⎪⎨
⎪⎩

[ξ̂l, ζ̂l] = [ξ̂, ζ̂]l,
[ξ̂r, ζ̂r] = −[ξ̂, ζ̂]r,

[ξ̂l, ζ̂r] = 0.

∀ξ̂, ζ̂ ∈ se(3). (10)

Given an ordered basis (ξ̂1, . . . , ξ̂6) of se(3), the canon-
ical coordinates of the first kind ([11]-Page 50):

expg,1 : (α1, . . . , α6) �→ g exp(
6∑

i=1
αiξ̂i) ∈ Ng. (11)

and the canonical coordinates of the second kind ([11]-Page
50):

expg,2 : (β1, . . . , β6) �→ g
6∏

i=1
eβiξ̂i ∈ Ng. (12)

defines two local parametrization for SE(3). In robotics
community, (12) is also known as a product of exponentials

4See [10] for the definition of Lie bracket of vector fields.
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exp(ξ̂)

SE(3)
g exp(ξ̂)

(a)

gh−1g

g

h

g−1h L−1
g

I

h−1

h−1g
Lg

left translation
inversion symmetry

SE(3)

(b)

Fig. 5. (a) Illustration of a left invariant vector field ξ̂l(g) = Lg(ξ̂) =
gξ̂ and its integral curves on SE(3). The integral curve passing
through I is the one-parameter subgroup exp(ξ̂); (b) Illustration of
inversion symmetry on SE(3).

(POE) for the direct kinematics of a serial robot ([4]); the
number of exponents can be less than six. For simplic-
ity, we shall denote the motion pattern ([23], or motion
type in [24]) generated from the POE of (ξ̂1, . . . , ξ̂k) by
{eθ1ξ̂1 · · · eθk ξ̂k }, where the unspecified values θi’s take an
arbitrary real value.

The Baker-Campbell-Hausdorff (BCH) formula ([51]-
Page 76) establishs a connection between the two types
of canonical coordinates:

eξ̂eξ̂′
= eξ̂+ξ̂′+ 1

2 [ξ̂,ξ̂′]+ 1
12 ([ξ̂,[ξ̂,ξ̂′]]+[ξ̂′,[ξ̂′,ξ̂]])+···. (13)

Consider the exponential map restricted to a Lie sub-
algebra h. exp(h) is automatically a Lie subgroup by (4)
and (13):

∀eξ̂, eξ̂′ ∈ exp(h) ⇒
eξ̂(eξ̂′

)−1 = exp(ξ̂ − ξ̂′ − 1
2

[ξ̂, ξ̂′] + · · ·︸ ︷︷ ︸
∈h

) ∈ exp(h). (14)

The conjugation transformation Cg induces a linear
isomorphism called the Adjoint transformation on se(3):

Adg : se(3) → se(3), ξ̂ �→ gξ̂g−1.

with

(Adg)−1 = Adg−1 , Adg ◦ Adh = Adgh.

The adjoint map on se(3) is defined as:

adξ̂ � d

dt

(
Adetξ̂

)∣∣∣∣
t=0

: ξ̂′ �→ adξ̂(ξ̂′) = [ξ̂, ξ̂′].

The three maps are related by the exponential map ([51]-
Page 48):

Cg(eξ̂) = eAdg(ξ̂), Adeξ̂ = eadξ̂ . (15)

Physically speaking, Adjoint transformation represents
change of reference frame for velocities, and the adjoint
map is an infinitesimal Adjoint transformation.

C. SE(3) as a symmetric space
We associate to each g ∈ SE(3) a transformation Sg

called inversion symmetry (see Fig.5(b)):

Sg : SE(3) → SE(3), h �→ gh−1g. (16)

It is involutive, i.e. Sg ◦Sg equals the identity map idSE(3),
and reverses the exponential map:

Sg(expg(tξ̂)) = g(getξ̂)−1g = ge−tξ̂ = expg(−tξ̂).

In particular, SI coincides with the group inverse. There-
fore we have Sg = Lg ◦ SI ◦ Lg−1 . SE(3) equipped with
the inversion symmetry is called a symmetric space. A
quadratic displacement Qg with g ∈ SE(3) is defined as:

Qg � Sg ◦ SI : SE(3) → SE(3), h �→ ghg. (17)

A symmetric submanifold of SE(3) is a submanifold M
which is closed under inversion symmetry:

∀g, h ∈ M ⇒ Sg(h) = gh−1g ∈ M. (18)

Lie subgroups of SE(3) are obvious symmetric submani-
folds, since they are closed under group multiplication and
inverse and therefore also inversion symmetries.

D. Differential analysis of the symmetric space SE(3)
There are two special classes of vector fields pertaining

to the inversion symmetry of SE(3): the (−)-derivations
D− and (+)-derivations D+ ([48]-Page 81). Every twist
ξ̂ ∈ se(3) generates a (−)-derivation ξ̂−:

ξ̂−(g) � 1
2

(ξ̂l + ξ̂r)(g) =
1
2

(gξ̂ + ξ̂g). (19)

It is readily verified that the integral curve of ξ̂− passing
through g is given by Qexp( t

2 ξ̂)(g) = e
t
2 ξ̂ge

t
2 ξ̂ (see (17) for

the definition of Q). Therefore D− consists of infinitesimal
quadratic displacements.

The Lie bracket of two (−)-derivations ξ̂− and ζ̂− defines
a (+)-derivation [ξ̂, ζ̂]+:

[ξ̂, ζ̂]+(g) � [ξ̂−, ζ̂−](g) =
1
2

([ξ̂, ζ̂]l − [ξ̂, ζ̂]r)(g).

=
1
2

(g[ξ̂, ζ̂] − [ξ̂, ζ̂]g).
(20)

where the second equality comes from (10). We say
the (+)-derivation is generated by [ξ̂, ζ̂]. Its integral
curve passing through g is given by Cexp(− t

2 [ξ̂,ζ̂])(g) =
e− t

2 [ξ̂,ζ̂]ge
t
2 [ξ̂,ζ̂]. Taking Lie bracket of the derivations yields

the following relations:

[D−,D−] ⊂ D+,

[D+,D+] ⊂ D+,

[D+,D−] ⊂ D−.

(21)

It follows from (21) that: (i) D+ is a Lie algebra; (ii) D−
is closed under the triple bracket [[·, ·], ·]:

[[D−,D−],D−] ⊂ D−.
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For any ξ̂−, ζ̂−, η̂− ∈ D−, (10) gives:

[[ξ̂−, ζ̂−], η̂−](g) =
1
2

(g[[ξ̂, ζ̂], η̂] + [[ξ̂, ζ̂], η̂]g)

= [[ξ̂, ζ̂], η̂]−(g) ∈ D−.
(22)

It is clear from (22) that the triple bracket of three (−)-
derivations is the (−)-derivation generated by a triple
bracket of their generators in se(3). We say that se(3) with
the triple bracket operation is a Lie triple system (LTS, see
[48]-Page 80).

The similarity between Lie group theory and symmetric
space theory we mentioned earlier is manifested by a
correspondence of key vocabularies as shown in Table I.

TABLE I
Key vocabularies of Lie groups and symmetric spaces

Lie group structure symmetric space structure

L
Eq.(2)

g , R
Eq.(2)

g , C
Eq.(3)

g S
Eq.(16)

g , Q
Eq.(17)

g

Lie subgroup Eq.(4) symmetric submanifold Eq.(18)

Lie algebra Eq.(5) Lie triple system Eq.(23)

Lie bracket [·, ·] Eq.(6) triple product [[·, ·], ·] Eq.(22)

ξ̂l Eq.(9), ξ̂r Eq.(9) ξ̂
Eq.(19)

− , [ξ̂, ζ̂] Eq.(20)
+

III. Symmetric submanifolds of SE(3): the
Listing space and the CV space

In this section, we shall investigate properties of a
symmetric submanifold of SE(3) with two important ex-
amples, the Listing space of eye saccadic movement and
the (3-D) CV space of a constant-velocity shaft coupling.
Through the study of these submanifolds we introduce sev-
eral important properties of general symmetric submani-
folds. We also give a complete classification of symmetric
submanifolds of SE(3) and show that the Listing space
and CV space are members of seven conjugacy classes of
symmetric submanifolds.

A. The Listing space and the CV space
Recall that a symmetric submanifold is a submanifold

of SE(3) that is closed under inversion symmetry (16).
Consider a symmetric submanifold M with its identity
tangent space TIM denoted by m.

Definition 1. We say that a vector subspace m of se(3) is
a Lie triple system (LTS) if it is closed under the triple
bracket:

[[m,m],m] ⊂ m. (23)

Proposition 1. If M is a symmetric submanifold of
SE(3) containing the identity, then m is necessarily a
Lie triple system of se(3), i.e. [[m,m],m] ⊂ m. Moreover,
hm � [m,m] is a Lie subalgebra of se(3), which we refer to
as the torsion algebra of m.

Proof. The proof of the first part is beyond the scope of
this paper. The interested reader can refer to [48]-ChIII
Thm.1.7. To prove the second part, notice that for any

x y

z

(a) (b)

Fig. 6. (a) Screw systems pertaining to the LTS m2B of the Listing
space L: a pencil of zero-pitch screws; (b) Illustration of Listing’s law
of eye saccadic movement (with primary direction perpendicular to
the Listing’s plane): red planes indicate velocity planes; blue arrows
indicate gaze direction.

û, v̂, ŝ, t̂ ∈ m and [û, v̂], [ŝ, t̂] ∈ hm, the Jacobi identity (7)
gives:

[[û, v̂]︸ ︷︷ ︸
∈hm

, [ŝ, t̂]︸︷︷︸
∈hm

] = −[[v̂, [ŝ, t̂]]︸ ︷︷ ︸
∈m

, û] − [[[ŝ, t̂], û]︸ ︷︷ ︸
∈m

, v̂] ∈ hm.

since m is closed under triple bracket.

As a restatement of the definition of LTS and its torsion
algebra, we have the following corollary.

Corollary 1.1. Given m a LTS and its torsion algebra
hm � [m,m],

[hm, hm] ⊂ hm, [hm,m] ⊂ m.

Example 1 (Listing space). Polpitiya et al. [8] investi-
gated the geometry and optimal control of the eye saccadic
motion pattern. It is a 2-D submanifold of SO(3) which
they refer to as the Listing space:

L � {A ∈ SO(3)|∃ω ∈ R
2 × {0} s.t. Aω = ω}.

It is straightforward to verify that L is the submanifold
containing all one-parameter subgroups exp(ω̂) with ω ∈
R

2 × {0}, namely with ω belonging to a plane pencil of
zero-pitch screws (see Fig.6(a)).

We shall show that L is a symmetric submanifold of
SO(3). Consider first the identity tangent space of L.
By identifying the Lie algebra of SO(3) with R

3 and
denoting its canonical basis by (x, y, z), the Lie bracket
coincides with vector cross product. The identity tangent
space m2B � TIL = {x̂, ŷ} 5, which denotes the vector
subspace spanned by x̂ and ŷ, is not a Lie subalgebra since
[x̂, ŷ] = ẑ �∈ m2B . Instead, m2B is a LTS with triple bracket
6:

[[x̂, ŷ], x̂] = ŷ, [[x̂, ŷ], ŷ] = −x̂.

Next, it can be shown (see Appendix A) that ω̂−(A) =
1
2 (Aω̂ + ω̂A), ω̂ ∈ m2B , A ∈ L defines a derivation on L;

5The subscript 2 in m2B denotes its dimension. The subscript B
indicates that m2B is the second type 2-D LTS, which will be clear
when we give a complete classification of LTSs in Sec.III-B.

6It is sufficient to check on the basis elements, since the Lie bracket
[·, ·] is a bilinear operator.
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the integral curves Qexp( t
2 ω̂)(A) are completely contained

in L. Therefore, for any A = eω̂, A′ = eω̂′ ∈ L:

SA(A′) = eω̂e−ω̂′
eω̂ = Qexp(ω̂)(e−ω̂′

) ∈ L.

and L = exp(m2B) is a symmetric submanifold of SO(3)
by (18).

As a 2-D symmetric submanifold of SO(3) (and there-
fore of SE(3)), the Listing space L admits the following
properties.

First, its instantaneous velocity space at a general con-
figuration is given by (see proof in Appendix A):

R−1
eω̂ (Teω̂ L) = Adeω̂/2(m2B), ω̂ ∈ m2B . (24)

Recall that Listing’s law of eye saccadic movement (see
Fig.1(a), Fig.6 and also [52]-Fig. 13) accurately predicts
the eye angular velocity when the gaze direction rotates
away from the primary direction about an arbitrary axis
in the Listing plane and passing through the origin: the
velocity plane also rotates away from the Listing’s plane
about the same axis, but with half magnitude. This char-
acteristic is captured by (24) if we align the reference z-
axis with the primary direction and the xy-plane with the
Listing’s plane. Therefore we shall refer to (24) as the half-
angle property.

Second, the torsion algebra hm2B
= [m2B ,m2B ] = {ẑ}

is a Lie subalgebra. It defines a class of conjugations
Cexp(− t

2 ẑ) (see the paragraph after (20)) that leaves L
invariant:

Cexp(− t
2 ẑ)(L) = L, ∀t ∈ R. (25a)

or infinitesimally,

Adexp(− t
2 ẑ)(m2B) = m2B , ∀t ∈ R. (25b)

We shall refer to (25a) and (25b) as the torsion invariance
property.

The Listing space L also reveals a subtle connection
between Lie subgroups and symmetric submanifolds of
SE(3).

First, the exponential map takes a Lie subalgebra of
se(3) (locally) onto a connected Lie subgroup of SE(3); it
also takes the Lie triple system m2B onto the symmetric
submanifold L. This turns out to be true in general.

Proposition 2. Given a LTS m of se(3), the subman-
ifold exp(m) consisting of all one-parameter subgroups
exp(ξ̂), ξ̂ ∈ m is a symmetric submanifold of SE(3).
Conversely, any symmetric submanifold M of SE(3) con-
taining the identity I is necessarily of the form exp(m) with
m = TIM a LTS of se(3).

Proof. The proof is beyond the scope of this paper. The
reader can refer to [48] and [49] for details.

Second, notice that in Example 1 m2B ⊕hm2B
= {x̂, ŷ, ẑ}

is the Lie algebra of SO(3). It is the minimal Lie sub-
algebra that contains m2B , which we refer to as the
completion algebra of m2B ; SO(3) is the corresponding
completion group ([50]) of L, i.e. the minimal Lie subgroup

x y

z

(a)

eθẑ

eθẑ

eξ̂

eξ̂
′

ωi ωi

ωo ωo

CV
coupling

(b)

Fig. 7. (a) Screw systems pertaining to the LTS m3B = {ê3, ê4, ê5};
(b) constant-velocity transmission by a 3-DoF CV shaft coupling.

that contains L. Generalizing from these observations, we
have:

Proposition 3. The following statements are true about
a symmetric submanifold M of SE(3) and its LTS m:
(1) Its velocity space at a generic point g ∈ M is given by:

R−1
g (TgM) = Ad

g
1
2

(m). (26)

(2) gm � m+hm is the completion algebra of m, and GM =
exp(gm) is the completion group of M ;

(3) m is Adjoint invariant by elements of the torsion
group Hm � exp(hm), and M is conjugation invariant
by elements of Hm.

Proof. (1) The proof is exactly the same as that of the
Listing space (see Appendix A); (2) The vector subspace
gm is closed under Lie bracket by Coro.1.1. It is minimal
since any Lie subalgebra that contains m necessarily con-
tains hm too; (3) For any [û, v̂] ∈ hm, ŵ ∈ m:

Ade[û,v̂](ŵ) = ead[û,v̂](ŵ) =
∞∑

k=0

adk
[û,v̂]

k!
ŵ ∈ m. (27)

from the fact that ad[û,v̂]ŵ = [[û, v̂], ŵ] ∈ m (since m is a
LTS); the first equality follows from (15). Similarly:

Ce[û,v̂](eŵ) = eAd
e[û,v̂] (ŵ) ∈ exp(m).

by (15) and (27).

Example 2 (CV space). Consider the screw system m3B

of all zero-pitch coplanar screws 7, as depicted in Fig.7(a).
It is used to model the instantaneous velocity space of a
3-DoF CV coupling for intersecting shafts ([16,45]). By
aligning the xy-plane of the reference frame with the
characteristic plane, m corresponds to the 3-D subspace
{ê3, ê4, ê5} of se(3) (see Fig.7(a)). It is straightforward to

7Note that infinite-pitch screws perpendicular to the characteristic
plane are also included.
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verify that m3B is a LTS:

[[ê3, ê4], ê3] = 0,

[[ê3, ê4], ê4] = −ê3,

[[ê3, ê4], ê5] = 0,

[[ê3, ê5], ê3] = 0,

[[ê3, ê5], ê4] = 0,

[[ê3, ê5], ê5] = −ê3,

[[ê4, ê5], ê3] = 0,

[[ê4, ê5], ê4] = ê5,

[[ê4, ê5], ê5] = −ê4.

Therefore, exp(m3B) is a 3-D symmetric submanifold of
SE(3) by Prop.2.

We shall show that exp(m3B) is the motion pattern
of 3-DoF (with plunging, see [16]) CV shaft couplings
for intersecting shafts (which we refer to as the 3-D CV
space):
(a) Without loss of generality, we assume that at the

starting configuration, both the input and output
shafts coincide with the z axis. It can be verified
computationally that exp(m3B) maintains intersection
of input and output shafts 8:[

0
z

]
︸ ︷︷ ︸
input
axis

� Adeξ̂

([
0
z

])
︸ ︷︷ ︸

output
axis

= 0, ∀ξ̂ ∈ m3B .

(b) The condition for CV transmission can be depicted
as follows: at a fixed working angle (see Fig.1(b)),
when the input shaft sweeps through an angle of θ,
the output shaft also sweeps through the same angle
(see Fig.7(b)). This in turn requires the claimed CV
motion pattern exp(m3B) to satisfy:

eξ̂′
= Ce−θẑ (eξ̂) ∈ exp(m3B), ∀θ ∈ R, ξ̂ ∈ m3B .

or, equivalently:

ξ̂′ = Ade−θẑ (ξ̂) ∈ m3B , ∀θ ∈ R, ξ̂ ∈ m3B .

which is satisfied by the torsion invariance property (25b).
It is worth mentioning that the Listing space L =
exp(m2B) is a 2-D submanifold of exp(m3B). It can be
shown that L also satisfies (a) and (b), and is in fact
the motion pattern for 2-DoF (non-plunging) CV shaft
couplings (with intersecting shafts).

Example 3 (tilt and torsion angles revisited). In [46],
Bonev proposed a set of modified Euler angles, called the
tilt and torsion angles (see Fig.8), for design and control of
parallel robots with two to three rotational DoFs. Several
important implications of this notation can be extracted
with the symmetric space theory. On the one hand, the
axis angle φ and tilt angle θ define a parametrization for
the Listing space L = exp(m2B):

(φ, θ) �→ exp(θ cos φx̂ + θ sin φŷ) ∈ L. (28)

8Two zero-pitch screws are concurrent if and only if their reciprocal
product � is zero ([13]).

φ

θ

x

y

z

x�

y�

z�

a
φ

θ

ψ

ψ

x

y

z

x�

y�

z′ (z�)

x′

y′

a

Fig. 8. Illustration of the tilt and torsion angles parametrization:
on the left, tilt (about axis a); on the right, torsion (modified from
Bonev’s original illustration [46], courtesy of Prof.Ilian Bonev).

By substituting (φ, θ) with (α, β) = (θ cos φ, θ sin φ), (28)
defines a canonical coordinate (of the first kind, (11)) for
L with basis (x̂, ŷ):

exp1 : (α, β) �→ exp(αx̂ + βŷ) ∈ L.

On the other hand, the torsion angle ψ is the exponential
coordinate for the torsion group Hm2B

= exp(hm2B
) =

SO(2). Physically speaking, the torsion characterizes fluc-
tuation in angular transmission by a Hooke joint, or the
spindle rotation of a five-axes machine ([30]). Its existence
obstructs constant-velocity transmission, and also leads to
redundancy in representing spindle orientation space. The
Listing space L is more preferable in these occasions.

Finally, by combining the two sets of parameters,
(α, β, ψ) gives a parametrization of SO(3), the completion
group of L:

(α, β, ψ) �→ exp1(α, β) · exp1(ψ) ∈ SO(3).

It also gives a relation between the symmetric space L, its
torsion group SO(2) and its completion group SO(3). Its
further implication to synthesis of motion generators will
be clear to the reader in the next section.

Generalizing from the above example, we have the
following proposition.

Proposition 4. If a LTS m has trivial intersection with
its torsion algebra hm � [m,m]:

m ∩ hm = m ∩ [m,m] = {0}. (29)

then the map:

m × hm → GM , (ξ̂, ĥ) �→ eξ̂eĥ. (30)

is a local diffeomorphism. Consequently, by combining the
canonical coordinates (of the first kind, (11)) of M =
exp(m) and Hm = exp(hm) for some basis {ξ̂i}k

i=1 of m
and {ĥi}l

i=1 of hm:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp1 : (α1, . . . , αk) �→ exp

(
k∑

i=1
αiξ̂i

)
∈ M,

exp1 : (β1, . . . , βl) �→ exp

(
l∑

i=1
βiĥi

)
∈ Hm.
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TABLE II
Comparison of properties of symmetric submanifolds and Lie subgroups of SE(3).

geometric properties symmetric submanifold M Lie subgroup G

identity tangent space LTS m Prop.2 Lie subalgebra g Eq.(8)

definition exp(m) Prop.1 exp(g) Eq.(14)

Lie bracket torsion algebra hm � [m,m] Prop.1 derived algebra [g, g]
velocity space half-angle property Ad

g
1
2

(m) Prop.3-(1) g

conjugation invariance by H
Prop.3-(3)

m by G

completion algebra gm � m + h
Prop.3-(2)
m g

parametrization exp1 · exp1 : m × hm → G Prop.4
M exp1, exp2 : g → G Eq.(11),Eq.(12)

gives a local coordinate system for its completion group
GM :

(α1, . . . , αk; β1, . . . , βl) �→
exp1(α1, . . . , αk) · exp1(β1, . . . , βl) ∈ GM .

Proof. The proof is immediate from inverse function the-
orem (see for example [10]).

The above proposition shows that for an arbitrary LTS
m satisfying (29), the completion group GM = exp(gm) of
the symmetric submanifold M = exp(m) admits a “LTS-
torsion” parametrization, which generalizes the tilt-torsion
parametrization for SO(3).

In light of Prop.4, we say that a rigid motion g in GM is
torsion-free (with respect to M) if its torsion coordinates
(β1, . . . , βl) vanishes. A torsion-free motion g is contained
in the symmetric submanifold M = exp(m).

We end this subsection with Table II summarizing
the aforementioned properties of a symmetric space, and
comparing them to those of a Lie subgroup.

B. Systematic classification of symmetric submanifolds
We have so far introduced two instances of symmetric

submanifolds of SE(3), the Listing space (Example 1)
and the (3-D) CV space (Example 2). They both admit
exponential form exp(m), with m a LTS of se(3) (see
Def. 1). They also have similar geometric properties that
distinguish them from the well known Lie subgroups.

According to Prop. 2 and Prop. 3, taking the exponen-
tial of a general LTS should produce a general symmet-
ric submanifold having similar geometric properties. For
a systematic classification of symmetric submanifolds of
SE(3) up to conjugation, it suffices to classify all LTSs
of se(3) up to Adjoint transformation (the equivalence is
shown by (15)). Starting from a screw system of se(3) (see
for example [13]-Ch12 or [50]-Ch8), we can determine if
it is a LTS by verifying triple bracket closure (23) for
an arbitrarily chosen basis (the complete computation
cannot be provided here due to space limitations and
will be presented in [53].). A total of seven LTSs and
their corresponding symmetric submanifolds are found and
listed in Table III. The screw systems corresponding to
the LTSs are depicted in Fig.6(a), Fig.7(a) and Fig.9. The
isotropy group of a symmetric submanifold M is defined
to be {g ∈ SE(3)|Cg(M) = M}. It contains or is equal to
the torsion group HM .

All the LTSs except m5 := {ê1, ê2, ê3, ê4, ê5} satisfy the
condition m∩hm = {0}. According to Prop.4 , they admit
a parameterization of the corresponding completion group
GM :

m × hm → GM , (ξ̂, ĥ) �→ eξ̂eĥ.

On the other hand,

m5 ∩ hm5 = {ê1, ê2, ê3}.

and a similar parametrization of its completion group
SE(3) does not exist. Consequently, it is difficult to give
a unified treatment of m5 with other LTSs when we
synthesize kinematic chains of symmetric submanifolds in
the next section. A separate treatment for m5 can be found
at the end of the next section.

Finally, we would like to point out that both the seven
classes of symmetric submanifolds and the ten classes of
Lie subgroups are totally geodesic submanifolds ([48,49])
of SE(3). Such submanifolds are important for the study
of full-cycle mobility ([50]-Ch15.2). But we will not delve
into such a subject in this paper.

IV. Kinematic Chains of Symmetric
Submanifolds

We have shown that the concept of inversion symmetry
and symmetric submanifolds of SE(3) establish a con-
nection between Listing’s law of eye saccadic movement
(half-angle property, Prop.3(1)), the motion pattern of
CV couplings (torsion invariance property, Prop.3(3)), and
also orientation representation of parallel robots (LTS-
torsion parametrization, Prop.4). We shall now exploit
the inversion symmetry to develop a systematic synthesis
methodology for kinematic chains of symmetric submani-
folds. We restrict ourselves to using the 1-DoF Reuleaux
pairs, namely the R, P and Hρ joints, with their corre-
sponding twists shown in Fig.3.

A. Symmetric chains of symmetric submanifolds
Consider a k-D LTS m in Table III and a basis {ξ̂1, . . . ,

ξ̂k} ⊂ m. In general, the POE eθ1ξ̂1 · · · eθk ξ̂k generated by
the ordered basis (ξ̂1, . . . , ξ̂k) is not torsion-free. On the
other hand, a POE with both symmetric joint twists and
joint variables:

eθ1ξ̂1 · · · eθk ξ̂k · eθk ξ̂k · · · eθ1ξ̂1

= Qexp(θ1ξ̂1) ◦ · · · ◦ Qexp(θk−1ξ̂k−1)(e
2θk ξ̂k ).

(31)
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TABLE III
Classification of symmetric submanifolds of SE(3).

dim LTS m screw system [13] torsion alg. hm completion alg. gm symmetric submanifold M = exp(m) isotropy group

2
m2A � {ê3, ê4} 2nd special 2-system {ê2} {ê2, ê3, ê4} M2A exp(ê1, ê2)
mρ

2A � {ê3, ρê1 + ê4} {ê2, ê3, ρê1 + ê4} Mρ
2A

m2B � {ê4, ê5} 1st special 2-system {ê6} {ê4, ê5, ê6} M2B : Listing space, 2D CV space exp(ê6)

3 m3A � {ê1, ê3, ê4} 10th special 3-system {ê2} {ê1, ê2, ê3, ê4} M3A exp(ê1, ê2)
m3B � {ê3, ê4, ê5} 4th special 3-system {ê1, ê2, ê6}

se(3)
M3B : 3-D CV space exp(ê1, ê2, ê6)

4 m4 � {ê1, ê2, ê4, ê5} 5th special 4-system {ê3, ê6} M4 exp(ê3, ê6)
5 m5 � {ê1, ê2, ê3, ê4, ê5} special 5-system {ê1, ê2, ê3, ê6} M5: five-axes machining exp(ê1, ê2, ê3, ê6)

ê4

ê3

(a) m2A

ê4 + ρê1

ê3

(b) mρ
2A

ê4ê1

ê3

(c) m3A

ê4 ê5

ê1 ê2

(d) m4

Fig. 9. Screw systems of Lie triple systems.

is necessarily torsion-free, since exp(m) is closed under
quadratic diplacements. We shall refer to the 2k-tuple
(ξ̂1, . . . , ξ̂k; ξ̂k, . . . , ξ̂1) as a symmetric chain (SC). The
symmetric arrangement of joint twists in a SC alone does
not guarantee its motion being torsion-free: the following
POE,

eθ1ξ̂1 · · · eθk ξ̂k · eθk+1ξ̂k · · · eθ2k ξ̂1 .

is in general not torsion-free unless the joint variables are
also symmetric:

θi = θ2k−i+1, i = 1, . . . , k. (32)

In this case, we say the SC goes through a symmetric
motion. The following proposition gives an alternative
proof that the symmetric motion of a SC is necessarily
torsion-free.

Proposition 5. Given a LTS m such that m ∩ hm = {0},
and a set {ξ̂1, . . . , ξ̂r} ⊂ m with r some positive inte-
ger ({ξ̂1, . . . , ξ̂r} not necessarily linearly independent), the
POE eθ1ξ̂1 · · · eθr ξ̂r admits a unique representation:

eθ1ξ̂1 · · · eθr ξ̂r = eξ̂eĥ, ξ̂ ∈ m, ĥ ∈ hm. (33)

Moreover,

e−θ1ξ̂1 · · · e−θr ξ̂r = e−ξ̂eĥ or eθr ξ̂r · · · eθ1ξ̂1 = e−ĥeξ̂.

Proof. See Appendix B.

We emphasize that the condition m ∩ hm = {0} cannot
be omitted, because otherwise the exponents ξ̂ ∈ m and
ĥ ∈ hm are not uniquely defined.

Prop.5 states that negating the exponents in a POE of
m has the same effect of negating the exponent ξ̂ in the
unique representation eξ̂eĥ, ξ̂ ∈ m, ĥ ∈ hm. For this reason,
we shall refer to (ξ̂1, . . . , ξ̂k) (and (ξ̂k, . . . , ξ̂1)) in the SC

as the positive (and negative) subchain, which we denote
by SC+ (and SC−).

Applying Prop.5 to the symmetric motion (31):

eθ1ξ̂1 · · · eθk ξ̂k · eθk ξ̂k · · · eθ1ξ̂1 = eξ̂eĥe−ĥeξ̂ = e2ξ̂.

The above equation serves as an explicit proof that the
symmetric motion of a SC is torsion-free. Moreover, it
shows that the magnitude of its exponent 2ξ̂ ∈ m is twice
that of SC+ or SC−.

B. Symmetric twist pairs and general symmetric chains
More generally, consider the Adjoint transformation of

a twist ξ̂ ∈ m by a pair of POEs with equal and opposite
exponents in m:{

ξ̂+ � Adeη̂1 ···eη̂r (ξ̂),
ξ̂− � Ade−η̂1 ···e−η̂r (ξ̂).

η̂1, . . . , η̂r ∈ m. (34)

We shall refer to (ξ̂+; ξ̂−) as a symmetric pair (SP). The
symmetric motion of a SP is necessarily torsion-free:

eθξ̂+
eθξ̂−

= (eη̂1 · · · eη̂r )eθξ̂(eη̂1 · · · eη̂r )−1

(e−η̂1 · · · e−η̂r )eθξ̂(e−η̂1 · · · e−η̂r )−1

= Qeη̂1 ◦ · · · ◦ Qeη̂r ◦ Qeθξ̂

◦ Qe−η̂r ◦ · · · ◦ Qe−η̂2 (e−2η̂1) ∈ exp(m).

It is not difficult to see from Prop.5 that the following
corollary is true.

Corollary 5.1. Let {(ξ̂+
i ; ξ̂−

i )}k
i=1 be a collection of SPs

of a LTS m such that m ∩ hm = 0, then we have:{
eθ1ξ̂+

1 · · · eθk ξ̂+
k = eξ̂eĥ,

e−θ1ξ̂−
1 · · · e−θk ξ̂−

k = e−ξ̂eĥ.
ξ̂ ∈ m, ĥ ∈ hm.
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ξ̂

ξ̂−

ξ̂+

(a) M2B

ξ̂1

ξ̂−1

ξ̂+1

ξ̂2

ξ̂−2

ξ̂+2

ξ̂−3

ξ̂+3
(b) M3B

Fig. 10. Symmetric pairs of CV spaces: (a) m2B-SP: (ξ̂+; ξ̂−) =
(Adeη̂ (ξ̂); Ade−η̂ (ξ̂)) with ρ(ξ̂+) = ρ(ξ̂−) = 0; (b): m3B-SP: (ξ̂+

1 ; ξ̂−
1 )

with ρ(ξ̂+
1 ) = ρ(ξ̂−

1 ) = 0, (ξ̂+
2 ; ξ̂−

2 ) with ρ(ξ̂+
2 ) = ρ(ξ̂−

2 ) = ∞, and
(ξ̂+

3 ; ξ̂−
3 ) with ρ(ξ̂+

3 ) = −ρ(ξ̂−
3 ).

Consequently,

eθ1ξ̂+
1 · · · eθk ξ̂+

k · eθk ξ̂−
k · · · eθ1ξ̂−

1 = e2ξ̂ ∈ exp(m).

Therefore, a collection of SPs build up a kinematic chain
(ξ̂+

1 , . . . , ξ̂+
k ; ξ̂−

k , . . . , ξ̂−
1 ), which also generates a torsion-

free motion under condition (32). On the one hand, it
entails more design freedom than the special case where
ξ̂+

i = ξ̂−
i = ξ̂i ∈ m, i = 1, . . . , k. In fact, it can be

shown that the twists ξ̂±
i ’s can take arbitrary values in

the completion algebra gm. On the other hand, the two
twists in each SP (ξ̂+

i ; ξ̂−
i ), although not equal, still satisfy

certain symmetry conditions. Therefore, we shall refer to
(ξ̂+

1 , . . . , ξ̂+
k ; ξ̂−

k . . . , ξ̂−
1 ) as a general SC, or simply a SC.

To understand the symmetry involved in a SP, apply
Prop.5 to (34) and we have:{

ξ̂+ = Adeη̂ ◦ Adeĥ(ξ̂) = Adeη̂ (ξ̂′),
ξ̂− = Ade−η̂ ◦ Adeĥ(ξ̂) = Ade−η̂ (ξ̂′).

(35)

where η̂ ∈ m, ĥ ∈ hm, eη̂1 · · · eη̂r = eη̂eĥ is the unique
representation (33), and ξ̂′ � Adeĥ(ξ̂) ∈ m by the torsion
invariance of m (Prop.3-(3)). In other words,

Corollary 5.2. Given a LTS m such that m ∩ hm = 0, a
symmetric pair (ξ̂+; ξ̂−) as in (34) is generated by a pair of
Adjoint transformations (Adeη̂ ; Ade−η̂ ), η̂ ∈ m on a twist
ξ̂ ∈ m.

Moreover, {ξ̂+
i }’s determine {ξ̂−

i }’s in a unique way.

Corollary 5.3. Given a LTS m such that m∩hm = 0, and
ξ̂+ ∈ gm in a symmetric pair (ξ̂+; ξ̂−) of m, ξ̂− is uniquely
defined and independent of the choice of the Adjoint trans-
formation (Adeη̂ ; Ade−η̂ ), η̂ ∈ m as in Coro.5.2.

Proof. See Appendix C.

According to Coro.5.2 and Coro.5.3, we can synthesize
a SP as follows. First, specify an arbitrary twist ξ̂+ in
the completion algebra gm; second, find an arbitrary twist
η̂ ∈ m such that Ade−η̂ brings ξ̂+ to lie in m:

ξ̂ � Ade−η̂ (ξ̂+) ∈ m or ξ̂+ = Adeη̂ (ξ̂), ξ̂ ∈ m.

Then, ξ̂− � Ade−η̂ (ξ̂) = Ade−2η̂ (ξ̂+) is the unique twist
that forms a SP with ξ̂+.

The symmetry of a SP (ξ̂+; ξ̂−) also admits a more
algebraic explanation.

Corollary 5.4. Given a LTS m such that m ∩ hm = 0, a
symmetric pair (ξ̂+; ξ̂−) of m admits the following decom-
position over the two subspaces m and hm of the completion
algebra gm = m ⊕ hm:{

ξ̂+ = ξ̂ + ĥ,

ξ̂− = ξ̂ − ĥ
, ξ̂ ∈ m, ĥ ∈ hm. (36)

Proof. The result is clear from the proof of Coro.5.3.

Finally, the following corollary prescribes the condition
on the choice of twists {ξ̂±

i }k
i=1 such that the correspond-

ing SC generates M = exp(m) under condition (32).

Corollary 5.5. Given a k-D LTS m such that m∩hm = 0,
a linearly independent set of twists (ξ̂+

1 , . . . , ξ̂+
k ), ξ̂+

i ∈
gm, i = 1, . . . , k defines a symmetric chain of m (by
Coro.5.3 or Coro.5.4) if and only if one of the three
following conditions are satisfied:

1) {ξ̂+
1 , . . . , ξ̂+

k } ⊕ hm = gm.

2) {ξ̂−
1 , . . . , ξ̂−

k } ⊕ hm = gm.

3) {ξ̂1, . . . , ξ̂k} = m.

where ξ̂i is the component of the unique decomposition of
ξ̂+

i = ξ̂i + ĥi as in (36).

Proof. See Appendix D.

We emphasize that although in the above corollory,
both {ξ̂+

i }k
i=1 and {ξ̂−

i }k
i=1 are linearly independent sets

of twists, twists of the SC (ξ̂+
1 , . . . , ξ̂+

k ; ξ̂−
k , . . . , ξ̂−

1 ) may
become linearly dependent. Moreover, without the sym-
metric motion condition (32), the POE of the SC may
generate an arbitrary subset of the completion group
GM = exp(gm).

C. Symmetry type of symmetric chains
We shall use both the geometric condition (35) and the

algebraic condition (36) to study the particular symmetry
type of each LTS.
• m2B symmetric chains:

Consider the 2-D LTS m2B = {ê4, ê5} of the 2-D
CV space exp(m2B) as shown in Fig.6(a). It consists of
a pencil of zero-pitch twists in the characteristic plane
(Hunt’s 1st special 2-system, [13]). A SP (ξ̂+; ξ̂−) =
(Adeη̂ (ξ̂); Ade−η̂ (ξ̂)), ξ̂, η̂ ∈ m2B is generated by a pair
of rotational displacements of ξ̂ about the axis η/‖η‖
with magnitude ±‖η‖. Pictorially, ξ̂+ and ξ̂− are mirror
or plane symmetric about the characteristic plane (the
bisecting plane) of m2B (see Fig.10(a)).
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ξ̂−1

ξ̂+1

ξ̂−2

ξ̂+2

(a)

ξ̂−1

ξ̂2

ξ̂+1

(b)

Fig. 11. SCs of m2B : (a) even SC; (b) odd SC.

ξ̂−1

ξ̂3

ξ̂+1

ξ̂+2
ξ̂−2

(a)

ξ̂−1

ξ̂3

ξ̂+1
ξ̂+2

ξ̂−2

(b)

Fig. 12. Typical SCs of m3B : (a) R·PL ·R chain ((ξ̂+
2 ; ξ̂3; ξ̂−

2 ) forms
a PL subchain); (b) R·S ·R chain ((ξ̂+

2 ; ξ̂3; ξ̂−
2 ) forms a S subchain).

Since gm2B
= {ê4, ê5, ê6}, members of the m2B-SC can

be arbitrary twists not equal to scalar multiples of ê6; a
m2B-SC consists of four twists (see Fig.11(a)):{

ξ̂+
1 = ξ̂1 + ĥ1,

ξ̂−
1 = ξ̂1 − ĥ1.

{
ξ̂+

2 = ξ̂2 + ĥ2,

ξ̂−
2 = ξ̂2 − ĥ2.

where ξ̂1, ξ̂2 ∈ m2B = {ê4, ê5} and ĥ1, ĥ2 ∈ hm2B
= {ê6},

and such that:

{ξ̂1, ξ̂2} = m = {ê4, ê5}.

We shall refer to (ξ̂+
1 , ξ̂+

2 ; ξ̂−
2 , ξ̂−

1 ) as an even SC. When
ĥ2 = 0, ξ̂+

2 = ξ̂−
2 = ξ̂2. In this case, we can lump the

two twists together and have a m2B-SC with three twists
(ξ̂+

1 ; ξ̂2; ξ̂−
1 ) (see Fig.11(b)), which we refer to as an odd

SC. Therefore, a m2B-SC is a concentric R · R · R · R or
R · R · R chain with bilateral symmetry about the charac-
teristic plane. As we have pointed out earlier, without the
symmetric motion condition (32), a m-SC may generate
a general subset of the completion group GM = exp(gm)
instead of exp(m). Twists of a SC need not be linearly
independent (or non-redundant) either. Since gm2B

is the
three dimensional spherical Lie algebra so(3) of SO(3),
the concentric 4-R chain is necessarily redundant. When
ĥ1 �= 0, the 3-R chain is a non-redundant so(3)-chain.
When ĥ1 = ĥ2 = 0, ξ̂+

i = ξ̂−
i = ξ̂i ∈ m2B , i = 1, 2 and

we have a singular so(3)-chain. Both the odd m2B-SC and
the even m2B-SC can be found in the design of novel CV
joints ([54,55]).

• m3B symmetric chains:
Consider the 3-D LTS m2B = {ê3, ê4, ê5} of the 3-D CV

space exp(m3B) as shown in Fig.7(a). It consists of a field
of zero-pitch twists in, and infinite-pitch twists perpen-
dicular to, the characterstic plane (Hunt’s 4th special 3-
system, [13]). Its SP (ξ̂+; ξ̂−) = (Adeη̂ (ξ̂); Ade−η̂ (ξ̂)), ξ̂, η̂ ∈
m3B can be one of the following cases:

1) ρ(η̂) = ρ(ξ̂) = 0. The SP corresponds to a pair of mir-
ror symmetric revolute joints about the characteristic
plane (see (ξ̂+

1 ; ξ̂−
1 ) in Fig.10(b));

2) ρ(η̂) = ∞, ρ(ξ̂) = 0. Since the only infinite-pitch
members of m3B are λê3, λ ∈ R, the SP is a parallel
pair of mirror symmetric revolute joints parallel to
the characteristic plane. This is a special case of 1)
with η̂ as a zero-pitch twist situated at infinity;

3) ρ(η̂) = 0, ρ(ξ̂) = ∞. The SP corresponds to a pair of
prismatic joints that are symmetric about the z-axis
in a plane containing them (see (ξ̂+

2 ; ξ̂−
2 ) in Fig.10(b)).

This is the same as a mirror symmetry about the
characteristic plane if we flip the direction of ξ̂−

2 .
This will make no difference in type synthesis but
will reverse the joint variable for ξ̂−

2 in the symmetric
motion condition (32).

We can also acquire a pair of mirror symmetric helical
joints by composing the algebraic and geometric condition.
First, apply the algebraic condition (36):{

ξ̂+ = ê4 + ρê1,

ξ̂− = ê4 − ρê1.
ê4 ∈ m3B , ρê1 ∈ hm3B

.

where ρ is the desired pitch. Second, apply the geometric
condition (35) to get a pair of mirror symmetric helical
joints (ξ̂+

3 ; ξ̂−
3 ) = (Adeη̂ (ξ̂+); Ade−η̂ (ξ̂−)) (see Fig.10(b)).

Note the algebraic condition implies that ρ(ξ̂+
3 ) = −ρ(ξ̂−

3 ).
This gives an explicit proof of Hunt’s observation that
mirror symmetric helical joints in a CV kinematic chain
should have equal and opposite pitches ([16]).

A m3B-SC consists of three SPs {ξ̂+
i ; ξ̂−

i }3
i=1, each be-

ing one of the three aforementioned cases. According to
Coro.5.5, the three twists ξ̂+

1 , ξ̂+
2 , ξ̂+

3 ∈ se(3) must be
chosen such that:

{ξ̂+
1 , ξ̂+

2 , ξ̂+
3 } ⊕ {ê1, ê2, ê6} = se(3).

The enumeration of eligible candidates is studied in our
earlier work [30]. The two most commonly seen m3B-SCs
([16]) are the mirror symmetric R · PL · R chain, which is
equivalent to a mirror symmetric R · R · P · R · R chain
(Fig.12(a)), and the mirror symmetric R·S·R chain, which
is equivalent to a mirror symmetric 5-R chain (Fig.12(b)).
When (32) is not enforced, these chains generate 5-D
submanifolds of SE(3).

The above results corroborate Hunt’s exhaustive classifi-
cation of 3-D CV chains in [16]. It also confirms our earlier
conclusion that the 3-D CV space is the 3-D symmetric
submanifold M3B = exp(m3B). Moreover, the mirror
symmetry is a manifestation of the inversion symmetry
of the underlying symmetric submanifold M3B .
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• m2A and mρ
2A symmetric chains:

Consider the 2-D LTS m2A = {ê3, ê4} (or mρ
2A =

{ê3, ê4 + ρê1}) as shown in Fig.9(a) (or Fig.9(b)). It
consists of all zero-pitch (or finite non-zero-pitch) twists
parallel to the x-axis in the characterstic plane (xy-plane),
and also twists of infinite-pitch perpendicular to the xy-
plane (Hunt’s 2nd special 2-system, [13]). Note that m2A

is a Lie triple subsystem (LT subsystem) of m3B ; its SPs
can be synthesized in a similar manner and therefore have
the same type of symmetry: as shown in Fig.13(a), m2A-
SPs are mirror symmetric about the characteristic plane.
mρ

2A-SPs admit exactly the same symmetry type, with the
zero-pitch SP replaced by a SP of pitch ρ (see (ξ̂+

2 ; ξ̂−
2 )

in Fig.13(b)). Unlike the case of m3B , the two finite-pitch
twists in (ξ̂+

2 ; ξ̂−
2 ) in Fig.13(b) have equal but not opposite

pitches for the obvious reason that the LTS mρ
2A itself

admits finite-pitch twists.
Since hm2A

= {ê2} and gm2A
= {ê2, ê3, ê4} is the Lie

algebra of the 3-D planar Euclidean group, a m2A-SC
(ξ̂+

1 , ξ̂+
2 ; ξ̂−

2 , ξ̂−
1 ) should satisfy:

{ξ̂+
1 , ξ̂+

2 } ⊕ {ê2} = {ê2, ê3, ê4}.

A m2A-SC can be one of the following:
1) A mirror symmetric R · R · R · R or R · R · R chain

with parallel axes;
2) A mirror symmetric P · R · R · P or P · R · P chain

with R perpendicular to the two P’s;
3) A mirror symmetric R · P · P · R or R · P · R with

parallel R’s both perpendicular to the P’s.
These are all planar motion generators if the symmetric
motion condition (32) is not enforced. Synthesis of mρ

2A

follows exactly the same approach and have exactly the
same result with all revolute joints replaced by helical
joints with pitch ρ. Therefore mρ

2A-SCs are planar helical
motion generators when (32) is not enforced.
• m3A symmetric chains:

Consider the 3-D LTS m3A = {ê1, ê3, ê4} as shown
in Fig.9(c). It consists of twists of all pitches on all
lines parallel to the x-axis in the characteristic plane xy,
and twists of infinite-pitch perpendicular to the xy-plane
(Hunt’s 10th special 3-system, [13]). From the fact that
m

(ρ)
2A ⊂ m3A, we see that any m2A-SPs and mρ

2A-SPs are
also m3A-SPs (see (ξ̂+

2 ; ξ̂−
2 ) and (ξ̂+

3 ; ξ̂−
3 ) in Fig.13(c)).

Besides, since hm3A
= {ê2}, m3A admits the following SP

by the algebraic condition (36):{
ξ̂+ = (ê3 + λê1) + μê2,

ξ̂− = (ê3 + λê1) − μê2.
ê3 + λê1 ∈ m3A, μê2 ∈ hm3A

.

for some real constants λ, μ (see (ξ̂+
1 ; ξ̂−

1 ) in Fig.13(c)).
The prismatic SP is no longer mirror symmetric about
the characteristic plane xy, but instead becomes mirror
symmetric about the xz-plane.

Since gm3A
= {ê1, ê2, ê3, ê4} is the Lie algebra of the 4-D

Schönflies group, a m3A-SC (ξ̂+
1 , ξ̂+

2 , ξ̂+
3 ; ξ̂−

3 , ξ̂−
2 , ξ̂−

1 ) should
satisfy:

{ξ̂+
1 , ξ̂+

2 , ξ̂+
3 } ⊕ {ê2} = {ê1, ê2, ê3, ê4}.

ξ̂+1
ξ̂1

ξ̂−1

ξ̂2

ξ̂+2

ξ̂−2

(a) M2A

ξ̂+1
ξ̂1

ξ̂−1

ξ̂2

ξ̂+2

ξ̂−2

(b) Mρ
2A

ξ̂+1
ξ̂1

ξ̂−1

ξ̂2

ξ̂+2

ξ̂−2 ξ̂3

ξ̂+3

ξ̂−3

ξ̂4

(c) M3A

ξ̂+1

ξ̂1

ξ̂−1

ξ̂2

ξ̂+2

ξ̂−2

ξ̂3

ξ̂+3

ξ̂−3

(d) M4

Fig. 13. Symmetric pairs of general symmetric submanifolds.

The enumeration of eligible candidates of (ξ̂+
1 , ξ̂+

2 , ξ̂+
3 ) can

be found in [30]. Since m3A-SCs are 5 or 6-DoF chains (in
comparison to the dimension of the Schönflies group being
4), they are redundant Schönflies motion generators in the
absence of the symmetric motion condition (32).
• m4 symmetric chains:

Consider the 4-D LTS m4 = {ê1, ê2, ê4, ê5} as shown in
Fig.9(d). It consists of twists of all pitches along the lines
of pencils in each plane normal to the z-axis, and that
the centers of the pencils all lie on the z-axis (Hunt’s 5th
special 4-system, [13]). Since hm4 = {ê3, ê6}, a typical SP
is given by the algebraic condition (36):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ξ̂+ = (λê4 + μê1) + (σê6 + τ ê3)

= (λê4 + σê6) + (μê1 + τ ê3),
ξ̂− = (λê4 + μê1) − (σê6 + τ ê3)

= (λê4 − σê6) + (μê1 − τ ê3).
(λê4 + μê1) ∈ m4, (σê6 + τ ê3) ∈ hm4 .

for some arbitrary real constants λ, μ, σ, τ . The screw
coordinates of ξ̂+ and ξ̂− can be readily computed as
follows:

• The direction vectors of ξ+, ξ− are given by:⎧⎪⎪⎨
⎪⎪⎩

ω+ =
1

(λ2 + σ2)1/2 (λê4 + σê6),

ω− =
1

(λ2 + σ2)1/2 (λê4 − σê6).
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ξ̂−1

ξ̂+1

ξ̂−2

ξ̂+2

d

d

Fig. 14. A U · U SC as an incomplete m3B-SC.

which are mirror symmetric about the xy-plane.
• The base points q+, q− of ξ+, ξ− are given by:⎧⎪⎨

⎪⎩
q+ =

σμ − λτ

λ2 + σ2 e2

q− = −σμ − λτ

λ2 + σ2 e2.

which are mirror symmetric about the z-axis.
• The pitches of ξ+, ξ− are equal and is given by:

ρ =
λμ + στ

λ2 + σ2 .

If we flip the direction of ω−, (ξ̂+; ξ̂−) admits a 2-fold
rotational symmetry about the z-axis, with the two twists
having equal pitch (see (ξ̂+

2 ; ξ̂−
2 ) and (ξ̂+

3 ; ξ̂−
3 ) in Fig.13(d)).

When λ = σ = 0, we have an infinite-pitch m4-SP which
also admits 2-fold rotational symmetry about the z-axis if
we flip the direction of ξ− (see (ξ̂+

1 ; ξ̂−
1 ) in Fig.13(d)).

Since gm4 = se(3), a m4-SC (ξ̂+
1 , . . . , ξ̂+

4 ; ξ̂−
4 , . . . , ξ̂−

1 )
should satisfy:

{ξ̂+
1 , . . . , ξ̂+

4 } ⊕ {ê3, ê6} = se(3).

Eligible candidates of (ξ̂+
1 , . . . , ξ̂+

4 ) can be found in [30].
Since m4-SCs are 7 or 8-DoF chains, they are redundant
(and possibly, singular) SE(3) motion generators in the
absence of the symmetric motion condition (32).

Finally, when a SC of a k-D LTS m has less than k
SPs, its symmetric motion generates a submanifold of the
symmetric submanifold M = exp(m). Such incomplete
SC s are also prevalent in practice.

Example 4 (U · U SC). A U · U SC (as shown in Fig.14)
is briefly mentioned in [16] and studied in [45]. Its SPs are
given by:{

ξ̂+
1 = Adedê3 ◦ Adeω̂1 ξ̂1 � Adedê3 (η̂−

1 ),
ξ̂−

1 = Ade−dê3 ◦ Ade−ω̂1 ξ̂1 � Ade−dê3 (η̂+
1 ).{

ξ̂+
2 = Adedê3 ◦ Adeω̂2 ξ̂2 � Adedê3 (η̂−

2 ),
ξ̂−

2 = Ade−dê3 ◦ Ade−ω̂2 ξ̂2 � Ade−dê3 (η̂+
2 ).

(37)

where d ∈ R, ξ̂1, ξ̂2, ω̂1, ω̂2 ∈ m2B and (η̂+
1 , η̂+

2 ; η̂−
2 , η̂−

1 )
is a m2B-SC. The SC generates a 2-D submanifold of
M3B under symmetric motion condition (32). It can be
shown to also satisfy the CV transmission condition given
in Example 2 (see [44] for more details).

When working under the symmetric motion condition
(32), the U · U SC, in comparison to a m3B-SC, has not
a free but a dependent translational DoF ([44]). Mark
Rosheim used this phenomenon to characterize the human
shoulder complex movement ([43]).

D. Synthesis of m5 kinematic chains
We have shown that 5-D LTS m5 = {ê1, . . . , ê5} has a

nontrivial intersection with its torsion algebra hm5 . Conse-
quently, the completion group SE(3) of M5 fails to admit
a unique parametrization (31) by m5 × hm5 . Therefore we
cannot directly apply Prop.5 and its corollaries to syn-
thesize SPs and SCs for m5. We develop a type synthesis
method for m5-SCs directly from inversion symmetry (31).
The following proposition gives an algebraic condition for
synthesis of m5-SPs and SCs.

Proposition 6. m5 admits a symmetric chain (ξ̂+
1 , . . . ,

ξ̂+
5 ; ξ̂−

5 , . . . , ξ̂−
1 ) of the following form:{
ξ̂+

i = ξ̂i + ĥi,

ξ̂−
i = ξ̂i − ĥi.

ξ̂i ∈ m5, ĥi ∈ hm5 .

and such that:
{ξ̂1, . . . , ξ̂5} = m5.

The symmetric motion of m5-SCs generate M5 = exp(m5).

Proof. See Appendix E.

A closer look at Prop.6 shows that the SC+ (ξ̂+
1 , . . . , ξ̂+

5 )
no longer determines the SC− (ξ̂−

5 , . . . , ξ̂−
1 ) in a unique

way. The symmetry type of m5-SPs therefore depend not
only on the choice of ξ+

i ’s, but also on the choice of ĥi’s.
Since all the aforementioned LTSs are LT subsystems of
m5, a m5-SP may have any of the symmetry types of
aforementioned LTSs.

V. Conclusion
In this paper, we have introduced inversion symmetry

of the special Euclidean group SE(3) and its symmetry
invariant submanifolds arising from kinesiology and robot
mechanical systems. They share many similarities with Lie
subgroups of SE(3), and therefore expand the known port-
folio of motion patterns for the analysis and synthesis of
many kinesiological joints or robot mechanical generators
that defy a Lie group explanation.

The main contribution of our work is as follows. First,
we have identified, for the first time, seven classes of
symmetric submanifolds (Table III), which all admit the
form of exponential of a Lie triple system of the Lie algebra
se(3). So far as the authors are aware of, this is also the
first time the inversion symmetry of SE(3) is studied.
Second, we found that these symmetric submanifolds share
both a list of geometric properties and also a universal type
synthesis method for their kinematic chains:

• All symmetric submanifolds of SE(3) are generated
by the exponential of a corresponding Lie triple sys-
tem (page 7, Prop.2);
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• The tangent spaces of each symmetric submanifold
admit the half-angle property (page 7, E.q.(26));

• Both the LTSs m and the symmetric submanifolds
M = exp(m) are conjugation or Adjoint invariant by
elements of the torsion group (page 7, Prop.3(3));

• All symmetric submanifolds except M5 = exp(m5) ad-
mits a LTS-torsion parametrization (page 8, Prop.4);

• All symmetric submanifolds admit a universal synthe-
sis method for their kinematic chains (geometric ap-
proach on page 11, Coro.5.3; and algebraic approach
on page 11, Coro.5.4).

On the one hand, the aforementioned geometric prop-
erties have potential applications in kinematics analysis
of both kinesiological and robot mechanical systems. For
example, we may use the half-angle property of M2A to
deduce that the coupler motion of an anti-parallel crank
([56]) (which is used to approximate the human knee joint
model ([57])) has the motion pattern of a 1-D manifold
of M2A ([1]). The conjugation invariance property can be
used to explain the fact that M2B and M3B type parallel
robot wrists ([39,42]) can have identical and conjugate
chains. Geometric properties of the Listing space (as the
symmetric submanifold M2B) may also offer new insight
into the study of optimal control of human eye ([8]).

On the other hand, the complete classification of sym-
metric submanifolds and development of their geometric
properties may have an impact on type synthesis of paral-
lel robots. Making the connection of inversion symmetry
of M3B to the mirror symmetry of parallel CV couplings
completes the story behind Hunt’s observation some forty
years ago ([16]). Besides, M3B also happens to be the
mixed freedom operation mode of the DYMO multi-mode
parallel robot ([58]), and therefore offers new insight in
type synthesis of multi-mode parallel robots. Finally, the
inversion symmetry properties of symmetric submanifolds
may offer a systematic approach to synthesizing intercon-
nected parallel generators, as can be observed from several
novel M2B-CV joints ([54,55]). We will utilize the many
geometric properties developed here in the type synthesis
of parallel and interconnected generators for symmetric
submanifolds in a separate treatment.
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Appendix A
(−)-derivation on the Listing space (Page 6)
We shall show that ω̂−(A) = 1

2 (Aω̂ + ω̂A), ω̂ ∈
m2B , A ∈ L defines a vector field on the Listing space
L = exp(m2B). Recall that for A = ev̂, v̂ ∈ m2B , the
spatial velocity ȦA−1 is given by ([59]):

ȦA−1 =
d

dt
(ev̂)e−v̂

=
(∫ 1

0
esv̂ds · ω

)∧
, ω = v̇ ∈ R

2 × {0}.

(38)

Note that ω may be decomposed into components along
and perpendicular to v, which we denote by v‖ and v⊥.
Then (38) gives:

ȦA−1 = v̂‖ +
sin(‖v‖/2)

‖v‖/2
(ev̂/2v⊥)∧ ∈ Adev̂/2m2B . (39)

This shows that R−1
A (TAL) = AdA1/2m2B .

On the other hand,

ω̂−(A)A−1 =
1
2

A
1
2 (A

1
2 ω̂A− 1

2 + A− 1
2 ω̂A

1
2 )A− 1

2 .

=
1
2

Adev̂/2(Adev̂/2 ω̂ + Ade−v̂/2 ω̂)

=
1
2

Adev̂/2(eadv̂/2 ω̂ + e−adv̂/2 ω̂)

= Adev̂/2

( ∞∑
k=0

ad2k
v̂/2

(2k)!
ω̂

)

∈ Adev̂/2m2B = R−1
A (TAL).

(40)

The last inclusion relation is true since m2B is a LTS and
therefore:

ad2
ûω̂ = [û, [û, ω̂]] ∈ m2B , ∀û, ω̂ ∈ m2B .

From (39) and (40), we see that ω̂−(A) ∈ TAL, and
therefore defines a vector field on L.

Appendix B
Proof of Prop.5 (Page 10)

The proof ot the first part is trivial: since eθ1ξ̂1 · · · eθk ξ̂k

is an element of the complection group GM = exp(gm), it
admits a unique representation eξ̂eĥ, ξ̂ ∈ m, ĥ ∈ hm by the
diffeomorphism (30).

The second part of the proposition can be proved in two
simpler steps. First, we shall show that for ξ̂1, ξ̂2 ∈ m, the
following relation holds:

eξ̂1eξ̂2 = eξ̂eĥ ⇒ e−ξ̂1e−ξ̂2 = e−ξ̂eĥ, ξ̂ ∈ m, ĥ ∈ hm.

Apply the BCH formula (13) on both sides of the first
equation:

eξ̂1+ξ̂2+ 1
2 [ξ̂1,ξ̂2]+ 1

12 ([ξ̂1,[ξ̂1,ξ̂2]+[ξ̂2,[ξ̂2,ξ̂1])+···

= eξ̂+ĥ+ 1
2 [ξ̂,ĥ]+ 1

12 ([ξ̂,[ξ̂,ĥ]]+[ĥ,[ĥ,ξ̂]])+···

It is clear from Coro.1.1 that the terms in the exponents
can be collected into m and hm:

ξ̂1 + ξ̂2 +
1
12

([ξ̂1, [ξ̂1, ξ̂2] + [ξ̂2, [ξ̂2, ξ̂1]) + · · ·

= ξ̂ +
1
2

[ξ̂, ĥ] +
1
12

[ĥ, [ĥ, ξ̂]] + · · · ∈ m.
(41a)
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1
2

[ξ̂1, ξ̂2] + · · · = ĥ +
1
12

[ξ̂, [ξ̂, ĥ]] + · · · ∈ hm. (41b)

It is clear that each term of (41a) is involved with an odd
number of twists in m, and that of (41b) with an even
number. We have e−ξ̂1e−ξ̂2 = e−ξ̂eĥ by changing the signs
of ξ̂1, ξ̂2 and ξ̂.

The second step is to prove the general case using
induction. Suppose the case with r − 1 twists is true:{

eξ̂2 · · · eξ̂r = eξ̂eĥ,

e−ξ̂2 · · · e−ξ̂r = e−ξ̂eĥ.
ξ̂ ∈ m, ĥ ∈ h.

Then the case with r twists reads:

eξ̂1(eξ̂2 · · · eξ̂r ) = eξ̂1eξ̂eĥ = eξ̂′
eĥ′

eĥ = eξ̂′
eĥ′′

.

where eξ̂1eξ̂ = eξ̂′
eĥ′

, ξ̂′ ∈ m, ĥ′ ∈ hm is the unique
representation (33) for eξ̂1eξ̂, and eĥ′

eĥ = eĥ′′
for some

ĥ′′ ∈ hm since hm is a Lie algebra; and:

e−ξ̂1(e−ξ̂2 · · · e−ξ̂r ) = e−ξ̂1e−ξ̂eĥ = e−ξ̂′
eĥ′

eĥ = e−ξ̂′
eĥ′′

.

where e−ξ̂1e−ξ̂ = e−ξ̂′
eĥ′

by the first step.

Appendix C
Proof of Coro.5.3 (Page 11)

We shall show that two representations of ξ̂+ lead to
the same twist ξ̂−, i.e.:

ξ̂+ = Adeη̂ (ξ̂) = Adeη̂′ (ξ̂′) ⇒ ξ̂− = Ade−η̂ (ξ̂) = Ade−η̂′ (ξ̂′).

for any η̂, η̂′, ξ̂, ξ̂′ ∈ m; or in light of (15), prove:

ξ̂+ = eadη̂ ξ̂ = eadη̂′ ξ̂′ ⇒ ξ̂− = e−adη̂ ξ̂ = e−adη̂′ ξ̂′.

Collecting the even and odd terms of eadη̂ ξ̂ = (I + adη̂ +
1
2! ad2

η̂ + · · · )ξ̂ into m and hm, and equate them with those
of eadη̂′ ξ̂′ = (I + adη̂′ + 1

2! ad2
η̂′ + · · · )ξ̂′:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑
k=0

ad2k
η̂

(2k)!
ξ̂ =

∞∑
k=0

ad2k
η̂′

(2k)!
ξ̂′ ∈ m,

∞∑
k=0

ad2k+1
η̂

(2k + 1)!
ξ̂ =

∞∑
k=0

ad2k+1
η̂′

(2k + 1)!
ξ̂′ ∈ hm.

That e−adη̂ ξ̂ = e−adη̂′ ξ̂′ follows from negating the odd
terms in hm.

Appendix D
Proof of Coro.5.5 (Page 11)

Consider the SPs {(ξ̂+
i ; ξ̂−

i )}k
i=1 with:{

ξ̂+
i = Adeη̂i ξ̂i = eadη̂i ξ̂i,

ξ̂−
i = Ade−η̂i ξ̂i = e−adη̂i ξ̂i.

ηi, ξi ∈ m.

By inverse function theorem [10], the POE eθ1ξ̂+
1 · · · eθk ξ̂+

k ·
eθk ξ̂−

k · · · eθ1ξ̂−
1 generates exp(m) if and only if {ξ̂+

i +ξ̂−
i }k

i=1
is a basis of m. On the one hand,

ξ̂+
i + ξ̂−

i = 2
∞∑

k=0

ad2k
η̂i

(2k)!
ξ̂i ∈ m.

On the other hand,

ξ̂+
i =

∞∑
k=0

ad2k+1
η̂i

(2k + 1)!
ξ̂i︸ ︷︷ ︸

∈hm

+
∞∑

k=0

ad2k
η̂i

(2k)!
ξ̂i︸ ︷︷ ︸

= 1
2 (ξ̂+

i
+ξ̂−

i
)∈m

.

Then,
{ξ̂+

1 , . . . , ξ̂+
k } ⊕ hm = gm.

if and only if

{ξ̂+
1 + ξ̂−

1 , . . . , ξ̂+
k + ξ̂−

k } = m.

The other two conditions can proved in a similar manner.

Appendix E
Proof of Prop.6 (Page 14)

Consider first the symmetric motion of a m5-SP (ξ̂ +
ĥ; ξ̂ − ĥ), ξ̂ ∈ m5, ĥ ∈ hm5 . The function:

f(ξ̂) � log(eξ̂+ĥeξ̂−ĥ).

is an odd function of ξ̂ since:

f(−ξ̂) = log(e−ξ̂+ĥe−ξ̂−ĥ) = − log(eξ̂+ĥeξ̂−ĥ).

By the BCH formula (13) and property of LTS (Coro.1.1),
we see that f(ξ̂) ∈ m5 and therefore eξ̂+ĥeξ̂−ĥ = ef(ξ̂) ∈
exp(m5). More generally,

f(ξ̂, ξ̂′) � log(eξ̂+ĥeξ̂′
eξ̂−ĥ), ξ̂, ξ̂′ ∈ m5, ĥ ∈ hm5 .

contains only terms with an odd number of ξ̂ and ξ̂′, since:

f(−ξ̂, −ξ̂′) = log(e−ξ̂+ĥe−ξ̂′
e−ξ̂−ĥ) = − log(eξ̂+ĥeξ̂′

eξ̂−ĥ).

By a similar argument as in the first case, eξ̂+ĥeξ̂′
eξ̂−ĥ ∈

exp(m5). Combining the two cases shows that the sym-
metric motion of a m5-SC is indeed a motion in exp(m5).

The last statement is a result of the inverse function
theorem (see for example [10]).
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