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 
Abstract—Drawing on screw theory and the virtual joint 

method, this paper presents a general and hierarchical approach 
for semi-analytical stiffness modelling of parallel mechanisms. 
The stiffness model is built by two essential steps: (1) formulating 
the map between the stiffness matrices of platform and limbs 
using the duality of wrench and twist of the platform; (2) 
formulating the map between stiffness matrices of a limb and a 
number of elastic elements in that limb using the duality of the 
wrench attributed to the limb and the twist of the end-link of that 
limb. By merging these two threads, the Cartesian stiffness matrix 
can be explicitly expressed in terms of the compliance matrices of 
joints and links. The proposed approach bridges the gap between 
two currently available approaches, and is thereby very useful for 
evaluating stiffness over the entire workspace and investigating 
the influences of joint/link compliances on those of the platform in 
a quick and precise manner. A stiffness analysis for a 3-PRS 
parallel mechanism is presented as an example to illustrate the 
effectiveness of the proposed approach. 
 

Index Terms—Parallel mechanisms, Stiffness modelling, Screw 
theory 
 

I. INTRODUCTION 

ARALLEL mechanisms have drawn strong interest from 
academia and industry by offering potential advantages 

over serial manipulators in terms of better accuracy, higher 
rigidity and superior dynamics. Stiffness should always be 
considered and is a particularly important performance factor in 
the circumstances where high rigidity and fast dynamic 
response are crucially required for high-speed machining 
and/or forced assembling applications.  

Based upon the combination of fundamental robotics with 
FEA (Finite Element Analysis) or structural mechanics 
analytical or semi-analysis stiffness modelling is an essential 
step in the design flow. The relevant methods have been 
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developed along one of two tracks as follows.  
Models developed along the first track establish the 

relationship between stiffness matrices of the platform and the 
limbs. The early work was initiated by Salisbury [1] for serial 
manipulators. Gosselin extended this work to deal with parallel 
mechanisms by taking into account only actuator compliances 
[2]. Building upon screw theory [3], [4], Joshi and Tsai [5] 
developed a general and systematic approach for Jacobian 
analysis of lower mobility parallel mechanisms, resulting in a 
brand new Jacobian known as the overall Jacobian, which 
accounts for the wrenches of both actuations and constraints 
imposed upon the platform. By utilizing the duality of wrench 
and twist at the platform, this approach was then substantially 
extended by Huang and colleagues into the generalized 
Jacobian [6] that allows the potential integration into a unified 
framework of velocity, accuracy, and stiffness modelling of 
lower mobility parallel mechanisms. Under the umbrella of the 
overall Jacobian or generalized Jacobian, stiffness analyses of a 
number of lower mobility parallel mechanisms were carried out 
[7]–[14]. However, the map between stiffness matrices of a 
limb and links/joints in the joint space has to be obtained by 
case-by-case studies.  

Modelling along the second track develops stiffness models 
by establishing the relationship between stiffness matrices of 
the platform and joints/links. The early work was initiated by 
Zhang and Gosselin [15] who introduced the concept of the 
‘virtual joint’ to express the bending and torsional compliance 
of a properly constrained passive limb within the Tricept robot, 
resulting in a simplified bending stiffness model represented by 
two one-dimensional lumped springs. This elegant idea was 
then widely used by others [16]–[22]. In order to uniquely 
determine the location of virtual joints and to fully address the 
coupling effects, the ‘virtual joint’ approach was significantly 
improved by Pashkevich and colleagues [23]–[25]. Their multi- 
dimensional lumped-parameter model presents the joints/links 
as pseudo-rigid bodies having 6-DOF virtual springs. Stiffness 
coefficients of virtual joints can be either roughly evaluated 
using a regular spatial beam or precisely identified by FEA [23], 
[26] where the sensibility analysis with respect to the mesh 
quality is investigated to ensure confidence of the results, 
allowing sufficient computational accuracy to be achieved. 
More recently, this approach was used to investigate stiffness 
modelling of perfect and non-perfect spatial parallel 
mechanisms under internal and external loadings [27]. 
Although a general joint-level stiffness model can be achieved 
by this method, intensive computational efforts have to be 
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made because the Jacobians with respect to passive and virtual 
joints must be generated by SVD decomposition [25]. 

To address the practical need for rapid and precise stiffness 
prediction over entire workspace, this paper offers a new and 
hierarchical stiffness modelling approach for parallel 
mechanisms. Following this introduction, the stiffness map 
between platform and limbs is developed in Section II, using 
the duality of wrench and twist of the platform. Then, in Section 
III, the stiffness map in joint space between a limb and elastic 
elements is formulated using the duality of the wrench 
attributed to the limb and the twist of the end-link (the platform). 
By merging these threads in Section IV, a general yet explicit 
stiffness map between platform and elastic elements is obtained. 
The stiffness analysis of a 3-PRS parallel manipulator is carried 
out as an example to illustrate the effectiveness of the proposed 
approach in Section V, before conclusions are drawn in Section 
VI. It is worthwhile pointing out that the formulation of the 
symmetrical component of the Cartesian stiffness matrix is of 
interest here for design purpose [23] by neglecting the effects 
caused by the external loads and relevant changes in the 
Jacobian [28], [29]. 

II. STIFFNESS MODELLING OF PARALLEL MECHANISMS AT LIMB 

LEVEL 

The first step in the modelling process is to formulate the 
stiffness model at limb level by screw theory and the virtual 
work principle. Without loss of generality, consider a parallel 
mechanism comprising a base, a platform and l limbs as shown 
in Fig. 1. Assume that there are in  ( 6in  ) 1-DOF joints in 

limb i , of which ig  ( 0 i ig n  ) are actuated. For 

convenience, attach a global reference frame   to the base and 
a parallel reference frame   to the platform with its three 
orthogonal axes being parallel to those of   as depicted in Fig. 
1. Note that the coordinates of all vectors are evaluated in   
unless stated otherwise. Leaving aside gravitational and inertial 
forces, the externally applied wrench w$  (expressed in 

ray-coordinates) imposed upon the platform is equilibrated by 
the sum of wrenches ,w i$  ( 1, ,i l  ) provided by all limbs as 

shown in Fig. 2.  

, ,
1 1

l l

w w i i w i w
i i 

   $ $ W ρ W ρ                     (1) 

6

, , , , , , , , , ,
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ˆ ˆ
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ρ ρ


 

    W ρ$ $ $ , 1, ,i l    (2) 

1 2 l   W W W W ,  TT T T
,1 ,2 ,w w w w l ρ ρ ρ ρ  
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, ,1, , , ,1, ,6 ,i iw i wa i wa g i wc i wc n iρ ρ ρ ρ   ρ  

where , ,
ˆ

wa k i$  ( , ,
ˆ

wc j i$ ) is the thk  ( thj ) unit wrench of 

actuations (constraints) of limb i with , ,wa k iρ  ( , ,wc j iρ ) being the 

corresponding intensity. Here, we define a point on the axis of a 
wrench provided by limb i as being at the interface between the 
limb and the platform. Then, vector ,w iρ  collects the 

generalized reaction forces at the interface. The method for 
determining the unit wrenches of actuations and constraints of a 
serial kinematic chain can be found in [30]. Define, also, vector 

,t iρ  (the same size as ,w iρ ) to represent the corresponding 

interface deflections caused by ,w iρ . The virtual work principle 

states that the instantaneous work delivered by the externally 
applied wrench w$  on the deflection twist t$  (expressed in 

axis-coordinates) of the platform equals the sum of the 
instantaneous work done by all ,w iρ  on ,t iρ , i.e. 

T T T
, ,

1

l

w t w t w i t i
i

  ρ ρ ρ ρ$ $                           (3) 

 TT T T
,1 ,2 ,t t t t lρ ρ ρ ρ  

 T

, ,1, , , ,1, ,6 ,i it i ta i ta g i tc i tc n iρ ρ ρ ρ ρ    

Substituting (1) into (3) results in  
T

t tW ρ$                                      (4) 

or, for each limb 
T

,i t t iW ρ$ , 1, ,i l                               (5) 

Fig. 2  Static equilibrium of the platform  
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Fig. 1  Elastic model of a parallel mechanism 
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Assuming that the system is linearly elastic in nature, Hooke’s 
law gives 

, ,w i i t iρ K ρ  or w tρ K ρ , diag i   K K              (6) 

where iK  is a    6 6i i i ig n g n      symmetrical matrix 

known as the interface stiffness matrix of limb i with respect to 
 . Substituting (4) and (6) into (1) yields the stiffness model 

at limb level for parallel mechanisms,  

w t K$ $ , T T

1

l

i i i
i

  K WKW W K W                (7) 

where K  is a 6 6  symmetrical matrix known as the Cartesian 
stiffness matrix. It is easy to see that K  has a structure of l  
parallel connected springs.  

III. STIFFNESS MAP BETWEEN A LIMB AND LINKS/JOINTS IN 

THAT LIMB IN JOINT SPACE 

We now develop a method for obtaining a general and 
explicit expression of iK  in terms of stiffness matrices of 

elastic elements defined in a set of local body-fixed frames. The 
elastic model of the limb, shown in Fig. 3, comprises i iM n  

elastic elements, each being either a link or 1-DOF revolute or 
prismatic joint. The choice of a suitable value for iM  depends 

on the fidelity required.  
To evaluate compliances of element m  ( 1, , im M  ), 

attach a body fixed frame m,i  to the element as shown in Fig. 3, 

with one axis of m,i  aligned along the relevant joint axis or 

along the longitudinal axis of a link. Since all links and joints 
are being considered as elastic elements, limb i can be 
visualized as an elastic system comprising iM  serially 

connected springs as shown in Fig.4. Hence, the deflection 
twist ,t i$  of the end-link of limb i under action of ,w i$  can be 

decomposed into two components as 

, , ,
e d

t i t i t i $ $ $ , 1, ,i l                            (8) 

where ,
e
t i$  represents the elastic deflections while ,

d
t i$  arises 

from the combined rigid body motions of all passive joints in 
the limb necessary to satisfy the geometric compatibility 
conditions among the limbs when all elastic elements and 
actuated joints are locked. ,

d
t i$  can be further parameterized as 

a linear combination of a set of unit twists associated with all 
the passive joints involved, 

, , , , ,
1

ˆ
i in g

d
t i ta p i ta p i

p

ρ




 $ $                               (9) 

where , ,
ˆ

ta p i$  denotes the unit twist due to the translation along 

and rotation about the pth passive joint axis with , ,ta p iρ  being 

the associated amplitude. All limbs connect to the same 
platform and share its motion, i.e., ,t t i$ $ , and therefore 

, ,
ˆ

wa k i$  ( 1, , ik g  ) and , ,
ˆ

wc j i$  ( 1, , 6 ij n  ) must be 

reciprocal to , ,
ˆ

ta p i$  ( 1, , i ip n g  ) because ,w i$  does work 

only on ,
e
t i$  but not on ,

d
t i$  [6]. These dual and reciprocal 

properties lead to the relationships  
T T T

, , ,
e

i t i t i i t i t i  W W W ρ$ $ $ , T
, 0d

i t i W $         (10) 

In addition, because all the elastic elements are connected 
serially as shown in Fig. 4, ,

e
t i$  can be written as the sum of 

their elastic deflection twists , ,
e
t m i$  ( 1, , im M  ) under the 

action of ,w i$ , 

, , ,
1

iM
e e
t i t m i

m

 $ $ , 1, ,i l                       (11) 

Consider, first, only elements that are a 1-DOF actuated joint or 
an elastic link. Let , ,w m iρ  be a 6 1  vector collecting the 

reaction forces/moments along/about the axes of m,i , and 

, ,t m iρ  be the vector, the same size as , ,w m iρ , that represents the 

elastic deflections caused by , ,w m iρ . Then, from Hooke’s law  

, , , , ,w m i m i t m iρ K ρ                              (12) 

where ,m iK  is n n  symmetrical matrix defined as the 

stiffness matrix of element m with respect to m,i  and for these 

cases 6n  . If, however, the element is a 1-DOF passive joint, 
this exact formulation cannot be used; the freedom would cause 
the matrix to be singular and the compliance matrix would not 
exist. The solution is to use a reduced form of the stiffness 
matrix with 5n   that covers only the constrained axes, with 

the corresponding vectors also reduced to 5 1 . ,m iK  can be 

generated by either FEA or by an DOFn   virtual spring that 
gives diagonal entries. 

Let m i,T  be the adjoint coordinate transformation matrix of 

m,i  with respect to  . Each column of m i,T  should be 

understood as a unit twist produced by a pure translation/ 

Fig. 3  Flexible model of a limb 
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rotation along/about the corresponding axis of m,i . Again, 

considering at first only the cases of 1-DOF actuated joints and 
elastic links, the principle of virtual work shows that 

T
, , , ,w m i m i w i $ρ T , , , , , ,

e
t m i m i t m i$ T ρ , 1, , im M  , 1, ,i l   (13) 

For these cases m i,T  has the ( 6 6 ) form  

m i m i m i
m i

m i

    
  

, , ,
,

,0

R r R
T

R
                      (14) 

Here, m i,R  denotes the orientation matrix of m,i  with respect 

to   and m i  ,r  denotes the skew-symmetric matrix of the 

vector m i,r  pointing from the origin of   to that of m,i  as 

depicted in Fig.5. For a 1-DOF passive joint, the m i,T  given in 

(14) must be reduced by removing its column corresponding to 
the unit twist of the rigid body motion along/about the free axis, 
so giving a 6 5  matrix compatible with the reduced stiffness 
matrices and vectors proposed above. 

Substituting (12) and (13) into (11) yields the stiffness model 
of serial kinematic chains containing passive joints, 

1

1 T
, , , , ,

1

iM
e

w i m i m i m i t i
m







 
  
 
$ $T K T                      (15) 

Substituting (10) into (15) and left-multiplying both sides by 

T
iW , yields  

1

T 1 T
, , , , ,

1

iM

w i i m i m i m i i t i
m







  
      

ρ W T K T W ρ             (16) 

Finally, the stiffness map between ,m iK  and iK  is obtained by 

equating (6) with (16) to give 

 
1

T 1 T
, , ,

1

iM

i i m i m i m i i
m







  
      

K W T K T W               (17) 

Equation (17) can be interpreted as the map between stiffness 
matrices of limbs and of their elastic elements in joint space 
according to the convention defined in robotics [4]. Clearly, 

iK  has a structure analogous to that of iM  serially connected 

springs. This general and explicit derivation of iK  by using the 

dual and reciprocal properties of the relevant wrenches and 
twists is one major contribution of this article.  

IV. STIFFNESS MODELLING OF PARALLEL MECHANISMS AT THE 

JOINT/LINK (ELEMENT) LEVEL 

Having established the results of Sections II and III, the 
element-level stiffness model for parallel mechanisms is 
obtained simply by substituting (17) into (7) such that 

w t K$ $                                     (18) 

T

1

l

i i i
i

 K W K W ,  
1

T 1 T
, , ,

1

iM

i i m i m i m i i
m







  
      

K W T K T W  

Fig. 6 illustrates the hierarchical structure of the stiffness model 
developed in this article. Closely linked by the explicit 
expression of the map given in (17), the model is clearly built at 
two levels, i.e. the limb level given in (7) by using screw theory, 
and the element level given in (18) by combining screw theory 
with the virtual joint method.  

Hence, the stiffness model of the system as a whole can be 
formulated by simply taking account also of the elasticity of the 
platform, to give 

  11 1
M

   pK K K ,   11 T
0p p p p

K T K T           (19) 

Fig. 5  Coordinate transformation between ,m i  and   
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TABLE I 

COMPLIANCE MATRICES OF ELASTIC ELEMENTS 

m Element and m,i  1
,m i

K  (unit: N, m, rad) 

1 

 

3 3 3

3 3 3

1
9,

3 3

3.39 1.72 10 0.86 10 5.58 10 13.92 9.18

1.47 0.91 10 10.26 0.52 10 29.06 10

+1.55 9.65 5.78 1.50
10

139.04 44.74 10 102.07 10

sym. 150.99 6.48

143.91

zz ik

  

  




 

      
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 

 
   

  
  

2 

 

3 3 3 3

3 3 3

93 3

3

0.73 0.21 10 0.16 10 1.84 10 0.22 10

0.42 0.31 10 6.40 10 4.66 10

100.42 13.19 10 6.40 10

sym. 52.02 39.27 10

52.33

   

  

 



        
       
    
 

 
 
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3 

3 3 3

3 3

3 3
9

5.17 15.05 10 2.26 10 64.02 10 21.85 0.37

28.29 3.74 103.28 54.45 10 85.47 10

1.03 12.94 0.63 10 19.67 10
10

452.99 0.33 0.36

sym. 170.74 27.11

227.72
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 

 

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 
 
 
 
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3 3 3

3 3
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sym. 141.85 1.19
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3
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where 0pK  is the stiffness matrix of the platform evaluated in 

its local frame 0  and pT  is the adjoint coordinate 

transformation matrix of 0  with respect to  , which has a 

similar form to that given in (14). Note, finally, that because of 
the coupling effects between translational and rotational 

components, iK  is in general a non-diagonal matrix even when 

all related ,m iK  are diagonal matrices as assumed by the virtual 

joint method.  

V. AN EXAMPLE 

In this section, a stiffness analysis of a 3-PRS parallel 
mechanism is carried out to illustrate the generality and 
effectiveness of the proposed approach. The mechanism can be 
used to build a 3-DOF spindle head shown in Fig. 7, e.g., the 
Sprint Z3 head [31]–[33], as part of a 5-axis CNC machine tool 
for high-speed machining of large structural components in, 
e.g., the aircraft industry. 

Fig. 8 shows a schematic diagram of the 3-PRS parallel 
mechanism. It comprises a base, a platform, and three identical 
limbs, each connecting the base with the platform by, in 
sequence, an actuated prismatic joint P, a revolute joint R, and a 
spherical joint S. The spherical joint is a composite joint of 
revolute joint and universal joint. A reference frame   is 
attached to the base with O  located at the centre of equilateral 
triangle 1 2 3B B B , its z  axis normal to the plane of 1 2 3B B B  

and its x  axis parallel to 2 3B B . An instantaneous frame   is 

attached to the platform with O  located at the centre of 
equilateral triangle 1 2 3A A A , and the x , y  and z  axes 

parallel to x , y  and z , respectively. Then, the unit wrenches 

in iW  that is defined in (2) can be generated by the method 

given in [30], 

,1, ,1,
ˆ ˆ

i wa i wc i
   $ $W                             (20) 
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where 2,is  is a unit vector of the R joint axis, 3,is  is a unit 

vector aligned with i iP A , and i iO Aa  as shown in Fig. 8. 

For convenience, we group all parts of a PRS limb into six 
elastic elements shown Table I: (1) the carriage assembly; (2) 
the R joint; (3) the limb body; (4)-(6) three R joints of the S 
joint, numbered from the one connecting with the limb body to 
that with the platform. To evaluate 1

,m i
K , place a reference 

frame 0 ,i  at iB  with its 0,ix  axis parallel to the axis of the R 

joint and its 0,iz  axis along the direction of the P joint. Then 

place m,i  ( 1,2,3m  ) at iP  with 0, 1,i ix x , 1, 2,i ix x , 

2, 3,i ix x , 0, 1,i iz z  and 2, 3,i iz z ; and m,i  ( 4,5,6m  ) at 

iA  with 3, 4,i iz z , 4, 5,i iy y , 5, 6,i ix x , respectively. Here, 

the 2,iz  axis is aligned with i iP A ; the 2,ix , 4,iz , 5,iy and 6,ix  

axes are aligned with the rotational axes of the four passive R 
joints. Using these local frames, m i,T  ( 1, ,6m   ) can be 

generated via inverse kinematic analysis, with the geometric 
parameters for this specific example given in Table II [14]. 
Table I shows 1

,m i
K  obtained with the aid of FEA software 

SAMCEF® by taking account of compliances of all relevant 
bearings and mechanical parts, each evaluated in its 
corresponding local frame m,i  by taking ‘virtual loading 

experiments’ [24], [26]. Data for FEA was taken from 
manufacturers’ specifications and typical materials properties. 
The only non-constant term here is the compliance coefficient 

1
zz,ik   in 1

1,i
K , where the axial compliance of the lead-screw is a 

function of stroke iq . Since the support condition of lead-screw 

is Fixed-Free support [34], 1
zz,ik   can be modelled as [14]  

1 1 1
zz, ( ) /i i n an ark q l EA k k                        (21) 

where EA  is the tensile modulus of the lead-screw, ank  and 

ark  are the extension/compression stiffness coefficients of the 

nut and rear support bearings, respectively. Values for this 
example, based on the relevant product specifications, are 

=0.318 mnl , 8=1.465 10 NEA   

9=1.104 10 N mank  , 9=2.140 10 N mark   

For applications as a machine tool, it is physically 
meaningful and desirable to evaluate the mechanism rigidity in 
a body fixed frame 0  placed at point E on the platform with 

the u axis along the direction and the w axis aligned with the 
spindle axis as shown in Fig. 9. Then, the stiffness matrix at 
point E with respect to 0  can be expressed, from (19), as 

  1T 1 1 T 1
0+E E M E E E p

    K T K T T K T K            (22) 

TABLE II 
GEOMETRIC PARAMETERS 

iO A  iOB  i iP A  O E  

0.170 m 0.220 m 0.390 m 0.238 m 

Fig. 9  Body fixed frame at point E 
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where R  is the orientation matrix of 0  with respect to  . 

 T0 0EO e  r  is the position of point O  measured in 

0  with e  being the distance between point O  and point E. 

Note that ET  is the inverse transformation of pT . Here, 
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K  

We now use linear stiffnesses along the u , v , w  axes and 

torsional stiffness about the w  axis of 0  to evaluate the 

rigidities of the mechanism for milling purpose. These rigidities 

are the reciprocal diagonal entries of 1
E E

C K , i.e. 

 1 1, 1tu Ek  C ,  1 2, 2tv Ek  C  

 1 3, 3tw Ek  C ,  1 6, 6rw Ek C  

Fig. 10 shows the distributions of tuk , tvk , twk , and rwk  

over a portion of the task workspace defined by the precession 

angle 0 ~ 360    , the nutation angle 0 ~ 40    , and the 

fixed coordinate 1.055 mz  . The results are obtained 

respectively by the semi-analytical model given in (22) and by 
SAMCEF® FEA software. In the FEA implementation, the 
translational displacements along three orthogonal axes of 0  

and the angular displacement about the w  axis of 0  under 

unit force and unit torque are evaluated at each configuration (a 
pair of   and  ), respectively. Then, at a given configuration, 

tuk , tvk , twk , and rwk  are obtained by taking reciprocal of the 

relevant linear and angular displacements. Table III compares 
the results at the specific configuration where 1.055 mz  , 

0   , and 0   . The results obtained by the proposed 

approach clearly match satisfactorily those obtained by FEA in 
terms of both magnitude and distribution. Given this full 

Fig. 10  Stiffness distributions of the 3-PRS parallel mechanism ( sinx   , siny    )  

1: Semi-analytical model  2: FEA model 
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TABLE III 
RESULTS OBTAINED BY THE SEMI-ANALYTICAL METHOD AND FEA 

 
tuk  

N / μm  
tvk  

N / μm  
twk  

N / μm  

rwk  

610  Nm / rad  

Semi-Analytic 19.95 19.95 204.46 1.25 

FEA 18.97 18.97 198.07 1.18 

Residual 5.17% 5.17% 3.23% 5.93% 

 



 

confidence in terms of its computational accuracy, the proposed 
semi-analytical approach offers a great benefit over FEA: a 
huge computational time can be saved when predicting the 
stiffness over the entire workspace, an important issue in the 
conceptual as well as the joint-level mechanical design of a 
parallel mechanism.  

VI. CONCLUSIONS 

By combining screw theory with the virtual joint method, 
this paper introduces a general and systematic approach for 
stiffness modelling of parallel mechanisms under ‘unloaded 
equilibrium’ conditions. The following conclusions are drawn. 

(1) We have proposed a hierarchical structure of the stiffness 
model of parallel mechanisms that essentially consists of two 
stiffness maps: (a) the map between stiffness matrices in the 
Cartesian space and in the joint space at limb level, which has 
the nature of a system comprising a set of parallel connected 
spring elements; (b) the map between stiffness matrices in the 
joint space at limb level and at element level, which has the 
nature of a set of serially connected springs. Merging these two 
threads results in a general, explicit expression for the Cartesian 
stiffness matrix in terms of the compliance matrices of all 
joints/links evaluated in their local body-fixed frames, the 
wrench systems imposed upon the limbs, and the twist systems 
generated by the virtual joints.  

(2) The effectiveness of the proposed approach has been 
confirmed by a comparison study against FEA software. The 
results of a stiffness analysis of a 3-DOF spindle head show that 
sufficient computational accuracy can be achieved while 
making huge computational time savings (over FEA) for the 
prediction of stiffness over the entire workspace. The proposed 
approach is therefore valuable in both the conceptual design 
and element-level optimization of parallel mechanisms, 
including those having kinematic redundancy and over- 
constraints.  
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