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Memory Unscented Particle Filter for
6-DOF Tactile Localization

G. Vezzani, U. Pattacini, G. Battistelli, L. Chisci, and L. Natale

Abstract—This paper addresses 6-DOF (degree-of-freedom)
tactile localization, i.e. the pose estimation of tridimensional
objects given tactile measurements. This estimation problem is
fundamental for the operation of autonomous robots that are
often required to manipulate and grasp objects whose pose is
a-priori unknown. The nature of tactile measurements, the strict
time requirements for real-time operation and the multimodal-
ity of the involved probability distributions pose remarkable
challenges and call for advanced nonlinear filtering techniques.
Following a Bayesian approach, this paper proposes a novel
and effective algorithm, named Memory Unscented Particle Filter
(MUPF), which solves the 6-DOF localization problem recursively
in real-time by only exploiting contact point measurements.
MUPF combines a modified particle filter that incorporates a
sliding memory of past measurements to better handle mul-
timodal distributions, along with the unscented Kalman filter
that moves the particles towards regions of the search space
that are more likely with the measurements. The performance
of the proposed MUPF algorithm has been assessed both in
simulation and on a real robotic system equipped with tactile
sensors (i.e., the iCub humanoid robot). The experiments show
that the algorithm provides accurate and reliable localization
even with a low number of particles and, hence, is compatible
with real-time requirements.

Index Terms—Bayesian state estimation, tactile localization,
particle filtering.

I. INTRODUCTION

CCURATE perception is a necessary requirement for

general operation of autonomous robots in real-world
environments, and, in particular, for object manipulation. The
development of new sensors and inference techniques plays a
major role in improving manipulation capabilities: it enhances
the robot ability to deal with uncertainties, increases flexibility
and also reduces the cost required to engineer the environment
in which the robot will operate. In robotics, the use of vision
has been thoroughly investigated [1]], while the interest in
tactile sensors is quite recent. This is due to the fact that only
recent advances in tactile technology have made it possible
to build tactile systems that are reliable enough and can be
deployed on real robots at a reasonable price [2f], [3]], [4]. This
recent improvement of tactile sensors is one of the reasons
for a surge of interest on this topic [5]. Findings in human
physiology testify how humans jointly exploit vision and touch
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in order to accomplish manipulation tasks and how humans
are even able to explore objects by means of tactile perception
solely [6]], [7]. Thus, improvements on the use of touch sensors
will make manipulation tasks more efficient, complementing
vision when unavailable or imprecise, for example due to
occlusions and/or bad lighting conditions.

Due to technological limitations, tactile systems have low
resolution and rarely provide other than estimation of the force
normal to the surface. Object localization using tactile feed-
back is, therefore, challenging and requires the development of
filtering techniques that allow appropriate fusion of multiple
measurements, taking into account the presence of noise and
the real-time requirements of the task.

This paper proposes a novel algorithm for the solution
of tridimensional object tactile localization, named Memory
Unscented Particle Filter (MUPF). This algorithm relies on the
Unscented Particle Filter (UPF) [8]], conveniently modified so
as to efficiently solve the global 6-DOF (degree-of-freedom)
localization problem, by exploiting contact point measure-
ments only. The proposed MUPF algorithm has proved to be
effective in experimental validation carried out in simulation
as well as in a real setting using the iCub humanoid robot and
its tactile system [2].

The paper is organized as follows. Section [lI| provides an
overview on tactile localization. Section [[Illis a brief introduc-
tion to nonlinear filtering techniques useful for the subsequent
developments of the paper. Section[[V]provides a mathematical
(Bayesian) formulation of the tactile localization problem.
Section [V]presents the novel Memory Unscented Particle Filter
(MUPF) approach to 6-DOF tactile localization. Section
and demonstrate the effectiveness of the proposed ap-
proach by means of simulation and, respectively, experimental
tests on the iCub humanoid robot. Finally, Sections and
end the paper with concluding remarks and perspectives
for future work.

II. RELATED WORK

The first contributions on tactile object localization (1980s)
tackled the problem by using mostly iterative optimization
methods and focused on finding a single solution best fitting
the set of available measurements [9]—[11]]. Since these meth-
ods tend to be trapped in local minima, low initial uncertainty
is assumed so as to ensure that the optimization algorithm is
initialized near the solution. In order to avoid local minima,
the algorithm can be executed multiple times from different
starting points.

Over the last years, Bayesian methods have been playing an
important role in tactile localization [12]-[15]. In particular,



these methods are capable of working with noisy sensors,
inaccurate models, moving objects and can give information
on where to sense next during tactile exploration. Thus, they
can be used not only to localize the object, but also to provide
useful information for collecting measurements and for real
exploration.

Since the localization problem is intrinsically of multimodal
nature (i.e. the probability density exhibits multiple peaks),
nonlinear Kalman filtering techniques (such as the extended or
unscented Kalman Filter) cannot be satisfactorily used. In this
respect, the Bayesian framework (e.g. particle filtering) is more
appropriate, since it intrinsically handles multimodal distribu-
tions. On the other hand, its main drawback is represented by
the computational complexity, which grows exponentially with
the number of independent variables (DOFs) and polynomially
with the size of the initial region of uncertainty. For example,
recalling that the localization of an object involves 6 DOFs,
a particle filter should be configured to run with a number
of particles in the order of 10 which might entail an
unaffordable computational burden for real-time operation. In
fact, most of the existing work is characterized by assumptions
limiting the number of DOFs and the size of initial uncertainty.

In this respect, the first known work traces back to 2001
and is due to Gadeyne et al. [12], who performed 3-DOF
localization of a box with initial uncertainty of 300 mm in
position and 360 degrees in orientation. Measurements were
taken by a force-controlled robot and a sampled measurement
model, stored in a lookup table and constructed off-line, was
used. In 2005, Chhatpar et al. [13] used particle filters to
achieve 3-DOF localization with 20 mm of initial uncertainty
in peg-in-hole assembly tasks. The exploited measurement
model was obtained by sampling the object in advance.

An interesting approach to tactile localization makes use of
the Scaling Series method [15]], [16] developed by Petrovskaya
et al., by which 6-DOF localization has been achieved with
large initial uncertainty of 400 mm in position and 360 degrees
in orientation. This method, which combines Bayesian Monte
Carlo and annealing techniques, exploits measurements of con-
tact points and surface normals. It performs multiple iterations
over the data, gradually scaling precision from low to high. For
each iteration, the number of particles is automatically selected
on the basis of the complexity of the annealed posterior.

In 2010, Corcoran et al. [[14] used an annealed particle filter
to estimate a 4-DOF pose and radius of cylindrical objects. The
initial uncertainty was of 250 mm in position and unrestricted
in orientation. The measurement model proposed in [[15] was
extended by exploiting the concept of “negative information”.
To this end, a set of “no-contact measurements” is defined to
account for regions explored by the robot where it is known
or it can be inferred that the object cannot be located, since
no contacts are perceived.

In 2013, Koval et al. [17]] addressed object localization dur-
ing manipulation actions which involve persistent contact (e.g.
pushing) and proposed a modified particle filter to estimate
the state of the object. In the same year, Chalon et al. [|18]]
presented another particle filter method including information
on both object and finger movements. A recent work [19]
combines global optimization methods with the Monte Carlo

approach in order to provide a batch solution to the global
localization problem, either improving the estimate of the
object pose obtained by vision or globally estimating pose
when vision is not available.

From a technological standpoint, the most commonly used
sensors for tactile localization are force sensors, usually lo-
cated on the end effector of industrial manipulators, which
provide both contact point and surface normal measurements
[12], [15], [20]. Conversely, more recent works - such as [[14]],
[17], [18], [21] and the present paper - rely on a human-like
robot hand to retrieve measurements, with a different kind
of tactile sensors. An example of capacitive tactile sensors
located on the fingertips of robot hands are the ones described
in [2f], able to retrieve the pressure exerted on the fingertip
when contact is detected.

This paper proposes a novel algorithm, the Memory Un-
scented Particle Filter, to solve the 6-DOF object localization
using tactile measurements. The algorithm was designed to
exploit only the measured position of the contact points
obtained from the tactile sensors on the robot unlike other
work in the literature, wherein available measurements also
include the surface normal at the contact points [[15]], [20],
[22]] or consist of a 6-dimensional vector including force and
torque. [12].

It is worth pointing out that the proposed solution is inher-
ently recursive in that the measurements are sequentially pro-
cessed in real time as they become available, and the algorithm
can provide the object’s pose estimate after the processing of
each measurement. There are several reasons for considering
a recursive approach: the algorithm can provide the object’s
pose estimate after the processing of each measurement, and
not only at the final measurement acquisition time as with a
batch procedure like the one in [[15]], [16]; it is compliant with
active exploration techniques where the robot decides, at each
time ¢, where to sense next on the basis of the current object’s
pose estimate; it can allow stopping the object localization
procedure at a given time ¢ whenever a suitable stopping
criterion is satisfied.

The main novelties of this work are:

1) the adoption of the Unscented Particle Filter (UPF) [8]],
i.e. a variant of the particle filter exploiting an UKF for
each particle, for tactile object localization;

2) the definition of an appropriate measurement model for
the touch sensor necessary for the application of UPF
to tactile-based localization;

3) a suitable modification of UPF to enforce memory of
past measurements in the update of the importance
weights.

Experiments in simulations as well as with a real robotic
platform show that, with respect to the state-of-the-art, MUPF
is significantly more reliable, requires much less parameter
tuning and is able to localize the object with comparable
precision.

III. MATHEMATICAL BACKGROUND

Hereafter, tactile localization is cast into the Bayesian
framework and addressed as a nonlinear multimodal filtering



problem. Recall that filtering is the problem of recursively
estimating the state =; € R" of a dynamical system while
acquiring and processing noisy observations on-line. Specif-
ically, from a Bayesian viewpoint, the goal of the filtering
problem is to recursively compute the following conditional
PDFs

pt|t(x) =p(z: = 1’|yt)
pt+1|t(w) =p(xiy1 = 33|yt)7

D

given the noisy observations y* = {y1,...,y;} with y; € RP.

The solution of the filtering problem is given by the
Bayesian recursion, starting from the initial prior pyjo(-) and
consisting of two functional equations, i.e. the following Bayes
and respectively Chapman-Kolmogorov equations:

gt(yt|$)pt|t71 (z)
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where ¢, 11¢(x|§) is the Markov transition density represent-
ing the conditional probability that the state at time ¢ + 1 will
take value « given that the state at time ¢ is equal to &, and
Ui (y|x) is the measurement likelihood function denoting the
probability that the measurement at time ¢ will take value y
given that the state is equal to .

However, in many practical applications, such as navigation,
tracking and localization, the transition and likelihood models
are usually affected by nonlinearities and/or non-Gaussian
noise distributions, thus precluding analytical solutions of
and (B). In these cases, one must invariably resort to some
approximation technique. Most of the existing approximation
techniques can be divided in two families: Kalman-filtering-
like approaches, and sequential Monte Carlo methods. The
algorithms belonging to the former family (like the Extended
Kalman filter and the Unscented Kalman filter [23]]- [24])
propagate only the first- and second-order moments (i.e.,
mean and covariance) of the posterior state distribution. Such
methods are usually characterized by a low computational
cost, but are not appropriate for multimodal distributions like
the one arising from the tactile localization problem. On the
other hand, sequential Monte Carlo methods, also known
as particle filters [25], can deal with arbitrary nonlinearities
and distributions and supply a complete representation of the
posterior state distributions.

Particle filtering techniques stem from the idea of approx-
imating the posterior density function py;(x) by means of a
finite set of weighted samples (particles) as

e Z o d(x — ), @)

where J(-) is the Dirac delta function, x|

t|t
the i-th particle and w§ " its normalized importance weight. In

this way, the evaluation of the integrals that are necessary for
application of the Bayesian filtering equations (2) and (@) is
performed via the Monte Carlo numerical integration method,
i.e., by transforming the integrals into discrete sums.

is the position of

In principle, the particle approximation (4)) can be computed
by drawing a set of 1ndependent and identically distributed
samples {wt‘t, = ., N} from the posterior py(x).
While such a solution is not feasible because pt‘t(a:) is not
known, the difficulty can be circumvented by sampling each
particle ¢ from a known, easy-to-sample, proposal distribution
¢ (z¢|y"), and then compute the normalized importance

weights as
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In fact, by comparing (3) with ) and (@), it is an easy
matter to see that the resulting particle-based description
approximates the true posterior p;.(x) at time ¢.

A. The Unscented Particle Filter

The main drawback of particle filtering techniques is that,
unless special care is taken, the number N of particles
needed to make the approximation (@) sufficiently accurate
can increase exponentially with the dimension n of the vector
to be estimated (since it is required to sample in a subset
of R™). In this respect, a critical point of particle filtering
is how to choose the proposal distribution ¢(*)(x;|y*) so as
to approximate the posterior reasonably well with a moderate
number of particles. Among the most effective variations,
there is the unscented particle filter (UPF) which exploits the
UKF in the proposal distribution to improve performance [J3].
In the following part of this section, an outline of the UPF
algorithm is provided.

The UPF propagates a set of extended particles Py =
{775(1) PtN)} each one comprising a weight wt( ), a mean
mg‘t, and a covariance Pt(|t)’ i.e.,

~ (i ) (@) pl@)
Pt _{ f|t7Pt|f}

Given the set of particles at time ¢ — 1, the UKF prediction
and correction steps are applied to each particle mean and
covariance so as to move the particle towards the measure-
ments. Then, for each i, a new particle is sampled using

N (:ct,a’:y),P( )) as proposal distribution where m,(f) is the

tlt
updated mean after the correction step, P(I) is the updated
covariance, and N (zx;Z, P) denotes the normal distribution
with mean & and covariance P, thus achieving a more dense
sampling in the most relevant areas of the search space.

In order to apply the UKF to each particle, it is necessary
to assume that the Markov transition density ¢y 1)¢(Z¢11]%¢)
and measurement likelihood function ¢;(y|x;) are generated
by a state transition and, respectively, measurement equation,
so that the time evolution of x; and y; can be described by
the discrete-time dynamical system

fir(xe, wt) @)
ht(wh Vt). (8)
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Notice that in system (7)-(8) the probabilistic nature of the
model is captured by the process disturbance w, and mea-
surement noise vy, which are supposed to be sequences of
independent random variables with known probability density
functions.

The UKF does not directly approximate the nonlinear
process and observation models, but exploits the nonlinear
models, approximating the distribution of the state. This is
made possible by means of the scaled unscented transforma-
tion (SUT) [26], which is a tool for computing the statistics
of a random variable undergoing a nonlinear transformation.
Specifically, the state distribution is specified using a minimal
set of deterministically chosen sample points. Such sample
points exactly provide the true mean and covariance of such a
variable and, when propagated through the nonlinear transfor-
mation, they approximate the posterior mean and covariance
accurately to the 2nd order for any nonlinearity. For the
reader’s convenience, a brief review of the SUT is provided
hereafter.

Let * € R™ be a random variable, with mean  and
covariance P,, and g : R"» — R™ an arbitrary nonlinear
function. The goal is to approximate the mean value y and
covariance P, of the variable y = g(x). A set of 2n, + 1
weighted samples or sigma points S; = {Wl,Xz}ng are
chosen to completely represent the true mean and covariance
of the variable x, i.e.

X, =%

X, =2+ (/(n, +k)Py);  i=1,...,n,

X =% —(V/(na +k)Py);  i=n.+1,...,2n,
W™ = A/(ng + \)
W = 2/(n, +2) + (1 -0 + B)
W =W — 12, + N i=1,...,2n,,

where: A = a?(n; +k)—n,; a > 0 provides one more degree
of freedom to control the scaling of the sigma points and to
avoid the possibility of getting a non-positive semi-definite
covariance; £ > 0 is another scaling parameter; 3 affects the
weighting of the zero-th sigma point.

Each sigma point is then propagated through the function
g(-) Vi = g(Xx;), for i = 0,...,2n,) and the estimated
mean and covariance of y, as well as the cross-covariance
between x and y, are computed as follows:

2ng 2ng
g=> Wi  Py=> Wi ¥:i—-9)"
=0 =0 9)

2N,

Pry = ; Wi(X; —2)(Vi —9)T.

The Unscented Kalman Filter is obtained by applying the
SUT to the nonlinear functions f; and h; in (7)-@).
In practice, in the UPF algorithm, given the mean x,"

t—1[t—1
and covariance Pt(i)l\ ,_, at time ¢ — 1, as well as the mean
and covariance of the process disturbance w;_1, application of
the SUT to the state transition equation , allows to compute

. . . K3 .
an approximation of the predicted mean = t‘271 and covariance

TABLE 1
THE UNSCENTED PARTICLE FILTER

fori=1,..., N draw the state particles w(()1|2)

set Pyj) = Po, and & = 1/N

fort=1,2,...,do
1) UKF prediction and correction
fori=1,...,N do ) )
-Time  update: mil—)llt—l’ Pt(i)llt_l},
{wg‘zz_l, Pt(llt)_l} by applying the SUT to the state transition
equation (7);
-Measurement prediction:

from the prior pgo(x) and

given  { compute

(T)
tt—1
{yi‘zzil, Sfl) , ng)} by applying the SUT to the measurement equa-

tion (8);
-Measurement update: set
; ; A\ —1

10 el + K00

~ KD s ( Kp)T

given {x Pt(‘?il}, compute

(1) _ p)
P _Pt\t—l

end for
2) Weight update
fori=1,...,N do
sample from the proposal distribution:

& ~ g0 Cly") = Nsaf) )

evaluate and normalize the importance weights:
G bwdet) e @2y )
W= W1 NORNSGENG)

N(@;"s 2,7, Py/)

tlt

N
a9 = uf® /3wl
j=1

end for
3) Resampling
fori=1,...,N do ]
draw j € {1,..., N} with probability ) and set:

20 — mgl) = —
N

~(7) (@) _ p()
tit — Lt Ptlt_Pt\t

end for
end for
P attime t. In turn, given 2 and P as well as the

tle—1 tlt—1 t|t—1
mean and covariance of the measurement noise v, application

of the SUT to the measurement equation (8) allows to provide
an approximation of the predicted measurement mean yt(rt)_l

and covariance St(z) as well as of the state-measurement cross-
covariance matrix F,(f). Then, the updated mean a‘cgi) and
covariance Pt(‘? are obtained by applying the standard Kalman
filter correction step.

Since in practice it can happen that, after a few iterations,
one of the normalized weights tends to 1, while the remaining
weights tend to zero (weight degeneration), a selection or
resampling stage is usually included in the particle filtering
algorithm, in order to eliminate samples with low importance
weights and replicate samples with high importance weights.
Summing up, the resulting algorithm is reported in Table [I|



IV. PROBLEM FORMULATION

The object to be localized is assumed to be static during
the measurement collection. This assumption is common to
other works [[12], [[15], [[16]], [20] and is realistic, for instance,
if the object is very heavy or is stuck on a support preventing
any possible movement. Hence, the goal of the 6-DOF object
tactile localization problem is to estimate in real-time the pose
x € RS of an object O of known shape, on the basis of
the tactile measurements y' = {yi,...,y;} collected up to
the current time instant ¢{. The minimal pose representation
of the object is given by the 6-dimensional state vector x,
consisting of the coordinates of the center of the reference
system attached to the object and the three Euler angles
representing the orientation, i.e.

T = I:'r7 y’ Z? d)’ 07 w:lT M

The measurements are collected by touching the object with
the end effector of the robot. Each measurement y; consists
of the acquired Cartesian position of the contact point, i.e.:

(1)

It is worth noticing that the exploited measurements consist
only of tridimensional contact point vectors. Notice also that,
while for ease of presentation it is assumed that a single
measurement consists of a single contact point, the proposed
approach is well-suited to being extended to consider measure-
ments consisting of multiple contact points (corresponding to
different fingertips touching the object). This would simply
amount to processing, at each time ¢, a measurement vector
of size 3n:, n; being the number of fingertips touching the
object at that time. Finally, notice that, in the sequel, all
measurements and the object pose will be assumed to be
expressed in the same, fixed, reference system.

(10)

T
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A. Considerations on the motion model

Since the object is assumed to be static, the 6-DOF object
tactile localization problem is basically a static parameter
estimation problem. In this respect, it is well known that
the use of particle filtering techniques for estimating static
parameters requires special care, because a direct application
of these techniques to the constant state equation x;11 = x4,
corresponding to the Markov transition density ¢y q¢(x[§) =
d(x— &), would incur in the so-called weight-degeneracy phe-
nomenon. Many solutions have been proposed in the literature
to circumvent such a problem, see for instance [27]] and the
references therein. A simple but effective approach consists in
adding an artificial dynamic noise on the static parameter by
considering a state-transition equation of the form

Ti41 = Ty + Wy, (12)

where w; is the artificial dynamic noise which is modeled
as a Gaussian random variable with zero mean and covari-
ance (Q;. The idea is that the artificial evolution provides a
mechanism for generating at each time instant new particles
with a sufficiently diffuse distribution. In this paper, a time-
invariant covariance matrix is used, i.e. Q; = (@, since it
proves effective in the considered case studies. However more

elaborated solutions can be easily incorporated within the
proposed algorithm [27].

Some considerations on the possibility of extending the ap-
proach to the case of moving object localization are provided
in Remark [2

B. Measurement Model

In order to apply the UPF to the tactile localization problem
under investigation, it is necessary to define the measurement
model both in terms of a likelihood function ¢;(y;|x;) and
of a measurement function h;(-,-). The proposed likelihood
function is based on the so-called proximity model, in which
the measurements are considered independent of each other
and corrupted by Gaussian noise. For each measurement,
the likelihood function depends on the distance between the
measurement and the object, hence the name “proximity”. This
model is the adaptation of the likelihood proposed in [15]] to
the case of contact point measurements only.

Let the 3D object model be represented by a polygonal
mesh consisting of faces {f;}. For each face f;, let ¢, ; (y:|x¢)
be the likelihood of the measurement y; relative to that face
when the object is in the pose x;. Then, the likelihood of the
measurement is defined as the maximum likelihood over all
faces, i.e.

ft(yt|mt) X mlax&,i(yth:t)v (13)

apart from a normalizing factor which, however, is indepen-
dent of the state x; and needs not necessarily be computed.

Each likelihood is assumed to be Gaussian, with variance
ag, and can be computed as follows:

1 1 di(ys, z¢)?
ét,z(yt‘wt) = \/%Up eXp ( 2 012) ) ) (14)

where the quantity d;(y;, ;) is the shortest Euclidean distance
of y; from the face f; when the object is in the pose x;. For
instance, supposing that f; is the representation of the i-th face
in the object reference system, the distance d;(y;, ;) can be
computed as

di(ye, ¢) = min |lyy* — pl,
PEfi

where || - || is the Euclidean norm and y;* denotes the trans-
formation of the measurement vy, using the roto-translation
matrix corresponding to the state x;.

Notice that the considered measurement model does not take
negative information into account. In other words, the points of
the search space exploited to compute the likelihood function
are only the ones on the object surface touched during the
collection of measurements, while the information provided
by the lack of contact in some sub-regions of the search space
is not taken into account in the likelihood function. Even if the
negative information can also support object localization, it is
not exploited in this method in order to keep the computational
complexity moderate.

As previously pointed out, the use of the UPF requires also
the definition of a measurement function, namely a mathemat-
ical mapping giving the measurement y; as a function of the
current state x; and a measurement noise v, see (§)). For the



sake of simplicity, a measurement equation with additive noise
is taken into account, i.e.,

Yy = hy(z) + 04 (15)

In particular, the measurement function is required to compute
the Scaled Unscented Tranform (SUT) in the measurement
prediction step of the Unscented Kalman Filter .

It is important to highlight how the definition of a mea-
surement equation is different from the one of a likelihood
function: given the state and the measurement noise, the
measurement equation provides a measurement value - a
contact point in the present case - whereas the likelihood
function is proportional to the probability of having a certain
measurement for a given state.

Tactile sensors are atypical sensors from this standpoint.
In fact, typical sensors, e.g. radars, are characterized by a
mathematical relationship between the current state of the
object and the provided measurement: given the state of the
object, the measurement of the object position and orientation
supplied by the sensor remains unchanged (neglecting the
measurement noise).

On the other hand, the employment of tactile sensors makes
the scenario quite different. The measurement is given by the
tactile sensor pose itself, i.e., the forward kinematics of the
end effector of the robot, only if the robot actually touches the
object. Thus, if the object is in a generic state and the sensor
in a specific pose, it cannot be taken for granted that such a
configuration provides a contact measurement. Moreover, the
sensor moves during the measurement collection, while the
object is motionless. It is not possibile to predict unambigu-
ously the measurement value without a model of the sensor
motion: given the pose of the sensor and the object distance
from it, the predicted measurement is not unique, since the
sensor could touch the object in different points.

Nevertheless, in order to compute a predicted measurement
for each possible configuration x, it is necessary to define
a measurement equation capable of handling also the case
in which there is no actual contact between the sensor and
the object in the considered pose a (in particular, the sigma
point of the i-th predicted particle). Further, the predicted
measurement should be consistent with the proximity-based
likelihood (T3).

To this end, it is useful to provide an alternative inter-
pretation of the likelihood @]) Notice first that, due to the
measurement noise, the measurement y; does not represent the
actual contact point between the sensor and the object, which
however will be in the neighborhood of y;. The proximity
model assumes that the actual contact point is the point on
the object surface which is closest to the measurement y;. In
fact, equation @]) can be rewritten as

et<yt|cct>o<exp<— ||yt—ht<:ct>|2> (16)

where
h = i — 17
¢ () arg min ly: — pll 17
and 0O® represents the object boundary in the pose x; with
respect to the robot reference system. Then, the likelihood

of the measurement y; depends on its distance from such a
hypothetical contact point according to a Gaussian distribu-
tion. Accordingly, given a configuration xy, the corresponding
predicted measurement is selected as the point of the object
surface which is closest to the measurement y;. Such a choice
turns out to be consistent with the proximity likelihood model.
In fact, by taking the additive measurement noise v, in (15)
as a Gaussian random variable with zero-mean and covariance
012,] , with [ the identity matrix, it is an easy matter to see that
(15) and give rise precisely to a likelihood of the form

(16).

V. THE MEMORY UNSCENTED PARTICLE FILTER

The main challenges of the 6-DOF tactile localization prob-
lem are its dimension (6-DOFs), its multimodal nature, and the
fact that individual measurements are relatively uninformative,
since they are tridimensional vectors in a 6-DOF space. In par-
ticular, the latter fact implies that the standard UPF algorithm
is not well suited to this problem. In fact, Algorithm [I| uses,
at each time instant ¢, only the current measurement y; in
order to compute the importance weights wgl). However, since
a single contact point measurement is unable to completely
characterize the object’s pose (lack of observability), the
standard weights -need-not do not provide enough information
to understand which particles must be replicated and which
ones must be eliminated in the subsequent resampling step.
Thus, performing the standard resampling step - and then
discarding some particles - on the basis of such weights is
problematic: some potential representative particles could be
cut off and the algorithm could limit the search to wrong sub-
regions.

In order to overcome such a drawback, this paper proposes a
novel variant of the UPF, referred to as Memory UPF (MUPF).
The idea is to use also past measurements to update particle
weights so as to preserve their ability to characterize particle
goodness. Since the object is static, all the measurements
refer to the same pose and, in principle, at each time ¢ all
the measurements gy collected up to the current time could
be used to compute the importance weights. However, this
solution would entail a computational effort growing in time.
To avoid such a growth of complexity, the proposed approach
follows a moving window strategy, i.e., by using, at each time
instant, a sliding window consisting of the most recent m
measurements. In this way, at each time instant, the weight
computation requires O(Nm) likelihood evaluations, and the
size m of the sliding window can be chosen according to the
available computational capabilities.

In practice, the particles {:f:gz)}iil and the set of indepen-
dent measurements {y1,...,¥y:}, collected up to the current
instant ¢, are used to compute the weights by:
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for: =1,..., N, where

k(t) = {

Of course, the reuse of measurements in the update of the
particles’ weights modifies the nature of the approximation,
and hence special care needs to be taken in order to retrieve
the pose estimate in a theoretically sound way. To see this,
observe preliminarily, that the addressed problem is inherently
of a multimodal nature, since in the presence of symmetries in
the object, there might exist multiple values of « compatible
with the measurements. Then, taking the expected value as
estimate is not meaningful. Instead, a maximum a posteriori
probability (MAP) criterion can be followed by taking as pose
estimate at time ¢ the corrected particle :EE’) corresponding to
the highest value of the estimated posterior distribution [28] .

t—m+1, ift—-m+1>1

1, otherwise. (20)

Recalling that each corrected particle can be considered
corresponding to a Gaussian distribution with mean a_zgl) and
covariance Pt(| t), one might be tempted to take as estimated
posterior py¢(-) the function
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Unfortunately, such a choice would not be theoretically sound
due to the multiple use of measurements in the weight compu-
tation. In this respect, notice first that, since the object is static,
the 6-DOF localization problem is a parameter estimation
problem and, hence, the true posterior pt|t(~) at time ¢ takes
the form

) H U(yk|z) po(x),

k=1

pt\t (22)

where po(-) is a PDF reflecting the prior knowledge on the
object configuration. Since at each time instant multiple mea-
surements are used in the weight computation, the estimated
posterior (- ) does not approximate the true one p,,(-) but
instead it approximates the PDF
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where p0|0(-) is the prior density used in the generation of
the initial particles, thus introducing an undesired warp in the
form of the estimated posterior PDF.

This drawback can be circumvented by computing special
weights wt(”, used only for the purpose of pose estimation
extraction but not propagated in the recursion. In fact, by
setting
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for : =1,..., N, and using the estimated posterior
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in place of (21}, it turns out that such a p;(-) approximates
the PDF

Prje(x (26)
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pt|t (27)
so that all measurements provide the same contribution to the
estimation problem. Then, by choosing pojo(x) o< p(x0)™,
we obtain py () o p?llt(m) which implies that p,,(x) and
py|¢(x) share the same maximum points. In turn, this implies
that application of the MAP estimation criterion to py;(x)
is equivalent to computing the MAP estimate according to
pyj¢(x). These considerations allow concluding that, with the
choice pojo(x) oc po(x)™, the MAP estimate £; corresponding
to the particle with the maximum a posteriori probability

according to (26)
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is coherent with the true posterior PDF.

Remark 1. The fact that (26) approximates can be shown
by noting that py;(x) can be decomposed as follows
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which precisely corresponds to the weight update in (24).

A further modification, as compared to the standard UPF,
pertains to the resampling step. Since in the first iterations only
few measurements are available (thus providing insufficient
information), all the particles are retained so as to account for
more possibile solutions, in accordance with the multimodal
nature of the problem. This amounts to skipping the standard
resampling step for a certain number ¢( of initial time instants
(in the experimental results reported in the following sections,
for the first two time instants). The degeneration of the weights
in the first iterations is avoided by setting the weights of all
particles equal to 1/N.

Summing up, the proposed MUPF algorithm is shown in
Table The term Memory, in the name of the proposed
algorithm, is due to the computation of the weights: at each
iteration a non-decreasing number of measurements is ex-
ploited to evaluate the likelihood function. Notice also that the
computation of the weights wt(” is optional (since they are not



TABLE I
THE MEMORY UNSCENTED PARTICLE FILTER

(@)

fori =1,..., N draw the state particles Z40 from the prior p0|0(a:) and
set Po(r()) = Py and ﬁ)él‘)o =1/N

fort=1,2,... do

1) UKF prediction and correction

fori=1,...,N do
-Time update: set
Q;
-Measurement prediction: like in Table I;
-Measurement update: like in Table I;

end for

2) Weight update

fori=1,...,N do
sample from the proposal distribution:
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evaluate and normalize the modified importance weights via (T8) and

(19);

end for
3) Estimated pose extraction (optional)
fori=1,...,N do
evaluate and normalize the importance weights via @]) and @);
end for
compute the estimated pose &: via ;
4) Resampling
fori=1,...,N do
if ¢ > to then

draw j € {1,..., N} with probability @’

then set:
(i) _ (@) (@) _ pli) S _ 1
Tye = Lt Ptlt _Pt\t Wyt =
else
set :
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end if
end for

end for

used in the time propagation from ¢ to ¢+1) and can be limited
only to those time instants in which one wants to extract
an estimate &; of the object’s pose from the approximated
posterior.

Remark 2. While the considered framework deals with static
objects, the proposed algorithm is well-suited to being ex-
tended to the case of moving objects since it is based on
Bayesian filtering and is inherently recursive in nature. When
the object is not static, however, the use of a sliding window
of the most recent measurements in the weight computation
requires some caution because the past measurements do
not refer to the current pose. In principle, this problem can
be circumvented by considering particle states consisting of
the whole object trajectory in the sliding window (similarly
to what happens in particle-filtering-based solutions to the
SLAM problem) so that the likelihood, with respect to the
measurements in the sliding window, can be correctly com-

puted. Further, when the object is static, a simple motion
model like makes sense only to model small random
movements caused by probing. For truly moving objects (for
example a rolling ball), more complex motion models are
required including also the object velocity. Of course, the main
challenge in this case is the increased complexity due to such
modifications. Such generalizations are left for future research.

VI. ALGORITHM VALIDATION WITH SIMULATED
MEASUREMENTS

In order to evaluate the performance of the developed Mem-
ory Unscented Particle Filter (MUPF), a C++ implementation
of MUPF has been tested via simulations on different objects
and collections of measurements. The tests have been run
on a Linux platform, with a quadcore 3.40 GH z processor.
The developed code, the exploited measurements and the
reconstructed object models can be downloaded from githulﬂ

A. Simulation setup

The simulation setup consists of five objects: a rectangular
box, a tetrahedron, a cleaner spray, a robot toy and a safety
helmet (Fig. [I).

The mesh models of the first two objects, having a simple
geometrical shape, are built from ruler measurements whereas
the other three more complicated objects are approximated by
triangular mesh models, reconstructed via image processing
algorithms. In particular, the mesh models of the cleaner
spray and safety helmet are obtained from 360 degree point
clouds reconstructed with the RTM toolboxE] [29]. The RTM
toolbox merges together several partial 3D models - i.e.
different views of the object - captured by rotating the object
in front of a RGB-D camera and, in a few seconds, provides
a 360 degree point cloud of the object. Conversely, the more
complex point cloud of the robot toy is retrieved by making
use of the AutoDesk 123d catch applicatiorﬂ that, in several
tens of minutes, processes different object photos taken from
different views with a smartphone. Thus, the triangular mesh
models of the three objects are extracted by applying the
Poisson Surface Reconstruction algorithm [30] to the merged
point clouds. The complete pipeline for model reconstruction
is outlined in Fig. [

The contact point measurements exploited in the simulation
tests are drawn by non-uniformly sampling random points on
a subset of 3D model faces.

The MUPF algorithm requires setting the following
parameters: the artificial process noise covariance matrix Q;
the measurement noise covariance o, characterizing sensor
accuracy; the initial covariance matrix Py to quantify the
initial uncertainty and, hence, the extent of the search region;
the parameters of the unscented transformation «, (3, k; the
number of particles V; the length m of the measurement
window for the importance weight update.

1 DOI:10.5281/zenodo. 163860.

2Recognition Tracking and Modelling of Objects, by ACIN of Tech-
nische Universitit Wien, http://www.acin.tuwien.ac.at/forschung/v4r/software-
tools/rtm/|

Shttp://www.123dapp.com/catch.


http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/
http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/

Fig. 1. Simulation setup objects. From left to right: a rectangular box (0.1 X
0.3 x 0.2 [m]), a tetrahedron (equilateral triangular basis with the side of 0.33
[m] X height of 0.2 [m]), a cleaner spray (approximately 0.23 x 0.08 x 0.05
[m]), a robot toy (0.23 x 0.09 x 0.06 [m]), and a safety helmet (nearly a
half-sphere with radius 0.1 [m])

Fig. 2. Pipeline for real object modelling. From left to right: real objects, 360
degree point clouds (obtained with a RGB-D camera and the RTM toolbox
for the cleaner spray and the safety helmet, and with 40 photos from different
views and the Autodesk 123d catch app for the robot toy), triangular mesh
models matching the point clouds, computed by using the Poisson surface
reconstruction. On the top: the cleaner spray, whose mesh model consists of
250 faces. In the middle: the safety helmet, featured by a mesh model of 250
faces. On the bottom: the robot toy, whose mesh model is made up of 750
faces.

As preliminary tests, the parameters are kept constant,
as shown in Table In particular, the chosen matrix @
is such that the artificial process disturbance spreads the
particles with standard deviations of 1¢m in position and
about 5 degrees in rotation. Conversely, the covariance o),
assumes that the measurements of the end-effector position
are affected by an error with standard deviation of 1c¢m in all
Cartesian coordinates. Finally, the initial matrix Py indicates
an initial uncertainty of 0.4m in position and 360 degrees
in orientation. The initial particles x(()% fore=1,...,N are
drawn from the prior distribution ./\} (zo|Py), where xg is
arbitrarily chosen (a 6D null vector in our tests). The choices
of Table [I] have proven effective in all the considered
simulations, thus indicating that the proposed algorithm
works over a broad range of problems without a case-by-case
parameter tuning.

It is worth pointing out how the exploitation of the UKF
step in the UPF allows to considerably reduce the number of
particles to N = 700 (with a standard particle filter it would
be in the order of N = 10° for a 6-DOF problem). Section
[VII-C| provides a detailed analysis about the parameters
influence on MUPF performance.

TABLE III
PARAMETER SET FOR THE MUPF

Q  diag([1075, 1075, 1073, 10~%, 10~%, 10~*]) [m], [rad]

Py diag([0.04, 0.04, 0.04, 72, (7/2)2, 72]) [m], [rad]
op 10=*[m]
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N 700

B. Performance evaluation

The performance of the proposed algorithm is assessed
in terms of both effectiveness and execution time, since the
ultimate aim of this work is a real-time application of the
algorithm.

In this respect, algorithm reliability is measured in terms of
number of successes among trials, where a trial is considered
failed whenever the estimated pose is substantially different
from the real one.

In simulation tests, successes and failures can be discrimi-
nated by computing the distance between the estimated and the
true object poses, since the knowledge of the latter is available.
The situation is different in real experiments, wherein the true
pose is often difficult (if not impossible) to be measured. In
this case, the distinction between a successful or a failed trial
is necessarily accomplished by the user by visually inspecting
that the solution found by the algorithm is consistent with the
real pose of the object. In the successful cases, a numerical
evaluation of the localization can be done by relying merely
on measurements without the need of the ground truth. This
choice is by far preferable (sometimes the only viable solution)
for an experimental assessment.

These considerations suggest the definition of the following
performance index:

L
I= 1Y di (30)
K3

where L is the total number of collected measurements and d;
the distance between the ¢-th measurement and the object in
the estimated pose. In other words, given the set of measure-
ments and the estimated pose, the proposed performance index
is the average of the distances between each measurement and
the object in the estimated pose.

The performance index Z;, has been adopted to evaluate the
localization quality in simulation (together with the standard
localization error measured as distance of the final estimated
pose from the ground truth) and experimental tests, for the
reasons listed below. First, the index Z, is the only viable
solution for the experimental tests, wherein the real pose can-
not typically be known or measured with sufficient accuracy.
Secondly, the use of a common error index for both simulation
and experimental tests, makes easier the comparison between
the two cases. Third, if simulation tests are carried out with
noiseless measurements and a sufficient number of informative
measurements is collected, then the performance index Zj, can
be related to the distance between the estimated and the true
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Fig. 3. On the left: a robot toy in the real pose. On the right: two different es-
timated poses, both featured by a performance index of 0.008[m] with respect
to the set of measurements, coloured in black. The green one corresponds to
the correct pose, whereas the red one is a local minimum, representing a
completely wrong pose, but anyway consistent with the measurements.

eAl B e

Fig. 4. MUPF simulation results: the real poses are coloured in blue, whereas
the estimated ones, featured by an error index of 0.002 [m], are coloured in
green.

object poses, in the sense that Zj vanishes for large L if
and only if the two poses coincide. Finally, the index Z; is
easily computable on-line at each time ¢ and could therefore
be monitored in order to understand when to stop localization
of the current object. As a further benefit, (30) provides a
synthetic (scalar) indicator of the pose error, in terms of linear
displacement (measured in units of length). Thus, the index
computation is not affected by the problems related to the
computation of angular displacements.

Nevertheless, it is worth pointing out that when the mea-
surements are too inaccurate, the index @ can be non-
informative and the evaluation of the algorithm performance
would necessarily require the ground truth object pose. In fact,
if measurements are very noisy, the computed performance
index might be low even if it is associated to local minima
and corresponds to a completely wrong localization (Fig [3).

C. Simulation results

Table [[V] provides, for each considered object, the following
metrics averaged over 50 independent trials of the MUPF:
standard localization error in both position and orientation,
performance index Zj defined in @), execution time and
reliability. Table [V|reports the total number of measurements
L and the MUPF window size m used for each object.

It is worth underlining how, when an adequate choice of m
is adopted (Section [V)), the localization errors averaged over
trials are small (e.g. the index Zj, is less than 2[mm], see
Fig. @), the execution time is acceptable and the reliability is
high. In Fig. [5(a)] the behavior of the performance index Zj,
is shown as a function of the memory m ranging from 1 to
L (the total number of available measurements). Such plots
highlight how MUPF is capable of solving the problem even
with small m (1 < m < L) whereas the standard UPF (i.e.
MUPF with m = 1) doe not converge at all. In addition, Fig.
[5(b)|demonstrates that the algorithm is reliable even with small
values of m (provided m > 1).

For the sake of comparison, a simple batch baseline, the ICP

TABLE IV
SIMULATION RESULTS FOR THE MUPF ALGORITHM

Object Standard error [deg], [m] Zp [m] Time [s]  Succ./Trials
Box 0.30 - 0.0036 0.0025 1.61 50/50
Tetra. 17.1 - 0.0061 0.0021 3.63 50/50
Cleaner 0.78 - 0.0027 0.0025 7.32 50/50
Robot 19.6 - 0.0072 0.0021 3.95 50/50
Helmet 0.06 - 0.0023 0.0017 4.82 50/50
TABLE V

SIMULATION RESULTS: MEASUREMENTS AND m VALUES

Object L m

Box 15 10
Cleaner 62 20
Helmet 60 30

Object L m
Tetra. 30 15
Robot 40 20

algorithm [31]], and a state-of-art approach, the Scaling Series
algorithm presented in [[15] specifically for tactile localization,
have been applied to the same simulation scenario.

In order to adapt ICP to the tactile localization problem,
two point clouds are considered: one consisting of the mea-
surements, and the other representing the object model in the
right pose. To this end, suitable models have been obtained
by sampling 1000 points on the object mesh models of Fig. [T}
However, it was found that a standard implementation of ICP
does not converge in such a scenario.

The results obtained with the Scaling Series are reported in
Table [Vl for the same sets of measurements used in the MUPF
simulation tests (Table M) For the sake of conciseness, only
the values of the performance index Zj, are shown.

TABLE VI
SIMULATION RESULTS FOR THE SCALING SERIES ALGORITHM

Object Zy, [m]  Time - Max. Time [s]  Successes/Trials
Box 0.001 347 -13.2 45/50
Tetra. 0.001 0.05 - 1.03 50/50
Cleaner 0.006 0.03 - 5.64 42/50
Robot 0.003 0.02 - 3.64 43/50
Helmet 0.005 0.04 - 4.20 32/50

Notice that the execution time of the Scaling Series algo-
rithm significantly changes over the trials as the algorithm
generates quite different numbers of particles from trial to
trial. Hence, Table |KI| reports both average and maximum
(worst-case) execution times. Nevertheless, the Scaling Series
algorithm proves to be relatively faster than MUPF. In terms
of localization precision in the successful trials, the MUPF
and Scaling Series algorithms exhibit comparable results. It is
worth pointing out, however, that in a non negligible number
of trials the Scaling Series algorithm diverged and failed to
find a solution. This is somewhat surprising as MUPF has
always been executed with the same parameters, whereas
the parameters of the Scaling Series algorithm have been
specifically tuned to each case in order to achieve better
performance. In summary, MUPF proved to be more reliable
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Fig. 5.  MUPF simulation results: (a) average performance index and (b)
reliability (number of successes among trials) on fifty trials by varying m,
ranging from 1 up to the total number of measurements L.

than the Scaling Series algorithm.

VII. ALGORITHM VALIDATION WITH REAL
MEASUREMENTS

An extensive evaluation of the MUPF algorithm is
performed by tackling the 6-DOF tactile localization
problem for real objects via actual tactile measurements. For
these experiments, the employed code implementation and
hardware computing platform are the same ones exploited for
the simulation tests.

A. Experimental setup

Four everyday objects are considered: two toys, the cleaner
spray and the robot toy. The experimental tests on the safety
helmet are not shown since many local minima, corresponding
to different poses and featured by the same localization error,
are wrongly given as possible solutions. The reasons of this
behaviour will be explained in detail in Section [VII-B] The
mesh models of the first two objects are reconstructed from

Fig. 6. Mesh models of real geometric objects. On the left: cylindrical tube,
with a diameter of 0.06 [m] and height of 0.2 [m], 144 triangular faces. On
the right: a Lego object, made up of three parallelepipeds (total dimensions
of 0.2 x 0.1 x 0.2 [m3]), 36 triangular faces.

(b) Fingertip with PCB

(C) Fingertip with CDC

14,5mm .
(d) Fingertip with fabric

Fig. 7. On the left: the platform used for the collection of measurements,
the humanoid robot iCub. On the right: the iCub fingertip: a) — d) show
different stages of manufacturing a prototype of the proposed fingertip. The
finger consists of multiple layers: the PCB hosting the CDC converter and the
12 sensors, and a plastic layer, which provides support to the flexible PCB.
The exterior of the fingertip is made of a three-layer fabric: a deformable
fabric (dielectric) layer, a conductive layer and a protective layer.

ruler measurements (Fig. [6), since they are well-represented
by geometrical solid figures. The cleaner spray and robot toy
mesh models are the same ones exploited for the simulation
tests. Note that in order to avoid object’s slip caused by the
robot’s movements, each object was strictly fixed to a support
during measurement collection.

The platform used for the collection of tactile measure-
ments is iCub, a 53 degree-of-freedom humanoid robot of
the same size as a three or four year-old child [32]. Tactile
measurements are supplied by fingertips on the iCub hands,
that are covered with capacitive tactile sensors capable of
providing accurate contact point measurements, once contact
with the object is detected [32]] (Fig. [7). Due to the object
complexity, tactile measurements are collected through a user-
guided strategy, consisting of predefined points approximately
located around the objects. This strategy was necessary since
a completely blind exploration of the objects turned out to be
unfeasible and often caused the robot to hit the object with part
of the hand not covered with sensors. It is important to remark
that, for this work, the final goal of the experimental tests is the
extensive evaluation of the proposed MUPF algorithm through
realistic measurements, without focusing on the design of an
autonomous measurement collection strategy.

Before providing experimental results, it is worth discussing
the main sources of measurement uncertainty, in order to
better appreciate the performance of the proposed algorithm
and to understand how to set the parameters. In this respect,
one relevant source of uncertainty is given by the tactile
sensors themselves. The contact point measurement, in
fact, is given by the kinematics of one of the fingers and



the supplied z,y,z coordinates are affected by calibration
offsets. In addition to this, the kinematics provides the z,y, z
coordinates of the center of the fingertip. Thus, the retrieved
point is always the center of the fingertip even if the tactile
taxel activation - and thus the contact detection - has taken
place on the extremity or on the side of the fingertip. Taking
into account all these considerations, tactile measurements
were empirically estimated to be affected by a noise with
standard deviation of 0.015[m]. Such sources of error and
uncertainty suggest the values shown in Table for the
covariance o, that characterizes iCub tactile sensor accuracy.

TABLE VII
PARAMETER SET FOR THE MUPF ALGORITHM

Q  diag([10~2, 10—5, 1075, 103, 10=3, 10~3]) [m], [rad]

Py diag([0.04, 0.04, 0.04, 72, (7/2)2, 72]) [m], [rad]
op 4 10~4[m]

a 1

k 2

B 30

N 1200

B. Experimental results

In Tables and the average performance index,
along with the execution time and the algorithm reliability
are provided for fifty trials of both the MUPF and Scaling
Series algorithms on the four considered objects. The results
obtained with the ICP algorithm are not shown due to the lack
of convergence. In addition, only the performance index Zj,
is computed in the real experiments, where the true pose is
difficult to be measured. Figs. [B(a)] and [8(b)] show the average
performance index and the reliability on fifty trials by varying
m, ranging from 1 (standard UPF) up to the total number of
measurements, m = L.

TABLE VIII
EXPERIMENTAL RESULTS FOR THE MUPF

Object Zr, [m]  Time [s] Successes/Trials L m
Lego toy  0.0090 12.8 46/50 55 55
Cylinder  0.0063 6.71 50/50 30 18
Cleaner 0.0090 13.7 50/50 62 30

Robot 0.0054 12.3 43/50 60 36

TABLE IX

EXPERIMENTAL RESULTS FOR THE SCALING SERIES ALGORITHM

Object Zr, [m]  Time/ Max. Time [s]  Successes/Trials
Lego toy  0.0073 5.03 - 29.71 40/50
Cylinder  0.0059 4.02 - 13.22 40/50
Cleaner 0.0139 4.02 - 13.22 23/50

Robot 0.0027 0.81 - 8.72 43/50
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Fig. 8. MUPF experimental results: (a) average performance index and (b)
reliability (number of successes among trials) on fifty trials by varying m,
ranging from 1 up to the total number of measurements L.

The experimental tests confirm the MUPF behavior exhib-
ited in the simulation tests, even if the experimental solutions
are unavoidably affected by a slightly worse performance
index, due to the high measurement noise (Fig. E]) The
measurement noise is also responsible for the deterioration of
algorithm reliability for the Lego and robot toys. This effect
can be ascribed to the fact that the measurement noise is
comparable with the dimension of the distinctive details of
these two objects. In fact, the distinction between a good or
a wrong solution is strongly influenced by the object details,
since the only exploited information consists of tridimensional
points, without taking advantage of surface normals. In such
scenarios, a measurement noise of the same entity of the detail
dimensions prevents the user from localizing the object even
via visual inspection. As mentioned above, this is also the
reason why experimental tests on the safety helmet are not
shown: due to the strongly symmetric shape and the measure-
ment noise, the measurements are not informative enough in
the sense that there are many different poses compatible with
the measurements (i.e. corresponding to local minima).

On the contrary, the Scaling Series performance turns out to
be much worse compared to what reported in the simulation
tests, particularly in terms of reliability. The failures of the
Scaling Series algorithm are mainly caused by the generation
of an insufficient number of particles. Often, it is not simple
to set the Scaling Series parameters so that the number of
generated particles is sufficient to reliably localize the objects.
This shows how parameter tuning can actually be a weakness



Fig. 9. MUPF experimental results: tactile measurements are coloured in
red, the estimated poses (performance index of 0.008 [m]) in blue.

of the Scaling Series approach.

TABLE X
Q MATRICES FOR ALGORITHM ANALYSIS

Simulated tests

Q1 diag([10—6,10=6, 106, 10~5, 10=5, 10~°]) [m], [rad]
Q2 diag(5%x[107%,107%,1076,10—7, 10=°,10~5]) [m], [rad]
Qs diag([1075, 1072, 1072, 104, 104, 10~*]) [m], [rad]
4 1ag(>x[107=,107=, 107°,107=, 1077,10™ mj, [ra
Qs diag(5x[1075,1075, 10=°,10=%, 10=%,10~%]) [m], [rad]
Qs diag([10~4, 1074, 104, 10~3, 10~3, 10~3]) [m], [rad]
Experimental tests
Q1 diag([10—%, 1076, 10=6, 10=%, 10=4, 10=4]) [m], [rad]
Q2 diag(5x[1076, 1076,1076,10~4, 10~%,107]) [m], [rad]
Q3 diag([10—2, 1075, 1075, 103, 10—3, 10~3]) [m], [rad]
Qa4 diag(5x[1075,1075, 105,103, 10—3,10~3]) [m], [rad]
Qs diag([10~%, 10=%, 10~%, 10~2, 102, 10~2]) [m], [rad]
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Fig. 10. MUPF robustness analysis: (a) performance index and (b) reliability
(number of successes among trials) on fifty trials for 5 different Q) values,
shown in Table [X]

C. Further analysis

In this section, additional results are provided, with the aim
of better analyzing MUPF performance.

First, the algorithm robustness has been tested by varying
some algorithm parameters, such as the covariance @ of
the artificial process noise and the number of particles N.
The box-plots of Figs. and point out how the
performance index and reliability are not significantly affected
by varying the covariance matrix Q. Fifty trials of the MUPF
have been carried out for five different () matrices shown in
Table [X] (a total of 5 x 50 trials). The performance index Z7,
and reliability averaged over the 50 trials - 5 values for each
object - are used in building each box. The box-plots of Fig.
[T0] show the performance obtained with real measurements.
Due to space considerations, we do not provide plots about the
influence of the number of particles N on MUPF performance,
since no significant changes have been found by varying N
from 700 to 1200.

Secondly, MUPF execution time has been studied by vary-
ing the number of particles /N and the MUPF window size m.
Figs. [[1(a)] and [TT(b)] show the average execution time over
fifty trials versus m and, respectively, N in the case of real
measurements.

Finally, given the recursive nature of the algorithm, it is
worth to analyze the evolution of the performance index Z;
during the MUPF iterations in order to check if it could be
used as an appropriate stopping criterion for recursive, on-line
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Fig. 11.

varying m values and (b) by varying N.

Execution time analysis: average execution time on 50 trials a) by



localization. Fig. shows how the index Z; evolves in time,
i.e. while new measurements are being processed. It turns out
that, after a burn-in period, Z; quickly converges to a small
value. This suggests that the localization could be terminated
whenever the addition of a new measurement (or a sequence of
measurements) does not corresponds to a significant reduction
of It.
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Fig. 12. Performance index trend at each algorithm time step (with real
measurements). After a burn in period, performance index decreases and
converges to a final value.

VIII. DISCUSSION

The proposed solution to the 6-DOF tactile localization is
based on a novel recursive Bayesian estimation algorithm,
the Memory Unscented Particle Filter (MUPF). In contrast
to optimization techniques, Bayesian filtering turns out to be
a successful approach to account for noisy sensors and inac-
curate models. A further advantage of the Bayesian approach
is that it can be naturally extended to consider the case in
which the object moves, by introducing a suitable probabilistic
model for the object motion. The multimodal nature of the
problem makes particle filtering techniques more suitable for
tactile localization than nonlinear Kalman filtering approaches.
However, the exploitation of standard particle filtering for 6-
DOF tactile localization would require a number of particles
in the order of 106 which, in turn, might entail an unaffordable
computational load for real-time operation.

The proposed MUPF algorithm is capable of localizing
tridimensional objects through tactile measurements with good
overall performance and by exploiting a reduced number of
particles (in the order of hundreds). The MUPF algorithm
relies on the Unscented Particle Filter suitably adapted to the
localization problem of interest. The Unscented Particle Filter
jointly exploits the potentials of the particle filter for approxi-
mating multimodal distributions and of the unscented Kalman
filter for efficiently generating the proposal distribution. It is
worth to point out that, for measurement update purposes,
the particle filter requires a probabilistic sensor description
in terms of likelihood function while the unscented Kalman
filter needs a measurement function allowing to predict the
measurement given the estimated state. In the specific problem
of interest, it is quite natural to characterize the tactile sensor in

terms of likelihood (i.e. probability distribution of the sensed
contact point given the object pose) while it is clearly not
possible to uniquely predict the sensed contact point given the
estimated object pose. To circumvent this difficulty and be
able to apply UPF to tactile localization, the following idea
has been pursued: for given object pose and measured contact
point, define the likelihood in terms of distance between the
object and the measured contact point and take the predicted
contact point as the point on the boundary of the object at
minimum distance from the measured contact point. As a
further contribution of this paper, the standard UPF algorithm
has been modified by the inclusion of a suitable sliding
memory (hence the name MUPF) of past measurements in
the update of the particle importance weights. In this respect,
it was found that the memory feature is crucial for a careful
exploitation of the available contact point measurements with
consequent improvement of localization accuracy.

Furthermore, it is worth underlining how the proposed
algorithm succeeds in solving the problem by using only
tridimensional contact point measurements, without requiring
the knowledge of surface normals.

Performance evaluation, carried out via simulation tests
on two geometric objects and three everyday objects by us-
ing simulated measurements and tridimensional mesh models
reconstructed by vision, demonstrates that the algorithm is
reliable and has good performance with an average localization
error less than 0.002 [m] and a computing time of a few sec-
onds. Moreover, the algorithm manages to localize real objects
with actual tactile measurements collected with the humanoid
robot iCub. The results of experimental tests on four real
objects confirm the results of the simulation tests, providing
localization errors less than 0.01[m] with a computing time
less than 8 [s].

The same simulation and experimental tests have been
carried out also with a reference algorithm in the literature,
called Scaling Series. The obtained results show how the
MUPF is competitive with the state of art for 6-DOF tactile
localization, and also exhibits several advantages with respect
to the Scaling Series algorithm.

The contributions of this paper suggest several possible
perspectives for future work on 6-DOF object tactile local-
ization. First of all, dealing with the localization of objects
in presence of slippage is fundamental in real applications.
When filtering techniques (e.g. variants of particle filtering)
are employed in place of optimization methods, the extension
to this case can be achieved by further considering a suitable
model for the object motion. Moreover, the nearly recursive
nature and the promising computing time of the proposed
algorithm would allow reducing localization uncertainty on-
line during measurement collection. In addition, tactile sensors
should be assisted by a stereo vision system, both during the
exploration task and for the solution of the localization prob-
lem. In this respect, the measurement model exploited by the
algorithms does not necessarily require tactile measurements:
it is sufficient to have tridimensional points in the space. Thus,
a possible solution for a high resolution algorithm for 6-DOF
object localization is to feed the algorithm with measurements
coming both from tactile sensors and, for example, a stereo



vision system, since cameras are often available on humanoid
robots. Finally, a natural extension of the localization problem
is the object recognition task. A robot able to localize an object
using tactile sensors can also recognize it among a finite set
of possible objects, using the same information. For example,
given an effective localization algorithm, the robot could run
it with different known object models and select the one that
best matches the observations. In [33], an application of the
MUPF algorithm to tactile object recognition is proposed and
successfully tested on a challenging set of objects.

IX. CONCLUSIONS

In this paper, the 6-DOF tactile localization problem has
been efficiently solved by means of a novel recursive Bayesian
estimation algorithm, the Memory Unscented Particle Filter
(MUPF). The algorithm is able to estimate in real-time the
pose of a tridimensional object by only exploiting contact point
measurements. Performance evaluation carried out both via
simulation and experimental tests on differently shaped objects
has demonstrated the effectiveness of the approach, also in
comparison to the state of the art.
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