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Recovering stable scale in monocular SLAM using
object-supplemented bundle adjustment
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Abstract—Without knowledge of the absolute baseline between
images the scale of a map from a single-camera simultaneous
localisation and mapping system is subject to calamitous drift
over time. We describe a monocular approach that in addition
to point measurements also considers object detections to resolve
this scale ambiguity and drift. By placing an expectation on
the size of the objects, the scale estimation can be seamlessly
integrated into a bundle adjustment. When object observations
are available, the local scale of the map is then determined jointly
with the camera pose in local adjustments. Unlike many previous
visual odometry methods, our approach does not impose restric-
tions such as constant camera height or planar roadways, and is
therefore more widely applicable. We evaluate our approach on
the KITTI dataset and show that it reduces scale drift over long-
range outdoor sequences with a total length of 40 km. As the
scale of objects is known absolutely, metric accuracy is obtained
for all sequences. Qualitative evaluation is also performed on
video footage from a hand-held camera.

Index Terms—simultaneous localisation and mapping, monoc-
ular vision, scale drift, object recognition, bundle adjustment

I. INTRODUCTION

THe joint dependencies of sensor measurements on both
sensor pose and scene structure — all unknown a pri-

ori — ensure that simultaneous localisation and mapping
algorithms accumulate error as the sensor explores away
from its starting position. When using direction and range
measurements from, say, LiDAR, RGBD, or stereo cameras
(e.g. [1]–[3]) this has little impact on the ability to continue
exploration. But when using direction-only measurements
from a single camera the error is compounded with drift from
the depth/speed scaling ambiguity and can incapacitate data
collection entirely. For example, keyframe-based approaches
often select keyframes based on their proximity to their nearest
neighbour. If the estimate of speed is too large, keyframes
will be created too rapidly, and if too small they are not
created at all. Again, while all methods are able to reduce and
redistribute accumulated error upon loop closure (e.g. [4]–[8]),
drift in monocular methods can be so severe that searching
for previously observed landmarks in the map is simply not
feasible, notwithstanding progress in the use of geometric and
appearance cues [9].

Human experience indicates that scale drift does not occur
routinely in our visual systems, even if we act as cyclopean
observers [10]. Unless measures are taken to fool us, we
have access to other visual, auditory and proprioceptive inputs
which, combined with our wealth of prior knowledge, are
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sufficient to stabilise scale. A key expectation is that the typical
size of objects in a class neither shrinks nor expands over
short temporal and spatial scales. This paper reports work
which imbues monocular SLAM with that same prior. It is
shown that with a suitable representation of point landmarks
and objects, a modified bundle adjustment can counter scale
drift effectively by detecting and tracking instances of object
classes of known size distribution and including them within
the map. As a continuous estimate of scale is crucial to
long term performance, we favour correcting drift frequently
in local adjustments rather than infrequently in more global
optimisations.

The additional computation is small compared with
landmark-only bundle adjustment and it relies on very modest
additional information. It could therefore be readily incorpo-
rated into any complete pipeline based on adjustment: [11] is
an obvious current example. Even in cases where a robotic
application has no need to limit its sensing package, either in
terms of size or power consumption, it may be of value to
squeeze additional information from monocular vision at such
modest cost, even if only to provide a validation gate or a
prior on other sensor data.

The principal approach offered here is developed in Sec-
tion IV, where we detail a method of object-supplemented
bundle adjustment, one which offers a combined representation
for point landmarks and extended objects. Section V outlines
its implementation and Section VI gives results both from
experimentation using the KITTI dataset and from sequences
from handheld phone cameras. Concluding remarks are made
in Section VII.

Before presenting the main contribution, Section II consid-
ers related methods for correcting scale drift and incorporating
objects into SLAM, and Section III briefly reviews our early
and unsatisfactory method of using information on object size.
Its failure offers insight into a representational cul-de-sac.

II. RELATED WORK

Recent accounts of the states of the art in SLAM in general
and monocular SLAM in particular are found in [12] and [11]
respectively, and here we are concerned only with previous
work in mitigating scale uncertainty. Approaches fall into one
of two categories: either information from additional sensors
is utilised or, as in the method proposed here, assumptions are
made about the camera’s environment.

In the first category, adding a second camera is the obvious
extension (e.g. [3], [13]), immediately disambiguating scale if
the camera baseline is known. Avoiding a second camera, a
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favoured non-visual sensor is the inertial measurement unit,
able to measure acceleration and orientation. As examples,
Jung and Taylor [14] used IMU measurements in a structure
from motion method. Frames were clustered into temporal
windows, with each holding an estimated trajectory obtained
by doubly integrating the accelerometer output. Boundary-
matched splines were then fitted in each window to frame
positions and accelerometer readings. Nützi et al. [15] fused
IMU measurements into the tracking thread of Klein and
Murray’s PTAM [16]. Achtelik et al. [17] combined vision,
IMU and pressure (hence height) measurements in an EKF to
control a micro air vehicle, while Hide et al. [18] used IMU
data with up-to-scale relative pose estimates from a downward
facing camera for pedestrian navigation.

In the second category, a common assumption in vehicle
navigation using visual odometry is that the camera is at
a fixed and known height above the ground [19]–[22]. By
detecting the ground plane, the local scale of the map is
corrected to ensure that the camera height stays at its known
value. Care must be taken determining the plane: [23] for
example finds it by tracking objects likely to be resting upon it.
As seen in later experiments, these constrained methods excel
when this assumption holds, but are incapable of operating
otherwise.

Another environmental assumption is that the scene con-
tains discrete repeated structure. Botterill et al. [24] record
descriptors of scene structure using the distances between
characteristic features in it as measured from the image. When
a similar pattern of features appears again, scale drift can be
corrected. No prior knowledge of actual size is used, so that
absolute scale is not recovered.

Strasdat et al. [25] describe a localisation and mapping
method that is scale-drift aware. While pose-graph optimisa-
tion [26], [27] has a much lower computational complexity
than full bundle adjustment, it is unable to correct scale drift
on loop closure. Strasdat’s method is an effort to bridge this
gap by imposing similarity rather than rigid-body constraints
between pairs of keyframes. When a loop is detected, drift is
measured by comparing overlapping structure. This informa-
tion is fed into the scale-factor of the loop-closure constraint
which is propagated to the rest of the loop after optimisation.
While the method shows improvement over rigid body pose-
graph optimisation, the question of whether the method is
better than a full bundle adjustment is left unanswered. More
importantly, scale is only corrected at loop-closure, rendering
it unsuitable for open-loop camera trajectories.

Castle et al. [28] incorporated planar objects identified
by sets of SIFT features [29] into a map estimated using
monoSLAM [30], [31]. Objects were detected live, a ho-
mography between the plane and the camera estimated and
decomposed, allowing the object’s position to be incorporated
by monoSLAM’s EKF. As the size of each object instance
was known, the method could resolve the depth/speed scaling
ambiguity. The requirement to see specific objects makes
broader application problematic, but a further difficulty was
that despite being able to set a global scale from object
measurements, correcting scale-drift proved awkward in an
EKF. Object measurements incorporated into the map at later

times were found increasingly at odds with the scale of the
surrounding landmarks, resulting either in tracking failure or
in rejection of object detections. In later work [32] they used a
bundle adjustment rather than an EKF, but objects were merely
used as augmentations rather than for scale correction. Civera
et al. [33] also used an EKF and augmented their map with full
three-dimensional objects; but they too considered particular
objects rather than object classes.

Three further works that make use of objects to improve
maps are [34], [35], and [36]. Bao et al. [34] jointly estimate
camera, point and rectangular object positions in a bundle ad-
justment. Their aim is to increase accuracy in batch-processed
structure from motion. Fioraio and Di Stefano [35] have a
similar aim, but adopt an incremental SLAM framework (albeit
in a small environment and using RGBD imagery) and propose
low-level matching to a database of characteristic features
from objects rather than using an object detector. Neither
[34] nor [35] is concerned with correcting scale over long
term SLAM trajectories. More recently, Gálvez-López et al.
[36] proposed adding objects modelled from point clouds to
the map in which known distances between object-points are
used for adding additional geometrical constraints to a bundle
adjustment and enforcing scale in the map. As the method
uses a library of specific object instances, its applicability to a
more general setting is uncertain. Although the global scale of
the map is metrically accurate, no results for long-term drift-
free operation were shown in [36]. In the next section we
pursue the idea of using pairwise constraints between point
landmarks, but find that they are not effective for avoiding
scale-drift in a real-time system.

Dame et al. [37] used a monocular method to produce a
dense map that is later refined using 3D shape priors embedded
in a low-dimensional latent space. As the scale of shapes is
known, the scale of the map may be set. Like [36] however,
the method was tested in only a small localised map rather
than with long range data, and it is unclear whether objects
would be able to correct drift rather than just setting a global
scale.

In this paper we draw on methods which supplement the
map with objects, in preference to imposing some form of
constraint on the sensor position or using additional sens-
ing hardware. To avoid relying on viewing specific object
instances, we will use object classes chosen both for their
ubiquity and for low variance in their actual size. Their size
distributions will be fixed beforehand to promote long-term ac-
curacy. We also propose to use minimal object representation
that is compatible with online scene and camera localisation
using bundle adjustment.

III. L2L CONSTRAINTS: A FAILED REPRESENTATION

Accepting that object size can regulate scale does not an-
swer the question of how best to incorporate size information
into a bundle adjustment. Following [36], we first test the
proposal that objects provide a metrically accurate coordinate
system on which expected distances between landmarks may
be computed.

Consider a set of landmarks X={Xiw}, i = 1, . . . , I in
the world frame observed in a set of camera keyframes with
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Fig. 1. (a) Object detection for L2L constraint calculations. The bounding box sets up a 2D coordinate frame from which the distance between a pair of
landmarks (highlighted in yellow) can be estimated. Per-keyframe translation errors compared for unconstrained (red) and L2L-constrained (blue) bundle-
adjustments, for (b) an open trajectory and (c) a closed loop trajectory.

poses T ={Tk}, k=1, . . . ,K. Vanilla bundle adjustment seeks
to find landmark positions and camera poses that minimise the
total reprojection cost, the summed weighted 2-norms of the
residuals x̃ik=(xik − x̂(Xiw, Tk)) between image measure-
ments and predicted projections of landmarks i in cameras
k. Assuming errors are normally distributed with zero mean
and covariance Xik, bundle adjustment provides the maximum
likelihood estimator of X and T :

{X , T }∗ = arg min
{X ,T }

Ereproj

= arg min
{X ,T }

∑
i∈X

∑
k∈T

x̃>ikX
−1
ik x̃ik . (1)

Our use of landmark-to-landmark (L2L) constraints requires
the distance dii′ between landmarks i and i′ to be drawn
from some normally distributed prior with known mean µii′

and variance σ2
ii′ . Summing over all such available constraints

gives a cost

Econstraint =
∑
i,i′∈X

1

σ2
ii′

(dii′ − µii′)2 (2)

which can be used to regularise the adjustment, as

{X , T }∗ = arg min
{X ,T }

[Ereproj + λEconstraint ] . (3)

Obtaining an L2L constraint from imagery involves detect-
ing an instance of a known object class in keyframes. An
example using humans is shown in Fig. 1(a). A part-based
object detector (e.g. [38]) delivers a bounding box round
the detection and, from pre-computed distributions on the
object’s width and height, and assuming planarity, distance
constraints between landmarks within the object are obtained
by 2D projection. In Fig. 1(a) for example, pre-tabulated
mean dimensions of humans allows the distance between two
landmarks to be calculated as 1.56 m, a reasonable value for
that between shoulder and foot.

The approach was first tested in simulation with known
ground truth. At the end of a trajectory (in which one con-
straint was made available per keyframe) both unconstrained
and L2L-constrained bundle adjustments were performed.
Figs. 1(b) and (c) compare the resulting errors in camera
translation per keyframe for an open trajectory and a closed-
loop trajectory, respectively. The constraints evidently reduce

the per-keyframe error, keeping it broadly constant across the
trajectory.

Despite this promise, when the L2L regulariser was tested
live in a modified PTAM system [16] two difficulties became
apparent. First, the planar assumption needed to obtain the
constraints was too restrictive. Secondly, and more impor-
tantly, it was found that constraints introduced some time into
the processing — and after the scale had drifted — were quite
unable to restore the scale. Landmarks linked by constraints
would move rapidly to obey them, but the consequential large
changes in their position often resulted in bundle adjustment
ignoring their measurements as outliers rather than re-scaling
the map.

These difficulties resonate with those reported by Castle et
al. [28] when imposing inter-landmark constraints into an EKF
SLAM. Both outcomes indicate that sudden interventions at
low-level are too disruptive of the probabilistic basis guiding
the optimisation, whether recursively via a Kalman filter or
in batch mode via bundle adjustment. Both suggest avoiding
transference of somewhat coarse-scale information about ob-
ject size directly onto fine-scale point landmarks already in
the map. A method which achieves this is developed next.

IV. BUNDLE ADJUSTMENT USING OBJECT LANDMARKS

Section II reviewed a number of object parameterisations
that have been introduced into SLAM, ranging from the
bounding boxes of [39] to the 3D surface models in [35], [37].
While more complicated models certainly allow for accurate
segmentation, and can improve the quality of reconstruction
locally, they impose a considerable computational overhead.
Even rectangular bounding boxes require a full 6 degree-
of-freedom (dof) pose to be maintained, while 3D surface
models require 2D silhouette segmentations to be localised
correctly. While the results of such reconstructions are visually
impressive, we suggest that their additional complexity is
unnecessary if the sole aim is scale correction. Instead, here
we propose representing both objects and points as generalised
landmarks with different “extents”.

A. Object representation

The combined representation of object and point landmarks
in the scene and image is shown in Fig. 2. Both are represented
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Fig. 2. Parameterisations of points and objects with their respective projec-
tions.

by a minimum enclosing sphere, and have a single additional
size parameter, the sphere’s radius. We shall refer to this as
the extent ε. An object j is thus represented in the world frame
by

Qjw =

[
Xjw

εj

]
(4)

where Xjw = [X,Y, Z, 1]>jw is the homogeneous location of
its centre. As the object is deemed spherical, transforming
between coordinate frames is simple: the extent is invariant.
An object with coordinates Qjw in the world frame becomes

Qjk =

[
Xjk

εj

]
=

[
Tk 04×1

01×4 1

]
Qjw (5)

in camera frame k. The projection of the object into this image
is the 4-vector

q̂jk = K proj(Qjw, Tk) = [u, v, w, h]>jk , (6)

where [u, v] are the image coordinates of the projection of
the centre of the object and K is the camera’s intrinsic matrix,
with focal lengths fu and fv and principal point [u0, v0]. The
parameters [w, h] are the width and height of the projected
bounding box in the image, and are given by[

w
h

]
jk

= 2εjZ
−1
jk

[
fu
fv

]
. (7)

B. Object measurements and data association

Objects are localised using a detector applied to each new
keyframe as it is created. Their measurements are found from
the bounding box around the detection and parameterised in
the same way as object reprojections by the 4-vector qjk =
[u, v, w, h]>jk. For solving data association between keyframes
we use the method described in [40] and [41].

C. Object Bundle Adjustment

If object measurements are distributed with covariance Qjk
a new bundle adjustment that seeks to find the most likely

sets of objects Q = {Q1w...,QKw}, point landmarks X and
keyframes T may be written as

{X ,Q, T }∗ = arg min
{X ,Q,T }

(∑
i∈X

∑
k∈T

x̃>ikX
−1
ik x̃ik (8)

+
∑
j∈Q

∑
k∈T

q̃>jkQ
−1
jk q̃jk

)
,

where q̃jk = (qjk − q̂(Qjw, Tk)).
However, the adjustment can be written more economically.

We first assume a known extent for a particular object class,
and fix the extent of each object instance of the class to this
value. Only the object’s position in the 3D map requires refine-
ment in normal operation. Consequently, as point landmarks
have known zero extent, X can be treated as a subset of Q.

The noise covariances for point landmarks and objects are
also unified. Experiment indicates that we can take the extent
to be normally distributed as N (ε, σ2

ε ). Using Eq. (7) the
projected extent in frame k is also approximately normally
distributed as [

ŵ

ĥ

]
∼ N

(
εf , σ2

ε f f
>
)
, (9)

where

f = 2〈Z−1jk 〉
[
fu
fv

]
. (10)

Writing the measurement process on width and height as
∼N (0, Σbox), then the measured width and height will be
distributed as [

w
h

]
∼ N

(
εf , [σ2

ε f f
> + Σbox]

)
. (11)

Assuming independent zero-mean, noise on the centre of the
bounding box with variances σ2

x,y , the covariance for object
and point landmark measurements becomes

Qjk =

[σ2
x 0

0 σ2
y

]
02×2

02×2 σ2
ε f f
> + Σbox

 , (12)

where the bottom right 2× 2 matrix defaults to zero for point
landmarks. Numerical values are considered later.

The adjustment in Eq. (8) then becomes just

{Q, T }∗ = arg min
{Q,T }

∑
j∈Q

∑
k∈T

q̃>jkQ
−1
jk q̃jk . (13)

This simplification allows for a Hessian structure that is
identical to general bundle adjustment. Although there are
additional operations to deal with the extra parameters in the
measurement residuals, the main computational cost comes
from solution of the normal equations, which is no more than
bundle adjustment using landmarks alone.

V. IMPLEMENTATION

The combined representation of point and object landmarks
can be applied to any sparse keyframe-based SLAM system.
We discuss implementational details which have been found
essential for long term operation.
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Fig. 3. Local bundle adjustment centred on Tcam. Points and object landmarks
measured in Tcam and up to 10 most proximate keyframes are included, as
are any other keyframes with measurements of those landmarks. These latter
keyframes are held fixed. The number of object landmarks used in practice
is a tiny fraction of the number of regular scene points.

A. Local adjustment

Applying a global bundle adjustment to every frame in a
video sequence quickly becomes computationally impracti-
cable. Instead, as illustrated in Fig. 3, we optimise a local
area around the current estimated camera position, giving a
broadly constant computational load consistent with video rate
operation. A local set Tlocal of n nearest keyframes (we use
n=10) is defined around the current camera Tcam. The structure
to be refined consists of the set Qlocal of landmarks and objects
visible to the current camera and the local set. To constrain the
local adjustment within the rest of the map, all observations of
Qlocal from other keyframes are included in the optimisation.
These other keyframes form a set Tfixed whose poses are held
fixed during optimisation. The local optimisation is

{Qlocal, Tlocal, Tcam}∗= arg min
{Qlocal,Tlocal,Tcam}

∑
j

∑
k

q̃>jkQ
−1
jk q̃jk ,

(14)
where j∈Qlocal and k∈{Tcam, Tfixed, Tlocal}. Because the adjust-
ment is run in just a local area around the current camera
position, it is unable to propagate corrections from the local
window to the rest of the map. If scale drift occurs due to a
lack of object detections over a period, only the most recent
portion of the map consisting of the n keyframes in the local
window will be corrected when objects are seen again.

B. Noise reduction

Actual object measurements are subject to a number of
sources of error: principally, false positives in object detection;
inaccurate size and location in the image; incorrect association
between otherwise correct detections; and, most importantly,
movement independent of the sensor between frames. The
following are used to mitigate their effects.

First, unlike point landmarks, which are essential for camera
tracking and must be localised as soon as possible, object
measurements need not be used promptly. Instead, we accu-
mulate a minimum number of measurements for each object
before using them in the adjustment. Several benefits accrue:
(i) the increased number of measurements ensures only well-
localised objects are used; (ii) any false positives from the

Apply motion model

Update motion model

Distance & entropy
to nearest keyframe

Extract FAST corners

Match coarse features

Match fine features

Refine pose

Refine pose

Image capture

New
Keyframe

?

N

Add matches to
landmark list

Triangulate new
landmarks

Detect & associate
objects

Add measurements
to existing objects

Instantiate new
objects

Install keyframe
in map

Local object
bundle adjustment

Y

Fig. 4. The processing pipeline. The framerate tracking pipeline is in the
left column, and the processes of adding a new keyframe ending with object
bundle adjustment is in the right column.

object detection algorithm will be ignored provided they fall
under this threshold; and (iii), unless they are in front of the
camera and moving at the same speed, moving objects will
have less than the required number of measurements and will
consequently be ignored.

Second, to down-weight poor object measurements or poor
data association, object and point landmark measurements are
wrapped in a Tukey biweight objective function (c.f. [42]).
Eq. (13) becomes

{Q, T }∗ = arg min
{Q,T }

∑
j∈Q

∑
k∈T

Obj
(
|q̃jk|, Qjk, σT

)
. (15)

We consider three cases. For point landmark measurements,
σT is set equal to the estimated standard deviation of the
distribution of point errors. For the bounding box position
(x, y)jk in measurements q̃jk, σT is set to accommodate its
inherent lower accuracy compounded with the possibility that
scale drift is as yet untamed. Experiment suggests a value at
least an order of magnitude higher than the standard devia-
tion found in the error distribution after scale has stabilised
(Fig. 12(a)). For the bounding box size, (w, h)jk, we find it
best to turn off robust weighting. If objects have been observed
recently the measurement values are well-behaved statistically
(see Fig. 12(b)), but if not, scale drift may cause objects to
appear disproportionately large or small in the surrounding
map. For drift correction it is imperative that the adjustment
not reject these measurements.

Note that an object moving at the same speed and direc-
tion as the camera incorrectly implies a stationary camera.
However, when there are sufficient landmark measurements
that disagree with this inference, and the camera is indeed
moving, the object will be considered an outlier by the robust
estimator.

C. Embedding in a tracking and mapping method
At the system level, illustrated in Fig. 4, we apply the

method by modifying a basic version of PTAM [16]. After
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initialisation, the camera pose tracker runs continuously every
frame, using a simple motion prediction to assist matching
of FAST features [43] to landmark projections and thence
iteratively to optimise the pose using a re-weighted least
squares algorithm. Like PTAM, the method matches features
using 8 × 8 pixel templates that are first coarsely matched
with patches from other features in a search radius and then
iteratively refined for sub-pixel precision.

To determine whether a keyframe is required, in addition
to measuring the distance from other keyframes we monitor
the entropy ratio between the current camera estimate and the
most recent keyframe, as suggested by Kerl et al. [2]. This
measure, unlike the distance metric, has the benefit of being
invariant to scale drift. If either metric crosses a threshold, the
current frame is tagged as a keyframe.

As only a subset of landmarks is used for tracking, the
mapmaker first searches for measurements of other landmarks
and adds them to the keyframe. A set of epipolar matches is
found with the closest neighbouring keyframe using PTAM’s
patch matching algorithm, and new 3D map points trian-
gulated. Any object measurements in the form of bounding
boxes from object detections are then added to the keyframe.
If an object has not been seen before, it can be localised
immediately from a single measurement in the keyframe (as
its projection is invertible). However it is not allowed into the
bundle adjustment until its number of measurements exceed
the threshold discussed in Section V-B.

If there are enough object measurements in the surrounding
keyframes, a local landmark and object bundle adjustment is
applied. If no object is found, or the currently visible ob-
jects have insufficient measurements, a local point landmark-
only bundle adjustment is performed. With a window of 10
adjustable keyframes the adjustment takes around 150 ms to
converge and so tracking is not disrupted. The new keyframe
is then added to a queue in the mapmaker, which adds it to the
map in a separate thread. Finally the motion model is updated
with the current position of the camera.

VI. EXPERIMENTAL RESULTS

The performance of the method has been evaluated on
kilometre-long outdoor sequences from the KITTI street scene
dataset [20], [44], and on 100-metre long outdoor sequences
from hand-held phone cameras. An illustration of the overall
performance on one such sequence is shown in Fig. 5, where
(a) shows object detections, panel (b) shows a keyframe with
both point landmark and object detections and (c) shows the
recovered map. It will be evident from Fig. 5(c), and later
from Fig. 14(c), that the number of object landmarks is a small
fraction of the number of point landmarks. A typical value is
0.1%. Improvements in the overall structure result from objects
stabilising scale, rather than their adding to the mere bulk of
measurements.

Our method is able to deal with multiple arbitrary object
classes, indeed any for which an extent distribution is known.
However, the nature of the KITTI dataset makes cars the
obvious choice here. Object detections in keyframes and
corresponding data association labels are obtained using the

(a)

(b)

(c)
Fig. 5. Examples of (a) object detections from successive frames; (b) objects
and point landmarks used in tracking; and (c) a 3D map with objects and
points generated by the method, all from a sequence from the KITTI dataset.

tracking-by-detection algorithm of Zhang et al. and Geiger et
al. [40], [41], a method tailored to the detection of vehicles
in street settings. The extent for cars was set at ε̄=1.2 m, an
average over popular European makes.

To explore different aspects of the method’s performance
we report the outcome of individual experiments as follows:

A. We compare the performance of object bundle adjustment
with one that ignores objects and has no scale informa-
tion.

B. The performance of the proposed method is evaluated
when there are few objects in part of the sequence.

C. We examine the relationship between number of object
observations and the error in camera speed.

D. The size distribution and noise model is validated by
using ground truth camera pose data from the KITTI
dataset.

E. An online tool is used to compare the performance of
our method compared with those monocular odometry
methods which perform best on KITTI data.

F. We present results from a video sequence captured with
a hand-held camera moved in an unconstrained way.

A. Output with and without objects

To demonstrate the scale-correcting nature of object-
supplemented bundle adjustment, the algorithm is run on a
number of video sequences, first using landmark-only bundle
adjustment and then using object-supplemented adjustment.
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Fig. 6. Comparisons between the ground truth trajectory (grey) for KITTI sequence 0 and those obtained using (a) bundle adjustment with points alone
and (b) bundle adjustment supplemented with objects. The speeds per frame (c) without and with objects compared with ground truth. Trajectories (d) from
running object-supplemented bundle adjustment on other KITTI sequences.

Fig. 6 shows a comparison of the resultant trajectories
obtained using (a) point landmark-only bundle adjustment with
(b) our proposed point and object bundle adjustment, both
applied to KITTI sequence #0. While the point landmark
adjustment accumulates a massive amount of scale drift over
the course of the trajectory, the object-supplemented version is
able to maintain a map that is within essentially the same scale
as that of ground truth — this without taking advantage of the
several opportunities for loop closure. The reduction in error
is more clearly seen in Fig. 6(c) which shows the speed of
the camera compared to ground-truth for both methods. The
camera speed at keyframe k was calculated as a backwards
difference

sk = |ck−ck−1| , (16)

where c = R>t is the keyframe’s camera centre in world co-
ordinates. The difference in estimated and true camera speeds
grows over time with the landmark-only bundle adjustment,
while the object-supplemented version stays close to ground
truth. We stress that although there are loops in the real camera
trajectory, we intentionally do not close them, so as to generate
longer open-loop trajectories. Fig. 6(d) shows the resultant
trajectories from running the object-bundle adjustment on
further KITTI sequences.

Table I compares a root mean square error ERMS for the
trajectories recovered with and without objects for the first 11
sequences in the KITTI dataset which come with ground truth

TABLE I
RMS ERROR IN TRANSLATION OVER A TRAJECTORY WITHOUT OBJECTS

AND WITH OBJECTS (THIS WORK) FOR THE SEQUENCES 0-10 IN THE
KITTI DATASET.

Sequence Number of ERMS ERMS

number frames used without objects with objects
0 4541 1181.0 73.4
1 1101 712.0 545.8
2 4661 815.7 55.5
3 801 81.1 30.6
4 271 7.4 10.7
5 2761 798.8 50.8
6 1101 244.9 73.1
7 1101 110.2 47.1
8 4071 1907.6 72.2
9 1591 139.6 31.2

10 1201 115.3 53.5

data. ERMS is a scale-invariant measure of the translation error
for a monocular sequence, given by (c.f. [25])

ERMS =

[
1

N
arg min

s

∑
k∈T

(tk−st̂k)2

]1/2
, (17)

where s is a global scale factor applied to the estimated
trajectory, and tk is the translational component of keyframe
k. Because ground truth is available, Table I shows values with
s=1, but with the estimated trajectory already normalised such
that its starting scale is equal to that of the ground-truth. For
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Fig. 7. Example frames from KITTI sequences #1 and #4 which are
problematic as they contain few stationary vehicles.

all but two sequences, the use of objects results in a marked
decreased in translation error. Sequences #1 and #4 continue
to have a high amount of error: there is a lack of stationary
objects in these sequences as illustrated in Fig. 7.

B. Recovery after scale drift

The principal failure of the method of Section III was that
the introduction of scale correction after substantial drift had
occurred (because of a lack of object measurements, say)
was disruptive, causing good measurements to be rejected.
Fig. 8 demonstrates that this is not the case now. It shows the
estimated trajectory and camera speed obtained by ignoring
all object measurements for the first 2000 frames. Almost
immediately after objects are used again the scale is corrected
to a value close to ground truth.

C. Effect of object observations on speed estimation

While Section VI-A shows that there is a clear advantage
of using object-supplemented bundle adjustment over its point
landmark-only counterpart, here we present a more localised
view of how objects affect scale estimation.

For each keyframe in a trajectory, the RMS error in speed
is computed along with the average number of object ob-
servations that are present in a 10-keyframe neighbourhood.
The averaging is over space, as observations typically affect
a number of surrounding keyframes rather than a single one.
A single keyframe with no object observations but surrounded
by keyframes with observations is still likely to have a low
speed error, despite having no observations itself.

Fig. 9 shows a plot of the maximum error in the speed versus
the average number of observations for KITTI sequences 0-10,
but excluding sequences #1 and #4 because of their lack of
stationary objects. Increasing the number of observations does
indeed decrease the error’s upper bound.

D. Validating the object extent distribution

As noted earlier, it is not our aim to learn the size or
structure of the detected objects at run-time, but to use pre-
tabulated size data to stabilise scale. In this work we have used
manufacturers’ data to find a mean extent ε̄ of popular makes
of vehicles — but size data in other objects may be found in
sources such as architectural handbooks, (e.g. [45]), the human
studies literature (e.g. [46]), and so on. However, because the
KITTI dataset provides known camera poses at each frame,
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Fig. 9. Plot of the maximum RMS speed error versus the number of object
observations per neighbourhood for KITTI sequences that contain stationary
cars.

we are able to validate the proposed extent distribution for
cars in several ways.

1) Using the extent as discrete parameter: First we con-
sider an empirical search over ε, treating it as a parameter
to be optimised by evaluating the performance of the system
on all sequences of the KITTI dataset that contain cars. The
performance metric chosen is the average per-frame RMS error
in estimated speed

Espeed(ε) =

[
1

N

N∑
i=1

(si − ŝi(ε))2
]1/2

, (18)
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where si is the ground-truth speed from Eq. (16), ŝi(ε) is our
estimated speed as a function of extent, and N is the total
number of keyframes used.

Fig. 10 shows the error for various object extent values. The
value with the lowest error occurs at ε = 1.2 m, in agreement
with the mean value from manufacturers’ data.

2) Recovering an extent distribution: A second validation
estimates a distribution over ε directly, again exploiting the
ground-truth poses from KITTI. Given a set of ground truth
keyframe poses TGT with associated object observations, a set
of objects Q∗ from the particular class in question is estimated
by minimising

Q∗ = arg min
Q

∑
j∈Q

∑
k∈TGT

q̃>jkq̃jk . (19)

This is simply the object term of Eq. (8) without an associated
covariance matrix. The extent ε of each object is no longer a
constant for the entire class, but is a free parameter estimated,
alongside location, for each object instance.

Fig. 11 shows the resultant distribution for cars detected
in KITTI sequences #0 to #10. The distribution has mean
1.2m and variance 0.2m2, in agreement with earlier estimates.
Moreover, the assumption of a normal distribution appears
justified.

3) The errors in object box dimensions: The distributions
for object-related errors (Eq. 12) are generated by accumulat-
ing histograms of the differences between the position and size
of the bounding box as detected in each image and the position
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Fig. 12. Scatter plots of error in (a) location of object detections and (b)
object bounding box width and height.

(a) (b)
Fig. 13. (a) The fit (in green) to our spherical object model will tend to
truncate the width and increase the height of a fully elongated detection (in
red). (b) A synthesised distribution of width errors reproduces those observed
in Fig. 12(b).

and size given by bundle adjustment after convergence, and
taking the latter as correct.

Histograms of errors in location (x, y) are shown in
Fig. 12(a). They have zero-mean, are independent, and close
to normal, thus adhering to the assumptions of Eq. (12). The
standard deviations σx and σy are estimated as 6.6 pixel and
4.1 pixel, respectively. The histograms of errors in (w, h) are
shown in Fig. 12(b). The means of the errors in width and
height are 10.4 and −11.6 respectively. The error covariance
is

σ2
ε f f
> + Σbox =

[
190.0 −123.4
−123.4 128.2

]
. (20)

The signs of the means arise because in KITTI both the
camera’s x-axis and each car’s major axis lie predominantly in
the horizontal plane. Fitting to an object model with a single
extent will tend to pinch in the width and push up the height,
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(a) (b) (c)

(d)
Fig. 14. (a) Stills from a handheld video sequence with varying camera height: high above, low below. (b) Resultant trajectories estimated using point-only
bundle adjustment without objects (red), and object-supplemented bundle adjustment (green). Satellite imagery (Google) of the mapped area is shown for
comparison. (c) The point cloud recovered using objects and (d) on enlargement the detected vehicles are visible in green.

as illustrated in Fig. 13(a). The asymmetric distributions in
Fig. 12(b), which somewhat break the normal assumption,
arise because detections closer to the object (i) are subject
to greater perspective distortion but (ii) are fewer in number.
The distribution synthesised using realistic assumptions about
the camera’s optics, its speed, and the detection of objects is
shown in Fig. 13(b) and reproduces that observed in practice
in Fig. 12(b).

E. An online assessment

Our method has been evaluated using KITTI’s online as-
sessment tool1 [44] and its reserved testing sequences. Unfor-
tunately, all the reference methods there employ a planar con-
straint in one form or other, making the comparison less than
fair on our unconstrained approach. The average performance
over all constrained monocular SLAM systems is captured by
some 9% translation error and 0.020 deg m−1 rotational error,
while the best performing constrained method achieves 2.4%
translation error and 0.006 deg m−1 rotational error [22], [23].
Our unconstrained method yields 20% translation error and
0.014 deg m−1 rotational error on average, values which at
least approach, and for rotation exceed, the average of the
constrained methods.

Although our method will struggle to compete with con-
strained methods in absolute terms, there remains scope for
further reducing error. First, the large inter-frame motion in
the KITTI sequences over-stretches the feature and camera
tracking stage of PTAM which was developed specifically for
small AR workspaces. A simple KLT-based [47] odometry
system is able to find numerous matches between every
pair of frames on sequences where PTAM lost a number of

1at http://www.cvlibs.net/datasets/kitti/eval odometry.php

map points. Sequence #1 in Table I is one such example.
Second, a number of KITTI’s testing sequences do not contain
many static cars, making drift correction difficult. An extreme
example is test sequence #14, which is captured in a park:
there are shrubs but no cars. We discuss the use of multiple
classes in our conclusions.

F. Sequence from a hand-held: varying camera height
We suggested that the comparison against the state of the

art provided by the KITTI online assessment tool was not a
fair test of the current method because the best performers all
constrain their cameras to have fixed height above the roadway.

To demonstrate the ability of our method to function without
such a constraint a sequence was captured outdoors using a
hand-held phone camera (a Samsung Galaxy S6 with fixed
focal length, calibrated using standard methods). As ground
truth was not available, the sequence contained a small loop,
and performance was evaluated on the qualitative distance
between the start and end of the loop. Cars were once again
used as the object class and ε̄=1.2 m used as their extent.

Two frames taken from different camera heights within the
sequence are shown in Fig. 14(a). The resultant trajectories
estimated using a landmark-only and an object-supplemented
bundle adjustment, respectively, are shown in Fig. 14(b) over-
laid onto satellite imagery of the area where the sequence
was filmed. Object-supplemented bundle adjustment provides
a marked decrease in scale drift over its landmark-only coun-
terpart. A detailed point cloud of the mapped area is shown
in Fig. 14(c). Note again that the ratio of object points to
background scene points is very small.

VII. CONCLUSION AND DISCUSSION

This paper has presented a novel method of incorporating
scale information from object classes into monocular visual
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SLAM using bundle adjustment. While other methods rely
on further sensing hardware or assumptions about the height
of the camera above the ground plane, the proposed method
assumes only that the camera can observe known objects, and
that those objects are can be reasonably described visually by
a single extent. By avoiding recovery of object orientation,
the structure of the bundle adjustment for objects is unified
with that for regular scene points, resulting in no increase
in computational complexity and only modest increase in
computational cost.

It has been shown that the method is able to maintain
a consistent scale estimate throughout a trajectory, provided
regular object observations are available. The number of object
landmark observations required is a remarkably small fraction
of the number of point landmarks — in our experiments a
typical fraction is 0.1%. We have demonstrated that when scale
drift occurs through lack of object observations, it is rapidly
reduced when objects are re-introduced.

Several avenues of work remain open for further consider-
ation. First is the use of multiple object classes. Although we
have used a single object class in this work, using multiple
object classes is straightforward: one runs suitable object
detectors and trackers in parallel, and thereafter, but with one
caveat, bundle adjustment is indifferent to the object type.
The caveat is that it becomes important for the respective size
distributions to be known, so that proper differential weight
can be given to size information from the several sources. We
think it most likely that object extents will be found from
independent data, but in this paper have demonstrated how
values can be validated using visual information when ground
truth camera motion is available.

A second lies in the detail of the SLAM process. At present
the method cannot correct scale in parts of the map outside
of the local bundle adjustment window. In Section VI-B for
example, the bundle adjustment is not able to correct parts
of the trajectory where no object observations are available.
Strasdat et al. [48] have shown that a global bundle adjustment
is unnecessary as accurate structure is only required around the
current camera estimate. Rather, they apply a joint double-
window optimisation that refines structure and keyframes in a
local adjustment window, and a pose-graph optimisation to the
rest of the map. One might explore whether scale information
from a local object-bundle adjustment can be propagated
correctly along the pose-graph using similarity transformations
[25] in this formulation. This would in addition allow for
simple closure of loops.

A third avenue concerns object modelling. Our results
indicate that using an model with a single extent is not a
hindrance to overall scale recovery. This is in part a benign
outcome of integration of views around an object — the
thin end of a long and thin object, for example, is viewed
relatively infrequently; and in part a result of the clustering
of visual interest. The simplest, and we suspect the most
effective, enhancement to modelling would be to use a part-
specific detector and to allocate different extents to different
parts — the rear of a car, the side of a car, and so on. Using
more complicated, pose-sensitive shape models is not without
difficulty. For example, an ellipsoidal hull model might be

used built either from non-visual measurements, or as shown
recently in [49] and [50] using structure from motion with
bounding boxes. Then, however, the 6 dof pose of the object
needs to be estimated rather than just its 3 dof position, a
requirement which will not sit straightforwardly in the same
bundle adjustment framework as points. Further, as seen in
[50], the recovery of pose from a few views as the camera
passes by is not always reliable.
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[27] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc 2011 IEEE
Int Conf on Robotics and Automation, pp. 3607–3613, 2011.

[28] R. O. Castle, G. Klein, and D. W. Murray, “Combining monoSLAM with
object recognition for scene augmentation using a wearable camera,”
Image and Vision Computing, vol. 28, no. 12, pp. 1548–1556, 2010.

[29] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[30] A. J. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Proc 9th IEEE Int Conf on Computer Vision, pp. II:
1403–1410, 2003.

[31] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 6, pp. 1052–1067, 2007.

[32] R. O. Castle and D. W. Murray, “Keyframe-based recognition and
localization during video-rate parallel tracking and mapping,” Image and
Vision Computing, vol. 29, no. 8, pp. 524–532, 2011.
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