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Abstract—This paper proposes deployment strategies for con-
sumer Unmanned Aerial Vehicles (UAVs) to maximize the sta-
tionary coverage of a target area and to guarantee the continuity
of the service through energy replenishment operations at ground
charging stations. The three main contributions of our work
are: (i) A centralized optimal solution is proposed for the joint
problem of UAV positioning for a target coverage ratio and
scheduling the charging operations of the UAVs that involves
travel to the ground station. (ii) A distributed game theory-
based scheduling strategy is proposed using normal-form games
with rigorous analysis on performance bounds. Further, a bio-
inspired scheme using attractive/repulsive spring actions are used
for distributed positioning of the UAVs. (iii) The cost-benefit
tradeoffs of different levels of cooperation among the UAVs
for the distributed charging operations is analyzed. Our work
demonstrates that the distributed deployment using only 1-hop
messaging achieves approximation of the centrally computed
optimum, in terms of coverage and lifetime.

Index Terms—Aerial Robotics, Force Control, Networked
Robots, Sensor Networks, Battery Recharge Scheduling, Game
Theory

I. INTRODUCTION

UNMANNED AERIAL VEHICLES (UAVs) represent one
of the fastest growing technological sectors today, with

over 126% annual increase in market size in 2016 and es-
timated global revenues of around 3 billion dollars [1]. Such
UAVs are being envisaged for a variety of use-cases like disas-
ter recovery [5] and cellular data offloading [6], which require
a connected aerial mesh network that provides continuous
spatio-temporal coverage of a target area [2][3][4]. Two key
issues must be addressed to facilitate the deployment of the
UAV mesh network: (i) multi-objective localization of UAVs
that considers the sensing coverage needs of the network,
and (ii) maintaining persistent service considering energy-
related interruptions. Our work tackles these issues through
a rigorously derived analytical framework that provides both
centralized and distribution solutions.

A. Challenges in UAV localization and persistent service

The central concern in multi-objective localization is how
to set the static locations of each UAV in a 3D space, so that
both the sensing needs of the application and the aerial mesh
connectivity requirements are met [7]. While several works
have looked into communication-aware mobility schemes for
UAVs, few of them jointly address the problem of static
coverage [8][9][11].

The second issue of ensuring persistent service stems from
the limitations of the on-board battery, which is in the order
of fraction of an hour (typically 15-20 mins) for most com-
mercial consumer-grade UAVs [12]. Solutions for terrestrial
technology like cross-layer energy-efficient communication,
when mapped to UAVs, are unlikely to make a significant
impact [15]. This is because the ratio of the cumulative
energy cost of all sensing/communication tasks to that of
operating the motors is 20:80 [16]. We believe these practical
difficulties can be surmounted by carefully scheduling energy
replenishment operations and leveraging charging stations on
the ground. To realize this paradigm, an intelligent sched-
uler policy is needed that directs the UAVs to ground-based
charging stations depending on the application requirements
and the scenario constraints (e.g. number of UAVs which
can charge synchronously). Previous research on the UAV
scheduling problem has revealed that the problem is NP-
complete [2][3][18], and with the additional consideration
of ensuring coverage, the complexity of the problem only
increases.

B. Proposed Research and Contributions

We approach the combined problem of stationary UAV
coverage and energy replenishment scheduling by proposing a
combined framework which ensures that user-defined coverage
metrics are met and mesh connectivity is maintained, while
maximizing the persistent service requirement. We consider a
generalized system model, composed of NS UAVs and one
ground-based charging station to make the following three
main research contributions:
• We devise optimal and heuristic solutions to both the

problems of UAV positioning and scheduling the recharg-
ing cycles considering also the impact of unique issues
related to UAVs, like their height above ground, the
energy overhead of making the ascent/descent, and the
beaconing frequency.

• We develop a distributed UAV deployment algorithm
building on virtual spring mechanisms [9], which relies
on local information (e.g. residual energy), and the infor-
mation received by other UAVs forming the aerial mesh.
We compare this approach with the global optimal found
through centralized knowledge.

• We investigate the cost-benefit tradeoff of information
exchange among UAVs for ensuring persistence service
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that maximizes network lifetime. Then, we formulate
three variants of game-theory based UAV energy cycling
schedulers with varying levels of information exchange
performed by the UAVs, and compute the mixed strate-
gies guaranteeing the Nash equilibrium for them. Impor-
tantly, we show that with only local 1-hop knowledge our
distributed scheduler performs close to that with global
multi-hop knowledge with a centralized scheduler, which
has many practical deployment advantages.

The rest of the paper is structured as follows. We review
the state of the art addressing coverage and energy-efficiency
issues in Section II. The system model and problem formula-
tion are described in Section III. The optimal solution through
global coordination is presented in Section IV. The distributed
approaches for charging scheduling and UAV positioning are
detailed in Section V. A rigorous performance evaluation is
presented in Section VI and Section VII concludes the paper.

II. RELATED WORKS

We review existing works separately for the dual topics
of (i) UAV positioning for stationary coverage and (ii) UAV
lifetime/energy management.

A. UAV positioning for stationary coverage

Compared to classical multi-robot coverage problems, a
major novelty in centralized coverage schemes is given by
the possibility to control the altitude of each UAV. In [21], the
authors investigate the optimal 3D placement of UAVs, so that
the number of connected users on the ground is maximized,
while the transmitting power of the UAVs is minimized.
Similarly, the study in [8] derives fundamental results about
3D coverage, clarifying the relationship between altitude,
beamwidth of the antenna and coverage probability. The trade-
off between coverage and connectivity is investigated in [22],
where the authors show that guaranteeing both these goals
can be challenging in highly sparse networks. Considering
distributed approaches, [9] and [24] aim to achieve maximum
stationary coverage of a target scenario while preserving
connectivity among the UAVs. More specifically, [9] proposes
a mobility scheme based on the virtual spring model [11], such
that all the aerial links experience the same Quality of Service
(QoS) regardless of the propagation conditions. A channel-
aware swarm mobility scheme is proposed in [24], based on
the cluster-breathing technique and on the utilization of the
Receiver Signal Strength (RSS) metric as proxy of the link
quality. The problem of minimizing the total distance travelled
by the mobile robots in order to visit a set of target locations,
denoted as target assignment in robotic networks, is address
by [10]. For the link communications, the authors used both a
simple circular range-based model and a region-based model
in which all robots within the same region can communicate
with each other.

B. UAV lifetime/energy management

UAV network lifetime maximization can be achieved
through different approaches, i.e. energy-aware control proto-

cols, energy-aware network protocols, and external energy re-
plenishment through ground-based charging stations. Energy-
aware control protocols minimize the unnecessary maneuvers
of mobile devices [7], or devise an energy-aware path plan
meeting constraints on minimal coverage [23]. Energy-aware
network protocols for UAVs mitigate the impact of wireless
network operations on the battery consumption, with a com-
prehensive survey available in [15].

For the solutions involving energy replenishment through
scheduling of UAVs, we further distinguish between two
classes, i.e. (i) path planning-oriented, and (ii) stationary
coverage-oriented. In (i), the UAVs keep flying over a set of
sites, and the goal of the scheduler is to determine the optimal
tour of the UAVs, so that each site is visited with a given
frequency. Examples are described in [2], [18], [25], [26],
[28] and [29]. More specifically, the authors of [26] formulate
the scheduling problem by means of temporal logic, while
the scheduler in [18] computes the itinerary of each UAVs,
so that the presence of an energy-feasible path toward the
replenishment station is always guaranteed. In [2], the paths
of UAVs are computed in order to fully cover the trajectory of
a mobile user; to this aim, the scheduler assigns each UAV to a
space-time segment minimizing the travel distance. The charg-
ing slots are allocated via Mixed Linear Integer Programming
(MILP) techniques. In [28] and [29], the authors investigate the
utilization of Unmanned Ground Vehicles (UGVs) as mobile
recharging stations and they develop path planning algorithms
for both the UAVs and the UGVs, by considering a modified
version of the Traveling Salesman Problem.

Stationary coverage-oriented schedulers assume the pres-
ence of UAVs at fixed positions, and aim to guarantee the
continuous coverage of a target area. The authors of [3], prove
that the problem of determining the minimum number of UAVs
guaranteeing the persistent coverage of a target area is NP-
complete. The study in [13] describes a network architecture
composed of fixed battery-powered Access Points (APs) and
of UAVs, which carry full-charged batteries back and forth
between the APs and an energy-supplying station. In this
case, the static coverage is provided by the wireless ground
mesh formed by the APs, while the UAVs perform the energy
replenishment operations. Similar to [3], we address stationary
coverage. However, the number of UAVs is assumed as an
input to the problem in our case, and the goal of the scheduler
is to determine the maximum lifetime while guaranteeing a
minimum coverage. Hence, the problem becomes computa-
tionally tractable and closer to the characteristics of a real
scenario, where the available resources (e.g. the number of
the UAVs) are typically known in advance.

On a more technology development front, the study in [17]
demonstrates a guidance system enabling the UAV to land
on a charging station. The problem of a reliable recharging
process is addressed in [14], where the authors design a ground
recharge station for UAVs, and propose a charging scheduler
which assign priorities to UAVs in proportion to their battery
level. The authors of [27], describe a battery replacement
system for UAVs, evaluating it on a small test-bed. In [30]
the authors describe the design of an autonomous battery
change/recharge station, and demonstrates the possibility to
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support persistent missions of more than 3 hours duration with
small UAVs.

The current work extends our previous conference paper
[4], in which we introduced a preliminary version of the
problem and the centralized deployment. Here, we consid-
erably enhance the system model and problem formulation,
and also design the distributed deployment. The performance
evaluation has also been completely revised to reflect these
new contributions.

III. SYSTEM MODEL

We now introduce the system model and the assumptions
adopted in the rest of the paper, followed by a mathematical
definition of the research problem. Table I list the symbols
and variables for ease of reference.

TABLE I
TABLE OF VARIABLES/SYMBOLS

D Area to cover

NS Numbers of UAVs

A = {a1, . . . , aNs} Set of the UAVs

T = {t0, t1, . . . } Slotted time

tslot Length of a time slot

SE Charging station

h Flight altitude

θ Angle of the sensing cone

αt Per-slot Loss of energy while flying

βt Per-slot Gain of energy while recharging

γh Loss of energy for the descending operation

δh Loss of energy for the ascending operation

OP (h) = γh + δh Energy overhead for the to-and-fro journey

φ : T → {0, 1} Availability function for the station SE

S = {sfly, srec} Set of possible UAV states

E : A, T → R Residual energy function

s : A, T → {0, 1} Recharge scheduling function

GOK Action of attempting to access the station SE

GNO Action of remaining in flight state

ROK Action of releasing the station SE

RNO Action of not releasing the station SE

pi,jG
Probability that UAV ai at time slot tj

executes the action GOK

pk,jR
Probability that UAV ak at time slot tj

executes the action ROK

pi,jB
Probability that UAV ai at time slot tj

finds the station SE busy

pk,jT0

Probability that no UAV, except for ak ,

at time slot tj executes the action GOK

A. Scenario modeling

We consider a square area of size D m2, and a set A =
{a1, a2, . . . , aNs

} of Ns UAVs. Each UAV is able to sense the

Fig. 1. The aerial mesh network with the charging station on the ground.

environment, communicate wirelessly with other peers, and
recharge its battery at the replenishment station SE that is
located on the ground at the center of the scenario. We assume
that the station can dispense energy at a speed of CSE

[J/sec],
while each UAV ai has a maximum battery capacity equal to
EMAX. The UAVs form a connected network at h meters from
the ground. Depending on h, each UAV is able to sense an
area Cov(h) equal to:

Cov(h) = π ·
(
h · tan

(
θ

2

))2

(1)

where θ is the angle of the sensing cone depicted in Figure 1.
Without loss of generality, we assume that the time is

divided into consecutive time slots T = {t0, t1, . . . } of length
equal to tslot. We denote with E(ai, tj) the residual energy
of agent ai ∈ A at time slot tj ∈ T . We assume that all the
UAVs start with the same energy amount, equal to Einit, i.e.
E(ai, t0) = Einit ≤ EMAX, ∀ai ∈ A. Next, we introduce
the function φ : T → {0, 1} indicating the availability of the
replenishment station at a given time slot. More specifically,
φ(tj) = 0 indicates that the station is occupied by one UAV at
slot tj , while φ(tj) = 1 indicates that the station is currently
available. At each slot tj , each UAV ai ∈ A can be in one of
the following two states:
• State sfly (flying): the UAV ai does not use the station
SE , losing a per-slot constant amount of energy while
flying (denoted as αt in the following).

• State srec (recharging): the UAV ai recharges its battery
on the ground, gaining a per-slot constant amount of
energy (denoted as βt in the following).

Let S = {sfly, srec} denote the UAV state set. Based on its
state at time slot tj−1, each UAV can execute different actions
at slot tj . More specifically, if UAV ai is in state sfly at time
slot tj−1, then one between the following two actions can be
selected:
• Go (GOK) - The UAV ai attempts to access the replen-

ishment station. If the station SE is free then the UAV
changes its state to srec, otherwise it remains in state sfly.
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• Stay (GNO) - The UAV ai remains in state sfly.
Similarly, if UAV ai is in state srec at time slot tj−1, then one
of the following two actions is selected:
• Release (ROK) - The UAV ai releases the replenishment

station and changes its state to sfly.
• Keep (RNO) - The UAV ai remains in state srec and keeps

recharging for another slot.
The action of trying to acquire the replenishment station has
a cost of γh = γ · h, which models the energy overhead for
the descent operations, i.e. from landing to the ground from an
initial height of h. Similarly, the action of releasing the station,
and of flying back to the aerial mesh, has a cost of δh = δ ·h.
We assume that the power consumed during horizontal flight
and hover is approximately equivalent [31] and modeled by
the parameter αt. Furthermore, since a single replenishment
station is assumed, we do not expect to see large distance
between the station and the peripheral UAVs, and hence we
assume that values of γh and δh will depend on the flight
altitude h only: the γ, and δ parameters will then correspond
to the average of the energy power consumption during the
descending and ascending operations, regardless of the length
of the path that the UAVs need to travel before reaching the
target position. In the following, we indicate with OP (h) =
γh + δh the total energy overhead for completing the to-and-
fro journey. We define αt = α · tslot as the amount of energy
loss during an entire time slot while being in state sfly and
βt = β · tslot as the amount of energy gained during an entire
time slot while being in state srec. Selection of α, β, γ and
δ parameters depends on the specifications of the hardware in
use, and we list later their quantitative representations for our
use-case.

B. Problem formulation

We denote with s(ai, tj) : A, T → {0, 1} the scheduling
function that defines the state for each UAV ai ∈ A at each
time slot tj ∈ T . More specifically, if s(ai, tj) = 1 then the
UAV ai is in state sfly at time slot tj ; vice-versa, if s(ai, tj) =
0, then the UAV ai is in state srec at time slot tj .

Let g(ai, tj) : A, T → {0, 1} be the function indicating
whether the UAV ai executes or not the action GOK at the
beginning of time slot tj . Clearly, g(ai, tj) = 1 requires that
s(ai, tj−1) = 1. Let r(ai, tj) : A, T → {0, 1} be the function
indicating whether the agent ai executes or not the action
ROK at the beginning of time slot tj . Again, r(ai, tj) = 1
requires that s(ai, tj−1) = 0. The E(ai, tj) function is updated
according to the following Equation:

E(ai, tj) = E(ai, tj−1)− s(ai, tj) · αt
+ (1− s(ai, tj)) · βt
− g(ai, tj) · (γh + δh · (1− φ(tj)))

− r(ai, tj) · δh
(2)

Here, E(ai, tj−1) is the residual energy for agent ai at
the previous time slot. The second term refers to the energy
consumption for flying; the third term refers to the energy
gained while recharging; the last two terms refer to the energy

lost when attempting to change the current state.
We are interested in deploying an energy-efficient UAV
network, with constraints in terms of the area covered and
of the persistence in service. Let κ be a system threshold
on the fraction of the area covered by the aerial network.
Our Constrained Coverage and Persistence Aerial Network
Deployment (CCPANP) problem can be informally defined
as: how to determine an optimal charging scheduling function
s(ai, tj), ∀ai ∈ A,∀tj ∈ T , so that: (i) the fraction of area
covered by the UAV network at slot tj is always greater
than κ, and (ii) the network lifetime is prolonged as much as
possible. Formally, the CCPANP problem is defined as:

Definition 1 (CCPANP problem). Let tfinal be the lifetime of
the system defined by the smallest time slot tj ∈ T where
∃ai ∈ A such that E(ai, tj) = 0, i.e. the UAV ai runs out of
battery. Given the set of UAVs A = {a1, a2, . . . , aNs

} and the
factors α, β, γ, δ, we want to determine the optimal s(ai, tj)
function ∀ai ∈ A,∀tj ∈ T such that the network lifetime tfinal

is maximized and the following constraints are met, ∀ai ∈
A,∀tj ∈ T : ∑

ai∈A
(1− s(ai, tj)) = 1 ∀tj ∈ T (3)

E(ai, tj) > 0, E(ai, tj) ≤ EMAX
ai ∀ai ∈ A,∀tj < tfinal

(4)

ρj =
C(tj)

D
≥ κ ∀tj ∈ T (5)

Here, the first condition asserts that at each time slot tj
only one UAV can utilize the station SE . The second condition
asserts that no UAV can run out of battery till tfinal. The last
constraint asserts that the ratio ρj between the area covered
at time tj by the aerial network, i.e. C(tj), and the total area
to cover, i.e. D, is greater then a given system threshold κ.
C(tj) is defined as:

C(tj) =

Ns⋃
i=1

(Surf(tj , ai, h, θ) · s(ai, tj)) (6)

where Surf(tj , ai, h, θ) is the surface covered at time slot tj
by the UAV ai flying at altitude h with the sensor angle θ.
Clearly, Surf(tj , ai, h, θ) = ∅ if s(ai, tj) = 0, i.e. the UAV
ai is in state srec at time slot tj .

IV. CENTRALIZED OPTIMAL APPROACH

In this Section, we provide the optimal solution to the
CCPANP research problem defined above. First, we observe
from [34] that the optimal coverage is achieved when placing
the UAVs in regular hexagon patterns with side length equal
to R = h · tan( θ2 ), where R is the area coverage radius. The
separation between the UAVs is hence equal to R ·

√
3. Let

Nmin be the minimum number of UAVs that is required to
guarantee at time slot tj that ρj ≥ κ. Using results in [34],
we compute Nmin as follows:

Nmin =

⌈
κ ·D(

h · tan( θ2 )
)2 · 3·

√
3

2

⌉
(7)
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Fig. 2. The two stages of Algorithm 1 with NS = 4, Einit =
220kJ , OP (h) = 200J , αt = 1000J , βt = 250J . In 2(a)
the bars define the time spent by the UAV ai on the recharging
station SE . The ROUND ROBIN STAGE is drawn in red, while the
RECHARGE MINIMUM STAGE is drawn in green. In 2(b) we show the
UAV energy levels during the charging operations.

Given (7), we assume that NS ≥ Nmin +1 in order to be able
to cover the requested area of size κ ·D m2.

Algorithm 1 shows the pseudo-code for solving the CC-
PANP problem. We assume that all the UAVs have the
same initial amount of energy, indicated as Einit. At each
time-slot, the schedule method is executed, and the UAV
with id equal to currentCharge is charged. Moreover, we
check that all UAVs have energy greater than zero, otherwise
the algorithm ends (at line 4). The algorithm can work
in two stages, respectively the ROUND ROBIN STAGE,
which can be repeated over several iterations, and the
RECHARGE MINIMUM STAGE. In Figure 2(a) and 2(b),
we show a graphical example of these two stages.

In the ROUND ROBIN STAGE, we let each UAV ai
recharge of the maximum number of sequential slots, de-
noted as roundSize[i]. The exact value of roundSize[i] is
computed by the allocateRoundCharge method by: (i)
considering the UAV with maximum residual energy (line 46);
(ii) computing the maximum number of slots before such node
will drain its energy (numRoundsPerUAV ); (iii) assigning
numRoundsPerUAV to all the UAVs (lines 59-61); (iv)
in case of residuals, allocate the extraRounds slots to the
UAVs with minimum energy (lines 62-65). We then order
all the UAVs based on their energy in ascending order (let

Algorithm 1: CCPANP centralized algorithm
1: procedure schedule(slotNumber j)
2: Invoke decideStatus(j)
3: for i = 1 to Ns do
4: if E(ai, tj) == 0 then
5: return //End of network lifetime
6: end if
7: if currentCharge == i then
8: s(ai, tj)← 0 //Node ai is charging
9: if s(ai, tj−1) == 1 then

10: Execute action GOK

11: else
12: Execute action RNO

13: end if
14: else
15: s(ai, tj)← 1 //Node ai is flying
16: if s(ai, tj−1) == 1 then
17: Execute action GNO

18: else
19: Execute action ROK

20: end if
21: end if
22: end for
23:
24: procedure decideStatus(slotNumber j)
25: if status == ROUND ROBIN STAGE then
26: currentRoundCharge ← currentRoundCharge + 1
27: if currentRoundCharge > roundSize[currentCharge] then
28: if Sround = ∅ and not isRRPhasePossible(j) then
29: status ← RECHARGE MINIMUM STAGE
30: else
31: if Sround = ∅ then
32: Invoke allocateRoundCharge(j)
33: end if
34: currentCharge ← removeFirst(Sround)
35: currentRoundCharge ← 1
36: end if
37: else
38: currentRoundCharge ← currentRoundCharge +1
39: end if
40: end if
41: if status == RECHARGE MINIMUM STAGE then
42: currentCharge ← getMinEnergyNode()
43: end if
44:
45: procedure isRRPhasePossible(slotNumber j)
46: maxNode ← getMaxEnergyNode()
47: numRounds ← bE(maxNode,tj)−OP (h)

αt
c

48: if numRounds > Ns − 1 then
49: return True
50: else
51: return False
52: end if
53:
54: procedure allocateRoundCharge(slotNumber j)
55: maxNode ← getMaxEnergyNode()
56: numRounds ← bE(maxNode,tj)−OP (h)

αt
c

57: numRoundsPerUAV ← bnumRounds
Ns−1

c
58: extraRounds ← numRounds%(Ns − 1)
59: for i = 1 to Ns do
60: roundSize[i] ← numRoundsPerUAV
61: end for
62: for k = 1 to extraRounds do
63: minNode ← getMinEnergyNode()
64: roundSize[minNode] ← roundSize[minNode] + 1
65: end for
66: Sround ← {1, ..., Ns}
67: Order Sround based on roundSize in ascendent order
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Sround be this set at line 66-67), and in turn we extract
the first element from Sround (line 34), recharging it of
roundSize[i] consecutive slots (line 26-27). Once all the
UAVs in Sround have been charged once, we check whether
the ROUND ROBIN STAGE can be iterated again through
the isRRPhasePossible method (line 45-52); if so, we
compute the new roundSize vector and we use a round robin
fashion as explained before. Otherwise, the algorithm enters
into the RECHARGE MINIMUM STAGE (check at line 28),
where at each slot the UAV with the minimum energy is
charged (line 41-43). It is easy to notice that the complexity
of Algorithm 1 is bound by the allocateRoundCharge
method, which is executed in O(Ns), hence is linear with
the number of UAVs. In the following, we provide numerical
results about Algorithm 1.

Lemma 1 (Number of iterations). In the
ROUND ROBIN STAGE, Algorithm 1 performs a number
of iterations 1 equal to:

K = logψ

⌈
αt · (Ns − 1) + OP (h)·ψ

1−ψ

Einit −OP (h) + OP (h)
1−ψ

⌉
(8)

where ψ = βt

αt·(Ns−1) .

Proof. The proof is reported in the Appendix A.

Theorem 1 (Network Lifetime). The network lifetime T
of Algorithm 1 is in range: {TRR...TRR + Ns − 1}. We
denote with TRR and TMIN the number of steps executed
by Algorithm 1 while being in ROUND ROBIN STAGE
and RECHARGE MINIMUM STAGE, respectively. Clearly,
T=TRR + TMIN and 0 ≤ TMIN < Ns − 1.

Proof. The proof is reported in the Appendix B.

Corollary 1 (Number of swaps). The maximum number
of charge swaps, i.e. of the number of changes of the UAV
currently under charge, is in range {Ns ·K...Ns ·K+Ns−1}
for the Algorithm 1 (K is the value given by (8)).

Proof. The proof is reported in the Appendix C.

We now prove the optimality of the proposed algorithm
in terms of network lifetime maximization, using a two-step
approach. First, we prove the optimality of Algorithm 1 when
γh = 0 and δh = 0, i.e. with no penalties for the swap
operations. Then, we prove that Algorithm 1 minimizes the
number of swap operations with γh, δh > 0.

Theorem 2 (Optimality1). If γh = 0 and δh = 0, then
Algorithm 1 guarantees the maximum lifetime, i.e. tfinal is
maximum.

Proof. The proof is reported in the Appendix D.

Theorem 3 (Optimality2). If γh > 0, δh > 0, Algorithm 1
minimizes the number of charge swaps.

Proof. The proof is reported in the Appendix E.

1An iteration of the ROUND ROBIN STAGE mode is completed when all
the UAV nodes have been recharged. Each UAV ai charges for a number of
slots given by roundSize(i).

Theorem 4 (Optimality3). The Algorithm 1 is able to satisfy
the ρj ≥ κ constraint for every tj < tfinal.

Proof. The proof is reported in the Appendix F.

V. DISTRIBUTED GAME-THEORY BASED APPROACH

Despite its optimality, Algorithm 1 is not conducive for easy
implementation since it assumes strict coordination among
the UAVs. We now describe an alternate distributed approach
including mechanisms for the scheduling of recharging oper-
ations and for the distributed positioning of the UAVs. The
first component (i.e. charge scheduling) is modeled via game-
theory techniques: Section V-A introduces the formulation and
the computation of the mixed strategies meeting the Nash
equilibrium. Based on it, three different schedulers are pro-
posed in Section V-B with varying levels of knowledge sharing
among the UAVs. The second component of positioning the
UAVs involves a distributed bio-inspired algorithm, presented
in Section V-D.

Although we are aware that distributed charging scheduling
problem can be addressed also via other techniques, like
gossiping mechanisms [32], or distributed network leader
elections [33], the choice of the game-theoretical formulation
provides two main advantages: (i) it guarantees convergence
to a coordinated solution within a decentralized environ-
ment, hence also maximizing reliance in presence of hard-
ware/software failures of the UAVs; (ii) it allows decoupling
the strategy played by the UAVs from the information dissem-
ination process, i.e. from the amount of knowledge available
at each UAV, as better detailed in the following. Moreover, we
remark that in this paper we are considering the scheduling
process as a set of consecutive and different static games at
each time slot tj ∈ T . Our modeling aims to cope with the
unpredictable and unknown dynamics of the environment: at
each instant, all the UAVs will adapt their behaviours to the
actual internal/external conditions, e.g. their residual energy,
and take proper decisions. The proposed solutions can also
deal with dynamic network scenarios in which the number of
UAVs can change over time. Given the requirements to adapt
the system response to varying environmental conditions, our
formulation does not take into account the relationships among
temporal subgames, i.e. it does not track the system temporal
evolution. We plan to further elaborate on this issue as future
work.

TABLE II
GENERAL GAME DESCRIPTION

S Strategy Z Utility functions

sfly pi,jG GOK ui,j(GOK)

sfly (1− pi,jG ) GNO ui,j(GNO)

srec pi,jR ROK ui,j(ROK)

srec (1− pi,jR ) RNO ui,j(RNO)

A. Game Formulation and Resolution

Without loss of generality, we model the UAV scheduling
operations according to the normal-form game defined as
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follows.

Definition 2. At each time slot tj ∈ T , the normal-form game
is defined as the triple 〈A,Z, uj〉, where:

• A = {a1, a2, . . . , aNS
} is the set of UAVs/players;

• Z = {GOK, GNO, ROK, RNO} is the action set available
to each player. The meaning of each action has been
described in Section III-A;

• uj = {u1,j , u2,j , . . . , uNS ,j} is the profile of the utility
functions at time slot tj , where ui,j is the utility function
or payoff function for player ai, i.e. ui,j : Z → R.

Let θi,j = {pi,jG , (1−p
i,j
G ), pi,jR , (1−p

i,j
R )} be the strategy for

player ai at time slot tj defining the probability distribution
over the set of possible actions Z. Here, pi,jG , (1− pi,jG ), pi,jR
and (1−pi,jR ) denote the probabilities to execute actions GOK,
GNO, ROK and RNO, respectively.
We have a mixed strategy if more than one action in Z is
associated to a non-zero probability; the corresponding actions
are called support of the mixed strategy. Let Θi,j be the set
of all possible mixed strategies for player ai at time slot tj .
Finally, let Θj = Θ1,j ×Θ2,j × · · · ×ΘNS ,j be the set of all
strategy profiles at time slot tj .
We define Θi,j .

= Θi,j
G as the set of all possible mixed strate-

gies for player ai being in state sfly (flying). In accordance
with the state definition of Section III-A, the support of Θi,j

G

includes GOK and GNO only. Moreover, we consider the
mixed strategy θi,jG ∈ Θi,j

G , defined as: θi,jG = {pi,jG , (1 −
pi,jG ), 0, 0}. Similarly, we define Θi,j .

= Θi,j
R as the set of

all possible mixed strategies for player ai being in state srec

(recharging). In this case, the support includes ROK and RNO

only. Again, we consider the mixed strategy θi,jR ∈ Θi,j
R ,

defined as: θi,jR = {0, 0, pi,jR , (1 − p
i,j
R )}. Table II depicts the

game description where we also indicate (as first column) the
current state of UAV ai ∈ A at time slot tj−1 ∈ T , in order
to be able to execute the action indicated in the third column.
The goal of the analysis reported in the following is to
compute the optimal values of pi,jG and pk,jR , so that the system
achieves a Nash-equilibrium. The final results of the analysis
are constituted by Theorems 5 and 6, which provide closed
formulations of pi,jG and pk,jR . Since the game depends on the
current state of the UAV, we consider two cases separately:
(i) the so-called Catch Game, that is played when the UAV
ai is in state sfly, and the (ii) the Release Game, that is
played by the UAV ak in state srec. However, we highlight
that such division is for ease of disposition only, since the
two stages belong to the same game, although observed from
two different perspectives (i.e. from the perspective of an UAV
that is in sfly or in srec state); moreover, as a further proof
of this concept, the solution of the two stages are mutually
dependant, as better detailed in the following.

1) The Catch Game: We focus on the analysis of the
game played by ai in state sfly, having the mixed strategy
θi,jG ∈ Θi,j

G . At each time slot tj ∈ T , we must determine
the mixed strategy θi,jG = {pi,jG , (1− p

i,j
G ), 0, 0} and hence the

probability pi,jG for UAV ai to execute action GOK (i.e. attempt
to occupy the replenishment station); with probability 1−pi,jG ,
UAV ai executes the action GNO (i.e. keeps flying). In game-

theory, a Nash equilibrium mixed strategy is achieved when
the opponents randomize their actions in order to make the
player ai indifferent between the possible actions [35], i.e.:

ui,j(GOK) = ui,j(GNO) (9)

We now define the utility functions ui,j(GOK) and ui,j(GNO).
It is easy to notice that the execution of action GOK can lead
to two situations: (i) if φ(tj) = 1, then the UAV ai moves
to state srec, occupies the station SE and starts recharging its
battery (s(ai, tj) = 1); (ii) if φ(tj) = 0, then the UAV remains
in state sfly (s(ai, tj) = 0). Let U i,jF (GOK) and U i,jB (GOK) be
the payoffs received by UAV ai in the two cases mentioned
before. Moreover, let pi,jB be the probability for UAV ai to find
the station SE occupied by another UAV at time slot tj . We
can then express the utility function ui,j(GOK) as follows:

ui,j(GOK) = pi,jB ·U
i,j
B (GOK) + (1− pi,jB ) ·U i,jF (GOK) (10)

Similarly, we can define the utility function ui,j(GNO) as
follows:

ui,j(GNO) = pi,jB ·U
i,j
B (GNO) + (1− pi,jB ) ·U i,jF (GNO) (11)

The functions U i,jB (GNO) and U i,jF (GNO) are the payoffs that
UAV ai receives if the station SE remains busy (φ(tj) = 0) or
free (φ(tj) = 1) during time slot tj , respectively. How to de-
fine the payoff functions U i,jB (GOK), U i,jB (GNO), U i,jF (GOK)
and U i,jF (GNO) is explained in Section V-B. Substituting (10)
and (11) into (9), we can get a closed formulation of pi,jB as
a function of the payoff functions U i,jB (·) and U i,jF (·), i.e.

pi,jB =
U i,jF (GNO)− U i,jF (GOK)

U i,jB (GOK)− U i,jF (GOK) + U i,jF (GNO)− U i,jB (GNO)
(12)

Let ak be the UAV which is using the station SE at time
slot tj−1. With probability pk,jR , UAV ak can release the
station by executing action ROK at the beginning of time
slot tj ; conversely, with probability (1− pk,jR ), UAV ak keeps
recharging also during time slot tj by executing the action
RNO. Now, the probability pi,jB can be computed as the
opposite of the idle case, that occurs when UAV ak releases
the station and then no one will try to catch it during slot tj .
More formally:

pi,jB = 1−

pk,jR · ∏
ah∈A\{ai,ak}

(1− ph,jG )

 (13)

We observe that the case where no UAV ak is recharging at
time slot tj−1 is a special instance of (13) with pk,jR =1. Finally,
we derive pi,jG through the following Theorem.

Theorem 5. For the Nash-equilibrium, the probability pi,jG for
UAV ai to choose action GOK at the beginning of time slot tj
must be defined as follows:

pi,jG = 1− (NS−1)

√√√√∏ah∈A\{ai}(1− p
h,j
B )

(1− pi,jB )NS−2 · pk,jR
(14)

where pk,jR is the probability defined by (22) in case φ(tj−1) =
0, it is equal to 1 otherwise.
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Proof. The proof is reported in the Appendix G.

Remark. Since 0 ≤ pi,jB ≤ 1, we can derive from (12) the
following constraints on the settings of the payoffs U i,jF (GNO),
U i,jF (GOK), U i,jB (GOK) and U i,jB (GOK):
U i,jF (GNO) > U i,jF (GOK)

U i,jB (GOK) > U i,jB (GNO)

U i,jB (GOK)− U i,jF (GOK) + U i,jF (GNO)− U i,jB (GNO) > 0
(15)

or
U i,jF (GNO) < U i,jF (GOK)

U i,jB (GOK) < U i,jB (GNO)

U i,jB (GOK)− U i,jF (GOK) + U i,jF (GNO)− U i,jB (GNO) < 0
(16)

2) Release game: We now focus on the analysis of the
game played by UAV ak in state srec, having the mixed
strategy θk,jR ∈ Θk,j

R . At each time slot tj ∈ T , we must
determine the mixed strategy θk,jR = {0, 0, pk,jR , (1−pk,jR )} and
hence the probability pk,jR for the UAV ak to execute action
ROK (i.e. release the replenishment station: s(ak, tj) = 1);
with probability 1−pk,jR , UAV ak executes the action RNO (i.e.
keeps recharging: s(ak, tj) = 0). As for the previous analysis,
a Nash equilibrium mixed strategy is achieved when the
opponents make UAV ak indifferent on its possible choices,
i.e.:

uk,j(ROK) = uk,j(RNO) (17)

In order to compute the value of uk,j(ROK), we distinguish
two situations that might occur during slot tj after that UAV ak
has executed action ROK, i.e.: (i) no UAV attempts acquiring
the station, and hence φ(tj) = 0 or (ii) at least one of the other
UAVs catches the station at time slot tj , and hence φ(tj) =

1. Let Uk,jT0
(ROK) and Uk,jT0

(RNO) be the payoffs that the
UAV ak receives by executing respectively the action ROK

or RNO, and no other UAV is trying to grab the station SE
at time slot tj . Similarly, let Uk,jT+

(ROK) and Uk,jT+
(RNO) be

the payoffs received by UAV ak after executing respectively
the action ROK or RNO, and in case some other UAVs will
try catching the station SE at time slot tj . How to define
the payoff functions Uk,jT0

(ROK), Uk,jT0
(RNO), Uk,jT+

(ROK) and
Uk,jT+

(RNO) is explained in Section V-B. We can derive the
value of uk,j(ROK) as follows:

uk,j(ROK) = pk,jT0
·Uk,jT0

(ROK)+(1−pk,jT0
) ·Uk,jT+

(ROK) (18)

Similarly, the term uk,j(RNO) can be expressed as follows:

uk,j(RNO) = pk,jT0
·Uk,jT0

(RNO)+(1−pk,jT0
) ·Uk,jT+

(RNO) (19)

In both the Equations above, the term pk,jT0
is the probability

that none of the other UAVs being in state sfly performs the
action GOK at time slot tj , and it is defined as follow:

pk,jT0
=

∏
ah∈A\{ak}

(1− ph,jG ) (20)

Substituting (18) and (19) into (17), we get the formulation
of pk,jT0

as a function of the payoff functions Uk,jT0
and Uk,jT+

,
i.e.:

pk,jT0
=

Uk,jT+
(RNO)− Uk,jT+

(ROK)

Uk,jT0
(ROK)− Uk,jT+

(ROK) + Uk,jT+
(RNO)− Uk,jT0

(RNO)
(21)

We finally introduce the Theorem above, which provides
the closed form Equation of pk,jR .

Theorem 6. For the Nash-equilibrium, the probability pk,jR
for UAV ak being in state srec to choose action ROK at the
beginning of time slot tj must be defined as follow:

pk,jR = (NS−1)

√√√√∏ah∈A\{ak}(1− p
h,j
B )

(pk,jT0
)NS−2

(22)

where ph,jB is defined in (12).

Proof. The proof is reported in the Appendix H.

Remark. Since 0 ≤ pk,jT0
≤ 1 we can derive the follow-

ing constraints on Uk,jT0
(ROK), Uk,jT0

(RNO), Uk,jT+
(ROK) and

Uk,jT+
(RNO):

Uk,jT+
(RNO) > Uk,jT+

(ROK)

Uk,jT0
(ROK) > Uk,jT0

(RNO)

Uk,jT0
(ROK)− Uk,jT+

(ROK) + Uk,jT+
(RNO)− Uk,jT0

(RNO) > 0
(23)

or
Uk,jT+

(RNO) < Uk,jT+
(ROK)

Uk,jT0
(ROK) < Uk,jT0

(RNO)

Uk,jT0
(ROK)− Uk,jT+

(ROK) + Uk,jT+
(RNO)− Uk,jT0

(RNO) < 0
(24)

B. Scheduling Algorithms

In this Section, we define the values of the payoffs used
by the Catch and Release games previously introduced. More
specifically, we consider three different formulations of the
payoffs, corresponding to three different scheduling algo-
rithms.
• Global knowledge: we assume that each UAV ai knows

the residual energy E(ah, tj) of all the UAVs in the
network ah ∈ A and the current state φ(tj) of the
station SE , for each time slot tj < tfinal. The information
exchange is enabled via the periodic broadcast of a
STRATEGY message, every TSTRATEGY seconds and
from each UAV. The STRATEGY message includes the
value of E(ai, tj) and, for the UAV k being in srec

state, the time instant tkSTART when it started recharging.
Through these values, each UAV can compute the payoff
values and then the probabilities for mixed strategies (i.e.
(14) and (22)). Moreover, each message is re-broadcasted
hop by hop, in order to reach all the UAVs of the aerial
network. Reliable communication is assumed.

• Local knowledge: we assume that each UAV ai knows
the residual energy E(ah, tj) of all the UAVs ah ∈ A at
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one-hop distance, for each time slot tj < tfinal; however,
it does not have information about the utilization of
the station SE . Let Neighi ⊆ A be the set of one-
hop neighbours of UAV ai. As before, the informa-
tion exchange is enabled via the periodic broadcast of
STRATEGY messages every TSTRATEGY seconds, but
without involving multi-hop retransmissions. The lack of
global scenario knowledge implies that UAV i might not
be able to compute pi,jG and pi,jR values like (14) and
(22), unless introducing some approximations, which are
explained later in this Section.

• Personal knowledge: we assume that each UAV ai
knows its residual energy E(ai, tj) only with no
STRATEGY message exchanges. Again, the approxima-
tions needed for the computation of the mixed strategies
are explained later in this Section.

As before, we separately consider the Catch Game and the
Release Game.

TABLE III
PAYOFFS FOR THE CATCH GAME

U i,jF (GOK) βt −OP (h)− τ

U i,jB (GOK)

Global (−αt −OP (h)− τ) · (1 + ξi,jG )

Local (−αt −OP (h)− τ) · (1 + ξi,jL )

Personal (−αt −OP (h)− τ) · (1 + ξi,jP )

U i,jF (GNO)

Global (−αt + τ) · (1 + ξi,jG )

Local (−αt + τ) · (1 + ξi,jL )

Personal (−αt + τ) · (1 + ξi,jP )

U i,jB (GNO) −αt + τ

Table III shows, for all the three algorithms defined above,
the payoffs that each UAV ai being in state sfly at time slot
tj will receive depending on the executed action (GOK or
GNO) and on the SE state (φ(tj) = 0 or φ(tj) = 1). Here,
αt, βt and OP (h) = (γh + δh) are the system parameters
introduced in Section III-A, τ is a constant parameter modeling
the coverage penalty/profit, while ξi,jG , ξi,jL and ξi,jP represent
the energy factor of ai with respect to the actual knowledge,
for the global, local and personal algorithms, respectively. The
ξi,j factors are computed as follows:

ξi,jG =

argmax
1≤h≤NS

(E(ah, tj))− E(ai, tj)

argmax
1≤h≤NS

(E(ah, tj))− argmin
1≤h≤NS

(E(ah, tj))
(25)

ξi,jL =

argmax
h∈Neighi∪{ai}

(E(ah, tj))− E(ai, tj)

argmax
h∈Neighi∪{ai}

(E(ah, tj))− argmin
h∈Neighi∪{ai}

(E(ah, tj))

(26)

ξi,jP = MAX

(
0,
Einit − Eai

Einit

)
(27)

We notice that the values described in Table III satisfy the
constraints defined in (16).
The rationale behind the values of Table III is the following:
when executing the action GOK, and the station SE is free (i.e.
the case of U i,jF (GOK)), the payoff is the energy recharged

(βt) minus the energy lost for landing and flying back again
(OP (h)). If, instead, the station SE is found busy (i.e. the
case of U i,jB (GOK)), the payoff is always a penalty, and
includes also the energy lost for remaining in flying state
(αt): moreover, the penalty increases proportionally with ξi,j· ,
i.e. based on the amount of residual energy of UAV ai (for
the personal algorithm) or to the energy level of ai compared
to other known players (for the global and local algorithms).
Similarly, the action GNO while the station SE is free (i.e.
the case of U i,jF (GNO)) always leads to a penalty, which is
proportional to αt and to the residual energy of the UAV, as
discussed before. Finally, the payoff of executing action GNO

with the station SE busy is always equal to the energy lost
being in sfly state, i.e. αt. It is easy to notice that all the
above Equations contain the τ parameter, which takes into
account the impact of the action been performed by UAV ai
on the scenario coverage. When executing the action GOK, we
always add a coverage penalty equal to -τ , since the UAV ai is
attempting to move on the ground, hence potentially creating
a coverage hole. Vice versa, when executing the action GNO,
we add a coverage profit equal to +τ .

TABLE IV
PAYOFFS FOR THE RELEASE GAME

Uk,jT+
(ROK) 1

Uk,jT0
(ROK)

Global −NS · χk,jG
Local −NS · χk,jL

Personal −NS · χk,jP

Uk,jT+
(RNO)

Global −χk,jG
Local −χk,jL

Personal −χk,jP
Uk,jT0

(RNO) 0

Table IV shows, for all the three algorithms defined above,
the payoffs that the UAV ak being in state srec at time slot tj
will receive depending on the executed action (ROK or RNO)
and on the behaviour of the others UAVs. The rationale behind
the values is the following: when executing the action ROK,
and at least one other UAV attempts to occupy the station SE
(i.e. the case of Uk,jT+

(ROK)), we give a unit payoff since the
station SE will not remain idle for the time slot tj . Instead,
when executing action ROK, and no other UAV is willing to
occupy the station SE (i.e. the case of Uk,jT+

(RNO)), we apply
a penalty proportional to the number of UAVs NS and to the
estimated optimal recharge time. To this aim, let χk,jG , χk,jL
and χk,jP be the ratio between the time spent by player ak
into the recharging station SE at time slot tj , and the optimal
recharge time for the global, local and personal schedulers,
respectively. We compute such values as follows:

χk,jG = MIN

{
1,

tk,jSE

tjEST(A)

}
(28)

χk,jL = MIN

{
1,

tk,jSE

tjEST(Neighk ∪ {ak})

}
(29)
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χk,jP = MIN

{
1,

tk,jSE

tjEST({ak})

}
(30)

In the Equations above, ti,jSE
is the time spent by UAV ak

at the station SE till time slot tj and can be expressed as:
ti,jSE

= tj − tkSTART, while tjEST(Φ) is a the estimated optimal
recharge time, computed similarly to Algorithm 1 (line 57),
i.e.:

tjEST (Φ) =
maxjE(Φ)−OP (h)

(NS − 1) · αt
(31)

where maxjE(Φ) is the maximum energy level among the
UAVs ah ∈ Φ, at time slot tj .
In the same way, we penalize UAV ak when executing action
RNO and at least one of the other NS−1 UAVs is attempting
to recharge its battery at the same slot tj (i.e. the case of
Uk,jT+

(RNO)); again, the penalty is proportional to the χk,j

ratio defined before. Finally, if none of the other UAVs in
state sfly attempt to recharge at slot tj , we give a neutral
payoff equal to 0. We see that the values described in Table
IV satisfy the constraints defined in (23).
Moreover, we remark that the Tables III and IV describe the
different strategies that each UAV ai ∈ A will adopt at time
slot tj ∈ T (see (14)-(22) and (12)-(21)).

Approximations for the Local and Personal schedulers.
Both (14) and (22) require global exchange of energy values
among the UAVs, as well as the knowledge of tkSTART for
the UAV in state sfly. To address these issues, we relax
the formulation of pi,jG and pi,jR for the Local and Personal
schedulers.
• Local knowledge. In this case, the UAV ai gathers only

the energy information from the UAV ah ∈ Neighi, i.e.
in its 1-hop neighborhood. Hence, we approximate the
value of pi,jG and pi,jR as follows:

pi,jG = 1−
(NS−1)

√√√√(∏ah∈Neighi
(1− ph,jB )

)
(1− pi,jB )NS−2 · pi,jR

·

· (NS−1)

√
(1− pi,jB )(NS−1−|Neighi|)

(32)

pi,jR =
(NS−1)

√√√√√
(∏

ah∈Neighi
(1− ph,jB )

)
(pi,jT0

)NS−2
·

· (NS−1)

√
(1− pi,jB )(NS−1−|Neighi|)

(33)

where pi,jB is the average of the ph,jB with ah ∈ Neighi
and pi,jR is the estimation of pk,jR for a potential UAV
ak being in state srec. The value of pi,jR is calculated
in (33) by approximating the value of tk,jSE

in (29), i.e.
the charging time duration for UAV k that is currently
using the station SE , with the duration of the last charging
operation performed by the current UAV ai.

• Personal knowledge. In this case each UAV ai knows
only its own residual energy E(ai, tj), for j ≥ 0. For
this reason we greatly simplify the formulation of pi,jG

and pi,jR by assuming constant values of ph,jB = pi,jB , for
1 ≤ h ≤ NS . Hence (14) and (22) become:

pi,jG = 1− (NS−1)

√
(1− pi,jB )

pi,jR
(34)

pi,jR =
1− pi,jB

(NS−1)

√
(pi,jT0

)NS−2
(35)

where pi,jR is defined as before for the local knowledge
case.

C. Complexity analysis

We investigate the complexity of proposed solutions by
considering both the computational complexity and the
information dissemination process overhead. It is easy to
notice that the computational complexity is dominated by
the calculus at each time slot tj , for each UAV ai, of the
probability pi,jG (if ai is in state sfly) and of the probability
pi,jR (if ai is in state srec). Again, we treat separately the three
information dissemination schemes, i,e. the global, local and
personal cases.

• Global: we can notice that both pi,jR and pi,jG are per-
formed in O(N), since they are both characterized by the
products of a sequence of N terms, i.e. the p∗,jB . Even if
these terms depend on the computation of the min/max
variables among the N UAVs (see (12) and (25)), we can
assume that that these values are pre-computed before
evaluating pi,jR and pi,jG .

• Local: this case is similar to the global one, but the
calculus is limited to the 1-hop neighbourhood. Here, we
can consider the cardinality of |Neighi|, ∀ai ∈ A, as
constant (see the next Section V-D). Hence, we can state
that the computational complexity is O(1).

• Personal: in this case it is easy to see that both pi,jR and
pi,jG are O(1).

To analyse the information dissemination procedure we need
to examine the number of STRATEGY messages that are sent
inside the UAV network. Again, we treat separately the three
information dissemination schemes:
• Global: in order to implement network-wide energy

information dissemination, each UAV ai ∈ A must
retransmit the STRATEGY message to any other aj ∈ A.
Hence the number of transmitted message is N2.

• Local: in this case there is no retransmission of messages,
hence the number of transmitted message is N .

• Personal: here no message is transmitted at all, so the
number of transmitted message is 0.

D. UAV Positioning

We assume that each UAV is equipped with GPS and
Wi-Fi modules, so that it can know its position, and com-
municate with other peers using the ad-hoc mode. Every
TBEACON ≤ tslot intervals, each UAV i broadcasts a BEACON
message containing its identifier and its position (~xi). The
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Fig. 3. The aerial mesh positioning algorithm: the virtual spring method
places the UAVs according to an hexagonal pattern. The UAVs with a spring
length greater then the spring equilibrium are subject to an attractive force
(UAV a1 in the Figure), while the UAVs with spring length lower then the
spring equilibrium are subject to a repulsive force (UAV a2 in the Figure).

UAV positioning algorithm extends the virtual spring model
described in [9][11]. A virtual spring force ~F (ai, ah) acts
between each couple of UAVs (ai, ah) that are located at 1-hop
distance, i.e. that are able to exchange the BEACON messages.
The intensity of ~F (ai, ah) is computed by UAVs ai and ah
according to the Hooke’s law:

|~F (ai, ah)| = −(|~xi − ~xh| − dEQ) · kST (36)

Here, the first term is the spring displacement, given by the
difference between the current distance from UAV ai to UAV
ah and the length in equilibrium of the spring, indicated by
dEQ. In our case, dEQ is equal to R·

√
3 (here R is the radius of

Cov(h) in (1)), which is the distance among the UAVs when
they are positioned according to hexagonal patterns for the
optimal scenario coverage [34]. The force is attractive when
the distance between the UAVs is greater than dEQ, repulsive
otherwise. The term kST is the stiffness of the spring, and
is assumed to be a constant value. Every TBEACON seconds,
each UAV ai gathers the BEACON messages from its 1-hop
neighbours (Neighi). Then, it determines ~F (ai, ah) for each
neighbour h ∈ Neighi, and it computes the resultant force
~R(ai) =

∑
h∈Neighi

~F (ai, ah). If the module of ~R(ai) is
greater than a threshold value that is analogous to inertia of a
mechanical system, then UAV ai moves towards the direction
of the resultant force in a fixed step (see Figure 3). In this way
the proposed method balances the ‘push’ and ‘pull’ forces, and
avoids oscillations in the ensuing movements.

VI. PERFORMANCE EVALUATION

In this Section, we evaluate the proposed CCPANP problem
solutions via a simulation study in a 3D network scenario in
OMNeT++ [36]. We design and implement a comprehensive
set of simulation models of UAV mobility, battery usage,

and wireless communication protocols. We compared eight
different algorithms, corresponding to four main approaches:
• a centralized optimal solution based on Algorithm 1 (de-

noted as Algo1 in the following), assuming global coordi-
nation and complete scenario knowledge. This algorithm
provides an upper bound to the system performance;

• a no-recharge solution where the recharge station SE is
not present on the ground, and hence the UAVs must stay
in the sfly state all the time. We indicate with Norec such
solution, which provides a lower bound to the system
performance;

• the three game-theory based distributed algorithms de-
scribed in Section V-B. More in details, we consider three
variants based on the amount of information exchanged
by the UAVs:

– a global cooperation algorithm (GameG) implement-
ing the global knowledge game of Section V-B;

– a local cooperation algorithm (GameL) implement-
ing the local knowledge game of Section V-B;

– a personal cooperation algorithm (GameL) imple-
menting the personal knowledge game of Section
V-B.

All the variants use the virtual spring algorithm of Section
V-D for the distributed UAV positioning.

• three distributed probabilistic schemes which let each
UAV i recharge at slot j with probability PRi,j . Again,
we consider three variants of the PRi,j function, based
on the amount of information exchanged by the UAVs:

– a global cooperation probabilistic algorithm
(ProbG): the PRi,j value is computed by UAV i at
slot j by comparing its actual energy level E(ai, tj)
with those of the most charged and discharged
UAVs in the network:

PRi,j =

argmax
1≤h≤NS

E(ah, tj)− E(ai, tj)

argmax
1≤h≤NS

E(ah, tj)− argmin
1≤h≤NS

E(ah, tj)
(37)

– a local knowledge probabilistic algorithm (ProbL):
the PRi,j value is computed by UAV i at slot j
by comparing its actual energy level E(ai, tj) with
those of the most charged and discharged UAVs in
its 1-hop neighborhood, and is defined as follows:

PRi,j =

argmax
h∈Neigh+

i

E(ah, tj)− E(ai, tj)

argmax
h∈Neigh+

i

E(ah, tj)− argmin
h∈Neigh+

i

E(ah, tj)

(38)
where Neigh+

i = Neighi ∪ {ai}.
– a personal knowledge probabilistic algorithm

(ProbP ): the PRi,j value is computed by UAV
i at slot j by comparing its actual energy level
E(ai, tj) with the initial battery capacity Einit, i.e.
PRi,j =

E(ai,tj)
Einit

.
For all the three probabilistic schemes described above,
we consider a fixed charging time duration equal to
Probrec time slots. The UAV positioning is handled by
the virtual spring algorithm.
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Fig. 4. The performance indexes as a function of NS . The lifetime is shown in Figure 4(a); the CCPANP lifetime is shown in Figure 4(b); the Failed attempt
ratio is shown in Figure 4(c).

The performance evaluation focuses on three quality in-
dexes:

• Lifetime (Lfinal): this index is a measure of the system
lifetime, computed as the tfinal value introduced in Sec-
tion III-A, i.e. the time slot in which the first UAV runs
out of battery. We consider also an alternative metric
for lifetime, which also accommodates the coverage and
service persistence constraints of the CCPANP problem.

• CCPANP lifetime (LCCPANP): this index is an alternate
measure of the system lifetime, measured as smallest time
slot tj ∈ T such that at least one of the constrains of the
CCPANP problem in the Definition 1 is not satisfied, i.e.:
(i) one UAV runs out of battery or (ii) the current mesh
coverage at slot tj , i.e. C(tj), becomes lower than the κ
threshold for a given number of consecutive seconds. We
introduce the parameter ∆tκ which defines the maximum
time interval in which the κ constraint can be violated,
thus allowing small interruptions of the coverage service.

• Failed attempt ratio (Fratio): this index defines the ra-
tio between the failed recharge attempts and the total
recharge attempts performed by the UAVs.

Unless stated otherwise, we used the following setting of the
system parameters: NS = 8, TBEACON = 1s, TSTRATEGY =
1s, θ = 2

3 · π, κ = 0.75, ∆tκ = 10s, h = 20m, kST = 1,
Probrec = 1, τ = 150, Einit = 130kJ , α = 100W ,
β = 25W , γ = 5J , δ = 5J (we modeled an UAV equipped
with a generic 3-cell (3S) LiPo 11.1V battery with 3250mAh
with an approximated flight autonomy of 20 minutes and a
full recharge time of 80 minutes).
We split the performance analysis in three parts. Section VI-A
investigates the relationship between system performance and
scenario deployment characteristics, like the number of UAVs
and the altitude from the ground. Section VI-B shows the
impact of system parameters related to the recharge/discharge
operations. Finally, Section VI-C investigates how cooperation
parameters, like the frequency of the STRATEGY messages
exchanged among the UAVs, affect the system performance.

A. Scenario analysis

In this Section, we analyze the performance of the algo-
rithms by varying characteristics like the number of available
UAVs (NS) and the flight altitude (h). Figure 4(a) shows the
Lfinal metric on the y axis, when varying the NS value on the
x axis. We adopted the following order in this figure, and in
the following histograms: the first bar is the Algo1 method; the
second bar represents the Norec scheme; the next three bars
depict the distributed game-theory approaches considering the
three variants based on the amount of cooperation among the
UAVs, i.e. the GameG, GameL and GameP schemes; finally,
the last three bars correspond to the probabilistic approaches
considering again the three variants according to the amount of
cooperation, i.e.: ProbG, ProbL and ProbP . We notice that:
(i) the Norec scheme performs worst, as expected; (ii) while
the global cooperation schemes (GameG and ProbG) always
outperform the personal solutions (i.e. GameP and ProbP ),
they do not provide significant gains over local cooperation
schemes (GameL and ProbL); (iii) the game-theory based
schemes perform worse than the probabilistic ones with few
UAVs (i.e. NS ≤ 4), while the trend reverses for NS ≥ 6. The
results in Figure 4(a) only take into account the energy issue,
but do not consider the coverage constraint κ. Figure 4(b)
depicts the LCCPANP metric. From NS > 4, all the game-
theory based schemes perform better then the probabilistic
ones. Also, it is interesting to notice that the GameL scheme
provides almost the same performance than GameG, and
pretty close to Algo1, i.e. to the optimal upper bound. In
other words, the distributed mobility and charging scheduler
solution provides a good approximation of the optimal one,
but without requiring a global controller, and introducing a
much lower network overhead than GameG. On the opposite,
the probabilistic schemes do not cope well with the coverage
requirements (i.e. κ); for NS ≥ 6, they perform even worse
than the Norec method, basically nullifying the gain of the
recharging operations. This behavior can be explained by
considering the Fratio metric in Figure 4(c). Probabilistic
schemes result in greater number of recharge attempts than the
game-theory based schemes, and most of them fail because the
charging station SE is found busy. The failures also increase
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Fig. 5. The performance indexes as a function of the flight altitude h. The lifetime is shown in Figure 5(a); the CCPANP lifetime is shown in Figure 5(b);
the Failed attempt ratio is shown in Figure 5(c).

with the number of UAVs. When the UAVs move from the
air to the ground, a coverage hole may occur, driving the
full coverage metric below the κ threshold. This results in
the poor performance of the probabilistic schemes in terms of
LCCPANP metric. The game-theoretical algorithms leverage
the computation of the mixed strategies, and hence, optimize
the number of recharge attempts to improve the Fratio quality
index. This trend is confirmed in Figure 6, showing the
scenario coverage ratio ρj (see (5)) over simulation time, for
NS=8. The spikes in the graph correspond to coverage holes,
caused by single or multiple recharge attempts, and by the
consequent repositioning of the UAVs according to the virtual
spring mobility model. The line interruptions correspond to
the LCCPANP lifetime values in Figure 4(b), i.e. the time
slot tj after which the energy or the coverage (κ) constraints
are no more satisfied. We notice that on average, the game-
theory based approaches remain above the value of ρ > 0.9.
Conversely, the probabilistic methods present large decrease
in coverage due the number of recharge attempts at each slot.
Also, the spikes increase in frequency when the average UAV
battery power level decreases. Such spikes tend to violate the
κ constraint for more than consecutive ∆tκ seconds. Hence,
the GameL scheme provides a performance gain of around
+30% LCCPANP lifetime compared to the ProbL scheme.
The next analysis focuses on the impact of the flight altitude

(i.e. h) on the system performance. Figure 5(a) depicts the
Lfinal index when varying the flight altitude from h = 5m
to h = 40m. We recall that the variable h impacts on the
energy cost of ascending/descending operations (the γh and
δh parameters of Section III) and on the UAV coverage radius
(R = h·tan( θ2 )). The trend of the Lfinal index is similar to the
previous analysis shown in Figure 4(a), i.e. the probabilistic
approaches initially outperform the game theoretical methods,
but provide much lower lifetime when h ≥ 20m, i.e. when
the energy costs of ascending/descending operations become
significative. Figure 5(b) shows the LCCPANP metric over h.
In all the distributed schemes, the UAVs need to fly over a
longer distance after each recharge attempt, as the separation
distance between the UAVs is a function of the sensing radius
R, and thus of h. Hence, the probability of not meeting the
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Fig. 6. The value of ρj over the simulation time.

minimum coverage ratio κ increases with the flight altitude.
However, the game-theory based approaches still outperform
the probabilistic ones, and the gain becomes more relevant
when increasing the altitude. This is confirmed by Figure
5(c) showing the Fratio metric over h, and demonstrating
that the probability schemes (ProbG, ProbL and ProbP )
perform an excessive number of recharge attempts. Vice versa,
the GameG, GameL and GameP schemes are able to cope
with the increasing altitude owing to better scheduling of the
recharge operations.

B. Parameters analysis

In this Section, we explore the impact of the UAV pa-
rameters that directly characterize the discharge/recharge op-
erations, i.e α, β, γ and δ, on the system performance. In
the following, for ease of disposition we always set the the
parameters γ and δ to the same values, i.e. γ = δ. In Figures
7(a), 7(b) and 7(c) we depict the Lfinal, LCCPANP and Fratio

indexes, with h=20m and NS=8. The LCCPANP metric of the
distributed game-theory based algorithms are barely affected
by the above parameters; system performances decrease slowly
even with an high value of γ = δ = 10J . Vice versa,
for any configuration of γ and δ, the probabilistic methods
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Fig. 7. The performance indexes as a function of γ and δ (in the experiments γ = δ). The lifetime is shown in Figure 7(a); the CCPANP lifetime is shown
in Figure 7(b); the Failed attempt ratio is shown in Figure 7(c).

always perform worse than the basic method Norec algorithm,
due to the impact of charging attempts, as also confirmed
by Figure 7(c). In Figure 8 we show the LCCPANP index

 0

 2

 4

 6

 8

 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 5

 10

 15

 20

 25

 30

L
if

e
ti

m
e
 C

C
P

A
N

P
 (

m
in

)

GameL ProbL

γ-δ (J)
κ

L
if

e
ti

m
e
 C

C
P

A
N

P
 (

m
in

)

Fig. 8. The CCPANP lifetime index varying γ-δ and κ for the methods
GameL and ProbL.

when varying the κ threshold (on the x axis) and the γ-δ
parameter (on the y axis). We only compare the GameL and
ProbL algorithms, i.e. the game-theory based and probabilistic
schemes both exploiting local cooperation among the UAVs.
The GameL algorithm keeps the LCCPANP index very close to
the optimal method, i.e. Algo1, dropping its performance only
when requesting a continuous total coverage (i.e. κ equal to 1).
The ProbL method, instead, starts reducing its performance
from κ = 0.4, and achieves much lower LCCPANP values
than the GameL scheme for κ ≥ 0.8. In Figure 9, we show
the LCCPANP index when varying the α and β parameters,
while keeping constant the values of γ = δ = 5J . Again,
we compared the GameL and ProbL algorithms. In both
cases, the optimal value is achieved when β >> α, as
expected. However, the GameL scheme exploits much more
efficiently the presence of the recharging station than the
ProbL algorithm, for both different recharge powers (β) and
flight discharge characteristics (α).
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Fig. 9. The CCPANP lifetime index varying α and β for the methods GameL
and ProbL.

C. Cooperation analysis

Finally, we analyze the impact of UAV cooperation rate
on the system performance, by considering the interval
TSTRATEGY in exchanging the STRATEGY broadcast mes-
sages. We recall from Section V-B that the STRATEGY mes-
sages contain the E(ai, tj) values, needed to compute the
mixed strategies in the game-theory distributed schemes as
well as the charging probabilities in the distributed probabilis-
tic schemes. The no-cooperation schemes, i.e. GameP and
ProbP , are clearly not affected by the analysis and, hence,
perform in the same way for all values of TSTRATEGY. In
Figures 10(a), 10(b) and 10(c) we depict the performance
for the Lfinal, LCCPANP and Fratio indexes, over increasing
values of TSTRATEGY. We can notice that the game-theory
based approaches keep good performance and are only slightly
affected by the freshness of information coming from the
other UAVs. This is a quite relevant result, since it shows
that the network communication overhead can be reduced
without impacting the LCCPANP performance, although the
amount of energy drained by the communication module can
represent only a small fraction of the energy drained by the
rotors [15][16]. Vice-versa, the performances of probabilistic
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Fig. 10. The performance indexes as a function of the broadcast frequency of the STRATEGY message. The lifetime is shown in Figure 10(a); the CCPANP
lifetime is shown in Figure 10(b); the Failed attempt ratio is shown in Figure 10(c).

approaches (ProbG and ProbL) decrease quite significantly
when increasing the TSTRATEGY interval. Hence, they need
much higher communication overhead than the game-theory
based algorithms.

VII. CONCLUSION

In this paper, we have investigated the deployment of aerial
mesh networks meeting requirements of scenario coverage and
service continuity through scheduling and UAVs for ground-
based recharging. We have developed the optimal solution
in presence of a centralized controller as well as distributed
deployment strategies based on game theory techniques and
swarm mobility algorithms; different variants of the charging
scheduling policies have been proposed according to the extent
of cooperation among the UAVs. Our simulation results show
that the distributed game-theory based solutions based on 1-
hop neighbor messaging outperforms probabilistic approaches,
and performs close to the optimal solution, but without the
overheads of central coordination and global cooperation. Our
future work will extend the theoretical framework to multiple
ground-charging stations, consider mobility of these stations,
and investigate different altitude values for different UAVs.
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APPENDIX A
PROOF OF LEMMA 1

We observe that the Algorithm 1 keeps iterating the
ROUND ROBIN STAGE till the following condition be-
comes true (line 40):

E(∗, k) < αt · (Ns − 1) +OP (h) (39)

where E(∗, k) is the energy of maxNode (i.e. of the UAV
with maximum residual energy), after having completed k

iterations in ROUND ROBIN STAGE mode. Moreover, at
each iteration k, the following recursive property holds:

E(∗, k) = E(∗, k − 1)− xk · (αt · (Ns − 1)− βt)−OP (h)
(40)

where xk is the number of charging slots assigned to each
UAV (i.e. the numRoundsPerUAV at line 49, assuming
extraSlots = 0). By construction, xk is always equal to
bE(∗,k−1)−OP (h)

αt·(Ns−1) c. Hence, (40) can be re-written into:

E(∗, k) = ψ · (E(∗, k − 1)−OP (h)) (41)

where ψ = βt

αt·(Ns−1) . By substituting (41) into (39) and
iterating over k, we get the following condition:

ψk ·
(
Einit −OP (h) +

OP (h)

1− ψ

)
−OP (h) · ψ

1− ψ
< αt ·(Ns−1)

(42)
Since the ROUND ROBIN STAGE ends as soon as the
condition above becomes true, we derive the value of k solving
the equation. Let K be such value. After some calculations
(not reported here for space reasons), we obtain the expression
of K reported in (8).

APPENDIX B
PROOF OF THEOREM 1

In order to compute TRR, we consider the term xRR =∑K−1
i=0 xi, which is the total number of charging slots assigned

to each UAV during the ROUND ROBIN STAGE. From (41)
we can derive the energy at step k:

E(∗, k) = ψk · Einit −OP (h) · ψ − ψ
k+1

1− ψ
(43)

Through (43) and the definition of xk, we can derive xRR as:

xRR =

⌊
K−1∑
k=0

(E(∗, k)−OP (h))

αt · (Ns − 1)

⌋

=

K−1∑
k=0

(
ψk · Einit −OP (h) · ψ−ψ

k+1

1−ψ −OP (h)
)

αt · (Ns − 1)


=


(
Einit + OP (h)·ψ

1−ψ

)
·
(
1− ψK

)
−K ·OP (h)

αt · (Ns − 1) · (1− ψ)
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Assuming that all the Ns UAVs will recharge of the same
energy amount (i.e. extraRounds will always be equal to 0),
we can derive TRR as follows:

TRR = xRR ·Ns (44)

When entering the RECHARGE MINIMUM STAGE, the en-
ergy of maxNode is lower than αt ·(Ns−1). Since each active
node will discharge of αt energy units at each slot, we have
that at most Ns− 1 can be completed till one UAV will drain
its energy, hence: 0 ≤ TMIN < Ns − 1. Combining this result
with (44), we have the statement of Theorem 1.

APPENDIX C
PROOF OF COROLLARY 1

The proof is derived from Lemma 1. At each iteration of
the RECHARGE ROBIN STAGE, all the Ns UAVs enter the
charging state exactly once. Since this stage is iterated K times
(Lemma 1), the number of swaps is exactly equal to K ·Ns.
Vice versa, in the RECHARGE MINIMUM STAGE, a swap
can occur at each slot, since the minimum UAV is selected.
Since TMIN < Ns−1, we have that the total number of swaps
is upper bound by K ·Ns +Ns − 1.

APPENDIX D
PROOF OF THEOREM 2

We observe that the network lifetime is maximized when all
the UAVs discharge at the same rate, i.e. when the difference
between the energy of the most charged and least charged
UAVs is minimized. We indicate with ∆ such difference. Let
MINSCHED a scheduler selecting the minimum energy
node at each slot j (i.e. s(ai, tj) = 1 if i=getMinEnergyNode()
∀j). We notice that MINSCHED is optimal in terms of
maximum lifetime, and that ∆ ≤ αt + βt. We now prove that
such a condition on ∆ is also guaranteed by Algorithm 1. In
the RECHARGE MINIMUM STAGE, our Algorithm follows
the MINSCHED policy, hence the condition is always
satified at each slot. In the RECHARGE ROBIN STAGE, the
condition might not hold at each slot. However, we notice
that in the allocateRoundCharge method, the difference
of roundSize (i.e. of charging slots) between two UAVs is
at most equal to one. This implies that, at the end of each
iteration, we still have that ∆ ≤ αt + βt.

APPENDIX E
PROOF OF THEOREM 3

By Theorem 1, we show that the lifetime is maximized
when charging operations are scheduled according to a round
robin policy. Let roundSize[i, j] be the duration of the charge
–in terms of number slots– for UAV i at iteration j. In
Algorithm 1, roundSize[i, j] is computed according to the
allocateRoundCharge method. By absurd, let MINSWAP
be another scheduler providing a number of swaps lower than
Ns · K, but guaranteeing the same lifetime than Algorithm
1. Since at each iteration the number of swaps is constant,
and equal to Ns, we deduce that MINSWAP performs less
iterations than Algorithm 1, which implies that for a given k,
roundSize[i, k]MINSWAP ≥ roundSize[i, k]Algorithm1,∀i.

However, this is not possible, since by construction, Algorithm
1 computes the maximum duration of roundSize[i, k] so that
the last UAV going to recharge at iteration k will not drain its
battery before the end of the iteration.

APPENDIX F
PROOF OF THEOREM 4

We assume that NS is always greater then Nmin +1, where
Nmin is defined in (7). At each time slot tj < tfinal we have
always Ns − 1 UAVs in state sfly and 1 UAV in state srec

(lines 7-21 of Algorithm 1). Since the centralized approach
places the UAVs in an hexagonal pattern, each UAV ai being
in state sfly at time slot tj uniquely covers at least a surface
of:

Surf(tj , ai, h, θ) ≥
(
h · tan

(
θ

2

))2

· 3 ·
√

3

2
(45)

With this result, we can rewrite (6) as follow:

C(tj) ≥ Surf(tj , ai, h, θ) · (NS − 1) (46)

and hence we have that ρj ≥ κ, ∀tj < tfinal.

APPENDIX G
PROOF OF THEOREM 5

Let us consider the values of pi,jB defined by (12) and pk,jR as
known. From (13) we can derive a system of NS−1 equations
with NS − 1 unknown variables, i.e. the pi,jG variables, with
1 ≤ i ≤ NS , i 6= k. We have ∀tj ∈ T :



p1,j
B = 1−

(
pk,jR ·

∏
ah∈A\{a1}(1− p

h,j
G )
)

p2,j
B = 1−

(
pk,jR ·

∏
ah∈A\{a2}(1− p

h,j
G )
)

· · ·
pNS ,j
B = 1−

(
pk,jR ·

∏
ah∈A\{aNS

}(1− p
h,j
G )
) (47)

If φ(tj−1) = 1 then pk,jR = 1, hence we have again a system
of NS equations with NS unknown variables. The solution of
such system is the one presented in the Theorem 5 (see (14)).
We can prove it by construction, i.e. by substituting (14) into
any equation of the system of equations (47), verifying:

pi,jB = 1−

pk,jR · ∏
ah∈A\{ai}

(NS−1)

√√√√∏aq∈A\{ah}(1− p
q,j
B )

(1− ph,jB )NS−2 · pk,jR


(48)

We need to remark that (14) can become inconsistent for
UAV ai, i.e pi,jG < 0, when the following condition holds:∏

ah∈A\{ai}

(1− ph,jB ) > (1− pi,jB )NS−2 · pk,jR (49)

In such case, we transform the mixed strategy in a pure
strategy, i.e the support of the mixed strategy consists in a
single action, and (14) is rewritten as follows:

pi,jG = MAX

0, 1− (NS−1)

√√√√∏ah∈A\{ai}(1− p
h,j
B )

(1− pi,jB )NS−2 · pk,jR


(50)
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APPENDIX H
PROOF OF THEOREM 6

Similar to the previous case, by substituting (14) in (20) we
obtain:

pk,jT0
=

∏
ah∈A\{ak}

 (NS−1)

√√√√∏aq∈A\{ah}(1− p
q,j
B )

(1− ph,jB )NS−2 · pk,jR

 (51)

After some arithmetic calculus, it is easy to notice that (22)
is a re-arrangement of (51).

As for the previous proof, we have to remark that the
Equation above can become inconsistent for the UAV ak, i.e
pk,jR > 1, if the following condition holds:∏

ah∈A\{ak}

(1− ph,jB ) > (pk,jT0
)NS−2 (52)

In this case we transform the mixed strategy in a pure strategy,
i.e the support of the mixed strategy is formed by only one
action. More formally (22) is rewritten as follows:

pk,jR = MIN

1, (NS−1)

√√√√∏ah∈A\{ak}(1− p
h,j
B )

(pk,jT0
)NS−2

 (53)
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