
This paper has been accepted for publication in IEEE Transactions on Robotics
DOI: 10.1109/TRO.2018.2853742 https://ieeexplore.ieee.org/document/8423784

Robust Intrinsic and Extrinsic Calibration of
RGB-D Cameras

Filippo Basso, Emanuele Menegatti, and Alberto Pretto.

Abstract—Color-depth cameras (RGB-D cameras) have be-
come the primary sensors in most robotics systems, from service
robotics to industrial robotics applications. Typical consumer-
grade RGB-D cameras are provided with a coarse intrinsic and
extrinsic calibration that generally does not meet the accuracy
requirements needed by many robotics applications (e.g., highly
accurate 3D environment reconstruction and mapping, high
precision object recognition and localization, . . . ).
In this paper, we propose a human-friendly, reliable and accurate
calibration framework that enables to easily estimate both the
intrinsic and extrinsic parameters of a general color-depth sensor
couple. Our approach is based on a novel two components error
model. This model unifies the error sources of RGB-D pairs based
on different technologies, such as structured-light 3D cameras
and time-of-flight cameras.
Our method provides some important advantages compared to
other state-of-the-art systems: it is general (i.e., well suited for
different types of sensors), based on an easy and stable calibration
protocol, provides a greater calibration accuracy, and has been
implemented within the ROS robotics framework.
We report detailed experimental validations and performance
comparisons to support our statements.

I. INTRODUCTION

THE availability of affordable depth sensors in conjunction
with common RGB cameras, often embedded in the same

device (called RGB-D cameras), has provided mobile robots
with a complete and instantaneous representation of both the
appearance and the 3D structure of the surrounding envi-
ronment. Many robotic tasks highly benefit from using such
sensors, e.g., SLAM and navigation [1], [2], tracking [3], [4],
object recognition and localization [5] and many others. While
color information is typically provided by RGB cameras, there
are many technologies able to provide depth information, e.g.
time-of-flight (ToF) cameras, laser range scanners and sensors
based on structured-light (SL). Even if there are many devices
able to provide both color and depth data, as far as we know,
there are no integrated, CMOS-like, imaging sensors able to
provide both color and depth information yet. Most of the
RGB-D sensors currently used in robotics applications (among
others, the Microsoft Kinect 1 and Kinect 2, the Asus Xtion,
and the Intel RealSense) are composed by an RGB camera
and a depth camera rigidly coupled in the same frame. In
order to obtain a reliable and accurate scene representation,
not only the intrinsic parameters of each camera should be
precisely calibrated, but also the extrinsic parameters relating

Basso is with IT+Robotics (www.it-robotics.it), e-mail: filippo.basso@it-
robotics.it. Menegatti is with the Department of Information Engineering,
University of Padua, Italy, e-mail: emg@dei.unipd.it. Pretto is with the
Department of Computer, Control, and Management Engineering “Antonio
Ruberti”, Sapienza University of Rome, Italy, e-mail: pretto@diag.uniroma1.it

the two sensors should be precisely known. RGB-D devices
are often factory calibrated, with the calibration parameter set
stored inside a non-volatile memory. Unfortunately, the quality
of such calibration is only adequate for gaming purposes. For
instance, with a default setup, the acquired point clouds can
suffer from a non accurate association between depth and
RGB data, due to a non perfect alignment between the camera
and the depth sensor. Moreover, depth images can suffer from
an irregular geometric distortion and a systematic bias in the
measurements. A proper calibration method for robust robotics
applications is needed.

In this paper, we propose a novel, two-steps calibration
method that employs a simple data collection procedure that
only needs a minimally structured environment and that does
not require any parameters tuning or a great interaction with
the calibration software. The proposed method automatically
infers the intrinsic calibration of the depth sensor by means
of two general correction maps and, as a “side effect”, the
rigid body transformation that relates the two cameras, i.e.,
the camera pair extrinsic calibration. We assume that the
RGB camera has been previously calibrated using a standard
method, e.g., [6], while for the depth sensor calibration, we
employ a two components error model that includes a pixel-
based distortion error along with a systematic error. Even if
the principal target of the proposed method are structured-light
RGB-D sensors, this two components error model is designed
to be “technology-agnostic”, thus well generalizes also with
sensors based on different technologies such as ToF cameras,
as shown in error analysis and experiments.
The calibrated measurements are obtained employing two
maps. We propose to represent the first map, used to correct the
distortion error, by means of a set of functions of the depth
measurements, iteratively fitted to the acquired data during
a first calibration stage. The second map is obtained in a
second stage of the calibration procedure, when we include the
systematic error and the transformation between the sensors.
At this point we exploit the plane-to-plane constraints between
color and depth data to align the two sensors and to infer
the systematic error correction functions inside a non-linear
optimization framework.

The main contributions of this paper are the following:
• A general and experimentally supported measurements

error model, that well describes the error of different
depth sensor types in an unified way.

• A spatial/parametric undistortion map that models in
a compact and efficient way the distortion effect of
structured-light depth sensors.

• A novel optimization framework that aims to estimate the

Please cite the paper as: F. Basso, E. Menegatti and A. Pretto,
“Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras”, in IEEE Transactions on Robotics, vol. 34, no. 5, 2018.

ar
X

iv
:1

70
1.

05
74

8v
2 

 [
cs

.C
V

] 
 1

9 
O

ct
 2

01
8

https://ieeexplore.ieee.org/document/8423784
www.it-robotics.it
mailto:filippo.basso@it-robotics.it
mailto:filippo.basso@it-robotics.it
mailto:emg@dei.unipd.it
mailto:pretto@diag.uniroma1.it


2

camera-depth sensor rigid displacement along with the
parametric model which describes the systematic error
on the depth measurements.

• An open source implementation of the proposed method,
integrated inside the ROS (Robot Operating System)
framework [7]. The code along with a tutorial of the
calibration process is available on the following website:

http://iaslab-unipd.github.io/rgbd calibration1.
An exhaustive set of tests, proving the soundness of the
proposed method, is reported. We also compare our method
with other state-of-the-art systems, using the original imple-
mentations provided by their authors: our method appears
to be more stable and able to provide the most accurate
results. Finally we report some experiments of a RGB-D visual
odometry system applied to a mobile robot, where we show
that the accuracy in the ego-motion estimation highly benefits
from using RGB-D data calibrated with our system.

This paper is structured as follows. Related work is reviewed
in Sect. II. In Sect. III the error on the depth values provided
by the sensor is analyzed and discussed. Sect. IV gives a quick
overview of the calibration procedure. The first calibration step
is detailed in Sect. V, while Sect. VI describes the second
calibration step. The results of the calibration procedure and
performance comparisons are reported in Sect. VII. Finally,
some conclusions are reported in Sect. VIII.

A. Basic Notations

We use non-bold characters x to represent scalars, bold
lower case letters x to represent vectors, with no distinction
between cartesian coordinates and homogeneous coordinates.
The coordinates of a point x with respect to the coordinate
frame A are denoted by Ax; BAT denotes the homogeneous
transformation matrix2 from the reference frame A to the
frame B , such that Bx = BAT

Ax.
An RGB camera is denoted by C and it provides an RGB
image IC ; a depth sensor is denoted by D and it provides
a depth image ID. From an RGB image of a scene that
contains a checkerboard it is possible to extract the checker-
board corners ICB, where the superscript IC explicits the fact
that the corners are expressed in 2D pixel coordinates, i.e.,
ICB = {(u, v)1, . . . , (u, v)n}. From a depth image ID it is
possible to generate a point cloud DC, where the superscript
D explicits the fact that the point cloud is expressed with
respect to the coordinate frame D, i.e., DC = {x1, . . . ,xm}.

II. RELATED WORK

The availability in the market of affordable depth sensors
(structured-light 3D sensors and time-of-flight cameras) has
greatly increased the interest in depth sensor systems in both
the robotics and computer vision communities.
Several ToF cameras have been proposed over the years,
and at the same time many researches began to analyze the
sources of errors of such sensors [8], [9] and to propose

1The copy and paste function may not work properly with this url due to
the underscore symbol.

2Here we implicitly assume that the points are expressed using homoge-
neous coordinates.

suitable calibration methods to solve them [10]. A number of
ToF-specific calibration methods [11], [12], [13] address the
systematic nonlinear depth distortion that affects such sensor
(often referred to as wiggling error), an error that depends
only on the measured depth for each pixel [8]. Lindner et
al. [11] proposed a method that combines intrinsic parameter
estimation with wiggling and intensity adjustment, where the
wiggling error has been faced by means a depth correction B-
spline function. Other methods use regression to compensate
such depth error: Kuznetsova and Rosenhahn [12] exploit a
non-parametric Gaussian kernel regression, while Ferstl et
al. [13] use Random Regression Forest: both these methods
require to couple the depth sensor with an RGB camera.
Kim et al. [14] presented an analysis of the measurement
errors of a Mesa SwissRanger time-of-flight camera, high-
lighting the presence of two components: a random noise
and a systematic depth error, consistent over time. Using this
depth error model, they proposed a three-stages calibration
procedure that aims to estimate both the intrinsic and extrinsic
parameters of an array of sensors composed by both ToF and
video cameras. Jung et al. [15] proposed to calibrate extrinsics
and intrinsics of a color camera and a ToF camera pair by using
a pattern with 4cm-diameter holes that can be simultaneously
localized by both sensors. Unfortunately, the error models
used in both methods are conceived for a SwissRanger-like
sensor, and can not be easily adapted to depth sensors based
on different technologies.

Early methods addressing the calibration of RGB-D pairs
were intended to estimate only the extrinsic parameters that
relate the two sensors. Mei and Rives [16] addressed the
problem of finding the relative pose between a 2D laser range
finder and a catadioptric camera by using a planar calibration
pattern perceived from both sensors. Scaramuzza et al. [17]
proposed to map 3D range information collected with a 3D
tilting laser range finder into a 2D map (called Bearing Angle
image) that highlighted the salient points of a scene thus
the user could manually associate points between the two
sensors in an easy way. The final extrinsic calibration was
then obtained using a Perspective-n-Point (PnP) algorithm
followed by a non-linear refinement step.

Depth sensors based on structured light technology have
gained a great popularity thanks to the first version of Mi-
crosoft Kinect, an affordable and effective RGB-D pair based
on active stereo matching that exploits a near-infrared random
pattern projector. Early works on the Kinect sensor calibration
[18], [19], [20], [21] were based on standard RGB camera
calibration techniques. They used a checkerboard pattern to
calibrate both the RGB and the IR cameras, often blocking
the IR projector and illuminating the target with a halogen
lamp in order to better highlight the checkerboard corners in
the IR camera. Smisek et al. [20] showed that Kinect depth
sensors are affected by a sort of radially symmetric distortion.
To correct such distortion, they estimated a z-correction image
built as the pixel-wise mean of the residuals of the plane
fitted to the depth data. The z-correction image was subtracted
from the z coordinate of the cloud points to obtain the actual
depth values. Unfortunately it is currently well known that

http://iaslab-unipd.github.io/rgbd_calibration


3

in the general case this distortion depends on the depth,
i.e. becomes much stronger for increasing depths (e.g., see
Sect. III). Also Zhang and Zhang [22] and Mikhelson et al.
[23] exploited a checkerboard pattern but, differently from
the previous approaches, they didn’t search for checkerboard
corners in the IR image. Zhang et al. [22] used the fact that
points on the checkerboard should be co-planar, and the plane
equation can be estimated with the RGB camera. They also
proposed to model the depth error of the Kinect sensor by
treating the depth value z as a linear function of the real one
z∗, that is z = µz∗ + η. A limitation of this method comes
from the fact that it requires to have a good initialization of
the unknown parameters. Mikhelson et al. [23] extracted the
structural corners from the point cloud derived from the depth
images, in order to locate the checkerboard position also in
the depth image plane. This approach assumes that the depth
image is not affected by any distortion: as mentioned before,
this assumption does not always apply for Kinect-like sensors.
Moreover, from our experience, extracting structural corners
from a point cloud is an operation that sometimes provides
poor results.

Herrera et al. [24], [25] described a calibration method that
exploits a checkerboard pattern attached to a big plane to
calibrate two color cameras and a Kinect-like depth sensor.
This method works directly on the raw data provided by the
depth sensor (instead of on the metric data) and, alongside
the camera-depth sensor relative displacement, it estimates
a disparity distortion correction map that depends on the
observed disparity. They estimated a coefficient for each pixel
D(u, v) ∈ R and two global coefficients α0, α1 ∈ R such that
the actual depth value z∗ can be computed as

z∗ = z +D(u, v) · exp(α0 − α1 · z) .

Moreover, they used the 4 corners of the checkerboard plane
as the initial guess of the relative displacement between
the cameras and the depth sensor. For short distances their
approach seems to obtain good results, as reported also in
[26], [27].

An improvement over the work of Herrera et al. is the one
presented by Raposo et al. [28]. They proposed several mod-
ifications to the estimation pipeline that allow their algorithm
to achieve a calibration accuracy similar to [25] while using
less than 1/6 of the input frames and running in 1/30 of the
time.

Canessa et al. [29], instead, proposed to model the depth
error by means of a second degree polynomial for each
pixel. In their work, authors first estimated the pose of a
“virtual” depth sensor with respect to the RGB camera using
an incandescent lamp bulb to light the checkerboard and make
the depth map saturate in correspondence of the white squares.
Then, they positioned a Kinect in front of a plane with a
checkerboard attached and acquired a set of images from 0.6
m to 2 m. Finally, they fitted a second degree polynomial to the
sample set of every pixel. Actually, the need of an incandescent
lamp makes this system quite cumbersome.

Teichman et al. [30] proposed a completely different cali-
bration approach for Kinect-like devices: the undistortion map

is estimated by means of a SLAM framework, in an unsuper-
vised way. Their algorithm estimates 6 depth multipliers, at
0, 2, . . . , 10 meters, and it corrects the depth measurements
using a linear interpolation: to the best of our knowledge,
this is one of the first approaches that proved to be able to
correct depth data at more than 5 meters. The main drawback
of their approach is the time it needs to reach a solution:
the optimization procedure takes several hours to converge.
Moreover, according to [27], it seems not to perform as
well as [25] for short distances. Indeed, in [30] close-range
measurements (i.e., less than 2 meters) are considered reliable
and directly used in the SLAM pipeline to infer the geometry
of the scene.

Fiedler et al. [31] investigated the influence of thermal
and environmental conditions on the Kinect’s data quality.
The experiments turned out that variations of the temperature
and air draft have a notable influence on Kinect images and
range measurements. They derived temperature-related rules to
reduce errors in both the calibration and measurement process.

Recently, Di Cicco et al. [32] proposed a non-parametric,
unsupervised intrinsics calibration method for depth sensors.
The best plane fitted to the data is used as a reference, i.e., the
average depth is considered reliable. A complete, discretized
undistortion map for the depth data is estimated using a
machine learning approach. In this approach the extrinsics
calibration of a general RGB-D pair is not considered.

Staranowicz et al. [26] proposed an RGB-D pair calibration
algorithm that uses a spherical object moved in front of the
camera as a calibration pattern. A limitation of this method is
that they focus on the estimation of the rigid displacement
between the two cameras only, i.e., the depth error is not
corrected.

In our previous work [33], we proposed a spatial/parametric
undistortion map that models the distortion effect of Kinect-
like depth sensors in a compact way. Our approach uses a
calibration pattern similar to the one used in [24]: besides
the undistortion map, we estimate the camera-depth sensor
alignment along with a parametric model that well describes
the systematic error of the depth measurements. Results were
very promising, but this method could get stuck in a local
minimum if the depth camera intrinsic parameters (focal
lengths and central point) were poorly estimated. In this work
we improve our previous method by addressing this limitation
with a new, more general error model and a new calibration
pipeline that refines also the depth camera intrinsic parameters.
The calibration protocol employed in our method is inspired by
[24] and [30], while our error model has been designed taking
inspiration from both the error models presented in [14] and
[29].

III. DEPTH ERROR ANALYSIS

In this section we introduce our depth error correction
model, derived from an experimental analysis performed using
two popular structured-light based depth sensors (the Mi-
crosoft Kinect and the Asus Xtion Pro Live RGB-D cameras)
and a time-of-flight sensor (the Microsoft Kinect 2 RGB-D
camera).



4

(a) KINECT1A – top (b) KINECT1B – top

(c) ASUS – top (d) KINECT1B – side

Fig. 1. Top and side views of the point clouds generated by some different
structured-light depth sensors: two Kinects (KINECT1A, KINECT1B) and an
Asus Xtion Pro Live (ASUS). The gray lines represent the ground truth
measured with the laser distance meters, points with different y-coordinates
are drawn with different colors.

(a) KINECT2 – top (b) KINECT2 – side

Fig. 2. Top and side views of the point clouds generated by a Kinect 2 ToF
camera (KINECT2). The gray lines represent the ground truth measured with
the laser distance meters, points with different y-coordinates are drawn with
different colors. Note that the cloud on the right frames a part of the floor
too.

To analyze the systematic and random errors in the depth
measurements, we positioned each sensor parallel to a flat wall
at increasing distances. For each position, we collected the
sensors readings (i.e., the depth images and the generated point
clouds) while measuring the real distances (i.e., the ground
truth) using two high precision laser distance meters (e.g.,
Fig. 12a). Some qualitative results of such analysis are reported
in Fig. 1 and Fig. 2. From our analysis, we noticed that:

1) In the case of the SL sensors, the surfaces defined
by the point clouds are not properly planar as they
should be, and this “local distortion” effect becomes
more accentuated for increasing distances (this is the
myopic property defined in [30]). Moreover, each sensor

has a different “distortion pattern”. The ToF sensor is
also affected by similar local distortion effect, but to a
lesser extent (typically less than 1 cm).

2) The average depth of each point cloud is not generally
correct and, in the case of SL sensors, sometimes even
the average orientation is wrong.

3) The quantization error for the SL sensors becomes
not negligible for increasing distances. ToF sensors are
affected by a negligible quantization error3

The effect of 1) is to produce a local alteration of an object
shape, while 2) is a systematic bias in the measurements.

In this work we aim to remove both 1) and 2), while it is
usually not possible to remove the quantization error 3) of SL
sensors4.

In the following, we refer to these error components as
1) distortion error and 2) global error, respectively. These
errors in the case of SL sensors arise from a combination of
two main sources: the radial and tangential lens distortion
of the camera used for stereo triangulation [21], and the
misalignment between the pattern projector and the camera.
In the case of ToF cameras, there are different sources of
errors that contribute to the distortion error, among others the
built-in pixel-related errors and the amplitude-related errors,
while the global error arise from the so called wiggling error
that appears due to irregularities in the internal modulation
process [8]. Our method does not directly address other ToF
related sources of errors, such as multipath interference and
reflectivity related deviations..

In order to analyze the distortion error trend, we compared
the measured point clouds with the planes that best fit to them
(some results are reported in Fig. 3a, where we used three SL
sensors and one ToF sensor). In particular, for each incoming
point cloud, we computed the Root Mean Square (RMS) error
on the (signed) distance between the plane and the points.
It can be noticed that for all the tested sensors, such error is
super-linear with respect to the measured depth values, despite
the sources of error are different. It is also important to note the
different error trends between two sensors of the same type
(KINECT1A and KINECT1B): this is a further evidence that
an effective calibration is an essential requirement for such
sensors. In Fig. 3b we reported the global error of the tested
sensors for increasing distances, i.e. the difference between
the average depth of the acquired clouds and the ground truth.
It can be noticed that in the case of SL sensors, such error
is super-linear with respect to the measured depth values,
while in the case of a ToF sensor5, this error has a wiggling

3Continuous-wave based ToF sensors like the Kinect 2 measure the depth by
means of a phase differences between an emitted sinusoidal light wave signal
and the backscattered signals received. This phase is evaluated in closed-form
using four equally spaced samples [10]: the quantization error, that is mainly
due to the precision used in storing the samples, is usually neglected.

4In structured-light based depth sensors, the quantization error originates
from the discrete nature of the disparity map used to extract the depth:
this error is commonly mitigated by means of sub-pixel stereo matching
algorithms, unfortunately these algorithms require to access low-level data
that is usually not accessible from the user side.

5The global error trend for the Kinect 2 sensor is plotted also in Fig. 22,
where a more suitable scale has been used.



5

1 2 3 4
0

2

4

6

8

Ground truth depth [m]

R
M

S
er

ro
r

[c
m

]

KINECT1A

KINECT1B

ASUS

KINECT2

(a) Distortion

1 2 3 4

0

20

40

Ground truth depth [m]
D

is
ta

nc
e

er
ro

r
[c

m
] KINECT1A

KINECT1B

ASUS

KINECT2

(b) Global error

Fig. 3. Error on the depth estimation for four different depth sensors. (a) RMS
error caused by the distortion. The error is computed by fitting a plane to the
point cloud acquired in front of a flat wall and computing the point-plane
distance for all its points. (a) Error on the average distance point estimation.
The error is computed, for each cloud, by averaging the depth of all its points
and comparing it to the ground truth computed with the two laser distance
meters.

trend, confirming the results of other comprehensive ToF error
analysis [8], [34]

A. Error Correction Model

To model the effects of the errors introduced by depth
sensors, as in [25], [29], [30], [32], we propose to estimate
a depth correction function in a per-pixel basis. That is, given
a depth sensor D that provides a depth image ID of size
HD ×WD, a pixel (u, v)T and the corresponding depth value
z = ID(u, v), the real depth z∗ is computed as:

z∗ = fu,v(z). (1)

z represents both the depth measured by the sensor and
the z-coordinate of the corresponding 3D point perceived
by the depth camera, in a reference system with the z axis
corresponding to the optical axis of the camera.
Starting from the considerations made above, we express each
fu,v(·) in (1) as a composition of two functions: uu,v(·) that
takes into account the local distortion 1), and gu,v(·) that
makes a global correction 2) of the depth values. That is, the
real depth z∗ is estimated as:

z∗ = fu,v(z) = (g ◦ u)u,v(z), (2)

or, alternatively, given the 3D point x = (x, y, z)T associated
with the pixel (u, v)T, the real 3D point x∗ is estimated as:

x∗ = ḟu,v(x) = (ġ ◦ u̇)u,v(x),

where

ḟu,v(x) = x · fu,v(z)

z
.

We define U as the map that associates a pixel (u, v)T to an
undistortion function u : R → R, that is, U(u, v) = uu,v(·).
In the same way, we define G(u, v) = gu,v(·) as the map that
associates a pixel (u, v)T to a function of the depth that correct
the global error.

IV. CALIBRATION APPROACH

As confirmed by the experimental evidence (see Sect. III),
the error on the depth measurements is a smooth function.
Thus we can assume that given two close 3D points x and y
along the same direction, i.e y = (1 + ε) · x with ε ' 0,

y∗ = ḟ(y) = ḟ((1 + ε) · x) ' (1 + ε) · ḟ(x) = (1 + ε) · x∗.

where ḟ(·) is the error correction function defined in Eq. 2.
This means that, if we know how to “correct” a point x (i.e.
we know the correction function parameters for this point),
we can correct close points with a good approximation using
the same parameters.

This assumption is the basis of our algorithm to estimate
both the undistortion map U and the global error correction
map G. Exploiting the fact that both distortion and quantiza-
tion errors become more severe for increasing distances, we
introduce the idea to estimate the distortion error iteratively,
starting from short distances and estimating the error for
greater distances using as initial guess the current correction
parameters.

The proposed calibration framework requires the depth sen-
sor to be coupled with a calibrated RGB camera that frames
approximately the same scene: the rigid body transformation
that relates the two sensors will be estimated while inferring
the depth error correction function. It also requires the two
sensors to collect data framing a scene that includes a wall
with a checkerboard attached on it, at different distances and
orientations.

The calibration is performed in two steps: in the first
step the algorithm estimates the undistortion map U ; only a
rough calibration between the camera and the depth sensor
is necessary during this step, the checkerboard is used just
to have an idea of the wall location. In the second step the
global correction map G is computed. Here the checkerboard
poses estimated with the (calibrated) RGB camera are used
as a ground truth. That is, the undistorted planes estimated
in the first step are forced to match the ones defined by the
checkerboard. To this end, the real rigid displacement between
the RGB camera C and the depth sensor D needs to be known.
Unfortunately, to estimate the pose of one sensor with respect
to the other, a good estimate of their intrinsic parameters is
mandatory. One way to satisfy this circular dependency is
to estimate the global correction map G and the rigid body
displacement CDT simultaneously.

At this point a question arises: why the depth error is
corrected in two steps?
Actually, the reason is simple. To guarantee the best results,
the camera-depth sensor transformation CDT and the global
correction map G need to be refined together within an
optimization framework. Refine inside the same framework
a map such as U , with a different function every pixel, is
not a feasible solution. On the other hand, the map G, whose
scope is to transform planes into planes, is defined by a dozen
parameters (see Sect. VI), thus better suited to be efficiently
estimated inside an optimization scheme.



6

RGB Images Depth Images

Undistortion
Map

Estimation

Checkerboard
Corners

Extraction

Point Cloud
Generation

Point Cloud
Undistortion

Extrinsic Parameters
& Global Error

Correction Function
Estimation

IC,k

ICBk
DCk

ID,kC
DT0

Ik U

DĈk
ICBk

DCk

GC
DT

Fig. 4. Calibration algorithm pipeline. Double-lined arrows mean that a set
of data is passed from one block to the other.

A. Pipeline

The algorithm is organized as in Fig. 4. First of all, the
checkerboard corners are extracted from all the collected RGB
images IC,k and the organized point clouds6 are generated
from the depth images ID,k, k = 1, 2, . . . ,M . The corners
ICBk (in pixel coordinates), the point clouds DCk (in depth
sensor reference frame) and the initial camera-depth transfor-
mation CDT0 are the inputs for the undistortion map estimation
module. Once the undistortion map U has been estimated, the
point clouds are undistorted (DĈk) and passed to the module
that estimates both the global correction map G and the final
camera-depth transformation CDT.

V. UNDISTORTION MAP ESTIMATION

The proposed algorithm (Fig. 5) estimates the undis-
tortion map U taking as input a list of point clouds
{DC1,

DC2, . . . ,
DCM} acquired when the depth sensor D is

pointing a planar surface (e.g. a wall) at different distances and
orientations. It also requires the positions of the checkerboard
corners {ICB1,

ICB2, . . . ,
ICBM}, extracted from the images,

and a rough estimate of the rigid-body transformation that
relates the two sensors CDT0. The data structure EU used in
Fig. 5 is a matrix of sample sets (one for each sensor pixel)
that keeps in memory the samples used to fit the undistortion
functions uu,v(·).

Firstly (``. 1-2) the undistortion map U is initialized as an
HD ×WD matrix of identity functions 1(·) : R → R, while
the sample matrix EU is initialized as an HD×WD matrix of
empty sets. Then, the point cloud list {DC1,

DC2, . . . ,
DCM}

is sorted in ascending order, {DCs1 ,DCs2 , . . . ,DCsM }, ac-
cording to the distance of the main plane (i.e., the plane
with the checkerboard) from the sensor (`. 3), to exploit the
smoothness described in Sect. IV.

Actually, no plane extraction is performed, the assumption
that the RGB camera and the depth sensor are facing the

6An organized point cloud DC is a point cloud that reflects the depth
image structure, i.e. the points are organized into rows and columns as the
depth image, z = ID(u, v)⇒ x = DC(u, v).

Input: {DC1,
DC2, . . . ,

DCM} . Point clouds
Input: {ICB1,

ICB2, . . . ,
ICBM} . Checkerboard corners

Input: C
DT0 . Camera-depth sensors initial transformation

Output: U . Undistortion map
1: U ← 1(·) for all (u, v)T ∈ ID
2: EU ← {∅} for all (u, v)T ∈ ID
3: {DCs1 ,DCs2 , . . . ,DCsM } ← SORT({DC1,

DC2, . . . ,
DCM})

4: for k ← 1, 2, . . . ,M do
5: for all (u, v)T ∈ ID do
6: uu,v(·)← U(u, v) . Current undistortion function
7: Dx← DCsk (u, v)
8: z ← ID,sk (u, v)

9: DĈsk (u, v)← u̇(Dx) = Dx · uu,v(z)
z

10: end for
11: Isk ← SELECTWALLPOINTS(DĈsk ,

ICBsk ,
C
DT0)

12: Dπsk ← FITPLANE(DCsk , Isk )
13: (U,EU )← UPDATEMAP(U,EU ,

DCsk , Isk ,
Dπsk )

14: end for

Fig. 5. Pseudocode of the algorithm developed to estimate the undistortion
map U .

same wall is exploited to sort the point clouds. That is, the
checkerboard corners provided in input are used.

The undistortion map is created iteratively: at each step only
one point cloud is analyzed (``. 4). At step k, the kth cloud
is undistorted using the current estimation of U (``. 5-9). The
coordinates Isk = {(u, v)Tsk,1, (u, v)Tsk,2, . . . , (u, v)Tsk,nsk

} of
the nsk points that lie to the main plane are extracted from the
undistorted cloud (``. 11) as described in Sect. V-A, A plane
Dπsk is then fitted to the initial cloud DCsk (``. 12) by using
only the points selected in ``. 11. Actually, to increase stability,
instead of fitting a plane to the whole original point cloud,
only the pixels within a defined ray from the plane center are
used, as reported in [32]. Finally, the estimated plane Dπsk is
used to update the undistortion map U (`. 13) as described in
Sect. V-B. The procedure ends as soon as the last cloud in the
list has been processed.

A. Wall Points Selection

The selection of the wall point-coordinates Isk is performed
automatically, as opposed to the manual selection of [25]. We
take advantage of the RGB camera and the checkerboard to
select the right plane and extract the coordinates from the
undistorted cloud with a RANSAC-based approach [35], [36].
As the example shown in Fig. 6, the undistorted cloud lets
us extract the correct points, where the original one does not.
In particular, points near the image corners are likely to be
excluded from the inliers when using the original cloud.

B. Map Update

In the map update function (Fig. 7), all the points Dx =
(x, y, z)T of the cloud that lie to the main plane are projected
on the previously extracted plane Dπsk along their line-of-
sight (``. 3-4, where LOSPROJECT() is a short name for the
function LINEOFSIGHTPROJECT()). That is, let nTx−dπ = 0
be the plane equation, with n the plane unit normal vector
and dπ the distance of the plane from the origin, and let lDx,



7

(a) Wall points extracted (in orange) from the original point cloud DCsk .

(b) Wall points extracted (in pink) from the undistorted point cloud DĈsk .

Fig. 6. Comparison between (a) the wall points extracted from the original
point cloud DCsk and (b) the ones extracted from the undistorted cloud
DĈsk . As clearly visible, in both cases the floor points are correctly discarded.
In the former case, however, the wall segmentation is wrong.

1: function UPDATEMAP(U,EU ,DC, I,Dπ)
2: for all (u, v)T ∈ I do
3: Dx← DC(u, v)
4: Dxπ ← LOSPROJECT(Dx,Dπ)
5: EU (u, v)← EU (u, v) ∪ {(z, zπ)}
6: U(u, v)← FITCURVE(EU (u, v))
7: end for
8: return (U,EU )
9: end function

Fig. 7. Pseudocode of the algorithm for updating the undistortion map U .

l ∈ R, be the points along Dx-line-of-sight, then the line-of-
sight projection of Dx onto Dπsk , say Dxπ = (xπ, yπ, zπ)T,
is:

xπ = lx =
dπx

nTx
.

where the superscript D has been omitted for the sake of
simplicity. The pair (z, zπ) is used as a sample for the curve-
fitting procedure (`. 5), and the undistortion function U(u, v) is
re-estimated by fitting a new curve to the sample set EU (u, v)
(`. 6).

C. Implementation Details

1) Undistortion Map: To decrease the incidence of noise on
the map estimation we reduce the number of functions fitted to
the data. That is, instead of estimating an undistortion function
for each pixel, similarly to [30], we discretize the map into
bins. So, let χU , ψU ∈ N be the bin size in pixels, along the
image x- and y-direction, respectively.

Given a pixel (u, v)T ∈ ID, we define SU (u, v) as the set of
4 pixels surrounding (u, v)T according to the sampling factors
χU and ψU (see Fig. 8). We also define SU , {SU (u, v) :
(u, v)T ∈ ID} as the set of all the surrounding pixels.

ψU

HD

χU
WD

Pixel (u, v)T ∈ SU . For this pixel an undistortion function uu,v(·)
has been estimated.

Pixel (u, v)T ∈ ID . For this pixel the undistortion function uu,v(·)
is a linear combination of the functions of the pixels in SU (u, v).

Connection from a pixel (u, v)T ∈ ID to one in SU (u, v).

Fig. 8. Visualization of a discretized undistorted map U . Given two param-
eters, χU and ψU , an undistortion function is estimated for all and only the
pixels in SU . For all the others, instead, the function is computed as a linear
combination of the neighboring points in SU .

We estimate the undistortion function uu,v(·) only for the
pixels in SU . For all the others, instead, this function is
computed as a linear combination of the functions computed
for the pixels set SU . That is, given a pixel (u, v)T, following
a bilinear interpolation approach, its undistortion function
U(u, v) can be computed as:

U(u, v) =
∑

(s,t)∈SU (u,v)

wχU (u, s) · wψU (v, t) · U(s, t)

where

wχU (u, s) , 1− |u− s|
χU

, wψU (v, t) , 1− |v − t|
ψU

(3)

and ∑
(s,t)∈SU (u,v)

wχU (u, s) · wψU (v, t) = 1 .

2) Curve Fitting: As shown in Sect. III (Fig. 3a), the
distortion is super-linear, therefore an appropriate correction
function must be chosen. Moreover, as previously described,
since we are not estimating a function for every pixel, the
fitting procedure is not straightforward.

For what concerns the former point, suppose the error is
corrected by a second degree polynomial, that is, U(u, v) =
uu,v(z) = a+ bz + cz2, for some a, b, c ∈ R. To estimate the
polynomial coefficients we solve a non-linear least squares
problem of the form:

arg min
a,b,c

∑
(z,zπ)∈EU (u,v)

1

σ2(z)

∥∥a+ bz + cz2 − zπ
∥∥2

where σ(z) is a normalization term, that is, the error on the
depth measurements. For the Kinect 1 we choose σ(z) to be
the quantization error (as reported in [20]), i.e.

σ(z) = −0.00029 + 0.00037 · z + 0.001365 · z2.



8

1: function UPDATEMAP(U,EU ,DC, I,Dπ)
2: Ew ← {∅} for all (u, v)T ∈ ID
3: for all (u, v)T ∈ I do
4: Dx← DC(u, v)
5: Dxπ ← LOSPROJECT(Dx,Dπ)
6: for all (s, t) ∈ SU (u, v) do
7: w ← wχU (u, s) · wψU (v, t)
8: Ew(s, t)← Ew(s, t) ∪ {(w, z, zπ)}
9: end for

10: end for
11: for all (s, t) ∈ SU do
12: (z̄, z̄π)← WEIGHTEDMEAN(Ew(s, t))
13: EU (s, t)← EU (s, t) ∪ {(z̄, z̄π)}
14: U(s, t)← FITCURVE(EU (s, t))
15: end for
16: return (U,EU )
17: end function

Fig. 9. Pseudocode of the algorithm for updating the undistortion map U
taking into account the pixel binning.

For Kinects 2, since we didn’t find any suitable equation in the
literature, we fitted a second degree polynomial to the samples
reported in Fig. 3a, i.e.

σ(z) = 0.00313 + 0.00116 · z + 0.00052 · z2.

For what concerns the latter point, i.e. how to deal with the
discretized undistortion map, we slightly modify the sample
set generation and the function fitting procedure described in
Fig. 7. In the new algorithm (Fig. 9), every pixel (u, v)T

contributes to the sample set of its four surrounding pixels
SU (u, v) with a weight calculated as in (3). That is, let:

S−1U (s, t) , {(u, v)T ∈ ID : (s, t) ∈ SU (u, v)}

be the set of pixels which have (s, t) as one of their surround-
ing pixels. For each cloud, the temporary sample set Ew(s, t)
for a pixel (s, t) ∈ SU , is (``. 2-10):

Ew(s, t) ,
⋃

(u,v)T∈S−1(s,t)

(w, z, zπ)

where

w , wχU (u, s) · wψU (v, t).

Ew(s, t) is used to generate the sample set for the aforemen-
tioned curve fitting procedure (``. 11-15). Basically, the pair
(z̄, z̄π) is calculated as the weighted arithmetic mean of the
values in Ew(s, t), that is:

W ,
∑

(w,z,zπ)∈Ew(u,v)

w,

z̄ ,
1

W

∑
(w,z,zπ)∈Ew(u,v)

w · z,

z̄π ,
1

W

∑
(w,z,zπ)∈Ew(u,v)

w · zπ,

and added to the sample set EU (s, t).

VI. GLOBAL CORRECTION MAP ESTIMATION

Our original solution to deal with the global, systematic
error was to have a unique function, say g(·), to correct
the wrong depth measurements after the undistortion phase,
i.e. G(u, v) = g(·), for all (u, v)T ∈ ID. Unfortunately,
this solution had one important limitation: in some cases the
undistorted clouds were both translated and rotated around
a non-predictable axis. For this reason we moved to a cor-
rection map G someway similar to the previously described
undistortion map U . The actual implementation of such map
is described in Sect. VI-C1. Our algorithm takes as input a set
of already undistorted point clouds {DĈ1,

DĈ2, . . . ,
DĈM},

the correspondent wall point coordinates {I1, I2, . . . , IM} and
the checkerboard corners extracted from the RGB images,
{ICB1,

ICB2, . . . ,
ICBM}. After an initialization step where

a rough estimate of the map G is computed (Sect. VI-A),
the map is refined, along with the camera-depth sensor trans-
formation DC T, within a non-linear optimization framework
(Sect. VI-B).

A. Initial Estimation

The algorithm used for the initial estimation of the map
functions as well as the computation of the rigid transform
between the RGB and the depth sensor is reported in Fig. 10.
Firstly, the pose of one sensor with respect to the other is
estimated, that is, for each color-depth image pair both the
plane defined by the checkerboard in the image CπBk (in
the RGB camera C reference frame), and the one extracted
from the point cloud DπĈk (in the depth sensor D reference
frame) are computed from the given input data (``. 1-6). The
transformation between the checkerboard and the RGB camera
(CBkT) is estimated given the checkerboard 3D points BB, their
corresponding image projections ICBk, the camera matrix KC
and the distortion coefficients distC using an iterative opti-
mization based on the Levenberg-Marquardt method (OpenCV
[37] function solvePnP, `. 2, that solves a Perspective-n-Point
problem) The checkerboard 3D points are then transformed in
the RGB camera frame (`. 3). The equation of the plane framed
by the RGB camera is hence computed taking 3 non-collinear
corners (`. 4). The equation of the plane in the depth image,
instead, is computed using a SVD approach (`. 5). Once all the
planes have been computed, the rigid displacement between
the two sensors is estimated (``. 7-9) using the plane-to-plane
calibration method described in [38].

The plane equations extracted from the images are then
represented w.r.t. the depth sensor reference frames using the
transformation matrices just computed. These planes are used
as reference locations for the curve fitting procedure (``. 10-13),
as we did with the undistortion map U in Fig. 5.

B. Non-linear Refinement

Once the global correction map G and the camera-depth
sensor transformation matrix DC T have been estimated, we
refine them within a non-linear optimization framework. To
take into account the error on the checkerboard poses estima-
tion, we follow the bundle-adjustment approach as described



9

Input: {DĈ1,
DĈ2, . . . ,

DĈM} . Undistorted point clouds
Input: {I1, I2, . . . , IM} . Wall point coordinates
Input: {CB1,

CB2, . . . ,
CBM} . Checkerboard corners

Output: G . Global error correction map
Output: D

C T . Camera-depth sensor transformation matrix
1: for k ← 1, 2, . . . ,M do
2: C

BkT← SOLVEPNP(KC ,distC ,
BB, ICBk)

3: CBk ← C
BkT · BB

4: CπBk ← FITPLANE(CBk)
5: DπĈk ← FITPLANE(DĈk, Ik)
6: end for
7: ΠB ← (CπB1 ,

CπB2 , . . . ,
CπBM )

8: ΠĈ ← (DπĈ1
,DπĈ2

, . . . ,DπĈM )

9: D
C T← ESTIMATETRANSFORM(ΠB ,ΠĈ)

10: for k ← 1, 2, . . . ,M do
11: DπBk ←

D
C T · CπBk

12: (G,E)← UPDATEMAP(G,E,DĈk, Ik,DπBk )
13: end for

Fig. 10. Pseudocode of the algorithm for the initial estimation of the global
correction map G.

in [39]: we also refine all the checkerboard poses CBkT, with
k = 1, . . . ,M . Moreover, to take into account the error on
the intrinsic parameters of the depth camera KD, the focal
lengths and the principal point are refined too. So, let define
CTB ,

{C
B1
T, CB2

T, . . . , CBMT
}

as the set of checkerboard
poses in the camera coordinates, estimated with the solvePnP
function.
Formally, the results of the non-linear refinement is:(
G,DC T,

CTB,KD
)

= arg min
G,DC T,CTB,KD

M∑
k=1

erepr(k) + epos(k) ,

Here erepr takes into account the reprojection error of the
checkerboard corners onto the images and depends on the
checkerboard poses only. This error component is defined as:

erepr(k) ,
∑

(r,c)∈B

1

σ2
C
·
∥∥projC

(C
BkT ·

BBk(r, c)
)
− ICBk(r, c)

∥∥2
The summation is performed over all the checkerboard
corners, projC is a general projection function that depends
on both the camera matrix KC and the distortion coefficients
distC . The residuals are weighted by the inverse of the
variance of the corner estimation error σ2

C , where σC = 0.2.

epos represents the error between the planes defined by the
checkerboards and the ones defined by the undistorted point
cloud

epos(k) ,
∑

(u,v)∈Ik

1

|Ik| · σ2
U (z)

·

·
∥∥∥pDπk

(
gu,v

(
DĈk(u, v)

))
− gu,v

(
DĈk(u, v)

)∥∥∥2 .

where pπ(x) is the function that orthogonally projects a point
x onto plane π. Formally speaking, this error is the distance
between the cloud point DĈk(u, v) corrected with the current
estimation of G and its line-of-sight projection onto the plane
Dπk defined by the checkerboard corner set DBk. Such set is
computed as

DBk = DC T · CBkT ·
BB .

HD

WD

Pixel (u, v)T ∈ SG. For this pixel a correction function gu,v(·) has
been estimated.
Pixel (u, v)T ∈ SG. To guarantee planarity, for this pixel the
correction function gu,v(·) has been computed starting from the
ones of the other 3 pixels in SG.
Pixel (u, v)T ∈ ID . For this pixel the correction function gu,v(·) is
a linear combination of the functions of the pixels in SG(u, v).

Connection from a pixel (u, v)T ∈ ID to one in SG(u, v).

Fig. 11. Visualization of a global correction map G. A global correction
function is estimated for all and only the pixels in SG. For all the others
pixels, instead, the function is computed as a linear combination of the ones
estimated for the pixels in SG.

Finally, each residual is weighted by the inverse of the variance
on the depth measurements after the undistortion phase σ2

U (z),
multiplied by the number of wall points, i.e. |Ik|.

C. Implementation Details

1) Global Correction Map: As mentioned before, the
global correction map G is someway similar to the undistortion
map U , but more simple. In fact, G needs to transform planes
into planes and, recalling that a plane transformation has
3 degrees of freedom, we just need 3 functions to satisfy
this requirement. Thus we define G as a discretized map
constructed as U with χG = WD and ψG = HD, that is, only 4
pixels contain a correction function gu,v(·). For what concerns
the other pixels, the global correction function is computed as
a linear combination of the functions for the 4 boundary pixels.
Allowing 4 pixels to control the whole map usually leads to
wrong results. Let suppose, for example that 3 of such pixels
contain an identity function and the fourth does not. Clearly
the resulting surface will not be a plane anymore. For this
reason, only 3 of these pixels are actually computed, the fourth
is instead estimated exploiting the following invariant:

g0,0(z) + gWD,HD (z)

2
=

gWD,0(z) + g0,HD (z)

2
. (4)

Suppose now that gWD,HD (·) is the dependent function:
gWD,HD (·) can be estimated by fitting a function on an
adequate set of pairs (d, gWD,HD (z)), where

gWD,HD (z) = gWD,0(z) + g0,HD (z)− g0,0(z)

is computed from (4). An example of the presented global
correction map G is reported in Fig. 11.

2) Curve Fitting: Since the correction map G is constructed
in the same way as the undistortion map U , the considerations
on the curve fitting procedure made in Sect. V-C2 are still valid
in the global error case.



10

(a) (b)

Fig. 12. (a) The support used to acquire the data for the experimental
evaluations. The two laser meters are located on the left and right of the
support to guarantee that the sensor is correctly aligned; (b) The reference
hollow cube used as a ground truth in the performance evaluations.

VII. EXPERIMENTAL EVALUATION

The goal of the presented experimental evaluations is to
show that our method is able to provide robust and state-of-
the-art calibration results for different types of RGB-D sensors.
We used four RGB-D sensors: two Microsoft Kinect 1 (called
KINECT1A and KINECT1B in the plots), an Asus Xtion Pro
Live (called ASUS in the plots), and a Microsoft Kinect 2. The
RGB camera of each device has been previously calibrated
exploiting a standard calibration tool. Actually, a good RGB
camera calibration is an essential requirement of all the tested
systems. Each sensor has been mounted, one at a time, on a
support that includes two rigidly mounted high precision laser
meters, and a high resolution RGB camera (see Fig. 12a).

We attached a checkerboard on a wall, collecting for each
device two datasets: a training set (i.e., the dataset used to
perform the calibration) and a test set (i.e., the dataset used
to evaluate the calibration accuracy). The training set contains
views of the checkerboard from the device camera, the depth
sensor and the high resolution camera from different locations
and orientations. The test set, instead, has been acquired by
positioning the support of Fig. 12a orthogonal to the wall at
different distances and measuring such distances with the two
laser distance meters.

We independently analyze the results of our undistortion
approach (Sect. VII-A), the results of our global correction
approach (Sect. VII-B), and the provided camera-depth sen-
sor transformation accuracy (Sect. VII-C). We also compare
our method with other state-of-the-art calibration systems
(Sect. VII-D), using the original implementations provided by
the authors and a reference pattern as a ground truth (Fig. 12b).
In almost all tests, our system outperforms the other evaluated
systems. We finally report some experiments of an RGB-D
visual odometry system applied to a mobile robot, where we
show that the accuracy in the ego-motion estimation highly
benefits from using RGB-D data calibrated with our system
(Sect. VII-E).

A. Undistortion Map

To evaluate the performance of our undistortion approach,
we introduce a metric called planarity error. For each cloud
of the test set, we extract the wall point indices I from its

1 2 3 4
0

2

4

Average plane distance [m]

Pl
an

ar
ity

er
ro

r
[c

m
] Original

1st degree

2nd degree

3rd degree

4th degree

Fig. 13. Planarity error when varying the degree of the undistortion polyno-
mials. From the plot we can see that linear functions are not able to correctly
model the distortion introduced by the sensor. On the other hand, quartic
functions tend instead to overfit the training data (e.g., in the right part of
the plot the error of the quartic functions increases w.r.t. the errors of the
quadratic and cubic functions).

undistorted version as described in Sect. V-A. We define the
planarity error as:

eplan =

√√√√ 1

|I|
∑

(u,v)∈I

‖nTC(u, v)− d‖2 ,

where C is a generic point cloud of the test set (we consider
both the original and the undistorted versions) and π is the
plane with equation nTx−d = 0 fitted to the wall points with
indices in I.

1) Undistortion Map Functions: In the previous sections,
we have always talked about “undistortion functions” without
providing many details about the nature of these functions.
Actually, analyzing the error on the plane estimation described
in Sect. III, we evinced that for both the SL and ToF sensors,
this error is well described by a quadratic polynomial: this
hypothesis is further confirmed also by our experiments. We
calibrated each sensor using different types of undistortion
functions (linear, quadratic, cubic, . . . ): the higher degree
functions has been tested to provide an additional proof of
our hypothesis. For each cloud in the test sets, we computed
the planarity error introduced above. The plot in Fig. 13
clearly shows that all the super-linear functions provide better
undistortion results when compared to the linear functions.
Moreover, higher degree polynomials get similar of even worst
results compared with quadratic functions, since they tend to
overfit the training data. Therefore, all the tests presented
in following sections have been performed using quadratic
undistortion functions.

2) Map Discretization: To select the most appropriate bin
size values (i.e., χU and ψU , described in Sect. V-C1), we
evaluated the planarity error varying the two parameters. The
results are reported in Fig. 14. Differently from what we
expected, such parameters do not affect so much the results.
Actually, up to a 8 × 8 pixels size, the planarity error is
almost identical. Only with greater sizes, starting from 16×16,
the error increases, especially close to the image corners (a
qualitative comparison is reported in Fig. 15). Some examples
of the generated undistortion maps, computed associating at
each pixel (u, v)T the value uu,v(z) − z for a given z, are
reported in Fig. 16: obviously, the maps become smoother as
the bin size increases.



11

1 2 3 4
0

1

2

3

4

Average plane distance [m]

Pl
an

ar
ity

er
ro

r
[c

m
]

Original
1× 1

2× 2

4× 4

8× 8

16× 16

32× 32

64× 48

128× 96

160× 120

Fig. 14. Planarity error of the wall points when changing the bin size. In the
plot it is visible that increasing the bin size also the error increases, but not
as much as expected. Actually, only with bin sizes staring from 16× 16 the
error increase starts being non-negligible.

1× 1

2× 2

4× 4

8× 8

16× 16

32× 32

64× 64

128× 96

160× 120

Fig. 15. Top-view of the cloud of a planar surface undistorted using maps with
different bin sizes. Note that the resulting clouds are similar, especially the
four on the left (points with different y-coordinates are drawn with different
colors).

1× 1 2× 2 4× 4

8× 8 16× 16 32× 32

64× 64 128× 96 160× 120

32.9 3.1

Fig. 16. Undistortion maps computed using different bin size, evaluated at a
distance of 3 meters.

In our experience, we found that a bin size of 4× 4 pixels
represents a good trade-off between computational efficiency
and robustness. Actually, as mentioned before, larger bins tend
to fail close to the image corners, while in other experiments
we noticed that smaller bins tend to perform badly with small
calibration datasets because of the lack of data for some pixels.

3) Test Set Results: We finally tested our algorithm against
the test sets. Results of the planarity error evaluation are
reported in Fig. 17. As expected, for the three SL sensors the
proposed method permits to drastically improve the planarity
of the depth data generated by the calibrated sensor. Looking
at the plots one could argue: why isn’t the error after the
undistortion closer to zero? Actually, to the best of our
knowledge, the error curve calculated after the undistortion
is mainly due to the sensor noise and the quantization error.
Therefore it is not possible to further reduce this error. The
error reduction is instead less substantial in the case of kinect
2, especially for increasing distances. Actually, for increasing
distances, large areas of the image near the borders just provide
random depth values: most of the remaining error in Fig. 17
is due to this unpredictable white noise.

In Fig. 18 the undistortion maps estimated using a bin size
of 4 × 4 pixels are shown. Looking at the scales, we can
see that the magnitude of the correction is consistent with the
planarity error of the original data. In the Kinect 2 case, for
increasing distances the polynomials close to the borders tends
to diverge: this is due to the fact that they are trying to correct
just white noise. In Fig. 19 the results of our undistortion
algorithm applied to the clouds of Fig. 1 are reported. As
expected, the clouds are now planar but they are not in the
right position, not even correctly oriented. These errors will
be corrected in the next stage of our algorithm.

B. Global Correction Map

In this section we report some results of the evaluation of
the estimated global correction map G. Recalling that G is
computed using the checkerboard as the reference plane and
that G and the RGB camera-depth sensor transformation are
refined together, also the estimated transformation is taken into
account to evaluate the results. We estimate the error of the
plane that results after the global correction with respect to
the plane defined by the checkerboard.

Firstly, the pose of the checkerboard with respect to the
camera is estimated using the corners extracted from the
image. Then, the checkerboard plane is transformed into depth
sensor coordinates. Finally, the average distance of the wall
points (extracted from the cloud) to the checkerboard-defined
plane is computed.

1) Global Correction Map Functions: Before evaluating
the global correction map G, as we did for the undistortion
map U , we analyze the sample sets generated to compute the
map to evince the most appropriate function type to fit to
the data. A first analysis of the error has been reported in
Sect. III, in Fig. 3b. Such error was computed by evaluating
the difference between the average depth of a distorted point
cloud and the measurements provided by a laser distance
meter. Our sample sets, instead, contain pairs (ẑ, zπB ), where



12

Original Undistorted Quantization error

1 2 3 4
0

2

4

6

8

10

Average depth [m]

Pl
an

ar
ity

er
ro

r
[c

m
]

KINECT1A

1 2 3 4
0

2

4

6

8

10

Average depth [m]

KINECT1B

1 2 3 4
0

2

4

6

8

10

Average depth [m]

ASUS

(a) Planarity error for the three SL sensors.

1 2 3 4 5
0

0.5

1

1.5

2

Average depth [m]

Pl
an

ar
ity

er
ro

r
[c

m
]

KINECT2

(b) Planarity error for the Kinect 2 sensor.

Fig. 17. Planarity error for the four sensors. For the SL sensors, the proposed
approach is able to drastically reduce the distance of the measured points
from the plane that best fits the data. Here, the error after the undistortion
phase is mainly due to quantization [20]. For the Kinect 2 sensor, instead,
the difference is bounded by the random noise that appears with increasing
distances.

KINECT1A

10.98 1.02

KINECT1B

10.98 1.02

ASUS

10.99 1.01

KINECT2

10.99 1.01

21.95 2.05 21.97 2.03 21.95 2.05 21.985 2.015

32.89 3.11 32.95 3.05 32.86 3.14 32.98 3.02

43.82 4.18 43.92 4.08 43.72 4.28 43.975 4.025

Fig. 18. Maps generated by the algorithm for the four sensors with a bin
size of 4× 4 pixels. For each sensor the evaluation of the respective map at
1, 2, 3, and 4 meters is reported. Note that each map has its own scale and
all values are in meters.

(a) KINECT1A – top (b) KINECT1B – top

(c) ASUS – top (d) KINECT1B – side

Fig. 19. Top and side views of the point clouds of Fig. 1 after the undistortion
phase. Again, the gray lines show the depth measured by means of the laser
meters, while points with different y-coordinates are drawn with different
colors. As we can see, the clouds are now more planar than the original ones,
however, they are not in the right position, not even correctly oriented.

ẑ is the depth value after the undistortion phase, and zπB is
the expected depth, i.e. the depth of the pixel as if it were
laying on checkerboard-defined plane πB . Even in this case
we tried to fit polynomial functions with different degrees:
in Fig. 20 we report a comparison between quadratic and
linear functions for two of the four sample sets used to
generate the global correction map (we used in this case a
SL sensor). From the figure, it is clear that linear functions
are not suitable since they do not fit properly to the data. A
further confirmation of this fact is visible in Fig. 21, where
the results of the calibration process varying the maximum
degree of the polynomials from 1 to 4 is reported. All the
calibrations of the SL sensors reported in the following were
performed treating each gu,v(·) as a quadratic function with
the constant factor set to zero. We repeated such tests also for
the ToF camera, in this case testing a 3-degree and a 6-degree
polynomial, that are functions suitable to model the wiggling
error, as reported by [8]. We reported the better results using
the 6-degree polynomial with non zero constant factor: all the
calibrations of the ToF sensor reported in the following were
performed using this function.

2) Test Set Results: We finally estimated the global correc-
tion results on the acquired test sets. For each test cloud we
evaluated the distances of the points of the main plane to the
plane defined by the checkerboard and computed their mean.
The plots in Fig. 22 show the results of such evaluation. The
proposed error correction approach is working as expected: all
the points are correctly translated to the right location, with
respect to the checkerboard pose.



13

Quadratic Linear Samples

2 4
0

2

4

ẑ
[m

]

2 4
0

2

4

2 4

−30

−20

−10

0

z B
−
ẑ

[c
m

]

2 4

−30

−20

−10

0

Quadratic Linear Quadratic avg. Linear avg.

2 4

0

5

10

Pixel depth d [m]

A
bs

.r
es

id
ua

ls
[c

m
]

2 4

0

5

10

Pixel depth d [m]

Fig. 20. Analysis of two of the sample sets used to estimate the global
correction map G. The sample set is composed by pairs (x, y) = (ẑ, zB),
where ẑ is the sensor-provided depth while zB is the depth defined by the
checkerboard B attached on the wall. The plots at the top show the samples
as well as a linear and a quadratic function that best approximate them. The
plots in the middle, instead, show the difference between the samples’ y and
x values, i.e. zB − ẑ. Finally, in the bottom plots, the residuals for the two
functions are reported.

1 2 3 4

0

10

20

Checkerboard plane distance [m]

G
lo

ba
l

er
ro

r
[c

m
] Original

1st degree

2nd degree

3rd degree

4th degree

Fig. 21. Global error when varying the maximum degree of the global
correction polynomials. From the plot we can see that linear functions are
not able to model (and correct) the error on the average depth estimation.

C. Testing the Whole Procedure

The following tests are meant to evaluate the results of the
proposed calibration approach when dealing with real world
data. To this aim, we first compare the wall average depths
obtained after the calibration with the measurements given by
the laser meters, then the transformations between the depth
sensors and the cameras are evaluated in terms of visual results
and expected values.

1) Depth Calibration: The plots in Fig. 23 show a quantita-
tive evaluation of the depth error, i.e. the distance between the

Original Undistorted Final

1 2 3 4

0

20

40

Estim. depth [m]

G
lo

ba
l

er
ro

r
[c

m
]

KINECT1A

1 2 3 4

0

10

20

Estim. depth [m]

KINECT1B

1 2 3 4

0

5

10

15

Estim. depth [m]

ASUS

(a) Results of the calibration for the three SL sensors using the device camera.

1 2 3 4

0

20

40

Estim. depth [m]

G
lo

ba
l

er
ro

r
[c

m
]

KINECT1A

1 2 3 4

0

10

20

Estim. depth [m]

KINECT1B

(b) Results of the calibration of two Kinect 1 sensors
using the external, high resolution camera.

1 2 3 4 5

−1

0

1

2

Estim. depth [m]

G
lo

ba
l

er
ro

r
[c

m
]

KINECT2

(c) Results of the calibration of the Kinect 2 sensor.

Fig. 22. Global error for the three tested SL depth sensors and the Kinect
2 ToF camera. We report the error for the original point cloud (Original),
the error after the undistortion step (Undistorted), and the error after both
the undistortion and the global error correction steps (Final). For the three
SL sensors, to further assess the validity of the proposed approach, in (a) we
calibrated the depth sensor using the device camera, while in (b) we used the
external high resolution camera (see Fig. 12a).

wall measured by means of the laser meters and the average
depth of the points after both the undistortion and global
correction phases. The measured planes are within a couple
of centimeters from the real ones: these good results confirm
the soundness of our choices.

We also evaluated how much the resulting plane is rotated
with respect to the real one. To this aim we computed the
angle between the normal of the plane fitted to the corrected
data, and the x- and y-axis of the wall plane, i.e. (1, 0, 0)T and
(0, 1, 0)T respectively. Let n be the fitted-plane normal and let
a be the axis with respect to which the error is computed, the
rotation error, erot, is

erot = arccos(nTa)− π

2
.

Results of the error computation for sensor KINECT1B are
reported in Fig. 24. The figure shows that the rotation about the
x-axis is completely corrected. For what concerns the rotation
about the y-axis, instead, the results are worse. The reason for



14

Original Checkerboard Corrected

1 2 3 4

0

10

20

G.t. depth [m]

D
is

ta
nc

e
[c

m
]

KINECT1A

1 2 3 4

0

10

20

G.t. depth [m]

KINECT1B

1 2 3 4

0

10

20

G.t. depth [m]

ASUS

(a) Results of the calibration of the three SL sensors using the device camera.

2 3 4

0

10

20

G.t. depth [m]

D
is

ta
nc

e
[c

m
]

KINECT1A

2 3 4

0

10

20

G.t. depth [m]

KINECT1B

(b) Results of the calibration of two Kinect 1 sensors using the external,
high resolution camera.

1 2 3 4 5
−2

−1
0

1

2

G.t. depth [m]

D
is

ta
nc

e
[c

m
]

KINECT2

(c) Results of the calibration of the Kinect 2.

Fig. 23. Distance between the real wall depth and the one estimated with
the calibration procedure. The error is computed for the original point clouds
(Original) and for the clouds after both the undistortion and the global error
correction (Corrected). Moreover, the distance of the wall from the color
sensor estimated using the checkerboard (Checkerboard) is reported. For the
Kinect 1 sensors, the error is computed using (a) the device camera as the
reference camera as well as (b) the external high resolution one. Note that
there is a fixed offset of about than 1 cm between the laser meters and the
two Kinect 1 and the Kinect 2 sensors (the sensors are closer to the wall)
and about 9 cm between the laser meters and the high resolution camera (the
camera is farther).

this fact is likely to be the error on the real depth estimation.
In fact, a difference of about 2 mm in the depth measures
(note that this is the nominal error of the two laser meters)
leads to a rotation of about 0.5°.

A further confirmation that the proposed approach works
properly, is shown in Fig. 25. The pictures report the clouds
of Fig. 1 after both the undistortion phase (see Fig. 19) and the
global error correction. As expected, all the clouds are now
both planar and located correctly.

2) Camera-Depth Sensor Transform: Even if the camera-
depth sensor transform D

C T estimated during the optimization
phase is a sort of “side effect” of the depth calibration, a good
transformation can be seen as a proof of the validity of the
proposed approach. In Tab. I and Tab. II the transformations
that resulted from the calibration of the sensors using their

Original Corrected

2 3 4
−2
0

2

4

6

G.t. depth [m]

x
-a

xi
s

ro
ta

tio
n

er
ro

r
[°

] KINECT1B

2 3 4
−2
0

2

4

6

G.t. depth [m]

y
-a

xi
s

ro
ta

tio
n

er
ro

r
[°

] KINECT1B

Fig. 24. Rotation error for KINECT1B sensor. Both the rotation about the x-
and y-axis are compared. The error is the angle estimated between the normal
of the plane fitted to the corrected data and the theoretical wall plane x-axis
and y-axis.

(a) KINECT1A – top (b) KINECT1B – top

(c) ASUS – top (d) KINECT1B – side

Fig. 25. Top and side views of the point clouds of Fig. 1 after the undistortion
phase (Fig. 19) and the global correction phase. Again, the gray lines show
the depth measured by means of the laser meters. As we can see, every cloud
is now planar as well as in the right position and correctly oriented.

device cameras, are reported. Moreover, to give a comparison
metric, also the factory-provided transformation is reported.
The values obtained are similar to those obtainable with other
state-of-the-art calibration tools for RGB-D devices [25], [40],
[26], [22].

D. Performance Comparison

We tested the calibration accuracy of our system against
two state-of-the-art calibration methods, the one from Her-
rera et al. [25] and the one from Staranowicz et al. [26],
using the original implementations provided by the authors.
Thanks to its robustness and accuracy, [25] is often used as
a benchmarking method to calibrate RGB-D pairs; [26] is a
more recent method that, compared to [25] and our method,
employs a novel, alternative calibration procedure based on
a spherical pattern. We used two different types of RGB-D



15

TABLE I
CAMERA-DEPTH SENSOR TRANSFORM ESTIMATED FOR THE THREE SL SENSORS WHEN CALIBRATED USING THE DEVICE CAMERA. BOTH THE

TRANSLATION t = (tx, ty , tz)T AND THE ROTATION, REPRESENTED AS A QUATERNION q = (qw, qx, qy , qz)T , ARE REPORTED. THE FACTORY LINE
CONTAINS THE FACTORY-PROVIDED CALIBRATION PARAMETERS.

tx [m] ty [m] tz [m] qx qy qz qw

FACTORY 0.025 0 0 0 0 0 1
KINECT1A 0.0237 0.0044 -0.0063 0.0034 0.0060 -0.0017 0.9999
KINECT1B 0.0276 0.0024 -0.0036 0.0025 0.0007 -0.0010 0.9999
ASUS 0.0294 -0.0040 -0.0011 0.0048 0.0059 -0.0004 0.9999

TABLE II
CAMERA-DEPTH SENSOR TRANSFORM ESTIMATED FOR THE KINECT 2 SENSOR. BOTH THE TRANSLATION t = (tx, ty , tz)T AND THE ROTATION,
REPRESENTED AS A QUATERNION q = (qw, qx, qy , qz)T , ARE REPORTED. THE FACTORY LINE CONTAINS THE FACTORY-PROVIDED CALIBRATION

PARAMETERS.

tx [m] ty [m] tz [m] qx qy qz qw

FACTORY 0.052 0 0 0 0 0 1
KINECT2 0.0565 0.0014 0.0021 0.0200 -0.0020 0.0033 0.9997

TABLE III
COMPARISON OF THE CALIBRATION ACCURACY FOR A KINECT 1 SENSOR.

µ(ε3) [m] σ(ε3) [m] µ(ε2) [pixels] σ(ε2) [pixels] µ(]x) [°] µ(]y) [°] µ(]z) [°]
ORIGINAL 0.129 0.059 5.836 0.955 1.596 1.541 1.796
HERRERA et al. [25] 0.028 0.017 2.388 0.800 0.814 1.258 1.404
STARANOWICZ et al. [26] 0.172 0.056 4.246 1.254 1.364 1.186 1.842
OUR METHOD 0.011 0.004 1.901 0.717 0.691 0.617 0.930

TABLE IV
COMPARISON OF THE CALIBRATION ACCURACY FOR A KINECT 2 SENSOR.

µ(ε3) [m] σ(ε3) [m] µ(ε2) [pixels] σ(ε2) [pixels] µ(]x) [°] µ(]y) [°] µ(]z) [°]
ORIGINAL 0.081 0.014 7.733 2.839 2.534 2.687 1.799
OUR METHOD 0.057 0.009 4.680 2.773 1.470 1.932 1.029

1.8 2 2.2 2.4 2.6 2.8 3

0

0.2

0.4

Reference cube distance [m]

ε 3
[m

]

Original
Herrera et al. [25]
Staranowicz et al. [26]
Our Method

Fig. 26. Accuracy in the reference cube localization for increasing depths.

sensors: a Kinect 1 and a Kinect 2. For each method, we
acquired large training sets, framing the calibration pattern
(a wall for [25] and our method, a basket ball for [26])
from several positions. In order to compare the calibration
accuracy, we collected a test set framing a big reference
hollow cube with large checkerboards attached to each visible
side (Fig. 12b). The three checkerboards allow us to compute
the plane equations of the three cube sides even if they
are not orthogonal to each other. We use these planes, their
intersection point xc and its projection in the image plane
projC(xc) as ground truth data. For each tested method, we

estimated the plane equations by fitting the three planes to
the (corrected) point clouds, computing also their intersection
point x′c as well as its projection in the image plane projC(x

′
c).

In our performance comparison, we report the average µ(·) and
standard deviation σ(·) of both the errors ε3 = ‖xc−x′c‖ and
ε2 = ‖projC(xc) − projC(x

′
c)‖, computed for all the images

included in the test set. We also report the average of the
angular deviations ]x,]y,]z between the ground truth planes
and the estimated planes. For a perfect calibration, these errors
should be obviously 0.
Tab. III shows the performance comparison results of the
three tested method for a Kinect 1 sensor; as baseline, we
also report the results obtained using the original, factory-
calibrated data. Fig. 26 shows error ε3 for increasing depths
from the reference cube. Our method clearly provide the
better calibration accuracy. The good results obtained by the
method from Herrera et al. confirm that the choice of a
planar calibration pattern enables to obtain superior calibration
results. The poor results obtained by the method from [26]
are mainly due to the inaccuracies of the calibration pattern
detector: we collected several training sets, framing a basket
ball (as suggested by the authors) from a large number of
different positions, but the provided ball detector often failed
to provide an accurate localization.
We also compared the calibration accuracy of our method



16

against the factory calibration in the case of a Kinect 2
sensor (Tab. IV). The method from Herrera et al. is here
not applicable since it operates directly on the disparity map
provided by a SL sensor: clearly a ToF sensor does not provide
such map. Also in this case, our method outperforms the
factory calibration, enabling to obtain better data also in the
case of a ToF sensor.

E. Visual Odometry Use Case

As a further validation of our method, we present an exper-
iment performed using a real robot running an RGB-D visual
odometry system. Here we show how the accuracy in the ego-
motion estimation and the 3D reconstruction can highly benefit
from using RGB-D data calibrated with our method. We
employed two different RGB-D visual odometry systems: the
popular and robust DVO (Dense Visual Odometry) [41] and a
very simple custom-built system based on dense optical flow,
in the following OFVO (Optical Flow Visual Odometry). DVO
registers two consecutive RGB-D frames by minimizing the
photometric error between corresponding pixels while OFVO
firstly computes the dense optical flow between a reference and
the current RGB image and, after generating the point cloud
of the reference frame using the depth image, it estimates
the relative rigid motion motion by solving a Perspective-
n-Point problem7. These methods strongly rely on both the
intrinsic and extrinsic calibration of the RGB-D pair, so they
represent a perfect benchmark for our method which provides
the complete calibration for such sensors.
We moved a mobile robot (a MobileRobots Pioneer 3-AT)
equipped with a Microsoft Kinect 1 along a known trajectory,
then we estimated the motion8 using both DVO and OFVO
on the original RGB-D data and on the same data correct
with our method. Table Tab. V shows the root mean square
error (RMSE) of the estimated motion for each experiment: in
both cases the accuracy improvement is remarkable. Fig. 27(a)
shows a top view of the estimated and ground truth trajectories,
along with the generated point clouds (Fig. 27(b), (c)). For
both methods, the trajectory estimated using the corrected
data is clearly closer to the ground truth compared to the one
estimated using the original data: in the first case, most of the
misalignment is mainly due to a drift accumulated in the first
turn, where the robot acquired a sequence of frames with very
few visual features. The trajectory estimated using the original
data tends to diverge also due to a sort of “scale drift” effect
that supports our choice to introduce the global component
in our error model. Similarly, the quality and the precision of
the reconstructed point cloud highly benefits from using the
corrected data.

F. Runtime Performance

The proposed algorithm has been implemented in C++ as a
ROS [7] package9, using the OpenCV [42] library for image
processing, the Point Cloud Library (PCL) [36] for 3D data

7To solve this problem, we used the OpenCV function solvePnP.
8We estimated the full 3D motion, without using any planar motion

assumption or wheel odometry prior.
9http://iaslab-unipd.github.io/rgbd calibration

TABLE V
RMSE OF THE DRIFT IN METERS FOR THE WHOLE PATH.

Original data [m] Corrected data [m]
DVO [41] 0.3371 0.1589
OFVO 0.3530 0.2501

TABLE VI
TIME COMPARISON BETWEEN THE 3 DIFFERENT IMPLEMENTATIONS OF

THE CORRECTION NODE.

CPU [ms] OpenMP [ms] GPU [ms]
15.5 8.3 2.83

processing, and the Ceres Solver library [43] to solve the
optimization problems. To perform the calibration, the user
is asked to capture a training set using a tool provided in
the package, by moving the sensor in front of a wall with a
checkerboard attached on it. Collecting a typical dataset of a
hundred images takes no more than 10 minutes.

We tested both the calibration and the correction stages in
terms of the execution time. The whole calibration process
takes about 45 minutes on a consumer laptop10 for 640× 480
depth images and 5 minutes by downsampling the depth
images to a resolution of 320 × 240 pixels: it is worth to
mention that in the last case, the calibration accuracy is not
significantly reduced.
The calibration is an operation that is performed once and
so the execution time is not critical. On the other side, the
execution time of the correction stage node is critical, since
the data generated by the RGB-D sensor, typically with a
frequency of 30 Hz, should be processed in real-time. We
tested the performance of 3 different implementations of the
correction algorithm:
• a standard CPU implementation;
• a parallel CPU implementation exploiting the OpenMP

directives;
• a parallel GPU implementation using CUDA.

The results are reported in Tab. VI: note that these execution
times include the time to generate the point cloud from the
depth image too. Clearly the GPU implementation outperforms
the CPU ones, but dedicated hardware is needed. Most of
the time (about 95%) spent by the GPU implementation is
dedicated to the copy of the data to and from the GPU memory.
Anyway, all the implementations are able to correct the data
in real-time. Also, it is worth to say that the bin size does
not affect the performance, since the implementation exploits
a lookup-table to store the correction functions.

VIII. CONCLUSIONS

In this paper we presented a novel method to calibrate a
general RGB-D sensor. The proposed calibration procedure
only requires the user to collect data in a minimally struc-
tured environment, providing in output both the intrinsic and
extrinsic parameters of the sensor. We proposed to generalize

10CPU: Intel Core i7-4700MQ, RAM: 16GB, SSD, GPU: NVidia GTX
750M.

http://iaslab-unipd.github.io/rgbd_calibration


17

-4 -3 -2 -1 0
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Ground truth Original Corrected

-4 -3 -2 -1 0
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Ground truth Original Corrected

(a) Top view of the trajectories. The start
location is surrounded with a circle.

(b) Point cloud obtained using the original data. (c) Point cloud obtained using the corrected data.

Fig. 27. Qualitative results of the visual odometry experiments: (first row) DVO [41] visual odometry systems; (second row) OFVO visual odometry systems.

the depth sensor error by means of two different components,
a distortion error and a global, systematic error. The distortion
error is modeled using a per-pixel parametric undistortion
map, estimated in the first stage of the algorithm. The depth
systematic error along with the camera-depth sensor alignment
are estimated in the second stage of the algorithm, inside a
robust optimization framework. We reported a comprehensive
set of tests that support the introduced model. We finally
presented exhaustive experiments performed using several
sensors, showing that our approach provides highly accurate
results, outperforming other state-of-the-art methods.
Comparing with other methods, our approach is well suited
for different types of depth sensors while requiring a relatively
easy calibration protocol.

IX. ACKNOWLEDGMENTS

The research work is partially supported by: the European
Commission under 601116-ECHORD++ (FlexSight experi-
ment) and the University of Padua under the project DVL-
SLAM.

REFERENCES

[1] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3D mapping
with an RGB-D camera,” IEEE Transactions on Robotics (T-RO),
vol. 30, no. 1, pp. 177–187, 2013.

[2] M. Labb and F. Michaud, “Online global loop closure detection for
large-scale multi-session graph-based SLAM,” in Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2014, pp. 2661–2666.

[3] M. Munaro and E. Menegatti, “Fast RGB-D People Tracking for Service
Robots,” Autonomous Robots, 2014.

[4] C. C. and H. Christensen, “RGB-D object tracking: A particle filter
approach on GPU,” in Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013, pp. 1084–1091.

[5] J. Tang, S. Miller, A. Singh, and P. Abbeel, “A textured object recog-
nition pipeline for color and depth image data,” in Proc. of the IEEE
International Conference on Robotics and Automation, 2012.

[6] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[7] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[8] S. Foix, G. Alenya, and C. Torras, “Lock-in time-of-flight (ToF) cam-
eras: A survey,” IEEE Sensors Journal, vol. 11, no. 9, pp. 1917–1926,
2011.

[9] M. Frank, M. Plaue, H. Rapp, U. Koethe, B. Jhne, and F. A. Hamprecht,
“Theoretical and experimental error analysis of continuous-wave time-
of-flight range cameras,” Optical Engineering, vol. 48, no. 1, 2009.

[10] R. Horaud, M. Hansard, G. Evangelidis, and C. Ménier, “An overview of
depth cameras and range scanners based on time-of-flight technologies,”
Machine Vision and Applications, vol. 27, no. 7, pp. 1005–1020, Oct
2016.

[11] M. Lindner, I. Schiller, A. Kolb, and R. Koch, “Time-of-flight sensor
calibration for accurate range sensing,” Computer Vision and Image
Understanding, vol. 114, no. 12, pp. 1318 – 1328, 2010.

[12] A. Kuznetsova and B. Rosenhahn, “On calibration of a low-cost time-of-
flight camera,” in Computer Vision - ECCV 2014 Workshops. Springer
International Publishing, 2015, pp. 415–427.

[13] D. Ferstl, C. Reinbacher, G. Riegler, M. Rther, and H. Bischof,
“Learning depth calibration of time-of-flight cameras,” in Proceedings
of the British Machine Vision Conference (BMVC), September 2015, pp.
102.1–102.12.

[14] Y. M. Kim, D. Chan, C. Theobalt, and S. Thrun, “Design and calibration
of a multi-view ToF sensor fusion system,” in Proc. of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2008, pp. 1–7.

[15] J. Jung, Y. Jeong, J. , H. Ha, D. J. Kim, and I. Kweon, “A novel 2.5D
pattern for extrinsic calibration of ToF and camera fusion system,” in
Proc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2011, pp. 3290–3296.

[16] C. Mei and P. Rives, “Calibration between a central catadioptric camera
and a laser range finder for robotic applications,” in Proc. of IEEE
International Conference on Robotics and Automation (ICRA), 2006,
pp. 532–537.

[17] D. Scaramuzza, A. Harati, and R. Siegwart, “Extrinsic Self Calibration



18

of a Camera and a 3D Laser Range Finder from Natural Scenes,” in
Proc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2007, pp. 4164–4169.

[18] N. Burrus. (2011) Kinect calibration. [Online]. Available: http:
//nicolas.burrus.name/index.php/Research/KinectCalibration

[19] K. Konolige and P. Mihelich. (2011) Technical description of
kinect calibration. [Online]. Available: http://www.ros.org/wiki/kinect
calibration/technical

[20] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” in Proc. of
IEEE International Conference on Computer Vision Workshops (ICCV
Workshops), 2011, pp. 1154–1160.

[21] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect
depth data for indoor mapping applications,” Sensors, vol. 12, no. 2, pp.
1437–1454, 2012.

[22] C. Zhang and Z. Zhang, “Calibration between depth and color sensors
for commodity depth cameras,” in Proc. of IEEE International Confer-
ence on Multimedia and Expo (ICME), 2011, pp. 1–6.

[23] I. V. Mikhelson, P. G. Lee, A. V. Sahakian, Y. Wu, and A. K. Kat-
saggelos, “Automatic, fast, online calibration between depth and color
cameras,” Journal of Visual Communication and Image Representation,
vol. 25, 2014.

[24] D. Herrera C., J. Kannala, and J. Heikkilä, “Accurate and practical
calibration of a depth and color camera pair,” in Computer Analysis of
Images and Patterns, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, vol. 6855, pp. 437–445.

[25] ——, “Joint depth and color camera calibration with distortion correc-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 10, pp. 2058–2064, 2012.

[26] A. N. Staranowicz, G. R. Brown, F. Morbidi, and G. L. Mariottini,
“Practical and accurate calibration of RGB-D cameras using spheres,”
Computer Vision and Image Understanding, vol. 137, pp. 102–114,
2015.

[27] W. Xiang, C. Conly, C. D. McMurrough, and V. Athitsos, “A review
and quantitative comparison of methods for kinect calibration,” in Proc.
of the 2nd International Workshop on Sensor-based Activity Recognition
and Interaction (WOAR), 2015.

[28] C. Raposo, J. P. Barreto, and U. Nunes, “Fast and accurate calibration
of a kinect sensor,” in Proc. of International Conference on 3D Vision
(3DV), June 2013, pp. 342–349.

[29] A. Canessa, M. Chessa, A. Gibaldi, S. P. Sabatini, and F. Solari,
“Calibrated depth and color cameras for accurate 3D interaction in a
stereoscopic augmented reality environment,” Journal of Visual Commu-
nication and Image Representation, vol. 25, no. 1, pp. 227–237, 2014.

[30] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic calibration
of depth sensors via SLAM,” in Proc. of Robotics: Science and Systems
(RSS), Berlin, Germany, June 2013.

[31] D. Fiedler and H. Müller, “Impact of thermal and environmental
conditions on the kinect sensor,” in Advances in Depth Image Analysis
and Applications, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, vol. 7854, pp. 21–31.

[32] M. Di Cicco, L. Iocchi, and G. Grisetti, “Non-parametric calibration for
depth sensors,” Robotics and Autonomous Systems, vol. 74, pp. 309–317,
2015.

[33] F. Basso, A. Pretto, and E. Menegatti, “Unsupervised intrinsic and
extrinsic calibration of a camera-depth sensor couple,” in Proc. of IEEE
International Conference on Robotics and Automation (ICRA), 2014, pp.
6244–6249.

[34] P. Frsattel, S. Placht, M. Balda, C. Schaller, H. Hofmann, A. Maier,
and C. Riess, “A comparative error analysis of current time-of-flight
sensors,” IEEE Transactions on Computational Imaging, vol. 2, no. 1,
pp. 27–41, March 2016.

[35] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, June 1981.

[36] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011, pp. 1–4.

[37] A. Kaehler and G. Bradski, Learning OpenCV, 2nd Edition. O’Reilly
Media, 2014.

[38] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser
rangefinder to a camera,” Carnegie Mellon University, Tech. Rep., 2005.

[39] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment – a modern synthesis,” in Vision Algorithms: Theory
and Practice, ser. Lecture Notes in Computer Science, B. Triggs,
A. Zisserman, and R. Szeliski, Eds. Springer Berlin Heidelberg, 2000,
vol. 1883, pp. 298–372.

[40] A. Staranowicz, G. R. Brown, F. Morbidi, and G. L. Mariottini, “Easy-
to-use and accurate calibration of RGB-D cameras from spheres,” in
Image and Video Technology, ser. Lecture Notes in Computer Science,
R. Klette, M. Rivera, and S. Satoh, Eds. Springer Berlin Heidelberg,
2014, vol. 8333, pp. 265–278.

[41] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for
RGB-D cameras,” in Proc. of the IEEE International Conference on
Robotics and Automation, 2013.

[42] G. Bradski, “The OpenCV library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[43] S. Agarwal, K. Mierle, et al., “Ceres solver,” http://ceres-solver.org.

Filippo Basso was born in Italy in 1987. He received
the B.Sc., M.Sc., and Ph.D. degrees in Computer
Engineering from University of Padua, Padua, Italy,
in 2009, 2011, and 2015, respectively. He joined
IT+Robotics, Padua, Italy, in 2015, a company active
in the field of industrial vision, robotics, and work-
cell simulation applications, where he is currently
a Senior Developer and R&D Manager. His main
areas of research interest are 2D/3D computer vision,
sensor fusion, and robotics.

Emanuele Menegatti Menegatti is Full Professor of
the School of Engineering at Dept. of Information
Engineering of University of Padua since 2017. He
received his Ph.D. in Computer Science in 2003,
in 2005 he became Assistant Professor and Asso-
ciate Professor in 2010. Menegatti was guest editor
of five special issues of the journal Robotics and
Autonomous Systems Elsevier. Menegatti’s main
research interests are in the field of Robot Perception
and 3D distributed perception systems. In particular,
he is working on RGB-D people tracking for camera

network, neurorobotics and service robotics. He is teaching master courses
on Autonomous Robotics, Three-dimensional data processing and bachelor
course in Computer Architecture and a course for school teachers on Educa-
tional Robotics. He was coordinator of the FP7 FoF-EU project Thermobot
and local principal investigator for the European Projects 3DComplete and
FibreMap and Focus in FP7; eCraft2Learn and Spirit in H2020. He was
general chair of the 13th International Conference ”Intelligent Autonomous
System” IAS-13 and was program chair of IAS-14 and IAS-15. He is
author of more than 50 publications in international journals and more than
120 publications in international conferences. In 2005, Menegatti founded
IT+Robotics, a Spin-off company of the Univ. of Padua, active in the field of
industrial robot vision, machine vision for quality inspection, automatic off-
line robot programming. In 2014, he founded EXiMotion a startup company
active in the field of educational robotics and service robotics.

Alberto Pretto Alberto Pretto is Assistant Profes-
sor at Sapienza University of Rome since October
2013. He received his Ph.D. degree in October 2009
from the University of Padua, where he worked
as a postdoctoral researcher at the Intelligent Au-
tonomous Systems Lab (Department of Information
Engineering). Between 2011 and 2012 he spent a 9
months visiting research fellowships at the UCLA
VisionLab, Los Angeles (USA). In 2004 and 2005,
he has been working as software engineer at Padova
Ricerca Scpa. In 2005, he was one of the funders of

IT+Robotics Srl, a spin-off company of the University of Padua working on
robotics and machine vision. Alberto Pretto’s main research interests include
robotics and computer vision.

http://nicolas.burrus.name/index.php/Research/KinectCalibration
http://nicolas.burrus.name/index.php/Research/KinectCalibration
http://www.ros.org/wiki/kinect_calibration/technical
http://www.ros.org/wiki/kinect_calibration/technical
http://ceres-solver.org

	I Introduction
	I-A Basic Notations

	II Related Work
	III Depth Error Analysis
	III-A Error Correction Model

	IV Calibration Approach
	IV-A Pipeline

	V Undistortion Map Estimation
	V-A Wall Points Selection
	V-B Map Update
	V-C Implementation Details
	V-C1 Undistortion Map
	V-C2 Curve Fitting


	VI Global Correction Map Estimation
	VI-A Initial Estimation
	VI-B Non-linear Refinement
	VI-C Implementation Details
	VI-C1 Global Correction Map
	VI-C2 Curve Fitting


	VII Experimental Evaluation
	VII-A Undistortion Map
	VII-A1 Undistortion Map Functions
	VII-A2 Map Discretization
	VII-A3 Test Set Results

	VII-B Global Correction Map
	VII-B1 Global Correction Map Functions
	VII-B2 Test Set Results

	VII-C Testing the Whole Procedure
	VII-C1 Depth Calibration
	VII-C2 Camera-Depth Sensor Transform

	VII-D Performance Comparison
	VII-E Visual Odometry Use Case
	VII-F Runtime Performance

	VIII Conclusions
	IX Acknowledgments
	References
	Biographies
	Filippo Basso
	Emanuele Menegatti
	Alberto Pretto


