
IEEE TRANSACTIONS ON ROBOTICS 1

Learning Task Priorities from Demonstrations
João Silvério, Sylvain Calinon, Leonel Rozo, Darwin G. Caldwell

Abstract—Bimanual operations in humanoids offer the possi-
bility to carry out more than one manipulation task at the same
time, which in turn introduces the problem of task prioritization.
We address this problem from a learning from demonstration
perspective, by extending the Task-Parameterized Gaussian Mix-
ture Model (TP-GMM) to Jacobian and null space structures. The
proposed approach is tested on bimanual skills but can be applied
in any scenario where the prioritization between potentially
conflicting tasks needs to be learned. We evaluate the proposed
framework in: two different tasks with humanoids requiring the
learning of priorities and a loco-manipulation scenario, showing
that the approach can be exploited to learn the prioritization of
multiple tasks in parallel.

Index Terms—learning from demonstration, task prioritiza-
tion, bimanual manipulation.

I. INTRODUCTION

THE human-robot transfer of bimanual skills is a growing
topic of research in robotics. As the number of available

dual-arm platforms and humanoid robots increases, existing
learning and control algorithms must be reformulated to ac-
commodate the constraints imposed by these morphologies
and to take full advantage of the repertoire of tasks that
such robots can perform [1]. Learning from Demonstration
(LfD) [2] is a particularly promising direction to achieve a
seamless transfer of bimanual abilities, but it has so far mostly
addressed the learning of uni-manual and single-task skills.
This article aims at extending the LfD paradigm to the learning
of elaborated features that arise during bimanual manipulation
in humanoids, particularly task prioritization.

As humans, we employ rich bimanual coordination be-
haviors on a daily basis (e.g., tying knots, moving heavy
or bulky objects, sweeping). For this reason, most research
on bimanual skill learning exploits operational space formu-
lations (e.g. [3], [4], [5], [6], [7], [8], [9]), that focus on
task space constraints, e.g. demonstrated coordination between
end-effectors and object-related movements, that need to be
reproduced precisely in order to successfully complete a task.
However, constraints also arise in configuration space, for
example as preferred body/arm postures or movements for
which joint trajectories are more important than those of end-
effectors. In such scenarios, operational space formulations

J. Silvério, L. Rozo and D. G. Caldwell are with the Department of
Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy (e-
mail: joao.silverio@iit.it; leonel.rozo@iit.it; darwin.caldwell@iit.it).

S. Calinon is with the Idiap Research Institute, CH-1920 Martigny,
Switzerland, and with the Department of Advanced Robotics, Istituto Italiano
di Tecnologia, 16163 Genova, Italy (e-mail: sylvain.calinon@idiap.ch).

This work was supported by the MEMMO project (European Union’s
Horizon 2020 Programme, Grant 780684).

We would like to thank Luca Muratore and Phil Hudson for assisting
with the COMAN experiments and Dr Martijn Zeestraten, Arturo Laurenzi
and Giuseppe Rigano for the help with the Centauro simulator. We would
also like to thank Dr Yanlong Huang for his feedback on previous versions
of the paper.

Fig. 1: The COMAN robot prioritizes the tracking of the left (resp. right)
target, while doing its best to track the right (resp. left) one. This priority
behavior was learned from demonstrations, using the approach proposed in
Section V. Top: Reproduction with the model trained on left arm priority
demonstrations. Bottom: Reproduction with the model trained on right arm
priority demonstrations.

alone are insufficient for correct task execution. Similarly,
humanoids are often required to perform dexterous dual-arm
skills that demand handling multiple potentially conflicting
tasks in parallel. These conflicts can occur at various levels,
such as when determining how to use the torso joints if
both arms are needed (Fig. 1), or how to switch between
poses while keeping balance. Endowing robots with the ability
to learn how to handle priorities is an important research
problem. It relates to the challenge of organizing movement
primitives not only in series but also in parallel, which is often
overlooked.

In this article, we offer a new perspective on task-
parameterized movement models by including Jacobian ma-
trices and null space structures in their formulation. Our
approach takes Task-Parameterized Gaussian Mixture Models
(TP-GMM) [8], [10] (reviewed in Section III) as an example,
which was originally used to probabilistically encode Carte-
sian end-effector motions from the perspective of different
coordinate systems. We propose here a more general formula-
tion, exploiting the affine operations structure of TP-GMM to
address the aforementioned LfD problems. More specifically,
the contribution of this paper is a novel formulation of TP-
GMM to:

1) Simultaneously learn constraints in operational and
configuration spaces (Section IV). This article improves
on previous work [11] in two directions: i) it formalizes
the handling of operational and configuration space con-
straints in the context of TP-GMM and ii) it introduces

ar
X

iv
:1

70
7.

06
79

1v
3

 [
cs

.R
O

]
 2

0
N

ov
 2

01
8

IEEE TRANSACTIONS ON ROBOTICS 2

unit quaternion-based projection operators, that permit the
learning of orientation constraints.

2) Learn task prioritization hierarchies (Section V). Our
formulation permits the identification of demonstrated
priority behaviors, given an initial set of candidate task
hierarchies. In addition, it allows the robot to reproduce
the learned priorities in new situations. To the best of our
knowledge, this is the first approach that permits learning
full hierarchy structures from only few demonstrations.

Some of the aforementioned points were briefly introduced
in [10]. Here we provide an extensive derivation, analysis
and validation in three experimental scenarios, with real and
simulated robotic platforms. First, we use the COMpliant hu-
MANoid (COMAN) [12] robot to show that TP-GMM can be
used to handle operational and configuration space constraints
simultaneously. For this, we choose the skill of bimanually
shaking a bottle (Section IV-D). We then use a bimanual
reaching task to teach priorities from demonstrations (Section
V-D). The task consists of tracking two conflicting targets on
the left and right sides of COMAN with the corresponding
arm. Finally, we consider a loco-manipulation scenario with
the Centauro robot [13] in simulation (Section V-E). In this
experiment, the prioritization of floating base position, end-
effector positions and end-effector orientations needs to be
learned, showing that the approach can be exploited in generic
task prioritization applications, in particular with hierarchies
of more than two tasks.

II. RELATED WORK

A. Learning bimanual skills
The most popular approaches for learning bimanual manip-

ulation from demonstrations are based on Dynamic Movement
Primitives (DMPs) [14]. Examples range from the use of vir-
tual springs between end-effectors [3] to the coupling of DMPs
using artificial potential fields [4]. Lioutikov et al. [5] propose
to combine sequences of DMPs that encode partial demonstra-
tions of complete individual arm movements. Similarly to the
spirit of DMPs, Likar et al. [6] introduce an approach based
on Iterative Learning Control for force adaptation in bimanual
tasks. In a more probabilistic fashion, Ureche and Billard
[7] focus on the extraction of arm dominance and role from
demonstrations, as well as on the correlations between task
variables such as poses and forces. Our previous work [8], [9]
follows a task-parameterized approach to learning bimanual
skills, where relative and absolute end-effector movements
are encoded with respect to a pre-defined set of coordinate
systems, whose importance is learned probabilistically from
demonstrations.

The foregoing collection of work addresses bimanual skill
transfer from an operational space perspective. Consequently,
rich features such as joint space movements and task prioriti-
zation, commonplace in highly redundant manipulators, cannot
be adequately learned.

B. Simultaneous learning of operational and configuration
space constraints

The problem of knowing which space—between config-
uration and operational spaces—is the most relevant for a

given task, has frequently been treated as a hand-tuning
of scalar weights assigned to sub-tasks in each space [15].
Exceptions include frameworks based on reinforcement learn-
ing (RL) [16], [17] and LfD [11], where the importance of
each space is learned. Approaches like [16], [17] employ
stochastic optimization, given a set of reward functions related
to high level goals, to find optimal weights. In [11], the
authors treat the problem as a weighted least squares problem
where the weights associated with each space, encoded as full
precision matrices, reflect the variability and correlations in
the demonstrations. The two types of approach are similar in
concept, with [11] and [16], [17] exploiting velocity and torque
controllers, respectively. Despite the similarities, the RL-based
approaches require that considerable prior knowledge is ac-
counted for in the reward functions, making those methods
less straightforward in many applications. In Section IV we
propose an approach related to [11]. It improves on that work
by considering an arbitrary number of tasks in operational
space, as well as orientation constraints, which were previously
overlooked.

Managing constraints from different spaces using full
weight matrices, as we do in Section IV, can be seen as a
form of task prioritization—that we refer to as a fusion of
tasks. It consists of normally distributed control references that
are fused as a product of Gaussians. This approach improves
the traditional soft weighting of tasks (see Section II-C),
where scalar weights are used to combine tasks with smooth
transitions. The use of full matrices instead of scalar weights
provides higher flexibility in the prioritization structure, while
maintaining smoothness properties. Such approaches typically
excel in tasks where the different constraints are activated
sequentially, as we shall see in Section IV. Despite the advan-
tages, they tend not to perform well when several constraints
are activated at the same time, with similar weights, for
which more elaborated prioritization structures are required.
In the following section, we review different state-of-the-art
techniques for learning task prioritization.

C. Learning task prioritization

Common approaches to control task prioritization can be
categorized in two main directions, by either exploiting strict
hierarchy structures, applied to multi-level hierarchies [18],
[19], [20], or by employing a soft weighting of tasks [15], [21].
The two techniques have pros and cons. Setting an explicit
null space structure guarantees strict priorities at the expense
of constraining the tasks, which quickly limits the number
of tasks that can simultaneously be handled with the number
of degrees of freedom available for controlling the robot. This
approach is also prone to discontinuities in the control problem
when switching from one hierarchy structure to another. A
soft weighting scheme can handle different levels of task
importance and gradual changes from one task to another, but
it does not provide strict guarantees on the fulfillment of each
separated task.

In an alternative perspective, a collection of work addresses
the problem using optimization [22], [23], [24] or by lever-
aging novel representations of prioritization [25], [26], [27].

IEEE TRANSACTIONS ON ROBOTICS 3

In this article, we tackle the challenge from a robot learning
perspective. Learning how to handle the priorities of multiple
concurrent tasks is a challenging problem in robotics and,
despite the recent advancements in this direction, several issues
remain open.

1) Learning approaches based on strict hierarchies: Learn-
ing priorities based on strict task hierarchies typically assumes
that low priority tasks are projected on the null space of high
priority ones. In this context, Wrede et al. [28] propose a
two-step approach to kinesthetically teach tasks to redundant
manipulators. First, in a preliminary phase, the desired null
space behavior is demonstrated to the gravity-compensated
manipulator. The relation between end-effector positions and
desired configurations is encoded in a neural network which is
exploited during the demonstrations of the main task to control
the robot null space. Saveriano et al. [29] propose an approach
based on Task Transition Control (TTC) [30] to refine end-
effector and null space policies. They take advantage of the
smooth transitions between task priorities allowed by TTC to
switch between task execution and teaching, yielding refine-
ment of policies for both the main and the null space tasks in
runtime. In [31], Towell et al. aim for extracting underlying
null space policies from demonstrations, assuming a strict hi-
erarchy of priorities, but the proposed approach does not allow
for the extraction of demonstrated hierarchies. Lin et al. [32]
propose an approach to learn the kinematic constraints present
in movement observations, as explicitly represented by the null
space projection matrix of kinematically constrained systems.
A common assumption in both [31] and [32] is that one has
access to the control variables during the demonstrations. This
assumption is shared by our approach (Section V), in which
we assume to know the control set-point associated with each
sub-task.

Hak et al. [33] present an iterative algorithm for identifying
a stack of tasks. From observed joint trajectories, and a pre-
defined set of possible tasks that can be executed in parallel,
the approach relies on the expected operational space behavior
of each task to identify the active ones, and on the task-
function formalism to gradually remove tasks until all have
been identified. This approach shares similarities with ours in
the assumption that demonstrated movements are generated
from a strict hierarchy structure, and in the fact that it
also analyses the operational space to disambiguate between
possibly active tasks. The main difference is that our task
space analysis is probabilistic, while Hak et al. rely on a
curve fitting score. Moreover, their framework assumes prior
knowledge about the possible tasks, while we assume prior
knowledge about the possible task hierarchies, including the
option to provide an exhaustive list of all possible ones.
Finally, our probabilistic formulation permits the learning
of input-dependent hierarchies, i.e. the robot can be taught
priority behaviors that may vary during reproduction.

2) Approaches related to soft weighting of tasks: Concern-
ing the soft weighting of tasks, control solutions are typically
given by a combination of scalar-weighted sub-tasks, see [15]
for an example with torque control and manually set weights.
Dehio et al. [16] and Modugno et al. [17] propose to learn the
weights of each sub-task using Covariance Matrix Adaptation

Learn
hierarchies

From
demonstrations

2+
tasks

Input de-
pendent

Dehio et al. [16] – – X –
Modugno et al. [17] – – X X

Wrede et al. [28] – X – –
Hak et al. [33] X X X –

Saveriano et al. [29] – X – X
Towell et al. [31] – X – X

Lin et al. [32] X X – –
Lober et al. [34], [35] – X – X
Paraschos et al. [36] – X X X

Our approach X X X X

TABLE I: Contributions of our approach with respect to previous
works on task priority learning.

Evolution Strategy (CMA-ES), a derivative-free stochastic
optimization method. In [16], the weights are assumed to
be constant throughout each execution, while in [17], they
are parameterized by Radial Basis Functions spread along
a time window, which allows the priorities of the different
sub-tasks to change over time. Both approaches require the
previous definition of a fitness function and a set of elementary
tasks. Our approach also requires prior information about
potential hierarchies, but, unlike [16], [17], it directly exploits
the demonstrations to discover the employed prioritization,
without requiring the defition of fitness functions.

Lober et al. [34] use stochastic optimization to refine DMPs
of incompatible tasks in order to render them compatible.
Their approach focuses on the re-organization of primitives in
series, leaving out scenarios where they need to be executed in
parallel with different levels of priority. In [35], the approach
was improved by exploiting Gaussian kernels to compute
variance-dependent weights that are used to determine the
priority of different sub-tasks. This approach shares connec-
tions with ours in that variance is used as a measure of
task importance. In that work, the variance depends on the
distance to the kernel centers, which are pre-defined along
the planned trajectory. In contrast, our method exploits the
variability extracted from the demonstrations, allowing for
learning new behaviors from the observed variations of a task.

Another approach along the lines of the above works is
that of Paraschos et al. [36], who exploit the Probabilistic
Movement Primitives (ProMP) framework to learn the ac-
curacy of different tasks. This information, which reflects
the variability of demonstrations given in Cartesian and joint
spaces, is then used as a prioritization criteria to organize
the different tasks. In this sense, that work shares stronger
connections with [11] than with our approach in Section V as it
does not generate strict hierarchies to reproduce demonstrated
movements. By identifying the hierarchies employed in the
demonstrations, our approach ensures a more strict fulfillment
of each individual task.

Table I summarizes the main contributions of our approach
for learning task prioritization hierarchies, described in Section
V, with respect to the state-of-the-art. The column Learn
hierarchies indicates whether or not the approach outputs strict
hierarchies, as opposed to weights (scalar or matrix), while the
column From demonstrations distinguishes between LfD and
RL approaches.

IEEE TRANSACTIONS ON ROBOTICS 4

III. TASK-PARAMETERIZED GAUSSIAN MIXTURE MODELS

In previous work [8], [10] we introduced a probabilis-
tic approach to the learning of task-parameterized move-
ment primitives, with an example of implementation as
Task-Parameterized Gaussian Mixture Model (TP-GMM). TP-
GMM was used to encode demonstrated end-effector mo-
tions in multiple coordinate systems simultaneously, whose
importance changed during the task depending on the vari-
ability observed in the demonstrations. This information was
exploited to adapt skills to new situations, in accordance to
the demonstrated local features. In this section we review the
TP-GMM formulation.

A. Overview and nomenclature

Throughout this article we will exploit extensively the linear
properties of Gaussian distributions, which are central to TP-
GMM. For this reason, in this subsection we review the
concept of so-called task parameters and give an overview
of the technique.

Definition 1. Task parameters are sets of linear operators
A(j), b(j) that map Gaussian distributions from P subspaces,
indexed by j = 1, . . . , P , onto a common space. Such sets
are called “task parameters” since they are part of the
parameterization of a task, i.e., they influence how the robot
accomplishes the given task.

In TP-GMM, P subspaces encode local features of a
demonstrated skill. Once projected onto a common space,
through task parameters, the local models are combined
to provide a solution fulfilling the most important features
during task execution (Section III-C). In previous work, task
parameters have been used to represent poses of objects in
a robot workspace, mapping local models of demonstrations
(from the perspective of P different objects) onto a global
coordinate system, typically the robot base frame. In this
case, A(j) is a rotation matrix [8], [10], [37], [38] or a
quaternion matrix [9], representing an object orientation, and
b(j) is a translation vector, representing the origin of an object
coordinate system with respect to the base frame of the robot.
It was common in previous work to refer to task parameters
as candidate frames or candidate coordinate systems. This is
because, for a given task, each set of task parametersA(j), b(j)

may or may not influence the task execution, depending on the
variability of the teacher’s demonstrations in the corresponding
coordinate system. Hence, each set A(j), b(j) is considered to
be a candidate for affecting the task outcome.

In this work, we exploit the linear structure inherent to the
task parameter formulation of TP-GMM to address the prob-
lems of: 1) simultaneously learning operational and configura-
tion space constraints; and 2) learning priority hierarchies from
demonstrations. We do this by taking a different perspective
from past work where task parameters were candidate coor-
dinate systems. We propose a formulation of task parameters
that correspond to candidate projection operators (Section IV)
and candidate task hierarchies (Section V).

For clarity, Table II summarizes the most important vari-
ables and symbols that are exploited throughout the article.

Variable / symbol Description

T
P-

G
M

M

P Number of task parameters
K Number of Gaussian components

A(j), b(j) Task parameters j ∈ [1, P]

µ
(j)
i , Σ

(j)
i Mean and covariance of Gaussian

i ∈ [1,K] for task parameter j
πi Mixing coefficient of Gaussian i
M Number of demonstrations
Tm Number of datapoints in demonstration

m ∈ [1,M]
N Total number of datapoints in a demon-

stration dataset
D Dimension of datapoints

ξt ∈ RD Datapoint at time t
ξ ∈ RD×N Demonstration dataset

R
ob

ot

xL,xR ∈ R3 Cartesian position of left and right end-
effectors

εL, εR ∈ S3 Orientation of left and right end-effectors
as unit quaternions

RL,RR ∈ SO(3) Orientation of left and right end-effectors
as rotation matrices

Nq Number of robot joints
qL, qR ∈ RNq Joint angles of left and right arms
JL,JR ∈ R6×Nq Jacobian matrices of left and right arms

> Priority operator (the task on the operator
left has priority over the one on the right)

TABLE II: Summary of the notation.

B. Model estimation

Each demonstration m ∈ {1, . . . ,M} contains Tm data-
points of dimension D forming a dataset of N datapoints
{ξt}Nt=1 with N=

∑M
m=1Tm and ξt ∈ RD. P task parameters,

that map between subspaces j = 1, . . . , P and a common
space, are defined at every time step t by {A(j)

t , b
(j)
t }Pj=1. The

demonstrations ξ ∈RD×N are observed from each subspace,
forming P local datasets X(j)∈RD×N .∗

The model parameters of a TP-GMM with K components
are defined by

{
πi, {µ(j)

i ,Σ
(j)
i }Pj=1

}K
i=1

, where πi are the
mixing coefficients and µ

(j)
i , Σ

(j)
i denote the center and

covariance matrix of the i-th Gaussian in subspace j. Learning
of the model parameters is achieved by log-likelihood maxi-
mization using an expectation-maximization (EM) algorithm,
see [10] for details.

C. Gaussian Mixture Regression

The learned model is used to reproduce movements in
new situations. Each subspace j encodes local features of the
demonstrated movement. In new situations, i.e., for new values
of the task parameters A(j)

t , b
(j)
t , one needs to find a trade-off

between each subspace solution. TP-GMM solves this problem
by fusing the local models through projection in a common
space, using the product of Gaussians. In this way, a new
GMM with parameters {πi, µ̂t,i, Σ̂t,i}Ki=1 is automatically

∗As an example, in previous work [8], [10], [38], ξt corresponded
to end-effector positions, and local datasets could be computed with
X

(j)
t = A

(j)−1

t

(
ξt − b

(j)
t

)
, with task parameters {A(j)

t , b
(j)
t }Pj=1 rep-

resenting coordinate systems parameterized by the orientations and positions
of P objects.

IEEE TRANSACTIONS ON ROBOTICS 5

generated as

N
(
µ̂t,i, Σ̂t,i

)
∝

P∏
j=1

N
(
µ̂

(j)
t,i , Σ̂

(j)
t,i

)
, with

µ̂
(j)
t,i =A

(j)
t µ

(j)
i +b

(j)
t , Σ̂

(j)
t,i =A

(j)
t Σ

(j)
i A

(j)T

t , (1)

where the Gaussian product is analytically given by

Σ̂t,i =
(P∑
j=1

Σ̂
(j)
t,i

−1)−1

, µ̂t,i = Σ̂t,i

P∑
j=1

Σ̂
(j)
t,i

−1
µ̂

(j)
t,i . (2)

Equation (1) maps local models onto a common space,
where information from the different subspaces is fused ac-
cording to Eq. (2). Note that the task parameters A(j)

t , b
(j)
t

may vary during reproduction and take values different from
those observed during demonstrations. In previous work [8],
[9], [37], [38], this property was exploited to adapt demon-
strated skills to new situations (typically, new position and
orientation of manipulated objects).

The obtained GMM is used to generate a reference tra-
jectory distribution for the robot through Gaussian Mixture
Regression (GMR). In this case, the datapoint ξt is decom-
posed into two subvectors ξIt and ξOt , spanning the input
and output dimensions of the regression problem, thus the
GMM obtained from (1) and (2) encodes the joint probability
distribution P(ξIt , ξ

O
t) ∼

∑K
i=1 πi N

(
µ̂t,i, Σ̂t,i

)
. For a time-

driven movement, ξIt corresponds to the current time step,
while ξOt can be the end-effector pose or the joint angles
of the robot. The task parameters A(j)

t and b
(j)
t are also

decomposed so that the input is not modulated by the task
parameterization. Compared to an initial TP-GMM encoding
ξOt with task parameters AO(j)

t and bO(j)
t , the combination of

TP-GMM and GMR instead encodes ξt=
[
ξIt

T
ξOt

T]T with†

A
(j)
t =

[
I 0

0 A
O(j)
t

]
, b

(j)
t =

[
0

b
O(j)
t

]
. (3)

Thus, GMR generates a new distribution
P(ξOt |ξ

I
t) = N

(
ξOt |µ̂

O
t , Σ̂

O

t

)
that is used to control the

robot.

IV. LEARNING OPERATIONAL AND CONFIGURATION SPACE
CONSTRAINTS SIMULTANEOUSLY

In this section, we propose to exploit the structure of TP-
GMM introduced in Section III to simultaneously consider
constraints in operational and configuration spaces. The aim
is to circumvent the need for previously selecting the space
in which one should encode a given task, and instead let the
model automatically discover the proper space from a small
set of demonstrations. The approach consists of encoding the
demonstrated movement in both spaces and, through statistics,
extracting the space with the least variability (i.e., with the
highest consistency) at each reproduction step. We do this
by considering Jacobian-based task parameters (formulated
in Sections IV-A and IV-B) that project operational space
constraints onto configuration space (Section IV-C), where
Gaussian products (1) are computed.

†in the case of a scalar time input, the identity matrix I collapses to 1.

Conceptually, this approach shares connections with the one
introduced in [11]. However, here we:

1) consider the learning of operational space constraints with
respect to an arbitrary number of objects, by framing the
approach in the context of TP-GMM, and

2) develop a formulation to consider end-effector orientation
constraints.

Additionally, the analysis focuses on humanoid robots and
bimanual manipulation.

A. Jacobian-based task parameters for position constraints

Handling constraints in configuration and operational spaces
is achieved by exploiting the task parameter linear structure in
TP-GMM. Formally, consider a manipulator with Nq joints,
whose positions and velocities are denoted by q, q̇ ∈ RNq .

Its differential kinematics are given by
[
ẋT ωT

]T
= Jq̇,

where ẋ,ω ∈ R3 are the operational space linear and angular

velocities. The Jacobian matrix J =
[
JT
p J

T
o

]T
∈ R6×Nq

accounts for the contribution of joint velocities to operational
space velocities, with matrices Jp,Jo ∈ R3×Nq responsible
for the linear and angular parts, respectively. We here assume
redundant manipulators, i.e. Nq > 6.

The inverse differential kinematics for the position part
of the operational space is given by q̇ = J†p ẋ, with

J†p = JT
p

(
JpJ

T
p

)−1

the right pseudo-inverse of the Jacobian
Jp. It yields the minimum-norm q̇ that ensures ẋ in operational
space [39]. Numerical integration of this equation permits
the computation of joint references for a desired end-effector
position xt as (dropping the Jacobian subscript p)

q̂t − qt−1 = J†t−1 (xt − xt−1)

⇐⇒ q̂t = J†t−1xt + qt−1 − J
†
t−1xt−1, (4)

where q̂t denotes the desired joint angles at t. The structure
of (4), being affine in xt, allows us to connect inverse
kinematics with TP-GMM. Let us assume, for the sake of the
argument, that end-effector positions are modeled according
to xt ∼

∑K
i=1 πiN

(
µ

(j)
i ,Σ

(j)
i

)
. The index j denotes one

arbitrary subspace, as discussed in Section III, where robot
end-effector positions are locally modeled by a GMM. It
follows that the linear transformation properties of Gaussian
distributions (1) can be applied to (4) to project the local GMM
onto the configuration space, resulting in

q̂
(j)
t,i = J†t−1︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1 − J

†
t−1xt−1︸ ︷︷ ︸

b
(j)
t

, ∀i = 1, . . . ,K, (5)

for the center of the Gaussian i, and

Σ̂
(j)

t,i = J†t−1︸ ︷︷ ︸
A

(j)
t

Σ
(j)
i (J†t−1)T︸ ︷︷ ︸

A
(j)T

t

, ∀i = 1, . . . ,K, (6)

for the corresponding covariance matrix. Equations (5) and
(6) show that Jacobian-based task parameters A(j)

t , b
(j)
t act

as projection operators that map Gaussian distributions from
operational to configuration space, creating distributions of
joint angles.

IEEE TRANSACTIONS ON ROBOTICS 6

This result is the cornerstone of more complex types of
operators. For instance, if we consider end-effector positions
encoded with respect to an object parameterized by a transla-
tion vector p(j)

t and a rotation matrix R(j)
t , (5) becomes

q̂
(j)
t,i = J†t−1R

(j)
t︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + J†t−1

(
p

(j)
t − xt−1

)
+ qt−1︸ ︷︷ ︸

b
(j)
t

, (7)

which can be derived in a straightforward manner from (5)
by assuming rotated and translated Gaussians with center
R

(j)
t µ

(j)
i + p

(j)
t and covariance R

(j)
t Σ

(j)
i R

(j)T

t . Similarly,
the expression for the covariance matrix Σ̂

(j)

t,i can be easily
obtained based on (6), employing A(j)

t as defined in (7).
On the basis of this construction of task parameters, the

local datasets X(j) = [X
(j)
1 , . . . ,X

(j)
N] used to train the TP-

GMM model can be constructed in a similar fashion as in
Section III. If a subspace j models the absolute end-effector
position, i.e. with respect to the base frame of the robot, we
have X(j)

t = xt. On the other hand, when j is associated with
a coordinate system with pose parameters p(j)

t ,R
(j)
t as in (7),

we have X(j)
t = R

(j)T

t

(
xt − p(j)

t

)
.

In summary, in this novel formulation of task parameters,
A

(j)
t ∈ RNq×3 and b(j)

t ∈ RNq map from Cartesian position
to joint angles, solving the inverse kinematics with a reference
given by the mean µ

(j)
i . The TP-GMM representation is

therefore extended to Jacobian-based, time-varying, task pa-
rameters {b(j)

t ,A
(j)
t }Pj=1 with non-square A(j)

t matrices. With
this representation, operational space constraints are projected
onto configuration space, where Gaussian products can be
computed as in (2), extending the original TP-GMM formu-
lation to the consideration of configuration space constraints.

B. Task parameters for orientation
Orientation constraints represent an important component of

operational space in many tasks and in bimanual manipulation
the orientation between end-effectors is of utmost importance
for correct task execution [9]. Here, we take advantage of the
algebraic properties of unit quaternions to derive linear oper-
ators for projecting orientation constraints onto configuration
space.

Let us consider the orientation part of the end-effector pose
represented by a unit quaternion ε (Appendix A reviews this
representation‡) and the inverse differential kinematics for
angular velocities, q̇ = J†oω. From [40] we have that

ωt ≈
vec(εt ∗ ε̄t−1)

∆t
(8)

gives the angular velocity that rotates the unit quaternion
εt−1 into εt, during ∆t. The operation vec(εt ∗ ε̄t−1) can
be replaced by the matrix-vector product H̄∗(ε̄t−1) εt (see
Appendix B), allowing us to write the inverse kinematics
equation as (dropping the subscript o in the Jacobian matrix)

ˆ̇qt = J†t−1H̄
∗
(ε̄t−1) εt

1

∆t
, (9)

⇐⇒ q̂t = J†t−1H̄
∗
(ε̄t−1) εt + qt−1, (10)

‡The appendices can be found as supplementary material at
http://joaosilverio.weebly.com/tro

Algorithm 1 Simultaneously learning constraints in operational and
configuration spaces

Initialization
1: Select candidate projection operators from Table III based on the

task at hand
• Canonical operator A(j)

t =I , b(j)t =0, for encoding configu-
ration space constraints

• Operational space operators, for absolute or relative posi-
tion/orientation constraints in operational space

2: Collect demonstrations and compute the local datasets X(j)

according to the chosen operators
Model training
1: Apply EM [10] to obtain

{
πi, {µ(j)

i ,Σ
(j)
i }Pj=1

}K

i=1

Movement synthesis
1: for t = 1, . . . , N do
2: for j = 1, . . . , P do
3: Update {A(j)

t , b
(j)
t } according to Table III

4: end for
5: for i = 1, . . . ,K do
6: Compute µ̂t,i and Σ̂t,i from (1) and (2)
7: end for
8: Apply GMR at ξIt : P(ξOt |ξIt) = N

(
ξOt |µ̂Ot , Σ̂

O
t

)
9: Use µ̂Ot as joint references for the robot controller

10: end for

which has a similar structure to (4), being linear for the
quaternion εt. In a similar way as in Section IV-A, if µ(j)

i is
the center of a Gaussian i, encoding the absolute orientation
of the end-effector in a subspace j, we take advantage of the
structure in (10) to devise new task parameters A(j)

t , b(j)
t that

map a GMM from quaternion space to configuration space,
namely

q̂
(j)
t,i = J†t−1H̄

∗
(ε̄t−1)︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1︸︷︷︸

b
(j)
t

, (11)

for the center of Gaussian i in subspace j (the covariance can
be derived by following the same rules that we explained in
Section IV-A).

For a desired end-effector orientation encoded in a coordi-
nate system whose orientation is given by ε(j)

t , (11) becomes

q̂
(j)
t,i = J†t−1H̄

∗
(ε̄t−1)

+

H
(
ε

(j)
t

)
︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1︸︷︷︸

b
(j)
t

, (12)

where
+

H is a quaternion matrix (see Appendix A).
For this formulation, if a subspace j models the absolute

end-effector orientation, i.e. with respect to the base frame of
the robot, we have X(j)

t = εt. When j is associated with a co-

ordinate system with quaternion ε(j)
t , thenX(j)

t =
+

H
(
ε̄

(j)
t

)
εt.

C. Task parameters for configuration space constraints

The previous two subsections provided task parameters
that project operational space constraints onto configuration
space. However, in order to consider both operational and
configuration space constraints, one requires a local model
of the configuration space demonstrations as well. Encoding
configuration space movements in a TP-GMM is done using

http://joaosilverio.weebly.com/tro

IEEE TRANSACTIONS ON ROBOTICS 7

TABLE III: Summary of task parameters as candidate projection operators

Configuration space constraints: q̂
(j)
t,i = I µ

(j)
i + 0

Absolute position constraints: q̂
(j)
t,i = J†t−1 µ

(j)
i − J†t−1xt−1 + qt−1

Relative position constraints: q̂
(j)
t,i = J†t−1R

(j)
t µ

(j)
i + J†t−1(p

(j)
t − xt−1) + qt−1

Absolute orientation constraints: q̂
(j)
t,i = J†t−1H̄

∗
(ε̄t−1) µ

(j)
i + qt−1

Relative orientation constraints: q̂
(j)
t,i = J†t−1H̄

∗
(ε̄t−1)

+
H(ε

(j)
t)︸ ︷︷ ︸

A
(j)
t

µ
(j)
i + qt−1︸ ︷︷ ︸

b
(j)
t

simple task parameters A(j)
t = I , b(j)

t = 0, corresponding
to a canonical projection operator. In this case, the subspace
is the configuration space itself, i.e. , q̂(j)

t,i = µ
(j)
i . The local

datasets are thus computed from X
(j)
t = qt, where qt ∈ RNq

is the vector of robot joint angles at time step t.

Table III gives a summary of the operators derived in this
section. The overall procedure for learning and reproducing a
skill is summarized in Algorithm 1.

D. Experiment: bimanual shaking skill

In order to test the formulation introduced in this section, we
selected the skill of shaking a bottle using COMAN. The skill
contains an operational space component (reaching, grasping
a bottle and bringing it closer to the torso) and a configuration
space component (shaking with rhythmic shoulder movements,
see Fig. 2). Parts of this experiment are also reported in [41].

The upper-body of the COMAN robot comprises 17 DOFs:
3 DOFs for the waist and 7 for each arm, with the kinematic
chains of both arms sharing the 3 waist joints. We define
the differential kinematics of the left and right end-effectors

as
[
ẋT
L ω

T
L ẋ

T
R ωT

R

]T
= Jupq̇, where Jup is the upper-

body Jacobian, ẋL,ωL, ẋR,ωR are the left and right end-

effector velocities and q̇ =
[
q̇TW q̇TL q̇

T
R

]T
represents the

concatenation of waist, left and right arm joint velocities. The
Jacobian matrix is given by [42]

Jup =

[
JW |L JL 0
JW |R 0 JR

]
, (13)

where JW |L, JW |R denote the Jacobians that account
for the effect of the waist joints on left and right end-
effector velocities. JL and JR correspond to the Jacobians
of the left and right end-effectors from the waist link.
The inverse kinematics solution is given in this case by
ˆ̇q =

[
ˆ̇q
T

W
ˆ̇q
T

L
ˆ̇q
T

R

]T
=J†up

[
ẋT
L ω

T
L ẋ

T
R ω

T
R

]T
, where J†up is the

right pseudo-inverse of Jup.
The experiment was conducted in the Gazebo simulator,

and the skill was reproduced in the real robot (Figure 3). The
demonstrations were generated by solving inverse kinematics
in Gazebo, for the operational space part of the movement,
and using sinusoidal references to control the shoulder joints
for the shaking part‡. Here, we make the assumption that the
demonstrated grasp is always successful and the object will

‡Alternatively, kinesthetic teaching or optical tracking of movements from
humans could be used.

move together with the end-effectors after it is grasped. Hence,
the pose of the bottle that is considered in this experiment
is the one at the beginning of each demonstration. We also
assume that the grasping points on the bottle are the same in all
demonstrations. We collected 10 demonstrations of the skill,
each of them with different initial bottle poses and a duration
of approximately 13 seconds. In each demonstration, we
recorded both the joint angles and the end-effector poses with
respect to the initial bottle frame. Temporal alignment of the
demonstrations was achieved using Dynamic Time Warping
[43]. We used a TP-GMM with K = 10 components, with
P = 2 projection operators (K and P chosen empirically).
The first operator is a concatenation of (7), required for
considering end-effector positions, and (12), for orientations,
parameterized with the bottle pose {p(1)

t ,R
(1)
t , ε

(1)
t },

A
(1)
t =J†up

R

(1)
t 0 0 0

0 H̄∗(ε̄L,t−1)
+

H(ε
(1)
t) 0 0

0 0 R
(1)
t 0

0 0 0 H̄∗(ε̄R,t−1)
+

H(ε
(1)
t)

, (14)

b
(1)
t = J†up

[
p
(1)
t −xL,t−1

0

p
(1)
t −xR,t−1

0

]
+ qt−1. (15)

For these task parameters, training datapoints are concatena-
tions of both end-effector poses from the perspective of the
bottle frame, i.e.

X
(1)
t =

R

(1)T

t

(
xT

L,t−p
(1)
t

)
+

H
(
ε̄
(1)
t

)
εTL,t

R
(1)T

t

(
xT

R,t−p
(1)
t

)
+

H
(
ε̄
(1)
t

)
εTR,t

 . (16)

The second projection operator is canonical,
A

(2)
t = I, b

(2)
t = 0. In the above, subscripts L and R

denote left and right end-effectors.
Figures 4–6 show the demonstration data over time§ (black

lines), in operational and configuration spaces, together with
the Gaussian components obtained after EM (green ellipses).
In addition we also plot the references generated by GMR
(red lines), for a new position and orientation of the bottle.
In Figures 4 and 5 we see that, during the reach and grasp
movement, there is low variability in the demonstrations, both
in position and orientation, when the end-effector is touching
the bottle (t ≈ 4s). This is successfully encoded by the model
(narrow Gaussians showing low variance), as this aspect of

§Due to space limitations we only plot data corresponding to the left arm.

IEEE TRANSACTIONS ON ROBOTICS 8

Fig. 2: The COMAN robot performs the bimanual shaking task in simulation.
First: The robot is in a neutral starting pose. Second: Reaching for the bottle
and grasping it. Third: Bringing the bottle close to the torso. Fourth: Shaking
movement executed through rhythmic oscillations of both shoulder joints.

Fig. 3: Reproduction of the shaking task in the real COMAN robot. Top:
Snapshots of the reaching part of the movement, defined by constraints in
operational space. The robot gradually reaches for the object, which is tracked
using an optical system. Bottom: Shaking part of the movement, defined by
constraints in configuration space. The robot performs the shaking through
rhythmic motions of the shoulders, moving the shaker up and down repeatedly.

the skill is important for a correct completion of the task.
It follows that the synthesized movement (red line) closely
matches the demonstrations in the regions of low variability.
Note that, after the grasp (t > 7s), the variance increases
as the end-effectors move away from the initial bottle pose
to perform the shaking movement. Figure 6 shows that, from
the beginning of the shaking phase (t ≈ 8s), the shoulder
joint (bottom graph) exhibits a consistent oscillatory pattern
modeled by 3 Gaussians, which is adequately captured and
synthesized by the model. This contrasts with the other joints
of the robot, which do not influence the shaking.

When using the task parameters defined in this section, each
set of operators is responsible for a candidate configuration
space solution. The weight of each solution is estimated
from the demonstrations, based on the variability in the data,
and encoded by the different Gaussians as full covariance
matrices. In this sense, the approach implements a form of
task prioritization based on a fusion of tasks (see Section II
for a review of prioritization strategies), where full precision
matrices act as weights on the candidate solutions. Figure 7
shows that TP-GMM correctly extracted the most relevant
configuration space solution according to the requirements
of the overall task. Notice how, until t ≈ 5s, TP-GMM
(black line) matches the candidate solution given by the bottle
coordinate system (red line). Since the variability encoded

Fig. 4: Left end-effector position (in meters) with respect to the initial bottle
coordinate system (prior to the grasp). Black lines represent demonstrations
while the red line represents one reproduction of the movement. Ellipses depict
the Gaussian components of the model (isocontour of one standard deviation).
The shaded areas mark the duration of the reaching and shaking phases. Notice
the low variability in position at the end of the reaching movement.

Fig. 5: Left end-effector orientation (as a unit quaternion) with respect to the
initial bottle coordinate system (prior to the grasp). Notice the low variability
in orientation at the end of the reaching movement.

in this coordinate system is low compared to that of the
configuration space (because reaching and grasping is done in
operational space), the Gaussian product favors this solution.
This is achieved through the linear transformation properties of
Gaussians, that allow for both centers and covariance matrices
to be locally mapped from operational to configuration space
using the proposed linear operators. Similarly, during the
shaking phase, after t ≈ 8s, the reference generated for
the shoulder joint matches the solution obtained using the
canonical projection operator. This is because the shaking
movement results in a consistent oscillatory pattern of shoulder
joints, observed during the demonstrations, as seen in Figure
6. These results show that the proposed TP-GMM formulation
is a viable solution for encoding task relevant features in both
configuration and operational spaces, including orientation.

Finally, Figure 3 shows the two distinct phases of the move-
ment during a reproduction in the real COMAN robot. In this
experiment, we used a tray to carry a shaker towards COMAN,
where an optical tracking system provided the shaker pose
to the robot. We employed the learned TP-GMM to generate
joint references at every time step of the reproduction, which
were fed to a joint position controller. In the top row of
Figure 3, the robot takes into account the operational space
constraints as it reaches for the bottle, while in the bottom row,
the robot shakes the grasped bottle with rhythmic shoulder

IEEE TRANSACTIONS ON ROBOTICS 9

Fig. 6: Waist joints (pitch and yaw) and shoulder joint of the left arm (in
radians). Notice the low variability of the shoulder joint during the shaking
part of the movement (second shaded area) and how the model captures the
shaking pattern encoded in this joint.

t
2 4 6 8 10 12

q s
h
ou

ld
er

-2

-1

0

Bottle Coord. System
Canonical System
TP-GMM

Fig. 7: Shoulder joint angle estimation (radians) from each space (red and
green) and the resulting reference after TP-GMM (black). Each estimate has
an associated mean (solid line) and variance (light color envelope), learned
from demonstrations and synthesized during reproduction.

movements. In both parts of the movement, the operational and
configuration space constraints are properly replicated. Videos
are available at http://joaosilverio.weebly.com/tro .

V. LEARNING TASK PRIORITIZATION HIERARCHIES FROM
DEMONSTRATIONS

Controlling robots often requires the definition of priorities
between tasks. For example, when a humanoid is standing
and has to manipulate an object, the highest priority should
be on keeping balance and, therefore, all degrees of freedom
should be assigned to that task and only manipulate when
balance is not compromised. Commonly, the way in which
tasks are prioritized is defined beforehand by an expert [15],
[19]. In contrast, here we propose to learn these priorities from
demonstrations and develop a framework to do so. We frame
the problem in the context of TP-GMM by formulating the task
parameters as candidate hierarchies and subsequently learning
how to fuse the different hierarchies from demonstrations. Our
approach is hence comprised of two components:

1) Hierarchy identification (Section V-A): From a set of
candidate task hierarchies, and knowledge of the possible
control references for each sub-task, we identify the
employed hierarchies based on the variability present in
the demonstrations.

2) Movement synthesis (Section V-B): A controller is
used to reproduce the taught priority behaviors in new
situations, through a fusion of candidate hierarchies.

A. Identifying priority hierarchies from demonstrations

We consider joint velocity commands generated from strict
hierarchies, where tasks of lower importance are performed
in the null space of more important ones, i.e., they are only

(a) Four demonstrations of priority on orientation. The robot only fulfills the
two tasks when they are both achievable (demonstrations 2 and 3). When they
are incompatible, orientation is prioritized (demonstrations 1 and 4).

(b) Four demonstrations of priority on position. Once the two tasks become
incompatible the robot prioritizes position tracking (demonstrations 1 and 4).
Fig. 8: Planar robot tracking an orientation (arrow) and a vertical position
(dot) along a line, with different priorities.

executed if they do not conflict. In this subsection we show
how the prioritization employed during demonstrations can be
identified from a set of candidate hierarchies.

In order to ease the explanation, let us consider an example
of a 3-DOF planar robot with position and orientation tracking
tasks (Figure 8). We denote the operational space velocities
that ensure the tracking of position and orientation references
by ẋ1 = Kpep and ẋ2 = Koeo, respectively, where Kp,Ko

are positive gains and ep = x̂p−xp, eo = x̂o−xo are the task
errors (in principle, any controller that generates a command
proportional to the error in the reference state would be a valid
choice). These two tasks can be prioritized according to

ˆ̇q
(1)

= J†1 ẋ1 +N1J
†
2 ẋ2 =

[
J†1 N1J

†
2

]
︸ ︷︷ ︸

A(1)

[
ẋ1

ẋ2

]
(17)

or, alternatively,

ˆ̇q
(2)

= J†2 ẋ2 +N2J
†
1 ẋ1 =

[
N2J

†
1 J†2

]
︸ ︷︷ ︸

A(2)

[
ẋ1

ẋ2

]
, (18)

where J1,J2 and N1,N2 are the Jacobians of each task
and corresponding null space projection matrices. Figure 8
shows the two different prioritization strategies: priority on
orientation (Figure 8a) and priority on position (Figure 8b).
Each demonstration is a snapshot of the robot, after satisfying
the task space constraints as best as possible. In both scenarios,
when the two references can be achieved simultaneously
(orange and yellow references), the robot successfully fulfills
the two tasks. When the two references are incompatible,
the robot prioritizes one over the other, according to the
demonstrated hierarchy (blue and purple references).

We propose to treat the linear operators {A(1),A(2)},
defined in (17), (18) as two candidate hierarchies, which
prioritize the tasks differently. The aim is to learn which
hierarchy was demonstrated, given observations of the desired
operational space velocities ẋ1, ẋ2. These are equivalent to the
task errors, up to a constant gain. One way to do this is through

http://joaosilverio.weebly.com/tro

IEEE TRANSACTIONS ON ROBOTICS 10

(a) Demonstrated priority on
orientation (see Figure 8a).

(b) Demonstrated priority on
position (see Figure 8b).

Fig. 9: Operational space velocities generated by each candidate hierarchy for
the configurations of the robot in Figure 8. Each colored point corresponds
to a demonstration with the same color in Figure 8. The ‘×’ represents the
mean of the datapoints, while the bars depict one standard deviation.

the analysis of the task space motion ˆ̇x
(j)

= J ˆ̇q
(j)

that
would result from the application of each candidate hierarchy
j ∈ {1, 2}, i.e.,[

ˆ̇x
(1)

1

ˆ̇x
(1)

2

]
=

[
J1

J2

]
ˆ̇q

(1)
=

[
J1

J2

] [
J†1 N1J

†
2

] [ẋ1

ẋ2

]
, (19)

for hierarchy A(1), and[
ˆ̇x

(2)

1

ˆ̇x
(2)

2

]
=

[
J1

J2

]
ˆ̇q

(2)
=

[
J1

J2

] [
N2J

†
1 J†2

] [ẋ1

ẋ2

]
, (20)

for A(2). Here, ẋ1, ẋ2 are computed from the demonstrations,
given the references and the end-effector position/orientation,
and they have the same value in both (19) and (20). Figure
9 shows the result of applying (19), (20) to the examples
of Figure 8 (with ẋ1, ẋ2 computed from each task error in
the depicted configuration). Notice how the datapoints exhibit
low variability for the hierarchy that was demonstrated in
each case (Figures 9a and 9b). The subspaces j ∈ {1, 2}
associated with each candidate hierarchy A(1) and A(2), as
computed from (19) and (20), can thus be seen as containing
information about the priority constraints that were demon-
strated and need to be fulfilled by the robot. We thus propose
to exploit the observed variability to assign importance to
each candidate hierarchy. For this, we model the distribution
of the data in each subspace j with a local GMM, where
[ξI ˆ̇x

(j)
] ∼

∑K
i=1 πiN

(
µ

(j)
i ,Σ

(j)
i

)
with ξI an input. Model

estimation is done using EM, as discussed in Section III-B.
The covariance matrices Σ

(j)
i encode the demonstrated vari-

ability in the subspace of each candidate hierarchy and they are
here exploited to identify priorities. In Section V-B we show
how Σ

(j)
i are transformed into matrix weights for reproducing

demonstrated priority behaviors in new situations.
We can easily generalize the principle used in (19) and (20)

to NT arbitrary tasks and j = 1, . . . , P candidate hierarchies,
represented by A(j). Indeed, such generalization takes the
form

ˆ̇x
(j)

1
...

ˆ̇x
(j)

NT

 =

 J1

...
JNT

A(j)

 ẋ1

...
ẋNT

 , (21)

from which follows that local datasets are computed

with X(j)
t = J tA

(j)
t ξt, where J t =

[
JT
t,1 . . . J

T
t,NT

]T
and

ξt =
[
ẋT
t,1 . . . ẋ

T
t,NT

]T
. Note that, in this approach, we as-

sume that the kinematic model of the robot is known, i.e.,
that the Jacobian of each task is available during the demon-
strations, and that the set-point of each task is also given.

B. Movement synthesis: fusion of strict hierarchies

The most common approaches for prioritizing tasks are
either based on strict hierarchies [28], [29], [31], [33], or soft
weighting of tasks [15], [16], [17], [35]. We propose a richer
alternative based on a fusion of strict hierarchies, gathering the
best of the two approaches. For this, we exploit the learned
variability in the subspace of each hierarchy, given by full
covariance matrices Σ

(j)
i ,∀i = 1, . . . ,K, ∀j = 1, . . . , P to

propose a controller (dropping time subscripts t for ease of
notation)

ˆ̇q = arg min
q̇

P∑
j=1

(
q̇ − q̇(j)

)T
Γ(j)

(
q̇ − q̇(j)

)
, (22)

which combines candidate joint space velocities q̇(j) with
precision matrices Γ(j). We solve the problem (22) in two
steps: estimating Γ(j) and computing ˆ̇q. For Γ(j), GMR is first
used to compute the distribution ˆ̇x

(j)
|ξIt ∼ N

(
µ(j),Σ(j)

)
for a new input at each time step t. The covariance matrix
Σ(j), which models the importance of hierarchy j for the
considered input, is then transformed with task parameters
A(j) to compute a precision matrix

Γ(j) =
(
A(j)Σ(j)A(j)T

)−1

. (23)

Note that Σ(j) is a squared matrix with the same number
of rows and columns as the dimension of ẋ(j). Hence A(j)

maps the covariance matrices onto joint space. Γ(j) are thus
precision matrices that reflect the importance of each hierarchy
for a given input (e.g., small values of Σ(j) will result in high
values of Γ(j)). Then, we compute a candidate joint space
velocity for each hierarchy j = 1, . . . , P as

q̇(j) = A(j)ẋ(j), (24)

where ẋ(j) are the desired operational space velocities for the
tasks in hierarchy j. Finally, it can be shown that the solution
of (22) corresponds to a product of P Gaussians with mean
q̇(j) and precision matrix Γ(j), i.e.,

ˆ̇q =
(P∑
j=1

Γ(j)
)−1 P∑

j=1

Γ(j)q̇(j), (25)

similarly as in (2). The solution ˆ̇q is a reference joint velocity,
which can be used to control the robot through a velocity or
a position controller (in which case it should be integrated
numerically).

Note that the complete procedure, from estimating local
models based on (21) to obtaining a solution (25), is a
modified version of TP-GMM, where the solutions for each
candidate hierarchy q̇(j) replace the predicted centers µ̂(j)

t,i

in the original formulation (2) and b(j) = 0. The complete
approach described in Sections V-A and V-B is summarized
in Algorithm 2.

IEEE TRANSACTIONS ON ROBOTICS 11

Algorithm 2 Learning task prioritization hierarchies from demon-
strations

Initialization
1: Select a set of potentially relevant candidate hierarchies A(j)

2: Collect demonstrations
Model training

1: Compute X(j) for each candidate hierarchy A(j) with (21)
2: Estimate model

{
πi, {µ(j)

i ,Σ
(j)
i }Pj=1

}K

i=1
using EM

Movement synthesis
1: for t = 1, . . . , N do
2: Obtain input ξIt at time step t
3: for j = 1, . . . , P do
4: Update task parameters A(j) with Jacobians and

null space matrices at time step t
5: Compute Γ(j) using GMR and (23)
6: Update desired task space velocities ẋ(j) for the

tasks in hierarchy j
7: Compute candidate solution q̇(j) using (24)
8: end for
9: Compute velocity control command ˆ̇q using (25)

10: end for

Fig. 10: End-effector behavior for varying hierarchy weights. Top-left: Planar
robot fulfilling the two tasks separately. Top-right: End-effector state in the
position-orientation space for the considered weights (blue line). Bottom:
End-effector orientation and vertical position as weights vary. Note the
inverted scales on the horizontal axes (the experiment starts with (1, 0) and
ends with (0, 1)). Red lines and point indicate the references.

C. Experiment: Fusion of hierarchies and behavior during
transitions

An important aspect to consider when controlling priorities
is the behavior of the robot when priorities change. Before
testing the learning capabilities of our approach, we study
the effect of varying the weights of each candidate hierarchy,
when employing the controller proposed in Section V-B.
For simplicity of analysis, we consider the case of a planar
robot with two tasks. The tasks are to track a vertical position
reference with the end-effector and to point downwards. The
references are chosen such that the two tasks can be fulfilled
individually but not simultaneously (Figure 10, top-left). Two
strict hierarchies are considered, corresponding to an accurate
tracking of either position or orientation as first priority, and
orientation or position as secondary. We define two scalar

Fig. 11: Performance of the robot in tracking position and orientation
references with varying weights when both tasks can be achieved.

Fig. 12: Illustration of the waist joint prioritization problem. Left: Both targets
are within the reachable workspace of both arms, so the robot can successfully
reach the centers of the spheres with the palm of its hands. Right: References
become simultaneously unreachable, so the robot cannot reach any of the two.
The small circles depict the tool center point of each arm, while the large
circles represent the centers of the references.

weights wpos and worient, which represent the importance
of each hierarchy, with the subscript denoting the highest
priority task. With these weights, we manually define precision
matrices Γpos = wposI and Γorient = worientI , where I is a 2-
dimensional identity matrix. Figure 10 shows the results for
the case in which the robot transits from priority on orientation
to priority on position, through a continuous variation of the
weights. We observe that, as different combinations of weights
are applied by the controller, a smooth transition occurs
between the two tasks¶. These results show that the proposed
controller can handle situations where priorities change, which
can occur when demonstrated hierarchies vary over time or
according to different contexts.

Another case that is worth investigating is the behavior of
the system when both tasks are achievable. In this situation,
one would expect that any combination of the weights would
result in a successful completion of both tasks. In order to
test how our approach handles this scenario, we decreased the
vertical position reference so that both tasks can be fulfilled
simultaneously. We set the robot to an initial configuration
qinit = [π2 +0.5, −1, −π2 +0.5]. For every new weight pair,
its starting configuration is that of the previous pair. Figure 11
shows the tracking performance. We can see that both position
and orientation were tracked with negligible errors. This shows
that the approach converges to a proper solution and maintains
it when the weights are modified. In other words, once the
robot converged to a configuration that fulfills both tasks with
the initial weights (worient, wpos) = (1, 0), further variations of
the weights did not affect the solution, as one would expect.

D. Experiment: Learning priorities with the COMAN robot

We now test the hierarchy identification and synthesis
capabilities of the approach with the humanoid robot COMAN.

¶Note that the transition is non-linear, unlike the variation of the weights
wpos, worient. This is because the Jacobians of each task, involved in (23),
change non-linearly with the robot configuration q.

IEEE TRANSACTIONS ON ROBOTICS 12

(a) Demonstrated left arm priority. (b) Demonstrated right arm priority.

Fig. 13: Task space velocities generated by each candidate hierarchy given
the demonstration data. Each entry A(j) contains the means of several
observations ˆ̇x

(j)
, computed across the dimensions of the tasks. The error

bars correspond to two standard deviations of the data. Note the low variability
in the datapoints corresponding to the demonstrated hierarchies.

Fig. 14: Movement synthesis using the learned left and right arm priority
models. Left: The left reference is always tracked, while the right reference
is only tracked when reachable. Right: The right reference is prioritized.

Since the kinematic chains of the humanoid arms share the
waist joints, incompatibilities often occur during bimanual
manipulation when the tasks of the two arms are too distant
(Figure 12). In this experiment we use the proposed approach
to teach the robot which arm has priority over the other. If
correctly learned, the robot will prioritize one of the refer-
ences when the two are incompatible and closely track both
when reachable. We consider P = 2 candidate hierarchies,
corresponding to the two possible combinations of priorities,
i.e., priority on left arm with the right arm as secondary and
vice-versa. We denote the Jacobians of each arm (from the
waist link) by JL, JR, with corresponding pseudoinverses J†L ,
J†R and null space projection matrices NL, NR, yielding the
task parameters

A(1) =
[
J†L NLJ

†
R

]
, A(2) =

[
NRJ

†
L J†R

]
, (26)

and the desired task space velocities for each hierarchy

ẋ(1) = ẋ(2) =

[
x̂L − xL
x̂R − xR

]
, (27)

where x̂L and x̂R denote left and right reference positions.
For model training, we consider datapoints of the form
ξt =

[
ẋT
L,t ẋ

T
R,t

]T ∈ R6, where ẋL,t = x̂L,t − xL,t and
ẋR,t = x̂R,t−xR,t are the desired left and right end-effector
velocities during demonstrations. Equation (21) is used to
compute the local datasets X(j). We choose K = 1, i.e.,
we want to have a constant prioritization structure throughout
the task. This is to show that we can already encode complex
behaviors with a single Gaussian. More complex structures
can be easily considered by adding more components (e.g., to
teach input dependent priorities).

Demonstrations of the priority behaviors are given by im-
plementing an inverse kinematics controller with the desired
hierarchies in the simulated robot and making it track moving

Fig. 15: Waist joint angles given by each candidate hierarchy. The envelope
around the lines represents one standard deviation of the variance encoded in
each hierarchy. TP-GMM extracts the solution with the lowest variability.
A(1) A(2) A(3) A(4) A(5) A(6)

b>p>o b>o>p p>o >b p>b>o o>p>b o>b>p

TABLE IV: Hierarchies used in Section V-E.

references‖. We generate demonstrations of two different
types of priority and analyzed the resulting datasets. Figure
13 shows the mean of ˆ̇x

(j)
, generated by each candidate

hierarchy, computed from (21) with task parameters (26). As
one would expect from Section V-A, we observe a distribution
of datapoints with low variability for the hierarchy that was
demonstrated, with priority either on the left arm (Figure 13a)
or on the right arm (Figure 13b). Low variability results in
high precision matrices Γ(j), which in turn, during movement
synthesis, result in higher weights to favor the corresponding
hierarchy.

We apply the learned models (left and right arm priority)
to reach fixed points on the left and right sides of the robot,
with the results depicted in Figure 14. As expected, in both
cases, we observe that the arm which had the highest priority
during demonstrations always fulfills the task, while the other
only does it when the reference is reachable. Figure 1 shows
snapshots of the same behaviors in the real COMAN platform,
where we used an optical tracking system to provide moving
references to each arm. The robot closely tracked the reference
on the side that had the highest priority, while doing its best to
track the secondary reference. The computations in rows 2–9
of Algorithm 2 (computation at each time step) took on aver-
age 1.15ms, using MATLAB in a laptop with an Intel Core
i5-3230M, 2.60GHz× 4 processor. Videos of the experiment
can be found at http://joaosilverio.weebly.com/tro.

In this framework, similarly to the experiment in Section
IV-D, each candidate hierarchy provides one possible config-
uration space solution. Figure 15 shows the solution given
by each candidate hierarchy for the waist roll, pitch and
yaw joints, while tracking the left object with the highest
priority. We see that the solution given by the hierarchy that
encodes priority on the left arm (red line) has much lower
variability than the one that prioritizes tracking with the right
arm (green line). This leads to an automatic identification of
this prioritization as being important, resulting in a proper
reproduction of priorities.

E. Experiment: Learning priorities with more than two tasks

In this experiment we consider a loco-manipulation task
with the new Centauro robot from IIT [13]. Centauro is a

‖Alternatively, kinesthetic teaching or optical tracking of movements from
humans could also be used by recording the tracking errors as well as the
kinematic data of the demonstrator (required to compute the Jacobians).

http://joaosilverio.weebly.com/tro

IEEE TRANSACTIONS ON ROBOTICS 13

Fig. 16: The Centauro robot tracks different references, prioritizing (by decreasing order of importance) base position, end-effector positions and end-effector
orientations. The blue and pink spheres represent the desired base and end-effectors positions, while the arrow denotes the desired end-effector pointing
direction. Left: All tasks can be fulfilled. Center: The pelvis reference is moved backwards, thus the robot performs the orientation task as best as it can but
not completely. Right: The end-effector position references are moved forward and both end-effector position and orientation are now only partially fulfilled.

(a) Demonstrated: b > p > o. (b) Demonstrated: p > b > o.

Fig. 17: Datasets from Centauro priority demonstrations. Each entry A(j)

contains 12 points (the means of ˆ̇x
(j)

for each demonstration).

Fig. 18: In this example, the Centauro robot prioritizes end-effector positions,
followed by the position of the base and, finally, the end-effector orientations.

four-legged robot with wheels and a 15-DOF humanoid torso.
In order to simplify the locomotion problem, we constrain the
robot to move using only the wheels, becoming, in essence,
a mobile platform with a humanoid torso. We consider three
tasks that the robot can execute at the same time, correspond-
ing to the control of:
• the position of the robot’s base, assumed to be the pelvis

link, with associated Jacobian and null space projection
matrices Jb,N b,

• the positions of both end-effectors, with matrices Jp,Np,
• the orientations of both end-effectors, with Jo,No.

The possible arrangements of these three tasks yield 6 can-
didate hierarchies (see Table IV where we used the Jacobian
subscripts to denote each task). In many contexts, one may
know in advance that the robot will only employ a subset of
the total available hierarchies (e.g., one may assume that the
pelvis position is not an important sub-task). We here consider
all possible combinations with P = 6, with the aim of showing
the potential of the approach to resolve tasks with a complete
set of candidate hierarchies. In this experiment, we control a
total of 19 joints: 4 wheels and 15 upper body joints (7 per

arm and 1 torso joint).
Using the Gazebo simulator, we collect 12

demonstrations of the robot employing the hierarchy
A(1) = [J†b N bJ

†
p N bNpJ

†
o], which controls the base

position with the highest priority, followed by the end-effector
positions and, finally, orientations. Each demonstration uses
different combinations of the position references (base and
end-effectors), while keeping the orientation reference the
same, in this case the quaternion ε̂ = [0 0 0 1]T. Figure 16
shows 3 demonstration examples, for different values of the
references to show the priority behaviors. The demonstration
data is stored when the robot is at a configuration where each
task is fulfilled as best as possible, according to the hierarchy.
Each demonstration results in P vectors ˆ̇x

(j)
, as computed

from (21).
Figure 17a shows the mean of the resulting vectors for

each j = 1, . . . , P , with error bars denoting two stan-
dard deviations. Notice that the demonstrated hierarchy gen-
erated the lowest variance. This confirms our proposition
from Section V-A, validating the approach for the extrac-
tion of hierarchies with more than two tasks. The repro-
duction of the learned priorities, for the same and differ-
ent references, is shown in the video that can be found
at http://joaosilverio.weebly.com/tro. Also note that, in
Fig. 17a, we take the mean of ˆ̇x

(j)
only for visualization

purposes. The reproduction of priority behaviors is done using
(25), which takes into account the variability of each dimen-
sion separately. For this 6-hierarchy experiment, the operations
in rows 2–9 of Algorithm 2 (computation at each time step)
took on average 7.35ms per control cycle, in a computer with
an Intel Core i7-6700, 3.40GHz× 8 processor using a C++
(unoptimized) implementation based on the Eigen library for
linear algebra computations. The increase in computational
time with respect to the experiment reported in Section V-D is
due to a higher number of hierarchies and controlled degrees
of freedom (we considered the 48-dimensional whole-body
Jacobian), which increases the cost of the inversions in (23)
and (25).

In order to show that the approach can success-
fully extract any demonstrated hierarchy, we provide 12
new demonstrations of a different hierarchy, in this case
A(4) = [NpJ

†
b J†p NpN bJ

†
o], where the end-effector po-

sitions are prioritized, followed by the pelvis position and
end-effector orientations. Figure 18 shows an example of such
hierarchy. In Fig. 17b, we see that the demonstrated hierarchy

http://joaosilverio.weebly.com/tro

IEEE TRANSACTIONS ON ROBOTICS 14

Fig. 19: Movement synthesis with the WALK-MAN robot using the left and
right priority models that were learned with COMAN.

is properly extracted, since the data show low variability for
A(4). The accompanying video shows the reproduction of this
hierarchy, highlighting how it differs from A(1).

F. Experiment: Transferring task priorities between robots

In this experiment we test the transfer of priority models
across different robots. We use the model learned with CO-
MAN to synthesize an equivalent prioritization behavior in
WALK-MAN [44] that has different kinematic parameters.
WALK-MAN is a humanoid larger than COMAN, whose
waist joints are also shared between the arms. Figure 19
shows that the model acquired using COMAN is successful
in generalizing the learned task priorities in WALK-MAN.
This stems from two facts: i) the considered tasks, and
associated weights, are in operational space, whose dimension
is the same for both robots and ii) the robots have the same
kinematic chains structure, i.e., waist joints are shared by both
arms. This opens up an interesting strategy to cope with the
correspondence problem in imitation learning. In particular,
our approach can potentially be used by the robot to visually
observe a task prioritization behavior demonstrated by the user
without considering a direct mapping of the kinematics.

VI. DISCUSSION

A. Learning operational and configuration space constraints

Our results in Section IV showed that, with Jacobian-based
task parameters, the robot can take into account both configu-
ration and operational space constraints, including orientation.
Learning controllers for complex bimanual manipulation goes
beyond operational space, and one must also care about the
configuration space to achieve natural and efficient move-
ments. The shaking experiment is an example of task that is
best modeled by taking into account the configuration space
constraints, but the range of possibly interesting situations is
vast (e.g., communicative gestures, self-collision avoidance).
Although highly relevant, this problem is rarely covered in the
literature of motor skill learning, especially in bimanual cases.

One potential shortcoming of our approach is that it relies
on the variability of the demonstrated movements to extract
the importance of each space. In some cases, such task
variations may not be straightforward to demonstrate (e.g.,
unexperienced demonstrators may not demonstrate sufficient
variability). One possible way to cope with this issue could be
to combine TP-GMM with more interactive and incremental
teaching approaches, which would allow the robot to refine its
task model at runtime by testing task variations in the different
spaces based on exploration, interaction and teacher feedback.

In a different direction, we plan to study how the proposed
approach can be combined with Riemannian formulations for
learning end-effector poses [45]. While here we approximate
the geometry of the unit quaternion space, such formulations
may allow for a more precise encoding of orientation.

Sections IV and V both considered the combination of
sub-spaces as a fusion problem with full precisions matrices,
which has a richer structure than a combination of sub-spaces
through scalar weights. In particular, they both allow a parallel
organization of tasks by exploiting the sparsity of the sub-
space constraints. Although better than a superposition through
scalar weights, such organization still cannot guarantee that all
sub-space constraints can be fulfilled when these constraints
are not compatible. Currently, the robot finds a trade-off
without evaluating whether this solution is satisfactory or
whether sub-spaces are too much in conflict to be fused
properly. It would be interesting to investigate in future work
if such cases could be detected and how the robot should cope
with highly conflicting constraints.

B. Learning task prioritization hierarchies

By extending the notion of candidate coordinate systems to
candidate task hierarchies, we showed that TP-GMM could be
used to learn priority hierarchies.

One potential shortcoming is that the set of possible task
hierarchies needs to be set beforehand. To a certain extent, one
can take advantage of expert knowledge to only use a subset
of all possible candidate hierarchies. However, even though
one is not required to provide all possible hierarchies for
the considered tasks, one should be careful not to over-define
this set, because the more candidate hierarchies are available,
the more demonstrations will be required to extract invariant
features through statistics. A potential research direction to
leverage this issue could be to study ways of learning sets
of hierarchies characterizing specific domains of activity (e.g.,
bimanual manipulation, walking). Then, one could take advan-
tage of the prior knowledge about the skill to be demonstrated
to select the set accordingly.

Another potential drawback is the need to define the set-
points that the robot may be tracking. Note that this is
a common hypothesis in approaches extracting task prior-
itization, see e.g., [31], [32]. While this may not pose a
problem in simpler scenarios (e.g., the targets do not move),
the difficulty increases in highly dynamic environments. One
intuitive solution to overcome this limitation could be to
split the demonstration of the task in two phases (an idea
exploited in [28] albeit in a more simple case). In one phase,
each individual sub-task could be demonstrated (e.g., pelvis
trajectory or end-effector movements with respect to objects)
and encoded in separate models. In the second phase, the
environment could be simplified (e.g., fixing references) and
the priorities demonstrated. Equations (24), (25) ensure a
flexible solution at this level, since the control commands ẋ(j)

of each sub-task in (24) may be generated from a model that is
trained independently from the priority weights used in (25).

IEEE TRANSACTIONS ON ROBOTICS 15

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework for human-robot bimanual skill
transfer based on Task-Parameterized Gaussian Mixture Mod-
els. We introduced different parameterizations allowing us to
consider a wide range of learning problems related to manip-
ulation in humanoids, namely the combination of constraints
between operational and configuration spaces, and the learning
of task priority hierarchies. The approach was validated in
three different scenarios. We first demonstrated, in a bimanual
shaking task with the COMAN robot, that the approach can be
used to consider constraints in operational and configuration
spaces simultaneously, which permits the reproduction of
motion patterns from both spaces during movement synthesis.
Then, in a bimanual reaching experiment with COMAN, we
showed that by providing different candidate hierarchies to
describe an observed movement, the robot is able to determine
from statistics which prioritization is relevant for the task. In
this context, we also demonstrated that the proposed formu-
lation could be employed to transfer prioritization behaviors
between humanoids. Finally, in a loco-manipulation scenario
with the Centauro robot, we showed that our framework can be
used to learn the prioritization of more than two simultaneous
tasks from demonstrations.

Future work will investigate how other types of constraints
could be formulated for torque-controlled robots [46], as
opposed to velocity controllers considered in this article. A
growing number of robots can be controlled in torque, thus it
is relevant for learning approaches to account for this fact.

We also plan to investigate if the proposed approach could
be combined with other optimization-based techniques, such
as CMA-ES [16], [17], in order to refine the learned priorities.
This would allow us to consider cost functions that are harder
to relate to operational space control, such as energy efficiency.

A final research direction concerns the application of task
prioritization with TP-GMM to more complex whole-body
control scenarios. One possible avenue could be that of learn-
ing whole body motion behaviors from human demonstrations,
including prioritization skills involving center of mass and
contact points with the environment (e.g., to learn natural ways
of coping with perturbations while standing).

REFERENCES

[1] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V.
Dimarogonas, and D. Kragic, “Dual arm manipulation – a survey,”
Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1340 – 1353,
2012.

[2] A. G. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[3] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,” IEEE
Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[4] J. Umlauft, D. Sieber, and S. Hirche, “Dynamic movement primitives for
cooperative manipulation and synchronized motions,” in Proc. IEEE Intl
Conf. on Robotics and Automation (ICRA), Hong Kong, China, May-
June 2014, pp. 766–771.

[5] R. Lioutikov, O. Kroemer, J. Peters, and G. Maeda, “Learning manipula-
tion by sequencing motor primitives with a two-armed robot,” in Proc.
Intl Conf. on Intelligent Autonomous Systems (IAS), ser. Advances in
Intelligent Systems and Computing, vol. 302. Springer, 2014.

[6] N. Likar, B. Nemec, L. Zlajpah, S. Ando, and A. Ude, “Adaptation of
bimanual assembly tasks using iterative learning framework,” in Proc.
IEEE-RAS Intl Conf. on Humanoid Robots (Humanoids), Seoul, South
Korea, November 2015, pp. 771–776.

[7] A. L. P. Ureche and A. Billard, “Encoding bi-manual coordination
patterns from human demonstrations,” in Proc. ACM/IEEE Intl Conf.
on Human-Robot Interaction (HRI), Bielefeld, Germany, March 2014,
pp. 264–265.

[8] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,
“Statistical dynamical systems for skills acquisition in humanoids,” in
Proc. IEEE-RAS Intl Conf. on Humanoid Robots (Humanoids), Osaka,
Japan, November-December 2012, pp. 323–329.

[9] J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell, “Learning bimanual
end-effector poses from demonstrations using task-parameterized dy-
namical systems,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots
and Systems (IROS), Hamburg, Germany, September–October 2015, pp.
464–470.

[10] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, January
2016.

[11] S. Calinon and A. G. Billard, “Statistical learning by imitation of
competing constraints in joint space and task space,” Advanced Robotics,
vol. 23, no. 15, pp. 2059–2076, 2009.

[12] N. G. Tsagarakis, S. Morfey, G. A. Medrano-Cerda, Z. Li, and D. G.
Caldwell, “COMpliant huMANoid COMAN: Optimal joint stiffness
tuning for modal frequency control.” in Proc. IEEE Intl Conf. on
Robotics and Automation (ICRA), Karlsruhe, Germany, May 2013, pp.
673–678.

[13] L. Baccelliere, N. Kashiri, L. Muratore, A. Laurenzi, M. Kamedula,
A. Margan, S. Cordasco, J. Malzahn, and N. G. Tsagarakis, “Develop-
ment of a human size and strength compliant bi-manual platform for
realistic heavy manipulation tasks,” in Proc. IEEE/RSJ Intl Conf. on
Intelligent Robots and Systems (IROS), Vancouver, Canada, September
2017, pp. 5594–5601.

[14] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, no. 25, pp. 328–373, 2013.

[15] F. L. Moro, M. Gienger, A. Goswami, and N. G. Tsagarakis, “An
attractor-based whole-body motion control (WBMC) system for hu-
manoid robots,” in Proc. IEEE-RAS Intl Conf. on Humanoid Robots
(Humanoids), Atlanta, GA, USA, October 2013, pp. 42–49.

[16] N. Dehio, R. F. Reinhart, and J. J. Steil, “Multiple task optimization with
a mixture of controllers for motion generation,” in Proc. IEEE/RSJ Intl
Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany,
2015, pp. 6416–6421.

[17] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and
S. Ivaldi, “Learning soft task priorities for control of redundant robots,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), Stock-
holm, Sweden, May 2016.

[18] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[19] L. Sentis and O. Khatib, “Control of Free-Floating Humanoid Robots
Through Task Prioritization,” in Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA), Barcelona, Spain, April 2005, pp. 1718–1723.

[20] C. Ott, A. Dietrich, and A. Albu-Schffer, “Prioritized multi-task com-
pliance control of redundant manipulators,” Automatica, vol. 53, pp.
416–423, 2015.

[21] J. Park, Y. Choi, W. K. Chung, and Y. Youm, “Multiple tasks kinematics
using weighted pseudo-inverse for kinematically redundant manipula-
tors,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
Seoul, South Korea, May 2001, pp. 4041–4047.

[22] M. de Lasa and A. Hertzmann, “Prioritized optimization for task-space
control,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems
(IROS), St. Louis, MO, USA, October 2009, pp. 5755–5762.

[23] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,” in
Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), Shanghai,
China, May 2011, pp. 1283–1290.

[24] B. Morris, M. J. Powell, and A. D. Ames, “Sufficient conditions for the
Lipschitz continuity of QP-based multi-objective control of humanoid
robots,” in Proc. IEEE Conf. on Decision and Control (CDC), Firenze,
Italy, December 2013, pp. 2920–2926.

[25] A. Dietrich, A. Albu-Schäffer, and G. Hirzinger, “On continuous null
space projections for torque-based, hierarchical, multi-objective manip-
ulation,” in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA),
St. Paul, MN, USA, May 2012, pp. 2978–2985.

IEEE TRANSACTIONS ON ROBOTICS 16

[26] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,”
Autonomous Robots, vol. 40, no. 1, pp. 17–31, Jan. 2016.

[27] N. Dehio, D. Kubus, and J. J. Steil, “Continuously shaping projections
and operational space tasks,” in Proc. IEEE/RSJ Intl Conf. on Intelligent
Robots and Systems (IROS), Madrid, Spain, October 2018, pp. 5995–
6002.

[28] S. Wrede, C. Emmerich, R. Ricarda, A. Nordmann, A. Swadzba, and
J. J. Steil, “A user study on kinesthetic teaching of redundant robots
in task and configuration space,” Journal of Human-Robot Interaction,
vol. 2, pp. 56–81, 2013.

[29] M. Saveriano, S. An, and D. Lee, “Incremental kinesthetic teaching of
end-effector and null-space motion primitives,” in Proc. IEEE Intl Conf.
on Robotics and Automation (ICRA), Seattle, WA, USA, May 2015, pp.
3570–3575.

[30] S. An and D. Lee, “Prioritized inverse kinematics with multiple task
definitions,” in Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), Seattle, WA, USA, May 2015, pp. 1423–1430.

[31] C. Towell, M. Howard, and S. Vijayakumar, “Learning nullspace poli-
cies,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, October 2010, pp. 241–248.

[32] H.-C. Lin, M. Howard, and S. Vijayakumar, “Learning null space
projections,” in Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), Seattle, WA, USA, May 2015, pp. 2613–2619.

[33] S. Hak, N. Mansard, O. Stasse, and J. P. Laumond, “Reverse control for
humanoid robot task recognition,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 42, no. 6, pp. 1524–1537,
December 2012.

[34] R. Lober, V. Padois, and O. Sigaud, “Multiple task optimization using
dynamical movement primitives for whole-body reactive control,” in
Proc. IEEE-RAS Intl Conf. on Humanoid Robots (Humanoids), Madrid,
Spain, November 2014, pp. 193–198.

[35] ——, “Variance modulated task prioritization in whole-body control,”
in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS),
Hamburg, Germany, September 2015, pp. 3944–3949.

[36] A. Paraschos, R. Lioutikov, J. Peters, and G. Neumann, “Probabilistic
prioritization of movement primitives,” IEEE Robotics and Automation
Letters (RA-L), vol. 2, no. 4, pp. 2294–2301, October 2017.

[37] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in Proc. IEEE
Intl Conf. on Robotics and Automation (ICRA), Hong Kong, China, May-
June 2014, pp. 3339–3344.

[38] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras, “Learn-
ing physical collaborative robot behaviors from human demonstrations,”
IEEE Trans. on Robotics, vol. 32, no. 3, pp. 513–527, 2016.

[39] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control. Springer, 2009.

[40] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online move-
ment adaptation based on previous sensor experiences,” in Proc.
IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), San
Francisco, USA, September 2011, pp. 365–371.

[41] J. Silvério, S. Calinon, L. Rozo, and D. G. Caldwell, “Bimanual skill
learning with pose and joint space constraints,” in Proc. IEEE-RAS Intl
Conf. on Humanoid Robots (Humanoids), Beijing, China, 2018, pp. 153–
159.

[42] J. Lee, A. Ajoudani, E. M. Hoffman, A. Rocchi, A. Settimi, M. Fer-
rati, A. Bicchi, N. G. Tsagarakis, and D. G. Caldwell, “Upper-body
impedance control with variable stiffness for a door opening task,” in
Proc. IEEE-RAS Intl Conf. on Humanoid Robots (Humanoids), Madrid,
Spain, November 2014, pp. 713–719.

[43] C. Y. Chiu, S. P. Chao, M. Y. Wu, and S. N. Yang, “Content-based
retrieval for human motion data,” Visual Communication and Image
Representation, vol. 15, pp. 446–466, 2004.

[44] N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere,
V. Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino, L. Na-
tale, E. Mingo Hoffman, H. Dallali, N. Kashiri, J. Malzahn, J. Lee,
P. Kryczka, D. Kanoulas, M. Garabini, M. Catalano, M. Ferrati, V. Var-
ricchio, L. Pallottino, C. Pavan, A. Bicchi, A. Settimi, A. Rocchi, and
A. Ajoudani, “WALK-MAN: A High-Performance Humanoid Platform
for Realistic Environments,” Journal of Field Robotics, 2017.

[45] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G.
Caldwell, “An approach for imitation learning on Riemannian mani-
folds,” IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 3, pp.
1240–1247, June 2017.

[46] J. Silvério, Y. Huang, L. Rozo, S. Calinon, and D. G. Caldwell,
“Probabilistic learning of torque controllers from kinematic and force
constraints,” in Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and
Systems (IROS), Madrid, Spain, October 2018, pp. 6552–6559.

João Silvério is a Postdoctoral Researcher at the
Department of Advanced Robotics, Istituto Italiano
di Tecnologia (IIT) since June 2017. He received his
M.Sc in Electrical and Computer Engineering (2011)
from Instituto Superior Técnico (Lisbon, Portugal)
and Ph.D in Robotics (2017) from the University of
Genova (Italy) and IIT. Before his PhD, he also car-
ried out research at EPFL’s Biorobotics Laboratory
in 2010 and Learning Systems and Algorithms Lab-
oratory in 2013. He is interested in robot program-
ming by demonstration, in particular algorithms for

learning complex bimanual skills. Webpage: http://joaosilverio.eu

Sylvain Calinon is a Senior Researcher at the Idiap
Research Institute. He is also a lecturer at the Ecole
Polytechnique Fédérale de Lausanne (EPFL), and an
external collaborator at the Department of Advanced
Robotics (ADVR), Italian Institute of Technology
(IIT). From 2009 to 2014, he was a Team Leader at
ADVR, IIT. From 2007 to 2009, he was a Postdoc
at the Learning Algorithms and Systems Laboratory,
EPFL, where he obtained his PhD in 2007. He is the
author of 100+ publications in robot learning and
human-robot interaction, with recognition including

Best Paper Awards in the journal of Intelligent Service Robotics (2017)
and at IEEE Ro-Man’2007, and Best Paper Award Finalist at ICRA’2016,
ICIRA’2015, IROS’2013 and Humanoids’2009. He currently serves as Asso-
ciate Editor in IEEE Transactions on Robotics (T-RO) and IEEE Robotics and
Automation Letters (RA-L). Webpage: http://calinon.ch

Leonel Rozo is a Team Leader at the Department
of Advanced Robotics (ADVR), Istituto Italiano
di Tecnologia since 2016. He was a postdoctoral
researcher at the same institution from 2013 to
2016. He received his B.Sc on Mechatronics En-
gineering from the ”Nueva Granada” Military Uni-
versity (Colombia, 2005), his M.Sc in Automatic
Control and Robotics (2007), and Ph.D in Robotics
(2013) from the Polytechnical University of Cat-
alonia (Barcelona, Spain). From 2007 to 2012 he
carried out his research on force-based manipulation

tasks learning at the Institut de Robòtica i Informàtica Industrial (CSIC-UPC).
His research interests cover robot programming by demonstration, physical
human-robot interaction, machine learning and optimal control for robotics.
Personal webpage: http://leonelrozo.weebly.com

Darwin G. Caldwell, FREng is Deputy Director of
the Italian Institute of Technology (IIT), and Director
of the Dept. of Advanced Robotics at IIT. He is or
has been an Honorary Professor at the Universities of
Manchester, Sheffield, Bangor, Kings College Lon-
don and Tianjin University, China. His research in-
terests include; humanoid and quadrupedal robotics
(iCub, cCub, COMAN, WalkMan, HyQ, HyQ2Max,
HalfMan, COMAN+), innovative actuators, haptics
and force augmentation exoskeletons, medical, re-
habilitation and assistive robotic technologies, dex-

terous manipulators. He is the author or co-author of over 500 academic
papers, 20+ patents, and has received awards and nominations from many
international journals and conferences. Caldwell has been chair of the IEEE
Robotics and Automation Chapter (UKRI), a past co-chair of the IEE (IET)
Robotics and Mechatronics PN, Secretary of the IEEE/ASME Trans. on
Mechatronics, Editor for Frontiers in Robotics and AI, on the editorial board
of the International Journal of Social Robotics and Industrial Robot and on
the Advisory Board of Science Robotics. In 2015 he was elected a Fellow of
the Royal Academy of Engineering.

	I Introduction
	II Related Work
	II-A Learning bimanual skills
	II-B Simultaneous learning of operational and configuration space constraints
	II-C Learning task prioritization
	II-C1 Learning approaches based on strict hierarchies
	II-C2 Approaches related to soft weighting of tasks

	III Task-Parameterized Gaussian Mixture Models
	III-A Overview and nomenclature
	III-B Model estimation
	III-C Gaussian Mixture Regression

	IV Learning operational and configuration space constraints simultaneously
	IV-A Jacobian-based task parameters for position constraints
	IV-B Task parameters for orientation
	IV-C Task parameters for configuration space constraints
	IV-D Experiment: bimanual shaking skill

	V Learning task prioritization hierarchies from demonstrations
	V-A Identifying priority hierarchies from demonstrations
	V-B Movement synthesis: fusion of strict hierarchies
	V-C Experiment: Fusion of hierarchies and behavior during transitions
	V-D Experiment: Learning priorities with the COMAN robot
	V-E Experiment: Learning priorities with more than two tasks
	V-F Experiment: Transferring task priorities between robots

	VI Discussion
	VI-A Learning operational and configuration space constraints
	VI-B Learning task prioritization hierarchies

	VII Conclusions and Future Work
	References
	Biographies
	João Silvério
	Sylvain Calinon
	Leonel Rozo
	Darwin G. Caldwell

