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Abstract

The shape of a concentric tube robot depends not only on the relative rotations and translations of 

its constituent tubes, but also on the history of relative tube displacements. Existing mechanics-

based models neglect all history-dependent phenomena with the result that when calibrated on 

experimental data collected over a robot’s workspace, the maximum tip position error can exceed 

8 mm for a 200-mm-long robot. In this paper, we develop a model that computes the bounding 

kinematic solutions in which Coulomb friction is acting either to maximize or minimize the 

relative twisting between each pair of contacting tubes. The path histories associated with these 

limiting cases correspond to first performing all tube translations and then performing relative tube 

rotations of sufficient angle so that the maximum Coulomb friction force is obtained along the 

interface of each contacting tube pair. The robot tip configurations produced by these path 

histories are shown experimentally to bound position error with respect to the estimated 

frictionless model compared to path histories comprised of translation or mixed translation and 

rotation. Intertube friction forces and torques are computed as proportional to the intertube contact 

forces. To compute these contact forces, the standard zero-clearance assumption that constrains the 

concentrically combined tubes to possess the same centerline is relaxed. The effects of clearance 

and friction are explored through numerical and physical experiments and it is shown that friction 

can explain much of the prediction error observed in existing models. This model is not intended 

for real-time control, but rather for path planning—to provide error bounds and to inform how the 

ordering of tube rotations and translations can be used to reduce the effect of friction.
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I. INTRODUCTION

CONCENTRIC tube robots are being applied to many types of medical interventions 

including surgery inside the heart [1]–[4], the brain [5], [6], and the lungs [7]–[9]. Many of 

these implementations have employed a mechanics-based kinematic model derived from the 
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Cosserat rod model [10], [11] or a potential energy formulation [12], [13]. While the 

resulting kinematic model is more complex than standard robot models, real-time 

implementations have been successfully demonstrated [5]. The model does neglect some 

physical phenomena, however, resulting in larger kinematic model errors than is desirable 

for medical applications. For example, the reported mean and maximum tip position errors 

were 4.2 and 8.3 mm for a 207-mm-long robot [10] and 2.89 and 8.49 mm for a 200-mm-

long robot [11]. Since targeting errors of 1–2 mm can be significant in surgeries performed 

near critical structures, these are large modeling errors. To compensate, image-based 

feedback is often needed, necessitating a higher skill level on the part of the operator.

A particular shortcoming of current models is that they do not include the effect of path 

history on robot shape, as shown in Fig. 1. To investigate how much of the unmodeled 

behavior may be due to friction, this paper formulates a mechanics-based model of tube-on-

tube Coulomb friction by deriving expressions for the distributed contact forces between the 

tubes. The goal of this paper is develop bounds on the effect of friction on the kinematic 

solution. Such a model can be used in path planning and can motivate potential future work 

incorporating path history in real-time control. To reduce model complexity, a number of 

simplifications are made as described in the paragraphs below.

Small nonzero clearances between tubes:

The frictionless model assumes that all overlapping tubes conform to a single centerline 

curve, which implies that there is no clearance between tubes. In reality, however, a finite 

clearance must be used, i.e., a small gap must exist between the outer diameter of the inner 

tube and the inner diameter of the outer tube. If this clearance is too small, the tubes bind up 

and cannot be rotated and translated. It is necessary to include clearance in the model in 

order to compute the distribution and magnitude of the intertube contact forces. Prior work 

on friction modeling did not include intertube clearance and consequently only provided an 

approximate solution [14]. As formulated in this paper, however, clearances are assumed to 

be small (empirically, up to 2% of the minimum radius of tube curvature is acceptable).

Coulomb friction is assumed:

We assume that torsional and translational friction between the tubes is purely due to 

Coulomb friction. The Coulomb friction force FC for unidirectional sliding at velocity v is 

given by [15]

FC =

−μFN, v > 0
μFN, v < 0

−μFN < FC < μFN, v = 0
(1)

in which FN is the normal force of contact and μ is the friction coefficient. This model 

assumes that at zero velocity (i.e., the case considered in this paper), friction produces the 

minimum force sufficient to resist motion up to the limit of ±μFN. For tube-on-tube friction, 

the clearance model is used to compute the normal contact force.
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Only tube twisting due to friction is modeled:

We neglect any effect of friction through relative tube translation on tube bending, 

longitudinal compression, and tube buckling. Neglect of bending is justified based on 

experimental observation as shown in Section V-B. Longitudinal rigidity is an assumption of 

the frictionless model.

We solve for limiting solutions in which Coulomb friction either maximizes or minimizes 
the relative twist between contacting tube pairs:

An actual robot path is comprised of tube rotations and translations that can vary in direction 

and magnitude. For these arbitrary path histories, the intertube friction force acting at any 

particular arc length along a tube pair may lie “inside the friction cone” since Coulomb 

friction generates the minimum force necessary to prevent motion. In the most general case, 

one would need to model the propagation of slip with arc length as pairs of tubes are rotated. 

Furthermore, even if tubes are considered longitudinally rigid, tube translation will reduce 

frictional torsion since a component of the friction force will be directed longitudinally. To 

reduce overall modeling complexity, these effects are neglected.

The contribution of this paper is to derive a model that provides estimates of the maximum 

error introduced by friction at any point in joint space. The model assumes that a 

configuration in joint space is reached by first translating all tubes and then performing 

relative tube rotations of sufficient magnitude prior to reaching the goal configuration that 

the maximum Coulomb torque is applied along the entire arc length of each contacting tube 

pair. This approach provides a set of solutions corresponding to positive and negative 

rotations for each contacting tube pair. We show experimentally that these solutions provide 

estimates of the maximum error introduced by friction.

The model is derived using a convex optimization approach that solves for intertube contact 

and friction forces by considering the clearance between tubes. Additional assumptions used 

are that tube cross sections are circular and no external forces are applied. The formulation 

for the intertube contact minimizes elastic potential energy while allowing each tube’s 

centerline curve to vary within the clearances of its inner and outer neighbors. This paper 

extends the results of [16] by incorporating friction forces and torques in the derivations and 

numerical experiments and by reporting physical experiments supporting the clearance and 

friction models. In addition, this paper provides more rigorous mathematical formulations 

compared to [16] of the Jacobian matrices that transform curvature changes to centerlines 

changes and body frame rotations.

While not related to concentric tube robots, there is a literature on friction modeling that 

considers some of the same issues. For example, the mechanisms literature considers the 

modeling of joints with clearance and friction [17]. In the robotic steering of needles through 

soft tissue, friction between the needle and tissue can generate torsional twisting of the 

needle [18]. In the analysis of tendon-driven continuum robots, the modeling of tendon 

friction has received considerable attention [19]–[22].

The paper is organized as follows. The kinematics in the presence of tube clearances are 

derived in Section II as an optimization problem. The following section introduces Coulomb 
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friction into the model. Section IV presents a set of numerical experiments to investigate the 

effect of the clearance and friction on robot shape and intertube contact forces. Next, a set of 

physical experiments validating the tube clearance and the friction models are described. 

Conclusions are presented in Section VI.

II. INCORPORATING TUBE CLEARANCE

This section derives a kinematic model for concentric tube robots that incorporates the tube-

to-tube clearance. The standard zero-clearance model is first reviewed in which all the tubes 

conform to a single centerline curve. Then the kinematics in the presence of clearance are 

formulated as an energy minimization by relaxing the single centerline assumption. An 

energy minimization is solved through a vector space optimization and its dual problem 

formulation. Finally the computational algorithms to solve the dual problem are presented. 

The variables used in the paper are enumerated in the Nomenclature. We remark that vectors 

are expressed with bold lower case letters, matrices are denoted by bold uppercase letters, 

and functions and scalar variables are denoted by either lower or uppercase nonbold italic 

letters.

A. Standard Zero-Clearance Kinematics

Consider a concentric tube robot with n tubes. The robot is parameterized with an arc-length 

parameter s along the length. The tubes are numbered from the outermost one (tube 1) to the 

innermost one (tube n). Tube i has its own precurvature function ui(s) ∈ ℝ3 × 1 and bending 

and torsional stiffness ki, xy, ki, z ∈ ℝ. The x- and y-components of ûi(s) represent the bending 

curvature and the z-component represents the twist rate of the tube (e.g., rad/mm).

The existing mechanics-based kinematic model provides an elastic equilibrium of the tubes. 

The kinematics can be mathematically summarized as a map from base rotations and 

translations to the bending curvatures and torsional curvatures (twist rates) of the tubes [10], 

[11]:

1) input: (θb, lb)

2) output: ui(s) for s ∈ [li,b, li,e] and i = 1, …, n

where θb = θ1, b, θ2, b, … T ∈ ℝn and lb = l1, b, l2, b, … T ∈ ℝn are the base rotations and 

translations of the tubes, respectively, and ui(s) ∈ ℝ3 is the 3-D curvature function of tube i at 

the elastic equilibrium whose x- and y-components are the bending curvature, z-component 

is the torsional curvature, and s = li,e is the distal end of tube i. The body frames and the 

centerline curves of the tubes Ri(s) and pi(s) are then computed from ui(s) by

R⋅ i s = Ri s ui s
p⋅ i s = Ri s ez

(2)

with the boundary conditions
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Ri li, b = Rz θi, b
pi li, b = 0 0 li, b

T
(3)

where êz = [0 0 1]T and the upper dot represents the derivative with respect to s. Note that 〈·〉 
is the 3 × 3 skew symmetric matrix representation of 3-D vector and Rz(θ) ∈ ℝ3 × 3 is the 

rotation matrix of the frame rotated by θ about z-axis from I3×3. The solution of the 

kinematics satisfies pi(s) = pj(s) for any tube i and tube j since this is one of the simplifying 

assumptions used in [10]–[13]. The computation of ui(s) involves solving a set of differential 

equations, the details of which can be found in [10] and [11].

B. Kinematics in the Presence of Clearance

When there are clearances between tubes, the centerlines of the tubes can vary up to the 

limits prescribed by the clearances. Employing a potential energy formulation as in [12] and 

[13] and relaxing the assumption of a shared centerline, the mechanics of the tubes with 

nonzero clearances can be expressed as an infinite-dimensional optimization as follows:

min
ui (s)}

i = 1, …, n
i 1

n

li b

li e
gi(s)ds (4)

where

gi(s) = 1
2(ui(s) − ui(s))T Ki(ui(s) − ui(s)) (5)

subject to the contact constraints, i.e., each tube must remain inside its outer neighbor. Here, 

Ki is a 3 × 3 diagonal matrix with ki,xy, ki,xy, and ki,z in the diagonal components.

C. Formulation as Vector Space Optimization

The optimization in the previous section can be converted to a vector space optimization by 

discretizing the arc length s and all functions of s. First, let vector u i and vector p i denote 

the collection of discretized ui(s) and pi(s), i.e,

u i = ui si1
T ui si2

T…]T ∈ ℝ
3Ni

p i = pi si1
T pi si2

T…]T ∈ ℝ
3Ni

(6)

and define vectors u  and p , the collections of u i and vector p i for all the tubes, as
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u = u 1
T u 2

T…]T ∈ ℝ3N

p = p 1
T p 2

T…]T ∈ ℝ3N

(7)

Here, {sij}j=1,…,Ni is the set of all the discretized points on tube i and Ni is the number of the 

points. To define them, the entire robot length is discretized first and then {sij}j=1,…,Ni is 

formed as the collection of all discretized points where tube i exists. Defining Si = 

{sij}j=1,…,Ni as the set of points for tube i, we note that S1 ⊂ S2 ⊂ ⋯ ⊂ Sn since inner tubes 

are longer and so are defined over a larger range of arc length than outer tubes. N is defined 

as the sum of Ni over all tubes, i.e., N = ∑i = 1
n Ni. Then, by (2) and (3), p  is a function of u , 

i.e.,

p = F u . (8)

The contact constraint can also be expressed as a set of inequalities imposed on a function of 

the vector p . For now, let us just write it by

G p ≤ 0. (9)

The numerical integration of the objective in (4) is also rewritten with the vector u  of the 

form

E = 1
2( u − u )

T
K( u − u ) (10)

where u⃗ ∈ ℝ3N is the discretized precurvature vectorized from {ui(s)}
i = 1, …, n

 in the same 

way as u  and K ∈ ℝ3N × 3N is a diagonal matrix whose ith diagonal component is the 

bending or torsional stiffness (× arc length step) associated with the ith component of the 

curvature vector u. For example, the first and the second diagonal components of K are 

k1,xyΔs and the third component is k1,zΔs, where Δs is the step size in the arc-length 

discretization. Note that the torsional stiffness of tube i, ki,z, is computed by ki,z = ki,xy/(1 + 

ν), where ki,xy and ν are the bending stiffness and the Poisson’s ratio, respectively. The 

energy function (10) thus is the potential energy of all the tubes induced by both bending 

and twist.

Despite the convex objective function, this problem is not convex because the contact 

constraint is nonconvex. By assuming small clearances and, accordingly, small differences in 

the tube curvatures from the solution of the zero-clearance model introduced at the 

beginning of Section II, the optimization reduces to a convex problem by linearizing (8).
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Let ui* s , Ri* s , pi*(s)
i = 1, …, n

 denote an initial guess of the solution about which the 

system will be linearized. The solution of the zero-clearance model, for example, can be 

considered as the initial guess. Let u i*, p i* ∈ ℝ3N , and u ∗, p ∗ ∈ ℝ
3Ni denote the 

discretized version of this solution following the notation of (6) and (7). Define 

Δ u i, Δ p i ∈ ℝ3Ni and Δ u , Δ p ∈ ℝ
3Ni as the small changes in the curvatures and the 

centerlines from the initial guess as follows:

u = u * + Δ u p = p * + Δ p
u i = u i* + Δ u i p i = p i* + Δ p i .

(11)

Substituting (11) in the objective (10) and omitting the constant term yields

min
Δ u

1
2 Δ u TK Δ u + gT Δ u (12)

where g is defined by

g = K( u * − u ) . (13)

Now let us focus on the contact constraint. Consider the cross section of the robot at pi(s) as 

shown in Fig. 2. The cross section intersects with pi+1(s + ϵ), not pi+1(s), since integrating 

along the different centerlines results in different arc lengths on the cross section. The 

quantity ϵ is this arc-length difference. While we assume the tubes have circular cross 

sections, the intersection of the inner tube with the cross-sectional plane of the outer tube in 

Fig. 2(b) would not be a circle since the the tubes are angles from each other. However, it is 

still possible to approximate it as a circle based on the small clearance assumption. The 

constraint can then be written as

∥ pi s − pi + 1 s + ϵ ≤ ci (14)

where the clearance ci(i = 1, …, n) is given by

ci = ri, in − ri + 1, out (15)

where ri,in and ri,out are the inner and outer radii of tube i, respectively.

Assuming small ϵ, the first-order approximation of pi(s) − pi+1(s + ϵ) is given by
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pi s − pi + 1 s + ϵ ≈ pi s − pi + 1 s − ϵp⋅ i + 1* s . (16)

Since (16) is a vector on the cross-sectional plane, the projection of this vector onto the 

plane is the vector itself, shown as follows:

pi s − pi + 1 s − ϵp⋅ i + 1* s = Pi s pi s − pi + 1 s − ϵp⋅ i + 1* s (17)

where the projection matrix is approximated with p⋅ *(s), i.e.,

Pi(s) ≈ I3×3 − p⋅ i*(s)p⋅ i*(s)T . (18)

Noting that Pi(s)p⋅ i + 1* s  is a small vector since p⋅ i + 1* s ≈ p⋅ i* s  for small clearances and p⋅ i* s

is a null vector of Pi(s), the last term on the right side of (17) ϵPi(s)p⋅ i + 1* s  is a second-order 

term. Neglecting this term, the contact constraint (14) reduces to

pi(s) − pi + 1(s))TPi(s)(pi(s) − pi + 1(s) ≤ ci
2 . (19)

This inequality needs to be evaluated on the discretized points where both tube i and tube i 
+ 1 exist. This can be done by substituting s = sij into (19) and the resulting inequality can be 

now expressed with the vector p  of the form

p TSi j
TPi jSi j p ≤ ci

2 (20)

for all i = 1, …, n − 1, j = 1, …, Ni where Sij ∈ ℝ3 × 3N is a selection matrix to pick pi (sij) 

and −pi+1(sij) from p  such that

Si j p = pi si j − pi + 1(si j) (21)

and Pij ∈ ℝ3 × 3 is a projection matrix given by

Pi j = I3×3 − p⋅ i* si j p⋅ i* si j
T . (22)

Linearizing (8) in terms of Δ p  and Δ u ,
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Δ p = Jp Δ u (23)

where Jp = ∂F ∕ ∂ u ∈ ℝ3N × 3N. The matrix Jp maps small changes in tube curvatures to the 

corresponding changes in the tube centerlines. The analytic form of Jp is presented in 

Appendix B. Finally, the constraint (20) can be expressed as a convex constraint with respect 

to Δ u  by combining (20) with p  and Δ p  from (11) and (23), as follows:

Gi j( Δ u ):=1
2 Δ u TXi j

TXi j Δ u + xi j
TXi j Δ u + qi j ≤ 0 (24)

where Xij, xij, and qij are given by

Xi j = Pi jSi jJp ∈ ℝ3 × 3N

xi j = Pi jSi j p * ∈ ℝ3 × 1

qi j=1/2 xi j
Txi j − ci

2 ∈ ℝ .

(25)

Now the problem consists of a convex objective function and a set of convex constraints. 

This is, however, computationally difficult to solve using a standard iterative optimization 

involving gradient descent and projection onto the constraint manifold owing to the high 

dimensionality of Δ u  and the large number of nonlinear constraints. For this reason, we 

recast the problem as its dual [23] to reduce its dimensionality and produce linear 

constraints.

D. Dual Problem Formulation

The dual problem involves optimizing over Lagrange multipliers associated with the 

constraints of the original problem. The dimensionality of the dual problem is thus equal to 

the number of constraints in the original problem. The dual problem is a maximization and 

its objective function is always concave while the constraints are linear since the multipliers 

are nonnegative. For example, the three-tube robot design appearing later in the paper is of 

dimension 630 and involves 133 nonlinear constraints when the innermost tube is fully 

extended. In its dual formulation, the dimensionality is reduced to 133 with 133 linear 

constraints. Furthermore, it has been shown that the dual problem attains the global solution 

of the original problem if the original problem was convex [23].

Following [23], the dual problem is given as the following maximization:

max
λ

Eλ = 1
2h λ TQ λ −1h(λ) − qTλ (26)

subject to
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λk ≥ 0 for k = 1, …, M (27)

where λ = [λ1 λ2 …]T is an M-dimensional vector and M is the number of constraints, i.e., 

M = Σi = 1
n − 1Ni. Q(λ) and h(λ) are defined as

Q(λ) = K +
k 1

M

k
Xk

TXk (28)

h λ = g +
k 1

M

k
Xk

Txk (29)

where Xk and xk are renumbered with the index k from Xij and xij, respectively. The gradient 

of Eλ is then analytically given by

∂Eλ
∂ λk

= Gk Δ u (30)

where Gk is renumbered from Gij in (24) and Δ u  is given by

Δ u = Q λ −1h λ . (31)

This can be computed by solving the linear equation

Q λ Δ u = h λ (32)

for a given Q and h. An efficient way of solving this equation using the matrix inversion 

lemma is given in Appendix A.

Gradient ascent with constraint projection works nicely with this problem thanks to the 

linear constraints (27). The projection of λ onto the violated constraints can be done simply 

by setting all λk < 0 to be λk = 0

Physically, these multipliers are proportional to the contact forces concentrated at the 

corresponding points. The force f k ∈ ℝ can be derived as

f k = ci λk for k = 1, …, M (33)
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based on a virtual displacement and energy analysis. Here, ci is the clearance of the tube pair 

associated with the kth contact constraint. Note that, since we have discretized the arc 

length, distributed contact forces are computed as sets of neighboring concentrated forces.

E. Computation of Clearance Model

The algorithm to solve the dual problem optimization is as follows. Given an initial guess 

ui
∗ s , Ri

∗ s , pi
∗ s

i = 1, …, n
, the initialization steps include:

1) constructing matrix K based on the stiffnesses of the tubes,

2) computing g from (13),

3) computing Jp as given in Appendix B,

4) computing qk(=qij), Xk
TXk = Xij

TXi j  and Xk
Txk = Xij

Txi j  from (25),

5) initializing λ.

The optimization loop is as follows:

1) Compute Q and h from (28) and (29) using the current values of λ

2) Solve Q Δ u = h for Δ u .

3)
Compute d =

∂Eλ
T

∂λ  in (30) using Δ u  computed in 2).

4) Update λ by λ ← λ + δd with a small positive scalar δ.

5) For all k, set λk = 0 if λk < 0.

6) Check convergence and terminate the loop if converged.

7) Otherwise, go back to 1).

The convergence can be checked based on the change in λk between two consecutive 

iterations. Once converged, the latest Δ u  can be added to u ∗ to compute the new tube 

curvatures. A good initial guess ui
∗ s , Ri

∗ s , pi
∗ s

i = 1, …, n
 can be given from the standard 

zero-clearance model. Recalling that the tube centerline change Δ p  is assumed linear to 

Δ u  by (23), the solution obtained through this optimization is an approximation. The 

solution can then be refined by substituting itself as a new initial guess and running the 

optimization loop again. This can be implemented as an outer loop that encloses the 

optimization loop as an inner loop. The computational steps of the outer loop are given 

below:

1) Set {(ui
∗(s), Ri

∗(s), pi
∗(s))}

i = 1, …, n
 as the solution of the standard zero-clearance 

model.

2) Compute Δ u  through the above optimization for given 

{(ui
∗(s), Ri

∗(s), pi
∗(s))}

i = 1, …, n
.
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3) Terminate the loop if ∥ Δ u ∥ is small, i.e., ∥ Δ u ∥ < γ for a small positive γ.

4) Update u ∗ by u ∗ u ∗ + α Δ u  for a positive real α.

5) Update {(ui
∗(s), Ri

∗(s), pi
∗(s))}

i = 1, …, n
 by (2) and (3) using u ∗ and go back to 2).

For the three-tube robot design used in the simulat ions and experiments, the values of δ, α, 

and γ are chosen to be δ = 10−3, α = 1.0, and γ = 10−6 for stable convergence. The inner 

loop usually runs for hundreds to thousands of iterations and the outer loop runs for tens of 

iterations. The initial λk was chosen as a positive constant, such as λ = [1, 1, 1, …]T, and 

then the final λ in the previous optimization loop is used as the initial λ in the following 

loop.

III. MODELING MAXIMUM TORSIONAL FRICTION

We now seek to model the configurations in which intertube friction either maximizes or 

minimizes the relative angular twist between tube pairs. To do so, we assume that the path 

history is such that Coulomb friction is producing its maximum force at each point of 

contact along the length of the tube pairs (i.e., the friction coefficient multiplied by the local 

normal force) and that this force is entirely directed so as to oppose tube twisting (i.e., there 

is no component in the direction of translation).

With friction, the system is no longer conservative and so its model cannot be formulated 

directly by energy minimization. We can, however, introduce friction into the model derived 

above. Consider that the dual problem in Section II-D can be interpreted as solving for 

equilibrium of a mechanical system of elastic rods under interaction forces between tubes. 

To see this, substitute (11), (13), (25), (28), and (29) into (32), which yields

K( u − u ) = Jp
Tfnormal (34)

where

fnormal =
k 1

M
Sk

Tfnormal,k ∈ ℝ3N × 1 (35)

fnormal, k = − λk PkSk p ∈ ℝ3 × 1 . (36)

Here fnormal,k is the normal force applied on the outer tube associated with the kth contact 

constraint, whose magnitude becomes fk in (33) once λ converges. Then Sk
T in (35) applies 

this force on both the inner and outer tubes with the opposing directions. Note that fnormal is 

a vector comprised of the forces applied on all the discretized points of the tubes and the left 

side of (34) is a vector comprised of all the elastic moments on the same set of points. In a 
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robotics context, (34) is an equation of static equilibrium between the elastic moments of the 

tubes and the normal forces on the tubes [24].

Our goal in this section is to reformulate the equilibrium (34) to include the tube-to-tube 

friction forces and torques in the form

K( u − u ) = Jp
Tf + Jω

Tτ (37)

so as to solve for the equilibrium in the presence of the friction. Here f is a vector comprised 

of forces that include both the normal contact forces and the friction forces, τ is a vector of 

the friction torques and Jω is a Jacobian matrix of Ri(s) with respect to u  derived in 

Appendix B. Physically the Jacobian matrix Jω is the linear map from small changes in tube 

curvatures to the corresponding angular displacements in the tube body frames. This 

formulation leads to new forms of Q(λ) and h(λ) different from (28) and (29).

Noting that Jp is the differentiation of F in (8), Jp transforms body-frame curvature changes 

to world-frame centerline changes. Thus, the force vector f is to be expressed in the world 

frame. The Jacobian matrix Jω is derived in Appendix B to convert body-frame curvature 

changes to body-frame rotations of the frames Ri(s). Consequently, the torque vector τ is to 

be expressed in the body frame.

Now, the force f and the torque τ will be derived accordingly. Focusing on the kth contact 

constraint, the friction force lies on the plane perpendicular to the normal force fnormal,k. 

Assuming that the entirety of the friction force is directed toward tube twisting, the friction 

force can be computed by the cross product of the tangent vector of the tube centerline and 

the normal force fnormal,k. Assuming that the path history is such that the maximum friction 

force magnitude is being applied at each point of contact, its magnitude is proportional to 

fnormal,k with the friction coefficient μk. Finally, the friction force is expressed as

ffriction, k = ηkμk p⋅ i* sk fnormal,k (38)

where p. i
∗(sk) is an approximation of the tangent vector of the outer tube (tube i) given by the 

initial solution, sk (= sij) is where the kth contact constraint is defined, and ηk decides the 

direction of the friction force depending on the prior relative base rotation between the tubes 

associated with the kth contact constraint. Here, ηk is defined as

ηk = +1 for CCW prior rotation
−1 for CW prior rotation (39)

where counterclockwise (CCW) and clockwise (CW) rotations are defined by the inner tube 

rotation relative to the outer tube. Again, the bracket 〈·〉 in (38) indicates the 3 × 3 skew 

symmetric matrix.
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Adding this friction force to (35) yields

f =
k 1

M
Sk

T I3 × 3 + ηkμk p⋅ i* sk fnormal,k . (40)

Now the body-frame expression of the friction torques will be given. Since the friction 

torques are applied about the tube’s central axis, i.e., the z-axis of Ri(s), the body-frame 

expression of the torque is simply the z-vector êz = [0 0 1]T multiplied with a scalar that 

represents the magnitude of the torque. The torque magnitude is computed as a 

multiplication of the contact force magnitude, the friction coefficient, and the tube radius. 

Using the scalar representation of the contact force in (33), the friction torques on the outer 

and inner tubes are given respectively by

τi, k = ηkri, inμk f kez ∈ ℝ3×1

τi + 1, k = − ηkri + 1, outμk f kez ∈ ℝ3×1
(41)

where fk is defined in (33) and ηk decides the direction again based on the relative tube 

rotation. The collection of τk,in and τk,out over all k = 1, …, M is given by

τ = ∑
k = 1

M
ci λk WkSk

Tez ∈ ℝ3N × 1 (42)

where Wk is given by

Wk =
W1, k 0

⋱
0 Wn, k

∈ ℝ3N × 3N (43)

where the ith and i + 1st diagonal blocks are nonzero matrices, Wi,k = ηkri,inμkI3Ni×3Ni and 

Wi+1,k = ηkri+1,outμkI3Ni+1×3Ni+1 and all the others are zero matrices, i.e., Wj,k = 03Nj×Nj for 

j ≠ i, i + 1. Here, i and i + 1 are the indices of the tubes involved in the kth contact constraint.

By substituting (40) and (42) into (37) and after an algebraic manipulation, the moment 

equilibrium (37) reduces again to

Q(λ) Δ u = h(λ) (44)

for new Q(λ) and h(λ) given by
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Q(λ) = K +
k 1

M

k
Yk

TXk (45)

h(λ) = g + Jω
Tτ +

k 1

M

k
Yk

Txk (46)

where

Yk = Pk I3 × 3 − μk p⋅ i sk SkJp . (47)

Equation (44) is the same form with (34) but Q(λ) and h(λ) are now in different forms. 

Replacing (28) and (29) with (45) and (46) in the algorithm of Section II-E results in the 

solution that incorporates friction. In the inner loop initialization, as a result, Jω as well as Jp 

needs to be computed and Xk
TXk and Xk

Txk are replaced with Yk
TXk and Yk

TXk, respectively.

IV. NUMERICAL EXPERIMENTS

To understand how clearance and friction influence robot kinematics and contact force 

distribution, two designs of concentric tube robots were investigated in a series of numerical 

experiments: 1) a balanced tube pair and 2) a three-tube robot. Tube parameters are given in 

Tables I and II.

Note that the analysis is independent of the outer diameter (oD) of the outermost tube (tube 

1) and the inner diameter (ID) of the innermost tube (tube n). These parameters are marked 

as “–” in the tables.

The tubes for each design are shown in Fig. 3. The collars shown at the proximal ends of the 

tubes are required to mount the tubes in the drive system and have a length of 17 mm. The 

constraints introduced by the collars are included in the analysis. While any integration 

method can be used, the results presented here were computed using Euler integration, 

which implies that the discretized values are interpolated as constant between adjacent 

discretized points.

A. Effect of Clearance and Friction on Tip Position

Using the tube pair, we first investigated the effect of clearance alone on robot tip position, 

where tip position is measured for the inner robot tube. Fig. 4 compares the tip position 

computed for five values of clearance with the position predicted by the standard zero-

clearance model. The difference in tip position is plotted as a function of base rotation angle. 

Tip position difference tends to increase with increasing clearance and base rotation, with 

Ha et al. Page 15

IEEE Trans Robot. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the maximum differences occurring for values less than 180°. This is a more accurate result 

than was reported in [16], where the linearization (23) was performed only once.

We note that the nonsmooth portions of the curves at small base rotation angles, magnified 

in Fig. 5, are due to the mounting collars. This effect is explained below in Section IV-B.

While reducing clearance increases the accuracy of the zero-clearance model, it can be 

anticipated that the effect of friction between the tubes will be larger for smaller clearances. 

This is demonstrated in Fig. 6 which depicts tip position difference as a function of 

clearance for a tube pair base angle of 180° considering five values of friction coefficient.

Fig. 7 graphically illustrates how tip position varies with clearance and friction coefficient. 

In the depicted configuration, the zero-clearance frictionless model would predict the tubes 

to be straight along their entire length. With clearance, however, the tip moves in the 

direction of the outer tube curvature as the clearance increases. This is due to the mounting 

collars as explained in the following section. Friction produces tip displacements in the 

perpendicular direction. This is due to the fact that friction reduces rotation of the tubes 

along their length. As expected, the small clearance case is more influenced by the friction.

B. Effect of Clearance in Modeling the Effect of Collars and Straight Transmission 
Lengths

Fig. 8 compares constant-curvature tube pairs for a base rotation angle of 180° with and 

without a straight transmission length on the inner tube to accommodate a collar for drive 

system mounting. The clearance in this figure is 3 mm, which is selected for ease of 

visualization. When there is no transmission length, the centerlines of the tubes are 

symmetric with respect to the z-axis as shown in Fig. 8(a). In contrast, when the inner tube 

has a transmission length, the inner tube comes into the outer tube with a nonzero angle 

causing the centerline of the inner tube to be shifted in the direction of the outer tube’s 

precurvature as shown in Fig. 8(b). This results in the overall tube pair bending toward the 

positive x-direction.

To show how tip position varies with transmission length and clearance, tip position 

difference with respect to the zero clearance/zero transmission length model is plotted in 

Fig. 9 for varying transmission length and a discrete set of clearances. The plotting range for 

transmission length in the figure is limited to elastically stable lengths based on [13] and 

[25].

In Fig. 5, it was observed that for small rotation angles, the tip position difference first 

increases, then decreases, and then increases again. This can be explained as follows. 

Initially, the tips of both tubes diverge from the tip position predicted by zero-clearance 

model and are relatively symmetric with respect to the tip position predicted by the zero-

clearance model. When the interaction between the tubes becomes significant, the outer 

starts pulling the inner tube toward itself and the tip of inner tube passes by through tip 

position predicted by the zero-clearance model. Then, as the base rotation goes to 180°, the 

tip position differences of both tubes increase as the overall shapes approach to the shapes of 

Fig. 8(b).
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C. Effect of Clearance and Friction on Contact Force Distribution

When the base of a tube pair is rotated away from 0°, the standard zero-clearance model 

predicts a concentrated moment applied between the tubes at their tips. With the inclusion of 

tube clearance, this concentrated moment is produced by a point force at the tip acting in 

combination with an oppositely directed force distribution located close to, but not at, the 

tip. To see the effect of clearance on the magnitudes and the distances between the two 

forces comprising this moment, the forces in the frictionless case are plotted as a function of 

arc length for θ2,b = 180° in Fig. 10. Note that, due to discretization, distributed forces are 

modeled as concentrated forces applied at the discretization points. As the clearance 

decreases, the forces increase in magnitude and approach each other so as to produce 

approximately the same net moment around 0.338 Nm. This is the moment required to 

straighten each of the tubes, which can be computed as bending stiffness × curvature.

The distribution of the contact forces and their magnitudes vary with the base rotation. As 

base rotation angle increases from zero to 180°, the contact forces increase in magnitude and 

move toward the ends of the tubes. This is shown in Fig. 11, where the contact forces are 

depicted as green circles with diameters indicating magnitude of force. The green circle at 

the tip grows as the base rotates. These force magnitudes are plotted versus arc length in Fig. 

12 for a superset of base rotation angles. Note that a third contact region near the base is also 

shown. The clearance is 0.05 mm in both figures.

The effect of friction on the contact force distributions is shown in Fig. 13 for a base rotation 

angle of 180°. Here, the contact forces magnitudes include both the normal and friction 

components. Even so, the force magnitudes are slightly reduced. This is due to the fact that 

friction reduces tube rotation leading to less tube straightening near the tips. Since the tip 

forces are required to straighten the tubes, they are also reduced.

D. Effect of Clearance and Friction on Tip Position of Three-Tube Robot

Consider the three-tube robot illustrated in Fig. 3(b) with parameters given in Table II. 

Assuming the base of the outermost tube is fixed and that the outer tube pair is constrained 

to rotate, but not translate with respect to each other (creating a section of varying curvature, 

but fixed length), the configuration space of the three-tube robot consists of the two rotations 

of tube 2 and tube 3 and one translation of tube 3. A set of configurations was sampled from 

a 4 × 4 × 4 uniform grid in the configuration space. The tip displacements induced by 

clearances (0.0425 mm between tubes 1 and 2; 0.0625 mm between tubes 2 and 4) and 

friction (friction coefficient of 0.2) were computed for these configurations. The mean and 

maximum differences in tip position and tangent angle for models with clearance and with 

clearance and friction are compared with the zero-clearance/frictionless model in Table III. 

one can see that the errors associated with friction are substantially larger than those 

associated with clearance alone. Fig. 14 depicts the configurations of maximum position 

difference. Note that there are four solutions of the friction model for each configuration 

depending on the directions of the relative tube rotations to reach the configuration. The tip 

positions differ significantly based on the relative rotation direction of tubes 2 and 3, but the 

difference is small with respect to the relative rotation direction of tubes 1 and 2.
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V. PHYSICAL EXPERIMENTS

To validate the model, three experiments are reported here. The first experiment is designed 

to evaluate the clearance model and uses a tube pair with an optically clear outer tube to 

enable direct visualization of the the contact regions. The second experiment investigates the 

effect of path history on robot configuration for a tube pair. These experiments demonstrate 

how large pure rotations, which are assumed by the friction model presented in Section III, 

produce bounding configurations. This is done by comparing solutions for path histories 

combining rotations and translations. The third experiment evaluates modeling error of the 

proposed clearance and friction models for path histories consisting of large pure rotations. 

A three-tube robot of a size and design suitable for surgery is used in these experiments. 

Details of each experiment are provided in the subsections below.

A. Validation of Frictionless Clearance Model

To enable visualization of contact regions, a clear tube made of fluorinated ethylene 

propylene (FEP) and NiTi wire were shape set [see Fig. 15(a)] and their precurvatures and 

normalized (dimensionless) stiffnesses as reported in Table IV were estimated based on 

images of the individual tubes and the combined tubes, respectively. Only normalized tube 

stiffnesses are listed since the clearance model depends only on the relative stiffness of the 

tubes. The values of Poisson’s ratio used were selected as the nominal material values. To 

measure the contacts with respect to arc length, the clear tube was scribed circumferentially 

every 3.175 mm (1/8 inches) [see Fig. 15(b)]. A line was also scribed longitudinally along 

the length of the tube to define a coordinate frame for each cross section. The angle of the 

contact region with respect to the coordinate frame was measured by sliding a paper 

protractor (see Fig. 16) along the tube to each contact region and measuring the angle 

between the longitudinal line and the contact line. The contact line between the NiTi wire 

and clear tube appeared as a dark line segment as shown in Fig. 15(b). The consistency of 

these measurements is empirically estimated to be ±1.5 mm in arc length and ±5° in 

circumferential angle.

To evaluate the clearance model by itself without considering friction or other history-

dependent phenomena, an oscillatory path of decreasing amplitude was used to approach 

each rotational configuration [26]. The path consists of a sequence of 20 angular offsets 

from the desired angular configuration: {+40°, −38°, +36°, …, −2°, 0°}. The effect of this 

sequence of decreasing-amplitude oscillations is to release torsional twisting due to path 

history.

The contact regions for seven relative angles were measured and are reported in Fig. 17. Fig. 

17(a) shows the minimum distance between the wire and tube. The maximum possible 

distance is the clearance which is shown as a dashed line and corresponds to the intersection 

of the two centerlines. The three regions of contact between the wire and tube occur over the 

intervals for which the distance is zero. Note that the distal contact region consists of a point 

at the tip of the tube.

The angle of the direction of minimum distance between the tube and wire measured with 

respect to the tube cross section is plotted in Fig. 17(b). The predicted contact regions (zero 
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distance) are marked by circles while the measured contact regions are denoted by line 

segments marked with Xs. There is good agreement between predicted and measured 

contact regions. For the proximal contact, the differences in contact centroid position and 

cross-section angle are given by 6.4 ± 1.7 mm and 3.5 ± 3.4°, respectively. For the middle 

contact, the differences in contact centroid position and cross-section angle are given by 0.6 

± 0.3 mm and 3.7 ± 3.8°, respectively. Since the third contact region is a point of contact at 

the tube tip, there is no difference in contact location and the difference in contact angle is 

given by 2.3 ± 2.3°.

Recall that the zero-clearance model requires a concentrated moment to be applied to the tip 

of the outer tube to produce equilibrium on this cross section. This experiment reveals that 

the moment is actually generated by the distal pair of forces acting over a moment arm of 

about 26 mm.

B. Effect of Path History on Kinematic Configuration

The friction model presented in Section III assumes sufficient prior motion between 

contacting tube pairs so that the maximum Coulomb friction force is acting at each point of 

contact. It also assumes that this friction force is entirely directed so as to produce a twisting 

intertube torque. This implies that the prior motion was a pure rotation. To investigate the 

effect of prior rotation and translation on a tube pair, experiments were performed using the 

tubes shown schematically in Fig. 18 with parameters given in Table V.

The goal of the experiments was to verify that configurations reached by sufficiently large 

pure rotations would maximize or minimize the relative twist between the tubes compared to 

paths comprised of combined rotations and translations. Furthermore, one can anticipate that 

sufficiently large pure translations could act to reduce frictional torsional twisting so that 

they approach the solution predicted by the frictionless model.

Thirty-seven configurations were considered consisting of relative rotations at 10° intervals 

from 0° to 360° and a relative translation of 43 mm such that the curved portion of the inner 

tube was extended halfway from the outer tube. For each configuration, eight path histories 

were generated and the tip twist angle and position coordinates were recorded using 

electromagnetic sensors. Path histories were comprised of pure rotations (two directions), 

pure translations (two directions), and combined translation and rotation (four directions). 

Path histories were constructed by first moving to an offset configuration (90° for rotations, 

10 mm for translations) and then moving to the target configuration. Rotation and translation 

were done simultaneously at uniform rates to linearly interpolate the offset and target 

configurations.

We also estimated the frictionless solution with the standard kinematics model [10] 

calibrated using a least squares minimization over the model parameters to minimize the 

sum of tip position errors, expressed as

min
ϕ i 1

37 8
pi m pt ϕ qi

2
(48)
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where ϕ and qi are the set of calibration parameters and the configuration of the ith 

measurement, respectively, and pi,m, pt(ϕ, qi) are the measured and theoretical tip positions. 

The model parameters were calibrated using data from all eight paths and the resulting 

values are also given in Table V. The bold numbers in the table are the calibrated parameters 

and the numbers in the parentheses are the initial values used in the calibration.

Note that the Poisson’s ratio is negative for the inner tube. Recalling that the ratio of bending 

to torsional stiffness is given by 1 + ν, a negative value indicates that the stiffness ratio is 

smaller than anticipated. While beyond the scope of this paper, this is likely due to the 

higher strain in this tube leading to nonlinear behavior. In particular, the maximum strains 

due to bending are 0.34% for the outer tube and 1.23% for the inner tube. Only the inner 

tube enters the nonlinear strain region (strain > 1%) and it is the only tube that experiences a 

negative Poisson’s ratio.

Fig. 19 depicts the relative angle at the tips of the tubes as a function of base rotation angle. 

As anticipated the maximum and minimum twist angles for all base rotations correspond to 

approaching the configuration using a pure rotation. Also as expected, the two solutions 

corresponding to pure translations yield practically identical values of tip angle which are 

very close to the estimated zero-friction solution. Furthermore, the pairs of solutions 

combining two directions of translation with a specific direction of rotation are very close to 

each other and lie between the corresponding pure rotation solution and pure translation 

solutions.

As the tube pair is rotated through a complete revolution, the tip of the inner tube traces out 

an elliptical path as shown in Fig. 20. The tip paths all lie approximately on a plane rotated 

23° from xy-plane about the y-axis. The maximum offset from this plane is less than 0.5 

mm. The pure rotation solutions are shown as solid curves and the eight path-based 

configurations are depicted for a set of six base angles. The estimated frictionless solution is 

also shown.

It can be observed that for each solution set, the pure rotations are farthest apart. The pure 

translations are located centrally, close to each other and close to the estimated frictionless 

solution. As in Fig. 19, the pairs of combined rotations and translations lie between the pure 

rotations and pure translations.

The 3-D distances between the experimental measurements and the estimated frictionless 

solution are plotted as a function of base rotation angle in Fig. 21. The distances are largest 

near a relative rotation of 180° since this is where the contact and friction forces are largest 

due to the precurvatures of the tubes opposing each other. This plot illustrates how pure 

rotation path histories produce the largest tip errors for tube pairs. The friction model 

proposed in this paper is intended to compute these maximum-error configurations.

C. Validation of Friction Model

These experiments evaluate the prediction error of the friction model for path histories 

comprised of pure rotations. Its performance is compared to the standard frictionless model 

[10] as well as to the frictionless clearance model. The three-tube robot shown in Fig. 22 
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was used and a 6-DOF electromagnetic (EM) sensor (Model 180, Ascension Technologies) 

recorded tip position and orientation. Sensor position and orientation accuracies are 1.4 mm 

rms and 0.5° rms. We performed our experiments in the region with the best measurement 

quality indicated by the manufacturer’s software and averaged measurements over 2 s (about 

200 measurements) to clear our high-frequency noise. Ignoring rigid-body motions, the 

robot degrees of freedom consist of the two relative rotations of the three tubes and the 

relative translation of the distal tube with respect to the proximal pair (the proximal pair of 

tubes are designed to translate together). The nominal tube parameters are given in Table II.

Since each robot configuration is described by two relative angles, a specific configuration 

can be approached from four angular “directions.” The four angular directions correspond to 

the following rotation directions of the second and third tubes relative to the first and second 

tubes, respectively: (1) CCW, CCW, (2) CCW, CW, (3) CW, CCW, and (4) CW, CW. Each of 

the relative rotations is performed by 90° of tube base rotation, which was found to be 

sufficient to produce the maximum torsional friction effect. An example configuration is 

depicted in Fig. 23, in which path direction produced four different tip positions that differ 

from each other by up to 17 mm.

Tip position and tangent direction were collected for each of the four approach directions at 

8 × 8 × 8 configurations evenly distributed in joint space. This dataset was divided into two 

subsets. The first, comprising 62 configurations (×4 angular directions), was used for 

calibration while the remaining 450 configurations (×4 angular directions) were used for 

error computation. The 62 configurations were selected as 4 × 4 × 4 subset configurations 

evenly distributed in the joint space. Two configurations in the set of 4 × 4 × 4 were 

excluded since they were predicted to possess multiple solutions using the standard zero-

clearance model with the nominal parameters.

Model calibration was performed as a least squares minimization over the model parameters. 

For these experiments, we minimized the weighted sum of tip position and tangent errors, 

expressed as

min
ϕ i 1

62 4
pi m pt ϕ qi

180
π cos 1(ti m tt(ϕ qi))

2
(49)

where ϕ and qi are the set of calibration parameters and the configuration of ith 

measurement, respectively, and pi,m, pt(ϕ, qi), ti,m and tt (ϕ, qi) are the measured and the 

theoretical tip positions and the measured and theoretical tip tangents, respectively. This 

choice of weighting function scales 1° of tangent error to be equal to 1mm of position error.

The calibrated tube parameters for the standard frictionless model are given in Table VI and 

those of the frictionless clearance model and the friction model are given in Table VII. Only 

the normalized tube stiffnesses are listed since the model depends only on the relative 

stiffness of the tubes. In the clearance model and the friction model, the tube-to-tube 

clearances are not calibrated but given by the nominal inner and outer diameters of the tubes. 

The bolded numbers in the tables are the parameters that have been calibrated while the 
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others werefixed in the calibration. Parameters were calibrated through a gradient descent 

method. The friction coefficients were calibrated during a second pass using a 2-D grid 

search to avoid local minima. This approach allows the frictionless clearance model and the 

friction model to share the same tube parameters. Furthermore, calibration performed over 

all parameters simultaneously was performed and did not improve the model fit.

Note that while the tube precurvatures were in the y-direction, the calibration allowed 

nonzero curvatures in the x-direction. In other words, the y-curvature is the main tube 

precurvature and the x-curvature is off-plane curvature that can be produced unintentionally 

during the manufacturing process. The x-curvature is at least 46 times smaller than the y-

curvature in Tables VI and VII.

Also, notice that the calibrated values for Poisson’s ratio of the innermost tube for all models 

are negative. As described in the tube pair example above, this is likely due to the higher 

strains in this tube leading to nonlinear behavior. In particular, the maximums strains due to 

tube bending are computed to be 0.73%, 0.65%, and 1.68% for tubes 1 to 3, respectively, 

using the tube parameters in Table VII. Only tube 3 enters the nonlinear strain region (strain 

> 1%) and it is the only tube that experiences a negative Poisson’s ratio.

The mean and maximum errors in tip position and tangent direction for the three models 

were computed using the 450 robot configurations (×4 angular directions) collected as 

described earlier. The results are reported in Table III along with the CPU evaluation time 

for each model. All models were coded in MATLAB and running on a PC equipped with 

Intel(R) Core(TM) i5–3470 CPU. Since the frictionless standard and clearance models 

produce a single solution for each robot configuration, the inclusion of all four angular-

directions measurements in both the calibration and evaluation steps is similar to employing 

the “average” tip position and tangent direction for each configuration [26].

There is no statistically significant difference between the mean prediction errors of the 

frictionless standard and clearance models and the maximum errors are also similar. Note 

that the two models have the same number of parameters. While not included here, we also 

fit the clearance model while allowing the clearance parameters to vary. These additional 

parameters had little effect on the average and maximum errors.

In contrast, the friction model provides a significant improvement over the other two models. 

The error mean and standard deviation are reduced in both tip position and tangent direction. 

Perhaps the most important reduction is that the maximum errors in position and tangent 

direction are reduced by 48% and 50%, respectively. Note, however, that, as implemented, 

the friction model takes 51 times as long to evaluate.

A comparison of models at a typical configuration is shown in Fig. 24. The friction model 

produces four solutions according to the angular directions by which the configuration is 

approached. These solutions can be seen to approximate the four corresponding 

experimental measurements. The frictionless models each produce a single solution that, to 

some extent, models the “mean” of the four solutions.
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VI. CONCLUSION

This paper has demonstrated how tube clearance and torsional Coulomb friction can be 

incorporated in the existing mechanics-based but approximate kinematic model. The 

clearance model by itself does not reduce modeling error, but is a necessary step for 

computing friction torques based on the contact forces between tubes. It also reveals some 

interesting details about tube interaction. For example, the concentrated moment that the 

standard model assumes at the end of each tube (except the most distal one) was found to be 

comprising a distributed force and point force acting as a force couple over a centimeter-

scale distance.

The friction model, as formulated, assumes that the maximum Coulomb force is generated 

along the entire interface between each contacting pair of tubes and is directed 

circumferentially. This produces solutions in which friction either maximizes or minimizes 

the twisting between each pair of contacting tubes and corresponds to purely rotational path 

histories. It was demonstrated experimentally for a tube pair that purely rotational path 

histories produce the maximum tip error compared to translations or mixed translations and 

rotations. Consequently, the friction model provides worst case estimates of actual tip 

configurations for arbitrary path histories.

Additional experiments revealed that, for path histories of pure rotation, the friction model 

produced a significant reduction in average error. Maximum error was also reduced by half 

when compared to the standard kinematic model. The price paid for improved modeling 

accuracy was a substantial increase in model computation time.

While such a model is not appropriate for real-time feedback control, it is valuable for path 

planning since it can be used to estimate the maximum path-dependent errors for a specific 

robot configuration. Furthermore, knowledge of how path history (rotations versus 

translations) affects friction-induced tube twisting can also guide path planning. For 

example, set-point interpolation can be designed to favor performing translations after 

rotations in order to reduce torsional friction.
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Appendix A: Efficient Computation of Δu→=Q−1h

An efficient way of computing Δ u = Q−1h is presented here. Consider Q given in (28) for 

the frictionless case and in (45) for the case with friction. The derivation here focuses on 

(45) since (28) is a special case of (45) with zero friction coefficients, i.e., μk = 0. The matrix 

Q in (45) can be expressed without Σ as

Q(λ) = K + YTΛX (50)

with
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X = Xk1
T Xk2

T …
T

∈ ℝ3m × 3N (51)

Y = Yk1
T Yk2

T …
T

∈ ℝ3m × 3N (52)

Λ =

λk1
I3 × 3 0

λk2
I3 × 3

0 ⋱

∈ ℝ3m × 3m (53)

where k1, k2, …, km are the indices of nonzero λk. Applying the Woodbury matrix identity 

[27], Q−1 h is given by

Q−1h = K−1h − K−1YT Λ−1 + XK−1YT −1XK−1h. (54)

Here, the diagonal matrices K and Λ can be efficiently inverted by component-wise 

inversions. The other matrix to invert, Λ−1 + XK−1 YT, is a 3 m × 3 m matrix where m is the 

number of nonzero λk. The dimension of this matrix is smaller than that of Q ∈ ℝ3N × 3N . 

Thus, the computation involved in the matrix inversion is more efficient, especially when λ 
is nearly converged since λk in the converged solution are mostly zero, i.e., the contact 

forces are mostly zero along the length, as shown in Figs. 10, 12, and 17.

For more efficient computation, (Λ−1 + XK−1 YT )−1 XK−1 h can be set equal to v and 

computed through solving the linear equation below for the unknown v:

Λ−1 + XK−1YT v = XK−1h. (55)

Then Δ u  is computed by substituting v in

Δ u = K−1h − K−1YTv . (56)

In summary, the equation Δ u = Q−1h can be efficiently solved for Δ u  by first solving (55) 

for v and substituting the resulting v into (56).
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Appendix B: Analytic Forms of Jp and Jω

The Jacobian matrix Jp ∈ ℝ3N × 3N is the linear map between changes in tube curvatures and 

changes in tube centerlines around the initial solution ui
∗ s , Ri

∗ s , pi
∗ s

i = 1, …, n
. Similarly, 

Jω ∈ ℝ3N × 3N maps the changes in tube curvatures to the angular displacements of the tube 

frames {Ri(s)}i=1,…,n. The analytic forms of theses matrices are derived here. The 

formulation of Jp is more accurate than (26) in [16] as it accurately incorporates tube 

curvature between discretized points.

As the tube lengths are discretized, the Jacobian matrices depend on the numerical 

integration of the centerlines and the frames along the tubes. While any numerical 

integration can be chosen, the analytic forms of Jp and Jω to be derived here are based on 

Euler integration in the exponential coordinate of SE(3), shown as follows:

Ti s + Δ s = Ti(s)exp
ui s ez

01 × 3 0
Δ s (57)

where Δs is the arc length step, êz = [0 0 1]T is the unit vector along the z-axis, and Ti(s) ∈ 
SE(3) is the 4 × 4 transformation matrix that represents the body frame and the position of 

tube i at s, which is of the form

Ti(s) =
Ri(s) pi(s)
01 × 3 1 . (58)

Defining Jp, i ∈ ℝ
3Ni × 3Ni and Jω, i ∈ ℝ

3Ni × 3Ni as the Jacobian matrices for tube i only, they 

align diagonally in Jp and Jω of the form

Jp =
Jp, 1 0

⋱
0 Jp, n

, Jω =
Jω, 1 0

⋱
0 Jω, n

. (59)

By decomposing Jp,i and Jω,i further into 3 × 3 blocks, their (j, k)th 3 × 3 blocks can be 

expressed, respectively, as

Jp, i( j, k) =
∂pi(si j)
∂ui(sik) ∈ ℝ3×3 (60)
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Jω, i( j, k) =
∂ωi(si j)
∂ui(sik) ∈ ℝ3×3 (61)

which represent the linear maps between small changes in the curvature at kth point on tube 

i and corresponding changes in pi(s) and ωi(s) at jth point on tube i. Here ωi(s) ∈ ℝ3 is the 

angular displacement of Ri(s) from Ri
∗ s , i.e., Ri s = Ri

∗ s exp ωi s .

To derive Jp,i(j, k) and Jω,i(j, k), we will express the relations of pi(sij), ωi(sij), and ui(sik) as 

a matrix equation and expand this as the first-order Taylor series. This results in a set of 

linear equations that represent linear maps between small changes of (pi(sij), ωi(sij), ωi(sik)), 

where the linear maps correspond to the matrices Jp,i(j, k) and Jω,i(j, k). Note that Jp,i(j, k) 

and Jω,i(j, k) for j < k are zero matrices as the curvature change at a point doesn’t influence 

pi or ωi at more proximal points. The following derivations will thus focus on j ≥ k.

Let us begin with the following obvious equation:

Ti si j = Ti(sik)Ti
−1 sik Ti(si(k − 1))Ti

−1(si(k − 1))Ti(si j) . (62)

To have ui(sjk) appear in the equation, Ti
−1 sik Ti si k − 1  will be substituted with an 

exponential map associated with ui(sjk), as follows:

Ti si j)=Ti(sik) exp V Δ s Ti
−1(si(k − 1))Ti(si j) (63)

where

V =
ui(s jk) ez

01 × 3 0
∈ ℝ4×4 . (64)

Note that (63) relates pi(sij), ωi(sij), and ui(sik) as Ti(sij) is a function of pi(sij) and ωi(sij), 

i.e.,

Ti(si j) =
Ri*(si j) exp ωi(si j) pi(si j)

01 × 3 1
. (65)

The first-order Taylor expansion of (63) with respect to (pi(sij), ωi(sij), ui(sik)) about the 

initial solution (ui
∗ s , Ri

∗ s , pi
∗ s ) is given by
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Ri*(si j) δωi(si j) δpi(si j)
01 × 3 1

= Ti*(sik)dexp(V * Δs) δu(sik) Δ s Ti
* − 1(si, k)Ti*(si, j) (66)

where V* is defined by substituting ui(sik) in (64) with ui
∗ sik . Here dexp(⋅) denotes the 

differential of the exponential map [28] and the variables with δ represent the small changes 

of the corresponding variables. After an algebraic manipulation, (66) reduces to the 

following linear equations:

δpi(si j) = Jp, i( j, k)δui(sik) (67)

δωi(si j) = Jω, i( j, k)δui(sik) (68)

where the matrices Jp,i(j, k) and Jω,i(j, k) can be expressed using the differential of the 

exponential map. Based on the formulations of the differential of the exponential map in 

[28], Jp,i(j, k) and Jω,i(j, k) are given by

Jp, i( j, k) = pi*(si j) − pi*(sik) Dik + Eik (69)

Jω, i( j, k) = Ri
* T(si j)Dik (70)

with D ∈ ℝ3 × 3 and E ∈ ℝ3 × 3 defined as

Dik = Ri*(sik) dexpui*(sik)Δs Δ s (71)

Eik = Ri*(sik) C ui* sik Δ s + 1
2 ez Δ s (72)

where the 3 × 3 matrices dexp(⋅) and C(⋅) are given in [28] by

dexpu = I3 × 3 + 1
2 β u + 1 − α

∥ u ∥2 u 2 (73)
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C(u) = − 1 − β
2 ez + 1 − α

∥ u ∥2 ez u + u ez + α − β
∥ u ∥2 uTez u

+ 1
∥ u ∥2

1
2 β − 3

∥ u ∥2 1 − α uTez u 2

(74)

and α and β are given by

α =
2sin∥ u ∥

2 cos∥ u ∥
2

∥ u ∥ , β =
4sin2 ∥ u ∥

2
∥ u∥2 . (75)

In summary, the overall computation is as follows:

1) For tube i, compute Jp,i(j, k) and Jω,i(j, k) over j = 1, …, Ni and k = 1, …, Ni 

using (69)–(75). Remember that Jp,i(j, k) = Jω,i(j, k) = 03×3 for j < k.

2) Build Jp,i and Jω,i by collecting Jp,i(j, k) and Jω,i(j, k) as (j, k)th 3 × 3 blocks.

3) Repeat (1) and (2) for all tubes and build Jp and Jω using (59).
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Nomenclature

n Number of tubes

i Tube index, numbered from outer to inner

j Arc-length discretization index, numbered from base to tip

k Index renumbered from combined index ij

s Arc-length parameter

pi(s) Three-dimensional (3-D) centerline curve of tube i

Ri(s) 3 × 3 rotation matrix of body frame of tube i

êz Unit z-axis vector, i.e., [0 0 1]T

ui(s) 3-D curvature vector of tube i

ûi(s) 3-D pre-curvature vector of tube i

θi,b, θb Base rotation of tube i and base rotation vector

li,b, lb Translation of tube i and translation vector

ki,xy, ki,z Bending and torsional stiffnesses of tube i

Ki 3 × 3 stiffness matrix of tube i

Rz(α) 3 × 3 rotation matrix of rotation of α about z-axis
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gi(s) Elastic potential energy per length of tube i

u i Vector comprised of discretized ui (s)

u⃗i
Vector comprised of discretized ûi (s)

p i Vector comprised of discretized pi (s)

u Vector comprised of u i of all tubes

u⃗ Vector comprised of u⃗i of all tubes

p Vector comprised of p i of all tubes

Ni Number of discretized points on tube i

N Sum of Ni of all tubes

F u Function that returns tube centerlines p  given tube 

curvatures u

G u Tube-contact constraint function

E Potential energy of all tubes

K Matrix comprised of stiffnesses corresponding to u

ν Poisson’s ratio

u ∗ Nominal value of u  for linearization of F u  and G u

p ∗ Value of p  corresponding to u ∗

Δ u Difference between u ∗ and u , i.e., u − u ∗

Δ p Difference between p ∗ and p , i.e., p − p ∗

Pij 3 × 3 projection matrix of cross section of tube i at j-th 

discretized point

Jp Jacobian matrix of F u

Jω Jacobian matrix of Ri(s) w.r.t. u

Sij Selection matrix to pick pi (sij) and −pi+1(sij) from p

ci Clearance between tube i and tube i + 1

ri,in, ri,out Inner and outer radii of tube i

Ha et al. Page 30

IEEE Trans Robot. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



g, Xk , xk, qk Initialization variables of inner loops of clearance model 

and friction model

Yk Initialization variable of inner loop of friction model

λ Lagrange multiplier vector associated with tube contact 

constraint

Q(λ), h(λ) Variables computed in each iteration of inner loops of 

clearance model and friction model

fnormal, k Normal contact force on outer tube applied by inner tube at 

sk(= skij)

fnormal Vector comprised of fnormal, k for all k

ffriction, k Friction force on outer tube applied by inner tube at sk(= 

skij)

τi,k Torque on tube i induced by tube-to-tube friction at sk(= 

skij)

τ Vector comprised of τi,k for all k

μk Friction coefficient between tubes associated with k-th 

contact constraint

ηk Direction of prior rotation of inner tube w.r.t. outer tube at 

k-th contact constraint. Either 1 (CCW) or −1 (CW)
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Fig. 1. 
Path dependence of concentric tube pair. (a) Superimposed photographs of robot shapes 

achieved by clockwise and counterclockwise rotation for a base angle of 120°. (b) Relative 

tube rotation angle at tip versus base.
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Fig. 2. 
Intersection of inner tube with cross section of outer tube. (a) Centerlines. (b) Plane of cross 

section.

Ha et al. Page 34

IEEE Trans Robot. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Robot designs comprised of (a) a tube pair and (b) three tubes. The dashed lines indicate 

boundaries between straight and curved tube sections.
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Fig. 4. 
Difference in tip position compared to zero-clearance model. The curves are plotted for 5° 

increments of the base rotation.
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Fig. 5. 
Difference in tip position compared to zero-clearance model for small values of base rotation 

angle. The curves are plotted for 0.5° increments of the base rotation.
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Fig. 6. 
Difference in tip position compared to zero-clearance model for a tube pair base angle of 

180° as a function of clearance and friction coefficient.
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Fig. 7. 
Tip position of a tube pair as a function of clearance and friction coefficient. Base rotation 

angle is 180°. The illustrated tube shapes are for a clearance of 1.0 mm and a friction 

coefficient of 0.5.
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Fig. 8. 
Inner (black) and outer (gray) tubes in the presence of 3 mm clearance with (a) no straight 

transmission length and (b) a 17-mm straight transmission length of the inner tube. The tube 

centerlines in (b) are not symmetric due to the transmission length.
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Fig. 9. 
Difference in tip position compared to zero-clearance model as a function of transmission 

length for five values of clearance.

Ha et al. Page 41

IEEE Trans Robot. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Contact force magnitude versus arc length near tube tips for five values of clearance.
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Fig. 11. 
Force distribution and magnitude as a function of base rotation angle for a clearance of 0.05 

mm. Contact forces are visualized as green circles with diameters proportional to force 

magnitude.
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Fig. 12. 
Contact force magnitude as a function of arc length for six values of base rotation angle and 

a clearance of 0.05 mm.
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Fig. 13. 
Contact force magnitude versus arc length near tube tips for three values of friction 

coefficient and a tube clearance of 0.05 mm.
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Fig. 14. 
Comparison between zero- and nonzero-clearance models with and without friction at 

configurations of maximum tip position difference between zero- and nonzero-clearance 

models (a) without friction and (b) with friction. The circles and the arrows indicate the tip 

positions and tangent vectors, respectively.
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Fig. 15. 
Two-tube robot comprised of a clear plastic (FEP) tube and NiTi wire. (a) Robot 

disassembled. (b) Closeup view showing contact as dark line segment. Circumferential and 

longitudinal scribe marks are also shown.
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Fig. 16. 
Two-tube robot shown in drive system with protractor for measuring contact angles.
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Fig. 17. 
Minimum directed distance between clear tube and wire. (a) Minimum radial distance. (b) 

Angle with respect to clear tube cross section at which minimum distance occurs. Model-

predicted contacts are shown with circles. Experimentally measured contacts are shown with 

Xs.
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Fig. 18. 
Schematic of tube pair used in path history experiment.

Ha et al. Page 50

IEEE Trans Robot. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 19. 
Relative tube rotation angle at the tip versus base rotation angle. Measurements for eight 

path histories are shown for each base angle.
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Fig. 20. 
Tip positions of Fig. 19. Pure-rotation path-history measurements are plotted as solid curves. 

The eight individual path history solutions are plotted at 60° intervals for clarity.
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Fig. 21. 
Average distance of tip position from predicted frictionless solution based on path history.
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Fig. 22. 
Three-tube robot. EM sensors are used to measure the relative transformation from the robot 

base to the robot tip.
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Fig. 23. 
Example showing four experimentally measured robot tip positions corresponding to the 

four rotational paths of a single set of base angles.
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Fig. 24. 
Example configuration comparing four experimental solutions with the single predictions of 

the standard and clearance models and the four solutions of the friction model. Circles 

denote tip positions and semitransparent arrows indicate tip tangent vectors.
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TABLE I

PARAMETERS OF TUBE PAIR

Tube 1 Tube 2

Section 1 Section 1 Section 2

Length (mm) 150 17 150

Curvature (mm−1) 1/150 0.0 1/150

Bending Stiffness (Nm2) 5.07 × 10−2 5.07 × 10−2

Poisson’s ratio 0.3 0.3

OD \ ID (mm) –\1.02 - 7.0 1.0\–

Clearance (mm) 0.01 - 3.0

Friction coefficient 0.0 - 0.5
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TABLE II

PARAMETERS OF THREE-TUBE ROBOT

Tube 1 Tube 2 Tube 3

Section 1 Section 1 Section 2 Section 1 Section 2

Length (mm) 150 17 150 184 86.4

Curvature (mm−1) 1/265 0.0 1/265 0.0 1/55

Bending Stiffness (Nm2) 5.07 × 10−2 5.07 × 10−2 1.45 × 10−2

Poisson’s ratio 0.3 0.3 0.3

OD \ ID (mm) –\2.39 2.305\1.95 1.825\–

Clearance (mm) 0.0425 0.0625

Friction Coefficient 0.2 0.2
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TABLE III

DIFFERENCES IN TIP POSITION BETWEEN STANDARD AND NONZERO-CLEARANCE MODELS

Model Mean pos. diff. (mm) Max. pos. diff. (mm) Mean tan. diff. (°) Max. tan. diff. (°)

Clearance 1.8(±1.0) 4.2 2.7(±1.2) 5.1

Friction 6.1(±5.7) 23.8 10.7(±9.8) 45.6
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TABLE IV

PARAMETERS OF TUBE PAIR

Tube 1 Tube 2

Section 1 Section 1 Section 2

Length (mm) 145 17 165

Curvature (mm−1) 1/365 0.0 1/56

Bending Stiffness 1 0.81

Poisson’s ratio 0.48 0.3

Clearance (mm) 1.625
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TABLE V

PARAMETERS OF TUBE PAIR USED IN PATH HISTORY EXPERIMENT

Tube 1 Tube 2

Section 1 Section 2 Section 1 Section 2

Length (mm) 17 150 184 86.4

y-curvature (mm−1) 0.0 1/288.1 (1/265) 0.0 1/79.3 (1/55)

x-curvature (mm−1) 0.0 −1/24968.4 (0.0) 0.0 −1/2590.7 (0.0)

Bending Stiffness 1 0.221 (0.286)

Poisson’s ratio 0.3014 (0.3) −0.2307 (0.3)

OD \ ID (mm) 2.305\1.95 1.875\1.6
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TABLE VI

STANDARD FRICTIONLESS MODEL PARAMETERS

Tube 1 Tube 2 Tube 3

Section 1 Section 1 Section 2 Section 1 Section 2

Length (mm) 150 17 150 184 86.4

y-curvature (mm−1) 1/276.5 0.0 1/212.4 0.0 1/61.01

x-curvature (m−1) −1/1775.0 0.0 −1/9.791 0.0 −1/3.526

Bending Stiffness 1 1.006 0.2742

Poisson’s ratio 0.3208 0.3415 −0.1750

Estimated parameters are bolded.
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TABLE VII

PARAMETERS OF FRICTIONLESS CLEARANCE AND FRICTION MODELS

Tube 1 Tube 2 Tube 3

Section 1 Section 1 Section 2 Section 1 Section 2

Length (mm) 150 17 150 184 86.4

y-curvature (mm−1) 1/282.8 0.0 1/212.6 0.0 1/62.37

x-curvature (m−1) −1/291.3 0.0 −1/9.879 0.0 −1/3.313

Bending Stiffness 1 0.9929 0.1990

Poisson’s ratio 0.3000 0.3256 −0.1543

Outer diameter 2.64 2.31 1.83

Clearance (mm) 0.0425 0.0625

Friction coefficient 0.22 0.12

Estimated parameters are bolded.
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TABLE VIII

MODELING ERROR OF CALIBRATED STANDARD, CLEARANCE, AND FRICTION MODELS

Model Mean pos. error (mm) Max. pos. error (mm) Mean tan. error (°) Max. tan. error (°) Evaluation time (sec)

Standard 4.1(± 2.3) 11.5 4.9(± 2.7) 14.3 0.23(± 0.10)

Clearance 3.7(± 2.1) 11.6 4.9(± 2.7) 14.9 5.3(± 2.2)

Friction 2.2(± 0.9) 5.9 1.8(± 0.9) 7.1 11.7(± 4.4)
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