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Active Learning of Dynamics for Data-Driven
Control Using Koopman Operators

Tan Abraham

Abstract—This paper presents an active learning strategy for
robotic systems that takes into account task information, enables
fast learning, and allows control to be readily synthesized by taking
advantage of the Koopman operator representation. We first moti-
vate the use of representing nonlinear systems as linear Koopman
operator systems by illustrating the improved model-based control
performance with an actuated Van der Pol system. Information-
theoretic methods are then applied to the Koopman operator for-
mulation of dynamical systems where we derive a controller for
active learning of robot dynamics. The active learning controller
is shown to increase the rate of information about the Koopman
operator. In addition, our active learning controller can readily in-
corporate policies built on the Koopman dynamics, enabling the
benefits of fast active learning and improved control. Results using
a quadcopter illustrate single-execution active learning and stabi-
lization capabilities during free fall. The results for active learning
are extended for automating Koopman observables and we imple-
ment our method on real robotic systems.

Index Terms—Active learning, information theoretic control,
Koopman operators, single execution learning.

1. INTRODUCTION

N ORDER to enable active learning for robots, we need a
I control algorithm that readily incorporates task information,
learns dynamic model representation, and is capable of incorpo-
rating policies for solving additional tasks during the learning
process. In this paper, we develop an active learning controller
that enables a robot to learn an expressive representation of its
dynamics using Koopman operators [1]-[4]. Koopman opera-
tors represent a nonlinear dynamical system as a linear, infinite
dimensional, system by evolving functions of the state (also
known as function observables) in time [1]-[4]. Often, these
linear representations can capture the behavior of the dynamics
globally, while enabling the use of known linear quadratic (LQ)
control methods. As a result, the Koopman operator represen-
tation changes how we represent the dynamic constraints of the
robotic systems, carrying more nonlinear dynamic information,
and often improving control authority.
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Koopman operator dynamics are typically found through
data-driven methods that generate an approximation to the the-
oretical infinite-dimensional Koopman operator [2], [4], [5].
These data-driven methods require robotic systems to be ac-
tuated in order to collect data. The process for data collection
in robotics is an active process that relies on control; therefore,
learning the Koopman operator formulation, for robotics, is an
active learning process.

In this paper, we use the Koopman operator representation
for improving control authority of nonlinear robotic systems.
Moreover, we address the problem of calculating the linear rep-
resentation of the Koopman operator by exploiting an informa-
tion theoretic active learning strategy based on the structure of
Koopman operators. As a result, we are able to demonstrate ac-
tive learning through data-driven control in real-time settings,
where only a single execution of the robotic system is possible.
Thus, the contribution of this paper is a method for active learn-
ing of Koopman operator representations of nonlinear dynami-
cal systems, which exploits both information-theoretic measures
and improved control authority based on Koopman operators.

A. History and Related Work

Active learning in robotics has recently been a topic of in-
terest [6]-[10]. Much work has been done in active learning
for parameter identification [11]-[14] as well as active learning
for state-control mappings in reinforcement learning [9], [15]-
[18] and adaptive control [19]-[21]. In particular, much of the
mentioned work refers to exciting a robot’s dynamics —using
information theoretic measures [10], [12], [13], reward func-
tions [9], [10], [15], [17] in reinforcement learning, and other
methods [22], [23]—in order to obtain the “best” set of mea-
surements that resolve a parameter or the “best-case” mapping
(either of the state-control map or of the dynamics). This paper
uses active learning to enable robots to learn Koopman operator
representations of a robot’s own dynamic process.

Koopman operators were first proposed in 1931 in work by
Koopman [1]. At the time, approximating the Koopman op-
erator was computationally infeasible; the onset of computers
enabled data-driven methods that approximate the Koopman
operator [2], [4], [24]. Other research involves computation of
Koopman eigenfunctions and Koopman-invariant subspaces that
determine the size of the Koopman operator [25]-[27]. This
allows for finite dimensional Koopman operators that cap-
tures nonlinear dynamics, while compressing the overall state
dimension used to represent the dynamical system.

Recent works, on combining model-based control methods
and Koopman operators have suggested that control based on

1552-3098 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-0299-1760
https://orcid.org/0000-0003-2262-8176
mailto:i-abr@u.northwestern.edu
mailto:t-murphey@northwestern.edu

1072

Koopman operators is a promising avenue for many fields in-
cluding robotics [3], [5], [26]-[33]. In particular, recent work
from the authors implemented a controller using a Koopman
operator representation of a robotic system in an experimental
setting of a robot in sand [32]. Koopman operators are closely
related to latent variable (embedded) dynamic models [34]. In
embedded dynamic models, an autoencoder [34], [35] is used to
compress the original state space into a lower-dimensional rep-
resentation. The embedded dynamics model then only evolves
the states that are useful for predicting the overall dynamical sys-
tems behavior. Koopman operators represent the state of some
dynamical system in a higher or lower dimensional representa-
tion, where the evolution of the embedding is a linear dynamical
systems. Thus, Koopman operators are a special case of an em-
bedded dynamic model where the latent variable describes the
nonlinearities of a dynamical system and are represented as a
linear differential equation.

B. Relation to Previous Work

We extend previous work in [32] with new examples of con-
trol with Koopman operator representations of robotic systems.
In addition, we provide an example in Section III, which gives
further intuition for the use of Koopman operator dynamics.
Moreover, we address design choices when generating a Koop-
man operator dynamic representation of a robotic systems and
provide a methodology toward automating these design choices.
Last, we introduce a method for enabling the robot to actively
learn Koopman operator dynamics, while taking advantage of
LQ approaches for control. We note that there is no overlap with
the results and the theoretical content that is presented in this
paper with [32].

C. Outline

The paper outline is as follows. Section II introduces the
Koopman operator and data-driven methods to approximate the
Koopman operator from data, including a recursively defined
online approach for approximating the Koopman operator. Sec-
tion Il motivates using Koopman operator representations of dy-
namical systems for control. Section IV introduces a controller
that enables robots to learn the Koopman operator dynamics.
Simulated results for active learning using our method is pro-
vided with comparisons in Section V. Section VI discusses meth-
ods for automating the design specifications of the Koopman
operator. Last, robot experiments are provided in Section VII,
and Section VIII concludes this paper.

II. KOOPMAN OPERATORS
This section introduces the Koopman operator and formulates
the Koopman operator for control of robotic systems.

A. Infinite Dimensional Koopman Operator

Let us first define the continuous dynamical system, whose
state evolution is defined by

w(ti +ts) = F(a(ti), u(ti) ts)

titts
£(t:) + / fa(s)u(s)ds (1)
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where ¢; is the ¢th sampling time and ¢, is the sampling interval,
x(t) : R — R™ is the state of the robot at time ¢, u(t) : R —
R™ is the applied actuation to the robot at time ¢, f(z,u) :
R™ x R™ — R™ is the unknown dynamics of the robot, and
F(x(t;),u(t;),ts) is the mapping, which advances the state
x(t;) to z(t; +ts). In addition, let us define an observation
function g(z(t)) : R™ — R¢ € C where C is the space of all
observation functions. The Koopman operator K is an infinite
dimensional operator that directly acts on the elements of C

Kyl (2(t:)) = g(F(2(t:), u(ts), ts)) 2
where u(t;), ts are implicitly defined in F' such that

Ky(x(ti)) = g(F(x(ti), ulti), ts)) = g(z(tir1)). 3

In words, the Koopman operator C takes any observation of state
g(z(t;)) at time ¢; and time shifts the observations, subject to the
control u(t;), to the next observable time ¢, 1. This formulation
assumes equal time spacing ts = t;41 —t; =t; — t;1.

B. Approximating the Data-Driven Koopman Operator

The Koopman operator K is infeasible to compute in the infi-
nite dimensional space. A finite subspace approximation to the
operator 8 € R¢ x R¢ acting on C C C is used where we de-
fine a subset of function observables (or observations of state)
2(z) = [1(x),2(x), ..., 1P.(x)]" € R® C C.Eachscalar val-
ued v; € C and the span of all ¢; is the finite subspace C C C.
The operator £ acting on z((;)) is then represented in discrete
time as

2w(tipr)) = Rz(a(t:)) +r(z(t:) @)

where r(z) € C is the residual function error. In principle, as
¢ — o0, the residual error goes to zero [3], [4]; however, it
is sometimes possible to find ¢ < oo such that r(x) = 0 [26].
Equation (4) gives us the discrete time transition of observations
of state in time. We overload the notation for the Koopman op-
erator and write the differential equation for the observations of
state as

z = Rz(x(t;)) +r(z(t;)) 3)

where the continuous time R is acquired by taking the matrix
logarithm as ¢, 1 — t; — 0.

Provided a dataset D = {z(t,,)}*_,, we can compute
the approximate Koopman operator £ using least-squares
minimization over the parameters of &

M-1
1
min Z_ 2@ (tmsr) — @)’ (6)
Since (6) is convex in £, the solution is given by
f=AG" (7
where T denotes the Moore—Penrose pseudoinverse and
M-1
1 T
A= M 2(@(tmt1)2(z(tm))
m=0
| Ml
_ T
G=1; mzo 2(2(tm))2(2(tm)) " (8)
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The continuous time operator is then given by log(R)/t,. Note
that we can solve (6) using gradient descent methods [36] or
other optimization methods. We write a recursive least-squares
update [20], [37] which adaptively updates S as more data are
acquired.

C. Koopman Operator for Control

The Koopman operator can include a predefined input u that
contributes to the evolution of z(z(t)). Consider the observable
functions that include the control input, v(z,u) : R* x R™ —
R where ¢ = c¢; + ¢,. The resulting computed Koopman
operator can be divided into submatrices

o[t

where K, € R%*% and R, € R *“_ Note that the term (-) in
(9) refers to terms that evolve the observations on control z,,,
which are ignored as there is no ambiguity in their evolution
(they are determined by the controller). The Koopman operator
dynamical system with control is then

2= f(zu) = Kez(z(t;)) + Ruv(z(t:), u(ts)).

Note that the dataset D must now store w(t; ), u(t;+1) in order
to compute the Koopman operator matrix K.

9)

(10)

III. ENHANCING CONTROL AUTHORITY WITH
KOOPMAN OPERATORS

Koopman operators map dynamic constraints into a linear dy-
namical system in a modified state space. The Koopman operator
structure allows one to use LQ control methods to compute opti-
mal controllers for nonlinear systems that can often outperform
locally optimal LQ controllers obtained through linearizing the
nonlinear dynamics model.

Let us consider control of the nonlinear forced Van der Pol
oscillator, the dynamics of which are defined in Appendix A-A,
as an example. We specify the control task as minimizing the
following LQ objective:

t;+T
J= / 2()T Qu(t) + u(t) Rut)di+

tq
z(t; +T) Qpa(t; +T) (11)

where Q € R"*", R € R™*"™,and Q; € R™*". Choosing the
set of function observable (see Appendix A-A), we can compute
a Koopman operator £ by repeated simulation of the Van der Pol
oscillator subject to uniformly random control inputs for 5000
randomly sampled initial conditions.

Since the Van der Pol oscillator dynamics are nonlinear, a
solution to the LQ control problem is to linearize the dynamics
about the equilibrium state ; = [0,0] " and form an LQ control
regulator (LQR). Using the Kooman operator formulation of the
Van der Pol dynamics, we can compute a controller in a similar
manner using the following objective:

ti+T ~
J= / 2(1) " Qz(t) + u(t) ' Ru(t)dt+

2t +T) ' Qpz(t; +T) (12)
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Fig. 1. Control performance of a forced van der pol oscillator with an LQR
control using the learned Koopman operator, the linearization of the known
system dynamics, and the linearizion of a learned state-space model using the
same data and basis functions as the Koopman operator. The control performance
using the Koopman operator dynamics is shown to outperform the LQR control
with known dynamics. The learned dynamics model performs equally to the
known dynamics model and is overlayed on top of the known dynamics results.
(a) Int. tracking error. (b) Trajectory.

where

Q= [(g 8} € R"“ and Qf = [%f g} € R*% . (13)

Setting Q and Q ¢ to only include the state observables allows
us to compare the same control objective using the linearized
dynamics against the Koopman operator dynamics where the
first terms in the function observable z(z(t)) is the state of the
Van der Pol system itself.

Fig. 1 shows the improvement in control performance when
using the the Koopman operator dynamics for LQ control instead
of linearizing the dynamics around a local region. We compare
the control authority using a learned dynamics model in the
original state space using Bayesian optimization with the same
functions used for the Koopman operator. This illustrates that the
data used to compute the Koopman operator can learn a nonlin-
ear model of the Van der Pol dynamics in the original state space.
The Koopman operator formulation of the Van der Pol approxi-
mates the dynamic constraints as a linear dynamical systems in a
higher dimensional space that captures nonlinear dynamical be-
havior. As a result, the Koopman operator formulation coupled
with LQ methods can be used to enhance the control the Van
der Pol system as shown in Fig. 1(b). Computing the resulting
trajectory error [see Fig. 1(a)] shows that the trajectory taken
from the Koopman operator controller results in less overall in-
tegrated error. This is due to formulating the LQ controller with
additional information in the form of a dynamical systems that
evolves functions of state.

While this example illustrates the possible benefits of utilizing
the Koopman operator formulation, we ignored how the data
were collected for the Van der Pol dynamical system. In fact,
computing the Koopman operator used random inputs. For this
example, such an approach works reasonably, but requires a
significant amount of data to fully cover the state space of the
Van der Pol system. The following sections introduce a method
that enables a robot to actively learn the Koopman operator.

IV. CONTROL SYNTHESIS FOR ACTIVE LEARNING OF
KOOPMAN OPERATOR DYNAMICS

Active learning controllers need to consider existing polices
that solve a task while generalizing to learning objectives. In



1074

this section, we formulate a controller for active learning that
takes into account the Koopman operator dynamics as well as
polices generated for solving tasks using the Koopman operator
linear dynamics. We generate an active learning controller that
takes into account existing policies by first deriving the mode
insertion gradient [38], [39]. The mode insertion gradient calcu-
lates how an objective changes when switching from one control
strategy to another. We then formulate an active learning con-
troller by minimizing the mode insertion gradient, while includ-
ing policies that solve a specified task.! The derived controller
is then shown to increase the rate of change of the information
measure, which guides the robot toward important regions of
state space, improving the data collection and the quality of the
learned Koopman operator dynamics model.

A. Control Formulation

Active learning allows a robotic agent to self-excite the dy-
namical states in order to collect data that result in a Koopman
operator K that can be used describe system evolution. We for-
mulate the active learning problem as a hybrid switching prob-
lem [41], where the goal is to switch between a policy for a
task to an information maximizing controller that assists the
dynamical system in collecting informative data.

Consider a general objective function of the form

ti+T
J= / U(5), p(2(s))ds + m(s(t: +T)) (1)

i

where z(t) : R — R is the value of the function observ-
ables at time ¢ subject to the Koopman dynamics in (10) start-
ing from initial condition z(x(¢;)), £(z,u) : R x R™ — R
is the running cost, m(z) : R — R is the terminal cost, and
u(z) : Ré — R is a C! differentiable policy. In this paper,
the running cost is split into two parts

g(zv u) = glearn(zv ’LL) + Zlask(za U)

where ljeam 1s the information maximizing objective (learning
task) and l,e (2, u) is the task objective for which the policy
((z) is a solution to (14) when £y = 0.

Given (14), we want to synthesize a controller that is bounded
to the policy (), but also allows for improvement of an infor-
mation measure for active learning. To do so, we examine in
Proposition (1) how sensitive (14) is to switching between the
policy u(z) to an arbitrary control vector pu, () at time 7 for a
time duration A.

Proposition 1: The sensitivity of switching from p to p, for
all 7 € [t;,t; + T for an infinitesimally small 2, (also known
as the mode insertion gradient [38], [39]) is given by

Bi
O |7 .=0

=p(7) " (f2— f1) (15)

'During training, the policies derived from the Koopman operator dynamics
will be inaccurate; however, over time and gathered experience, both the model
and policy will converge. This is a common approach in most model based
reinforcement learning techniques [40].
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where z(t) is a solution to 10 with u( ) =pu(z(t)) a

@), fa = [T e (). fr = F() ()
p,:_<ae+au ae) (af 3f8u) R

nd z(t;) =
)), and

0z 0z Ou ou 0

subject to the terminal condition p(t; + T) = Zm(z(t; + T)).
Proof: See Appendix B-A. ]
We can write an unconstrained optimization problem for cal-

culating (i, () over the interval 7 € [t;,t; + T that will mini-

mize the mode insertion gradient. We can write this optimization
problem using a secondary objective function

AT T
JQ :/ 87
ti

where R € R™*™ bounds the change of s, to ju(z), and

9J
oA

Sl (®) = p@)Ede a7

T=t,A,=0

is evaluated at 7 = ¢. Solving (17) with respect to
T=t,A,=0

145 (t) can be viewed as a functional optimization over i, (t)Vt €
[t;,t; + T]. Since (17) is quadratic in 4, we can compute a
closed-form solution for any application time 7 € [t;,t; + T.

Proposition 2: Assuming that v(x,u) is differentiable, the
control solution that minimizes (17) is

i
= (ﬁgu) ot) +u(=(t). ()

Proof: Since (17) is separable in time, we take the derivative
of (17) with respect to i, (t) at each point in ¢, which gives the
following expression:

b t+T -

p(t) = —

«(t) = p((t))dt

ti+T v T R
- /t (ﬁugu) p(t) + R (t) — p(2(t)))dt.
1 (19)

Solving for p,(t) in (19) gives the control solution

wlt) = R (mgu) p(t) + u(z(2).

|

Proposition (2) gives a formula for switching from i, (¢) to

improve the objective (14). We can use (18) with Appendix B-A

to show that our approach improves the active learning objective
subject to bounds placed on arbitrary tasks included in (14).

Corollary 1: Assume that the Koopman operator dynamics

for a system are defined by the following control affine structure:

2= Ryz(x(t)) + Kuv(x(t))u(t) (20)
where v(z) : R™ — R¢*™ 2 Moreover, assume that 8@7-1 #0
where H is the control Hamiltonian for (14). Then
0
w0(@) ol <0

—J=—| (8 2D
for p1,(t) € UVt € [t;, t; + T where U is the control space.

o

2This formulation assumes that we can recover z(t) from z(t) for computing

v(z).
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Proof: Inserting (18) into Appendix B-A gives

ST = (1) (Rar(a() (R (R (0) ol1))

which can be written as the norm

0
) =

[ (Ruv(@)" plg <0
|
Because we define our objective to be reasonably general, we
can add both stabilization terms as well as information mea-
sures that allow a robot to actively identify its own dynamics.
Section IV-B provides an overview of the Fisher information
measure and information bounds based on our controller. We
first describe the Fisher information matrix for the Koopman
operator parameters and then generate an information measure.
We then show that using (18) and Corollary 1, that we can ap-
proximately calculate to first order the gain in information.

B. Information Maximization

Using the controller defined in (18), we investigate informa-
tion measures that we can use in (14) to enable the robot to
actively learn the Koopman operator dynamics. In this paper,
we use the Fisher information [42], [43] to generate an infor-
mation measure for active learning. The Fisher information is a
way of measuring how much information a random variable has
about a set of parameters. If we treat calculating the Koopman
operator dynamics as a maximum likelihood estimation problem
where the likelihood is given by 7(z | &) : R — R™, we can
compute the Fisher information matrix over the parameters that
compose of the Koopman operator K. The Fisher information
matrix is computed as

_g|2 T9 Il
I[z| 8] =E B logm(z | R) o log m(z | f{)} eR

(22)
where I is the expectation operator k = {8&; ; | R; ; € K}, and
|| is the cardinality of the vector x. Assuming that 7 is a
Gaussian distribution, (22) becomes

CfT ., 0f
“on © om

where > € R *¢ ig the noise covariance matrix. Because the
Fisher information defined here is positive semidefinite, we use
the trace of the Fisher information matrix [44] in ¢(z,w). This
measure allows us to synthesize control actions that maximize
the T-optimality measure of the Fisher information matrix [44].

Definition 1: The T-optimality measure is given by the trace
of the Fisher information matrix (22) and is defined as

IR) =tz | K >o0.

Iz ] 8] (23)

(24)

In this paper, we incorporate (24) into (14) additively using
1/(3+¢), that is

lrearn (2, 1) = 1/(T(R) + €)

where ¢ < 1 is a small number to prevent singular solutions
due to the positive semidefinite Fisher information matrix [45]-
[47], and J is computed using the evaluation of £ at time ¢;. By
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Algorithm 1: Active Learning Control.

1: initialize: Objective ¢(z, u), policy u(z), normally
distributed random & ~ A/(0,1).

2: sample state measurement x(t;)

add x(t;) to dataset D, update K and j(z)

4: simulate z(t), p(t) for t € [t;,t; + T with conditions

2(t;) = 2(z(t;)) and p(t; + T) = Lm(z(t; + T))

with u(2)

compute 1, (t) = ~R (R, 52) " p(t) + u(=(1))

return /i, (t;)

7: update timer t; — t; 1

W

AN

minimizing (14) we also minimize the inverse of the T-optimality
(which maximizes the T-optimality).

Assumption 1: Assume that J(R) > 0 implies J(8) >0
where 8 is an approximation to the Koopman operator & com-
puted from the dataset D = {x(t,,), u(tm)},,—o that contains
data up until the current sampling time ;.

Theorem 1: Given Assumption 1 and dynamics (20), then
the change in information® AI subject to (18) is given to first
order

%
m=

AL (|(Ruv()) " pllg- + bas (2, 112)

—lask (2, 10)) 3., T, + O(AL) (25)

where J,,,, J, is the T-optimality measure (24) from applying
the control p4 and .

Proof: See Appendix B-B. |

Theorem 1 shows that our controller increases the rate of in-
formation that a robot would have normally acquired if it had
only used the control policy u(z). Weighing the information
measure against the task objective allows us to ensure that the
relative information gain is positive when using the active learn-
ing controller. That is, the difference between the information
from using the policy p(z) and the control y, (t) will be positive.
Other heuristics can be used, such as a decaying weight on the
information gain or setting the weight to 0 at a specific time so
that the robot attempts the task. We provide a basic overview of
the control procedure in Algorithm 1. Videos of the experiments
and example code can be found online.*

The following sections use our derived controller to enable
active learning of Koopman operator dynamics.

V. SINGLE EXECUTION ACTIVE LEARNING OF
FREE-FALLING QUADCOPTERS

In this example, we illustrate the capabilities of combining the
Koopman operator representation of a dynamical systems and
active learning for single execution model learning of a free-
falling quadcopter for stabilization. Additionally, we compare
our approach to other common learning strategies, such as ac-
tive learning with Gaussian processes [48]-[50], online model
adaptation through direct attempts at the tasks of stabilization

3With respect to the information acquired from applying only 11(z).
4[Online]. Available: https://sites.google.com/view/active-learning-koopm
an-op.
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(common online reinforcement learning and adaptive control ap-
proach [19], [20], [37], [51], [52]), and a two-stage noisy motor
input (often referred to as “motor babble” [53]-[55]).

A. Problem Statement

The task is as follows. The quadcopter, with dynamics de-
scribed in Appendix A-B and [56], must learn a model within
the first second of free falling and then use the model to gen-
erate a stabilizing controller, preventing itself from falling any
further. We define success of the quadcopter in the task when
|z — z4l|* < 0.01 where z, is the desired target state defined
by zero linear and angular velocity. The controllers are designed
as LQ regulators using the model that was learned and the LQ
objectives provided in Section III. The parameters used for this
example are defined in Appendix A-B and follows the same
parameter choices as in Section III for fairness in terms of the
learning methods against which we are comparing.

We compare the information gained (based on the T-
optimality condition) and the stabilization error in time against
various learning strategies. Each learning strategy is tested with
the same 20 uniformly sampled initial velocities (and angular ve-
locities) between —2 and 2 rad/m/s. After each trial, the learned
dynamics model is reset so that no information from the previous
trials are used.

B. Other Active Learning Strategies

We compare our method for active learning against common
dynamic model learning strategies. Specifically, we compare
three model learning approaches against our method, a two-
stage noisy control input approach [53], a direct stabilization
with adaptive model using least squares [19], [37], and an ac-
tive learning strategy using a Gaussian process [57], [58]. Each
of these strategies are generating a Koopman operator using
the functions of state defined in Appendix A-B to generate a
dynamic model of the quadcopter. The Gaussian process formu-
lation is the only model where the functions map to the original
state space resulting in a nonlinear dynamics model.

1) Least Squares Adaptive Stabilization: The first strategy
we compare to is to do the task of stabilization at the while
updating the model of the dynamics recursively [19], [37]. This s
often a strategy used in model-based reinforcement learning [54]
and adaptive control [37].

2) Two-Stage Motor Babble: The second strategy is a two-
stage approach using noisy motor input (motor babble) for the
first second and then pure stabilization [53]. Rather than directly
attempting to stabilize the dynamics, the priority is to simply try
all possible motor inputs regardless of the model of the dynamics
that is being constructed. The motor babble strategy allows us
to bound the motor excitation which prevents the rotor from
destabilizing once the learning stage is complete. As with the
direct stabilization method, we use a recursive least squares to
update the model of the Koopman operator.

3) Active Learning With Gaussian Process: The last strategy
is an active Gaussian process strategy [57], [58]. In this active
learning strategy, we build a model of the dynamics of the quad-
copter by generating a Gaussian process dynamics model [50],
[57]. Using the variance estimate [58], we uniformly sample
points around the current state bounded by some e constant and
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find the state which maximizes the variance. The sampled state
with the largest variance is then used to generate a local LQ con-
troller to guide the quadcopter dynamics to that state to collect
the data. After the first second, the Gaussian process model is
used to generate a stabilizing controller by linearizing the model
about the final desired stabilization state. The kernel function
used is computed using the functions of state provided in Ap-
pendix A-B for a fair comparison.

Note that for the two-stage, least-squared adaptive, and our ap-
proach, we learn a Koopman operator dynamics model which we
use to compute an LQ controller. The Gaussian process model
is in in the original state space as described in [50].

C. Results

Fig. 2(a) shows the information (T-optimality of the Fisher
information matrix) for each method. Our approach to active
learning is shown to improve upon the information when com-
pared to motor babble (the most basic method for active learn-
ing). The other methods outperform our approach in terms of
the overall information gain by overly exciting the dynamics.
The direct adaptive stabilization method utilizes the incorrect
dynamics model to self-adjust and eventually stabilize the quad-
copter (as shown in the variance). The active Gaussian process
approach uses the covariance estimate to actuate the quadcopter
toward uncertain regions. Collecting data in uncertain regions
allows the active Gaussian process approach to actively select
where the quadcopter should collect data next.

It is worth noting that these approaches will often lead the
quadcopter toward unstable regions, making it difficult to sta-
bilize the dynamics in time. Our approach actively synthesizes
when it is best to learn and stabilize which assists in quickly sta-
bilizing the quadcopter dynamics [see Fig. 2(b)]. The addition
of the Koopman operator dynamics further enhances the control
authority of the quadcopter as shown with the direct adaptive
stabilization, motor babble, and our approach to active learning.
While the active Gaussian process model does at times succeed,
the method relies on both the quality of data acquired and the lo-
cal linear approximation to the dynamics. This results in a deficit
of nonlinear information that is needed to successfully achieve
the learning task in a single execution.

D. Sensitivity to Initialization and Parameters

We further test our algorithm against sensitivities to initial-
ization of the Koopman operator. Our algorithm requires an
initial guess at the Koopman operator in order to boot strap
the active learning process. We accomplish this using the same
experiment described in the previous section which used a
zero mean, variance of 1 normally distributed initialization of
the Koopman operator. We vary the variance that initializes
the Koopman operator parameters using a normal distribution
with zero mean and a variance experiment set of {0.01,0.1,
1.0,10.0}.

In Fig. 3, we find that so long as the initialization of the Koop-
man operator is within a reasonable initialization (nonzero and
within an order of magnitude), the performance is comparable
to active learning described in Fig. 2. However, this may not be
true for all autonomous systems and results may vary depending
on the sampling frequency and the behavior of the underlying
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system. A benchmark is provided for stabilizing the quadcopter
when the Koopman operator is precomputed in Fig. 3 illustrating
the performance of the control authority when using the Koop-
man operator based controller.

The choices in the parameters of our algorithm can also effect
its performance. Specifically, setting the value of the regulariza-
tion term R too large will prevent the robot from significantly
exploring the states of the robot. In contrast, if the regularization
term is set too low, the robot will widen its breath of exploration
which can be harmful to the robot if the states are not bounded.
A similar effect is achieved by adding a weight on the active
learning objective.

Changes in the time horizon 7" will also affect the performance
of the algorithm. Generally, smaller 7" will result in more reactive
behaviors where larger " tends to have more intent driven control
responses. Choosing these values appropriately will be problem
specific; however, the limited number of tunable parameters (not
including choosing a task objective) provides the advantage of
ease of implementation.

E. Discussion

While the single execution capabilities of the Koopman oper-
ator with active learning is appealing, not all robotic systems will

be capable of such drastic performance. In particular, this exam-
ple relies on some prior knowledge of the underlying robotic
system and the dynamics that govern the system. The functions
of state are chosen such that they include nonlinear elements
(e.g., cross product terms that we expect will help in stabiliza-
tion). Thus, the approximate Koopman operator is predicting the
evolution of nonlinear elements found in the original nonlinear
dynamics. Often these underlying structures that we can exploit
are not known or easily found in robotics. Choosing random
polynomial or Fourier expansions as function observables can
sometimes work (see Section VII), but often can lead to unsta-
ble eigenvalues in the Koopman operator dynamics, which can
make model-based control difficult to synthesize [26].

Recent work has attempted to address these issues using
sparse optimization [59] or discovering invariances in the state
space [26]. A promising method is automating the discovery
of the function observables by learning the functions from
data [60]. By using current advances in neural networks and
function representation, it is possible to automate the discovery
of function observables. Section VI further develops the work in
automating the discovery of function observables for Koopman
operators through the use of our approach for active learning.

VI. AUTOMATING DISCOVERY OF KOOPMAN OPERATOR
FUNCTION OBSERVABLES

As a solution to automating the choice of function observ-
ables, the use of deep neural networks [60] have been used to
automatically discover the function observables. In this section,
we illustrate that we can use these neural networks coupled with
our approach for active learning to automatically discover the
Koopman operator and the associated functions of state.

A. Including Automatic Function Discovery

Revisiting (10), we can parameterize z(z) and v(z,u) using
a multilayer neural network with parameters # € R%. We de-
note the parameterization of z,v as zg(x) and vg(z,u) where
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the subscript 6 denotes the function observables are parameter-
ized by the same set of parameters #. Given the same dataset
that was defined previously, D = {z(t, ), u(t,)}2_,, the new
optimization problem that is to be solved is

||29(37(tm+1)7 u(t7n+1)) - Rg@(x(tm)a u(tm))”2

(26)
where Zp(7,u) = [20(2) ", ve(x,u) "] . Equation (26) can be
solved using any of the current techniques for gradient descent
(Adams method [61] is used in this paper). The continuous time
Koopman operator is obtained similarly using the matrix log of
R, resulting in the differential equation

2o = Ryzo(x(t)) + Ryve(x(t), u(t)). (27)

Because we are now optimizing over 6, we lose the sample ef-
ficiency of single execution learning that was illustrated in the
example in Section V. Active learning can be used; however,
adding the additional parameters 6 to the information measure
significantly increases the computational cost of calculating the
Fisher information measure (22). As a result, we only compute
the information measure with respect to £ in order to avoid the
computational overhead of maximizing information with respect
to 0.

B. Examples

We illustrate the use of deep networks for automating the
function observables for the Koopman operator for stabilizing a
cart pendulum and controlling a two-link robot arm to a target.
A neural network is first initialized (see Appendix A-C for de-
tails) for the Koopman operator functions zg, vg as well as an
LQ controller for the task at hand. At each iteration, the robot
attempts the task and learns the Koopman operator dynamics by
minimizing (26). We compare against decaying additive control
noise as well as our method for active learning where a weight
on information measure is used which decays at each iteration
according to v**! where 0 < v < 1 and i is the iteration num-
ber. The data collected are then used to update the parameters
and R using (26) and the LQ controller is updated with the new
R, Ry parameters.

Fig. 4 shows that we can automate the process of learning the
function observables as well as the Koopman operator. With the
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(b)

Fig. 5. Depiction of robots used for experimentation. (a) Sphero SPRK.
(b) Sawyer robot.

addition of active learning, the process of learning the Koop-
man operator and the function observables is improved. In par-
ticular, stabilization of the cart pendulum is achieved in only
50 iterations in comparison to additive noise which takes over
100 iterations. Similarly, the two-link robot can be controlled
to the target configuration within five iterations with our active
learning approach.

C. Discussion

While this method is promising, there still exist significant
issues that merit more investigation in future work. One of which
is the trivial solution, where zgy, v9 = 0. This issue often occurs
with how the parameters ¢ were initialized. This trivial solution
has been addressed in [62]; however, their approach requires
significantly complicating how the regression (26) is formulated.
We found that adding the state = as part of the neural network
output of zp was enough to overcome the trivial solution.

VII. ROBOT EXPERIMENTS

Our last set of examples test our active learning strategy with
robot experiments. We use the robots shown in Fig. 5 to illustrate
control and active learning with Koopman operators. The sphero
SPRK robot [see Fig. 5(a)] is a differential drive robot inside of
a clear outer ball. We test trajectory tracking of the SPRK robot
in a sand terrain where the challenge is that the SPRK must
be able to learn how to maneuver in sand. The Sawyer robot
[see Fig. 5(b)] is a seven-link robot arm whose task is to track
a trajectory defined at the end effector where the challenge is
the high dimensionality of the robot. We refer the reader to the
attached multimedia which has clips of the experiments.

A. Experiments: Granular Media and Sphero SPRK

Active learning is applied in an experimental setting using
the Sphero SPRK robot [see Fig. 5(a)] in sand. The interaction
between sand and the SPRK robot makes physics-based models
challenging.

The parameters for the experiment are defined in Appendix A-
D. The experiment starts with 20 s of active learning. After
actively identifying the Koopman operator, the weight on infor-
mation maximizing is set to zero at ¢ = 20 and the objective is
switched to track the trajectory shown in Fig. 6(b). In Fig. 6(c),
we show the average root mean squared error (RMSE) of the
x — y trajectory tracking, the average x — y Pearson’s corre-
lation using a two-sided hypothesis testing (values close to 1
indicate responsive controllers), and the phase lag of the ex-
perimental results. Note that in contrast to previous work by the
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Barrier

(a) Experimental Setup (b) SPRK Trajectories

Method RMSE | Correlation | Phase Lag (rad)
Koopman-based Control | 0.3010 |  0.4028 1.1262
Controller in [32] 0.3535| 0.1034 1.4667

(c) Controller performance

Fig. 6. Experiment using the Sphero SPRK robot in sand. (a) Experimental
setup is depicted with the SPRK robot inside the sand pit. Position information is
calculated with an overhanging Xbox Kinect using OpenCV [63] for tracking.
(b) Performance of the SPRK robot using the Koopman operator-based con-
troller after active learning. Performance is compared with results from [32].
(c) Performance measures showing active learning significantly outperforms
nonactive learning in robot experiment. The attached multimedia shows the
experiment executed.

authors [32], the method of actively learning the Koopman oper-
ator improves the performance of the model-based controller. In
particular, we find that the overall responsiveness and phase lag
of the Koopman-based controller improved after active learning
in sand.

B. Experiments: Trajectory Tracking of Rethink Sawyer Robot

In this experiment, we use active learning with the Koop-
man operator to model a 7 DoF Sawyer robot arm from Rethink
Robotics. The 7-DoF system is of interest because it is both high
dimensional and inertial effects tend to dominate the dynamics
of the system. We define the parameters used for this experiment
in Appendix A-E.

Fig. 7 shows a comparison of the embedded controller in the
Sawyer robot and the data-driven Koopman operator controller.
Here, we show the average RMSE of the tracking position, the
Pearson’s correlation using a two-sided hypothesis testing (val-
ues close to 1 indicate responsive controllers), and the phase
lag of the trajectory tracking. The resulting controller using the
Koopman operator is shown to be comparable to the built-in con-
troller with the inclusion of the evolution of the nonlinearities
on the Sawyer robot which improve overall trajectory tracking
performance. The trajectories of the two methods are overlaid,
which illustrates the improvement in control from the Koop-
man operator after active learning has occurred. Since data are
always being acquired online, the Koopman operator is contin-
uously being updated as the robot is tracking the trajectory. The
Koopman operator based controller is able to capture dynamic
effects of the individual joints from data. This is further rein-
forced by the improved results found. Note that one can build
a model to solve for similar, if not, better, inverse dynamics of
the Sawyer robot that can be computed for control. In particular,
the Sawyer robot provides an implementation of inverse dynam-
ics in the robot’s embedded controller. However, our approach
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Method RMSE | Correlation | Phase Lag (rad)
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Fig. 7. Experiment using Sawyer. Experimental data visualized using
RViz [64]. (a) End-effector trajectory paths using the embedded Rethink Joint
controller and Koopman operator controller. Both controllers are running at
100 Hz. (b) Trajectory overlaid from both controller responses. (c¢) Controller
performance shows that active learning for Koopman operator-based controllers
performs comparably. We refer the reader to the attached multimedia to view
clips of this experiment.

provides high accuracy without needing such a model ahead of
time and without linearizing the nonlinear dynamics.

VIII. CONCLUSION

In this paper, we use Koopman operators as a method for
enhancing control of robotic systems. In addition, we contribute
a method for active learning of Koopman operator dynamics
for robotic systems. The active learning controller enables the
robots to learn their own dynamics quickly, while taking into
account the linear structure of the Koopman operator to enhance
LQ control. We illustrate various examples of robot control with
Koopman operators and provide examples for automating design
choices for Koopman operators. Last, we show that our method
is applicable to actual robotic systems.

APPENDIX A
PARAMETERS FOR VARIOUS EXAMPLES
A. Control of Forced Van der Pol Oscillator

The nonlinear dynamics that govern the Van der Pol oscillator
are given by the differential equations

i 1| T2
dt |mo |~ | —m1+e(1 -2z +u
where € = 1 and w is the control input.
The Koopman operator functions used are defined as

.
z(x) = [;vl,x%x%,xgxﬂ

and v(u) = u. The same functions are used to compute a
regression problem where the final equation is given by

% B;] = Az(z) + Bu(u)

where A € R"*% and B € R™*“ are both generated using
linear regression.
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The weight parameters for LQ control are
Q = diag([1,1]) and R = 0.1

where

Q= {Q 0} € R, (28)

0 0

B. Quadcopter Free Falling

The quadcopter system dynamics are defined as
; w v
=53]
Jow= M+ Jwxw
1
v= —Fez—w xv—gRTeg
m

where h = (R,p) € SE(3), the inputs to the system are
u = [u1, uz, ug, uq), and
F = Fki(ug + us + us + uyg)

ktl(UQ — U4)
k:tl(u?, — ul)
km(ul — Ug + uz — U4)

M =

(see [56] for more details on the dynamics and parameters used).
Note that in this formulation of the quadcopter, the control vector
u has bidirectional thrust.

The measurements of the state of the quadcopter are given by

[ag,w,v]" € R® (29)
where a, € R? denotes the body centered gravity vector and
w, v are the body angular and linear velocities, respectively. The
sampling rate for this system is 200 Hz.

We define the basis functions for this system as

2(x) = [ag,w, v, g(v,w)]" € R

where g(v,w) = [V3ws3, Vaws, V3wW1, V1W3, VoW1, ViWa,Waws,
wiws, wiws] are the chosen basis functions such that w;, v; are
elements of the body-centered angular and linear velocity w, v,
respectively. The functions for control are

v(u) =u € R,

The LQ control parameters for the stabilization problem are
given as

Q = diag([1,1,1,1,1,1,5,5,5]) and R = diag ([1, 1,1, 1])

where the weight on the additional functions Q are set to zero
as in (28) . The time horizon used in 0.1s.

The active learning controller uses a weight on the in-
formation measure of 0.1 and a regularization weight R =
diag(1000, 1000, 1000, 1000]). Motor noise used in the two-
stage method is given by uniform noise at 33% of the control
saturation.
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C. Neural Network Automatic Function Discovery
Configuration

In this example, we use the Roboschool environments [65]
for the robot simulations.

For the cart pendulum example, we use a three layer network
with a single hidden layer for zy and vy with {4, 20,40} and
{2, 20,10} nodes, respectively, for each layer making ¢, = 40
and ¢,, = 10. The exploration noise used on the control is given
by additive zero mean noise with a variance of 40% motor satu-
ration decreasing at a rate of 0.9+, The decay weight on the in-
formation measure is given by 0.2+, The LQ weights are given
by Q = diag([50.0, 1.0, 10.0,0.1] + 0) where the first nonzero
weights correspond to the states of the cart pendulum. A time
horizon of 0.1 s is used with a sampling rate of 50 Hz. The
regularization weight R =1 x 106.

For the two-link robot example, we use a similar three layer
network with a single hidden layer for zy and vy with {4, 20,40}
and {2, 20, 20} nodes, respectively, for each layer making ¢, =
40 and ¢, = 10. The exploration noise used on the control is
given by additive zero mean noise with a variance of 40% motor
saturation decreasing at a rate of 0.9, The decay weight on
the information measure is given by 0.2¢%1. The LQ weights
are given by Q = diag([10.0,1.0,20.0,1.0] + 6) where the first
nonzero weights correspond to the states of the cart pendulum.
A time horizon of 0.05 s is used with a sampling rate of 100 Hz.
The regularization weight R = diag([1 x 105, 1 x 106]).

D. SPRK Tracking in Sand

The SPRK robot is running a 30 Hz sampling rate for control
and state estimation. Control vectors are filtered using a low-
pass filter to avoid noisy responses in the robot. The controller
weights are defined as

Q = diag([60, 60,5, 5,1]) and R = diag([0.1, 0.1]).

The control regularization is R = R. A weight of 80 is added
to the information measure. A time horizon of 0.5 s is used to
compute the controller.

We run the active learning controller for 20 s and then set
the weight of the information measure to zero and track the end
effector trajectory given by

0] = [gaem s vi2]

In this example, the set of functions are chosen as a polynomial
expansion of the velocity states x = [4:, ¢] to the third order. The
function observables are defined as

2(2) = [2,y,8,9, 1,82, 9%, 4%, ..., #°9°] T € R*®
and

v(w,u) = u € R2.

E. Sawyer Control

The Sawyer robot was run on a sampling rate of 100 Hz.
Control vectors are filtered using a low-pass filter to avoid noisy
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responses in the robot. The controller weights are defined as
Q = diag([200 x 1T € R* 1))
and R = diag([0.001 x T € R7]).

The control regularization is R=R.A weight of 2000 is added
to the information measure. A time horizon of 0.5 s is used to
compute the controller.

We run the active learning controller for 20 s and then set
the weight of the information measure to zero and track the end
effector trajectory given by

x(t) 0.8
y(t) | = 0.1cos (2t)
z(t) 0.1sin (4¢) + 0.4

The functions of state using to compute the Koopman operator
are defined as
, - o 01T
2(zx) = [XT,1,0102,9293,...,9393,9192,...,egeﬂ € R
with v(u) = u € R” as the torque input control of each indi-
vidual joint and states x containing the joint angles and joint
velocities.

APPENDIX B
PROOFS

A. Proof of Proposition 1

Proposition 1: The sensitivity of switching from u to p, at
any time 7 € [t;,t; + T for an infinitesimally small %, (also
known as the mode insertion gradient [38], [39]) is given by

=) (h f)

7,A=0 B
where z(t) is a solution to 10 with u(t) = p(z(¢)) and z(¢;) =
(a(t:)) 2 = (D) (7)) fo = F(o(7),(2(7))). and
. %4_8/; o 8f+8f6u
r= 9z 9z Ou 0z  Ou 0z
subject to the terminal condition p(t; + T') = Lm(z(t; + T)).
Proof: Consider the objective (14) evaluated at a trajec-
tory z(t)Vt € [t;,t; + T'] generated from a dynamical system.
Furthermore, assume that z(¢; + 1) is generated by a pol-
icy u(z(t))Vt ¢ [r,7 + 1] and a controller . (t)Vt € 1,7 + A]

where 7 is the time of application of control u, and X is the
duration of the control. Formally, z(¢; + T) can be written as

/ e

4 / F(2(t), (1)) dt

2t +T) = 2(t 2(t)))dt

ti+T
4 / FE), p(=)dt (G0)

+A

where f(z,u): R x R — R is a mapping which de-
scribes the time evolution of the state z(t).
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Using (14) and (30), we compute the derivative of (14) with
respect to the duration A of control y, applied at any time 7 €

[ti,ti—f—T]
d T Lo opTor oz
ax’;/m <8z+8z au> ah O
where
82()7 torof  afop\ ! 0z(s)
T hen [ (G ng) e o
such that fo = f(2(7), us(7)), f1 = f(2(7), u(2(7))) are

boundary terms from applying Leibniz’s rule.
Because (32) is a linear convolution with initial condition,
aza(;) = fo — f1, we are able to rewrite the solution to ag&t)

using a state-transition matrix ®(¢, 7) [66] with initial condition

fa— fias

0z(t)

T (t,7)(f2— f1). (33)
Since the term fo — f; is evaluated at time 7, we can write (31)
as
P WHT (a0 auTor)
= —+=— — | @t,n)dt(fa— f1).
8AJ /TH 9: Y o: ) PG )

(34)

Taking the limit of (34) as A — 0 gives us the sensitivity of
(14) with respect to switching at any time 7 € [t;,t; + T]. We
can further define the adjoint (or costate) variable

T o0 op' o
T _ Co
p(T) —/T (ax + 5 au> ®(t,7)dt € R

which allows us to define the mode insertion gradient [39] as

| =eT (- 1)

J
t=1
where
. ol a;ﬁae af
= <8z+5'z au> ‘(aﬁ

subject to the terminal condition p(t; +T) = Zm(z(t; +
T)). |

of 8u
Ou 0z

B. Proof of Theorem 1

Theorem 1: Given Assumption 1 and dynamics (20), then
the change in information’ AI subject to (18) is given to first
order

~ ([(Rav(@)" plf 4 + bask (2, 1)
— sk (2, 1)), 3, + O(AL) (35)

where J,,,, J, is the T-optimality measure (24) from applying
the control p4 and .

SWith respect to the information acquired from applying only 14(z).
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Proof: First define (14) for a controller as

(36)

ti+At
J(u(t)) = /t % + sk (2(t), u(t))dt

where At < T is atime duration, z(t) is subject to the controller
u(t), and J,, is the measure of information from applying the
control . If we consider the difference between J () and J (1)
where  is a controller that minimizes ¢y, (2, u), then

ti+At 1 1
(1) — () = / L () — (2. )t
t

i TM* ‘JM
1 1
~ At (,., - — + Elask(zaﬂ*) - ftask(zali))
JH* JIL
+ O(At). (37)
From Corollary 1 and that
0
At~ () = I ()
we can show that
0
and At~ J () = I (n)
1 1
~ At (,~ - —+ Etask(zy,u*) - gtask(zfﬁ,u))
Jpe (38)
+ O(At)

which we rearrange (38) and insert (21) to get

— |l (Ruv()) " pllE

1 1
~ <~ - — + étask(zaﬂ*) - gtask(zapl)> + O(At)
‘JM* ju

N Jp— T4, + (bask (2, i) — ftask(%/‘))ju*j
j,u* j/L

L1 O(At).
(39)
Setting AI = J,,, — J,,in(39) and simplifying gives the relative
information gain
AL (|| (Ruv()) " pllF -1 + busk (2, 114)
—lusk(2,1))3,, 3 + O(AR).
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