
Observability Analysis of Aided INS with Heterogeneous Features

of Points, Lines and Planes

Yulin Yang - yuyang@udel.edu
Guoquan Huang - ghuang@udel.edu

Department of Mechanical Engineering
University of Delaware, Delaware, USA

Abstract

In this paper, we perform a thorough observability analysis for linearized inertial navigation sys-
tems (INS) aided by exteroceptive range and/or bearing sensors (such as cameras, LiDAR and sonars)
with different geometric features (points, lines and planes). While the observability of vision-aided INS
(VINS) with point features has been extensively studied in the literature, we analytically show that the
general aided INS with point features preserves the same observability property – that is, 4 unobservable
directions, corresponding to the global yaw and the global position of the sensor platform. We further
prove that there are at least 5 (and 7) unobservable directions for the linearized aided INS with a single
line (and plane) feature; and, for the first time, analytically derive the unobservable subspace for the
case of multiple lines/planes. Building upon this, we examine the system observability of the linearized
aided INS with different combinations of points, lines and planes, and show that, in general, the system
preserves at least 4 unobservable directions, while if global measurements are available, as expected, some
unobservable directions diminish. In particular, when using plane features, we propose to use a mini-
mal, closest point (CP) representation; and we also study in-depth the effects of 5 degenerate motions
identified on observability. To numerically validate our analysis, we develop and evaluate both EKF-
based visual-inertial SLAM and visual-inertial odometry (VIO) using heterogeneous geometric features
in Monte Carlo simulations.

1 Introduction

Inertial navigation systems (INS) have been widely used for providing 6 degrees-of-freedom (DOF) pose
estimation when navigating in 3D [1]. However, due to the noises and biases that corrupt the IMU readings,
simple integration of the local angular velocity and linear acceleration measurements can cause large drifts
in a short period of time, in particular, when using cheap MEMS IMUs. To mitigate this issue, additional
sensors (e.g., optical camera[2, 3], LiDAR[4, 5], and imaging sonar[6]) are often used, i.e., aided INS. Among
possible exteroceptive sensors, optical cameras – which are low-cost and energy-efficient while providing rich
environmental information – are ideal aiding sources for INS and thus, vision-aided INS (i.e., VINS) have
recently prevailed, in particular, when navigating in GPS-denied environments (e.g., indoors) [7, 8, 9, 10, 11,
12, 13]. While many different VINS algorithms were developed in last decade, the extended Kalman filter
(EKF)-based methods are still among the most popular ones, such as multi-state constraint Kalman filter
(MSCKF) [2], observability-constrained (OC)-EKF [7, 14], optimal-state constraint (OSC)-EKF [15], and
right invariant error (RI)-EKF [16].

System observability plays an important role in consistent state estimation [17] and thus, significant
research efforts have been devoted to the observability analysis of VINS. For example, it has been proved
in [18] that biases, velocity, and roll and pitch angles in VINS are observable; in [7, 19] the null space of
observability matrix (unobservable subspace) of linearized VINS was analytically derived; and in [8, 20]
the Lie-derivative based nonlinear observability analysis was presented. However, since most of the current
VINS algorithms (e.g., [7, 8, 9, 10, 11, 12]) are developed based on point features, the observability analysis
is performed primarily using point measurements. Very few have yet studied the observability properties
of the aided INS with heterogeneous geometric features of points, lines and planes that are extracted from
range and/or bearing sensor measurements.

In this paper, building upon our recent conference publications [21, 22], we perform a thorough observabil-
ity analysis for the linearized aided INS using points, lines, planes features and their different combinations.
In particular, we propose to use the closest point (CP) from the plane to the origin to represent plane fea-
tures, because this parameterization is not only minimal but also can directly be used for the plane error
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state update in vector space. Moreover, we perform in-depth study to identify 5 degenerate motions, which
is of practical significance, as these motions may negatively impact the system observability properties by
causing more unobservable directions and thus exacerbate the VINS estimators (e.g., see [23, 24]). The
insights obtained from the observability analysis are leveraged when developing our EKF-based VINS algo-
rithms (including visual-inertial odometry (VIO) and visual-inertial SLAM (VI-SLAM)) using heterogeneous
geometric features, which are evaluated in simulations to validate our analysis.

In particular, the main contributions of this work include:

• In the case of point features, we generalize the VINS observability analysis to encompass any type of
aiding sensors (such as 3D LiDAR, 2D imaging sonar and stereo cameras) and analytically show that
the same observability properties remain (i.e., 4 unobservable directions).

• In the case of line (or plane) features, we perform observability analysis for the linearized aided INS with
line (or plane) features and show that there exist at least 5 (or 7) unobservable directions for a single
line (or plane) feature. Moreover, we analytically derive the unobservable subspaces for multiple lines
(or planes) in the state vector, without any assumption about features. In particular, we advocate
to use the closest point (CP) representation, which is simple and compact, for both plane feature
parameterization and error state propagation.

• In the case of different combinations of point, line and plane features, we show that in general there
are at least 4 unobservable directions that are analytically derived, for the linearized aided INS with
heterogeneous features.

• By employing the spherical coordinates for the point feature, we identify 5 degenerate motions that
cause the aided INS to have more unobservable directions. On the other hand, we study in-depth
the effects of global measurements on the system observability, and show that they, as expected, will
greatly improve the observability.

• To validate our observability analysis of linearized aided INS, we develop the EKF-based VI-SLAM
and MSCKF-based VIO using heterogeneous geometric features (i.e., points, lines, planes, and their
different combinations) and perform extensive Monte-Carlo simulations by comparing the standard
and the benchmark (ideal) filters.

2 Related Work

Aided INS is a classical research topic with significant body of literature [25] and has recently been re-
emerging in part due to the advancement of sensing and computing technologies. In this section, we briefly
review the related literature closest to this work by focusing on the vision-aided INS.

2.1 Aided INS with Points, Lines, and Planes

As mentioned earlier, vision-aided INS (VINS) arguably is among the most popular localization methods in
particular for resource-constrained sensor platforms such as mobile devices and micro aerial vehicles (MAVs)
navigating in GPS-denied environments (e.g., see [26, 27, 10, 28]). While most current VINS algorithms
focus on using point features (e.g., [7, 8, 9, 10]), line and plane features may not be blindly discarded in
structured environments [29, 30, 31, 32, 33, 34, 35, 36, 24], in part because: (i) they are ubiquitous and
compact in many urban or indoor environments (e.g., doors, walls, and stairs), (ii) they can be detected
and tracked over a relatively long time period, and (iii) they are more robust in texture-less environments
compared to point features.

In the case of utilizing line features, Kottas et al. [29] represented the line with a quaternion and a
distance scalar and studied the observability properties for linearized VINS with this line parameterization.
Yu et al. [30] proposed a minimal four-parameter representation of line features for VIO using rolling-shutter
cameras, while Zheng et al. [31] used two end points to represent a line and designed point/line VIO based
on MSCKF. Recently, He et al. [32] employed the Plücker representation for line parameterization and
orthogonal representation [37] for line error states, and developed a tightly-couple keyframe-based inertial-
aided mono SLAM system.



In the case of exploiting plane features, Guo et al. [34] analyzed the observability of VINS using both
point and plane features, while assuming the plane orientation is a priori known. The authors have shown
that VINS with only plane bearing measurements have 12 unobservable directions but 4 if both point and
plane measurements are present. Hesch et al. [35] developed a 2D LiDAR-aided INS algorithm that jointly
estimates the perpendicular structural planes associated with buildings, along with the IMU states. However,
one particular challenge of using plane features is the plane parameterization [36]. A conventional method is
to use the plane normal direction and a distance scalar, which, however, is over-parameterized, resulting in
singular information matrix in least-squares optimization if not treated carefully. Alternatively, one may use
a spherical parametrization (two angles and one distance scalar) [38], which is minimal but might suffer from
singularities similar to gimbal lock for Euler angles. Kaess [36] used a unit quaternion for plane representation
by leveraging the quaternion error states for propagation, while Wu et al. [24] employed both a quaternion
and a distance scalar for planes but assuming 2D quaternion error states.

2.2 VINS Observability Analysis

As system observability is important for consistent estimation [17], in our prior work [39, 40, 14, 41, 42, 43,
44, 11], we have been the first to design observability-constrained consistent estimators for robot localization
and mapping problems. Since then, significant research efforts have been devoted to the observability
analysis of VINS. In particular, in [45, 46] the system’s indistinguishable trajectories were examined from
the observability perspective. By employing the concept of continuous symmetries as in [47], Martinelli [18]
analytically derived the closed-form solution of VINS and identified that IMU biases, 3D velocity, global
roll and pitch angles are observable. He has also examined the effects of degenerate motion [23], minimum
available sensors [48], cooperative VIO [49] and unknown inputs [50, 51] on the system observability. Based
on the Lie derivatives and observability matrix rank test [52], Hesch et al. [8] analytically showed that
the monocular VINS has 4 unobservable directions, i.e., the global yaw and the global position of the
exteroceptive sensor. Guo et al. [34] extended this method to the RGBD-camera aided INS that preserves
the same unobservable directions if both point and plane measurements are available. With the similar idea,
in [53, 54, 20], the observability of IMU-camera (monocular, RGBD) calibration was analytically studied,
which shows that the extrinsic transformation between the IMU and camera is observable given generic
motions. Additionally, in [55, 56], the system with a downward-looking camera measuring point features
from horizontal planes was shown to have the observable global z position of the sensor.

More importantly, as in practice VINS estimators are built upon the linearized system, it necessitates to
perform observability analysis for the linearized VINS whose observability properties can be exploited when
designing an estimator. For instance, Li et al. [57, 9] performed observability analysis for the linearized
VINS (without considering biases) and adopted the idea of first-estimates Jacobian [40] to improve filter
consistency. Analogously, in [58, 7, 19], the authors conducted observability analysis for the linearized
VINS with full states (including IMU biases) and analytically showed the system unobservable directions
by finding the right null space of the observability matrix [7]. Based on this analysis, the observability-
constrained (OC)-VINS algorithm was developed. In this work, we thus primarily focus on the observability
analysis of the linearized aided INS with heterogeneous features and developing estimation algorithms to
validate it.

3 Problem Statement

In this section, we describe the system and measurement models for the aided INS with different geometric
features, providing the basis for our ensuing observability analysis. The state vector of the aided INS contains
the current IMU state xIMU and the feature state Gxf :

x =
[
x>IMU

Gx>f
]>

=
[
I
Gq̄
> b>g

GV>I b>a
GP>I

Gx>f
]>

(1)

In the above expressions, IGq̄ is a unit quaternion represents the rotation from the global frame {G} to the
current IMU frame {I}, whose corresponding rotation matrix is IGR(q̄). bg and ba represent the gyroscope



and accelerometer biases, respectively, while GVI and GPI denote the current IMU velocity and position
in the global frame. Gxf denotes the generic features, which can be points, lines, planes or their different
combinations.

3.1 IMU Propagation Model

The IMU kinematic model is given by [59]:

I
G

˙̄q(t) =
1

2
Ω
(
Iω(t)

)
I
Gq̄(t)

GṖI(t) = GVI(t),
GV̇I(t) = Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t)
Gẋf (t) = 0mf×1 (2)

where ω and a are the angular velocity and linear acceleration, respectively. nwg and nwa are the zero-
mean Gaussian noises driving the gyroscope and accelerometer biases. mf is the dimension of Gxf , and

Ω(ω) ,

[
−bω×c ω
−ω> 0

]
, bω×c ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

. The continuous-time linearized error-state equation is given

by:1

˙̃x(t) '
[

Fc(t) 015×mf

0mf×15 0mf

]
x̃(t) +

[
Gc(t)

0mf×12

]
n(t) =: F(t)x̃(t) + G(t)n(t) (3)

where Fc(t) and Gc(t) are the continuous-time error-state transition matrix and noise Jacobian matrix,

respectively. n(t) =
[
n>g n>wg n>a n>wa

]>
are modeled as zero-mean Gaussian noise with autocorrelation

E
[
n(t)n>(τ)

]
= Qcδ(t− τ). Note that ng(t) and na(t) are the Gaussian noises contaminating the angular

velocity and linear acceleration measurements. The discrete-time state transition matrix Φ(k+1,k) from time

tk to tk+1, can be derived from Φ̇(k+1,k) = F(tk)Φ(k+1,k) with the identity as the initial condition, which is
given by [7] (see Appendix A):

Φ(k+1,k) =


Φ11 Φ12 03 03 03 0mf×3

03 I3 03 03 03 0mf×3

Φ31 Φ32 I3 Φ34 03 0mf×3

03 03 03 I3 03 0mf×3

Φ51 Φ52 Φ53 Φ54 I3 0mf×3

03×mf
03×mf

03×mf
03×mf

03×mf
Imf

 (4)

where Φij is the (i, j) block of this matrix, and in particular, Φ54 will be useful for the ensuring analysis for
pure translation and its expression can be analytically given by (see [7, 24]) with pure translation:

Φ54 = −
∫ tk

t1

∫ ts

t1

G
IτRdτdts = −GI1R

∫ tk

t1

∫ ts

t1

dτdts = −1

2
G
I1Rδt

2
k (5)

where δtk = tk − t1 is the time elapse from the beginning. With the state transition matrix (4), we can also
analytically or numerically compute the discrete-time noise covariance:

Qk =

∫ tk+1

tk

Φ(k,τ)Gc(τ)QcG
>
c (τ)Φ>(k,τ)dτ (6)

3.2 Point Measurements

Note that point measurements from different exteroceptive sensors (such as monocular/stereo camera,
acoustic sonar, and LiDAR) in the aided INS generally can be modeled as range and/or bearing obser-
vations which are functions of the relative position of the point feature expressed in the sensor frame

1Throughout this paper x̂ is used to denote the estimate of a random variable x, while x̃ = x− x̂ is the error in this estimate.
0m×n and 0n denote m× n and n× n matrices of zeros, respectively, and In is the identity matrix.



IPf =
[
Ixf

Iyf
Izf
]>

(see [21]):2

zp =

[
z(r)

z(b)

]
=

[√
IPf

>IPf + n(r)

hb

(
IPf ,n

(b)
) ]

(7)

with IPf = I
GR

(
GPf − GPI

)
(8)

where hb(·) is a generic bearing measurement function whose concrete form depends on the particular sensor
used (more comprehensive cases can be found in Appendix B). In (7), n(r) and n(b) are zero-mean Gaussian
noises (inferred from sensor raw data) for the range and bearing measurements. We then linearize these
measurements about the current state estimate:

z̃p ' HI x̃ + Hnn =

[
∂z̃(r)

∂IP̃f

∂IP̃f

∂x̃ x̃ + n(r)

∂z̃(b)

∂IP̃f

∂IP̃f

∂x̃ x̃ + ∂z̃(b)

∂n(b) n
(b)

]
=:

[
HrHf x̃ + n(r)

HbHf x̃ + Hnn(b)

]
=:

[
Hr

Hb

]
︸ ︷︷ ︸
Hproj

Hf x̃ +

[
n(r)

Hnn(b)

]
(9)

The interested readers are referred to Appendix B for detailed derivations of these Jacobians when using
different sensors.

3.3 Line Measurements

We propose to use the Plücker representation for the line feature in the state vector but the minimal
orthonormal representation for the error state, which was introduced in [37]. Specifically, the Plücker
representation can be initialized by the two end points P1 and P2 of a line segment L, as:

L =

[
bP1×cP2

P2 −P1

]
=

[
nL
vL

]
(10)

where nL and vL are the normal and directional vectors (which are not normalized to be unit) for the line
L, which clearly is over parameterized for 4 DOF lines. A minimal parameterization of the error state is
desirable for covariance propagation and update. To this end, we have:

L> =
[
n>L v>L

]
=
[

nL
‖nL‖

vL
‖vL‖

nL×vL
‖nL×vL‖

]‖nL‖ 0
0 ‖vL‖
0 0

 (11)

Based on this, we define:

RL(θL)= exp(−bθL×c) =
[

nL
‖nL‖

vL
‖vL‖

nL×vL
‖nL×vL‖

]
(12)

WL(φL)= η

[
w1 −w2

w2 w1

]
=

1√
‖nL‖2 + ‖vL‖2

[
‖nL‖ −‖vL‖
‖vL‖ ‖nL‖

]
(13)

where w1 = ‖nL‖, w2 = ‖vL‖ and η = 1√
w2

1+w2
2

. Since RL ∈ SO(3) and WL ∈ SO(2), we define the error

states for these parameters as δθL and δφL corresponding to RL and WL, respectively. With that, the state
vector with the line feature can be written as [see (1)]:

x=
[
I
Gq̄
>

b>g
GV
>
I b>a

GP
>
I

GL
>
]>

(14)

where GL =
[
Gn>L

Gv>L
]>

and GL̃ =
[
δθ>L δφL

]>
.

2Note that in this work we assume the frame of the aiding exteroceptive sensor coincides with the IMU frame in order to
keep our analysis concise.



Table 1: Different Plane Representations

# Models Parameters

1 π1px + π2py + π3pz + π4 = 0 π1, π2, π3, π4

2 n>πPf − d = 0 nπ, ‖nπ‖ = 1, d

3 [cosφ cos θ cosφ sin θ sinφ] Pf − d = 0 θ, φ, d

4 pz = apx + bpy + c a, b, c with e>3 nπ 6= 0

5 apx + bpy + cpz + 1 = 0 a, b, c with d 6= 0

6 q̄ = 1√
1+d2

[
nπ

d

]
q̄, ‖q̄‖ = 1

7 Π = dn Π = [xπ, yπ, zπ]>

In particular, the visual line measurement is given by the distance from two ending points xs and xe of
line segment to the line in the image (also see our prior work [60]):

zl =

[
x>
s l′√
l21+l22

x>
e l′√
l21+l22

]>
(15)

l′ = KInL =
[
l1 l2 l3

]>
(16)

K =

 f2 0 0
0 f1 0

−f2c1 −f1c2 f1f2

 (17)

IL =

[
InL
IvL

]
=

[
I
GR −IGRbGPI×c
03

I
GR

]
GL (18)

where K is the projection matrix for line (not point) features (see Appendix C), with f1, f2, c1 and c2 as the
camera intrinsic parameters. The relationship (18) is derived based on the geometry GPi = GPI + G

I RIPi

(i = 1, 2) [see (10)]. Moreover, the measurement Jacobian can be computed as follows (Appendix D):

HI =
∂z̃l

∂ l̃′
∂ l̃′

∂x̃
=: HlHf (19)

Hl =
1

ln

[
u1 − l1e1

l2n
v1 − l2e1

l2n
1

u2 − l1e2
l2n

v2 − l2e2
l2n

1

]
(20)

where we have used the following identities:

e1 = x>s l′, e2 = x>e l′, ln =
√

(l21 + l22)

xs =
[
u1, v1, 1

]>
, xe =

[
u2, v2, 1

]>
3.4 Plane Measurements

3.4.1 Overview of plane representations

Different representations have been developed for plane estimation [61] and we summarize in Table 1 the most
commonly used plane parameterizations along with the new representations introduced in this paper. Note
that pf = [px, py, pz]

> represents the point in the plane Π. Model 1 [62] is the most general representation
using the homogeneous coordinates (πi, i ∈ 1 . . . 4). Model 2 (Hesse form) uses the unit normal direction

nπ = [nx, ny, nz]
>

and the shortest distance from the origin to the plane d. Both models are not minimal, so
the information matrix will become singular if directly using them for least-squares optimization. Model 3
is similar to the spherical coordinate, which parameterizes a plane with 2 angles (horizontal angle θ and



elevation angle φ) and distance d. Model 3 is appealing since it is a minimal parameterization while suffering
from singularities when φ = ±π2 which is similar to the gimbal lock issue for Euler angles. Model 4 [63] and
Model 5 [64] are used under certain conditions. Model 6 [65, 36] uses a unit 4-dimensional vector for plane
representation. In [36] it was treated as a unit quaternion and thus quaternion error states to represent the
plane error propagation. In [24] both quaternion and distance d were used for plane parameterization while
the error states contain 2D quaternion errors and the distance error. The error states for both quaternion
related plane representations lack physical interpretation. Since different representations have their own
advantages, some work has combined these models. For example, both Models 2 and 4 are used in [63], and
in [64] Model 5 was used for plane fitting and Model 7 for formulating the cost function of plane matching.
Our recent work [21] employed Models 2 and 3 for plane and its error state, respectively.

3.4.2 Closest point (CP) parameterization

A plane Π is often represented by the normal direction nπ and the shortest distance d from the origin. How-
ever, we propose to use Model 7, the closest point (CP) of plane to the origin, for our plane parameterization.
This is due to the facts: (i) it is a minimal representation; and (ii) its error states are in vector space can
be interpreted geometrically. Note that there is one degenerate case associated with this representation, i.e.,
when d = 0, which, however, can be easily avoided in practice. As in practice, we can extract plane features,
e.g., from 3D point clouds, direct measurements of plane features are given by:

zπ = dnπ + n(π) =: IΠ + n(π) (21)

where IΠ represents the plane in the sensor’s local frame and n(π) represents the plane measurement noise.
To compute the measurement Jacobian of this plane measurement (21), note first that the plane param-

eters (Model 2) in the global frame can be transformed to the local frame as:[
Inπ
Id

]
=

[
I
GR 03×1

−GP>I 1

] [
Gnπ
Gd

]
(22)

The corresponding closest points (Model 7) have:

IΠ = IdInπ =
(
−GP>I

Gnπ + Gd
)
I
GRGnπ = −Gn>π

GPI
I
GRGnπ + GdIGRGnπ (23)

We now can compute the local-plane measurement Jacobian w.r.t. the plane feature using the chain rule:

∂IΠ̃

∂GΠ̃
=

∂IΠ̃

∂Gñπ

∂Gñπ

∂GΠ̃
+
∂IΠ̃

∂Gd̃

∂Gd̃

∂GΠ̃
(24)

where the pertinent intermedian Jacobians are computed as:

∂IΠ̃

∂Gñπ
= I
GR̂

((
Gd̂− Gn̂>π

GP̂I

)
I3 − Gn̂π

GP̂>I

)
(25)

∂LΠ̃

∂Gd̃
= I
GR̂Gn̂π (26)

∂Gñπ

∂GΠ̃
=

(
Gn̂>π

Gn̂πI3 − Gn̂π
Gn̂>π

)
Gd̂

(27)

∂Gd̃

∂GΠ̃
=

[
xπ yπ zπ

]√
x2
π + y2

π + z2
π

= Gn̂>π (28)

Substitution of the above expressions into (24) yields:

∂IΠ̃

∂GΠ̃
=

I
GR̂

((
Gd̂− Gn̂>π

GP̂I

)
I3 − Gn̂π

GP̂>I + 2Gn̂>π
GP̂I

Gn̂π
Gn̂>π

)
Gd̂

(29)



We now compute the measurement Jacobian w.r.t. to the IMU states by applying perturbation of δθ and
GP̃I on (23):

IΠ =−Gn̂>π
GP̂I

I
GR̂Gn̂π + Gd̂IGR̂Gn̂π +

(
Gd̂− Gn̂>π

GP̂I

)
bIGR̂Gn̂π×cδθ (30)

=− Gn̂>π
GP̂I

I
GR̂Gn̂π + Gd̂IGR̂Gn̂π − L

GR̂Gn̂π
Gn̂>π

GP̃I (31)

which immediately provides the desired Jacobians:

∂IΠ̃

∂δθ
=
(
Gd̂− Gn̂>π

GP̂I

)
bIGR̂Gn̂π×c (32)

∂IΠ̃

∂GP̃I

= −IGR̂Gn̂π
Gn̂>π (33)

Stacking (29), (32) and (33) yields the complete the measurement Jacobian of the plane measurement w.r.t.
the state (1):

HI =
[
∂IΠ̃
∂δθ 03×9

∂IΠ̃
∂GP̃I

∂IΠ̃
∂GΠ̃

]
(34)

3.5 Observability Analysis

Observability analysis for the linearized aided INS can be performed in a similar way as in [14, 7]. In
particular, the observability matrix M(x) is given by:

M(x) =


HI1Φ(1,1)

HI2Φ(2,1)

...
HIkΦ(k,1)

 (35)

where HIk is the measurement Jacobian at time step k. The unobservable directions span the right null
space of this matrix.

4 Observability Analysis of Aided INS with Homogeneous Fea-
tures

In this section, we perform observability analysis for the linearized systems of aided INS using homogeneous
geometric features including only points, lines and planes; and the observability analysis for aided INS with
heterogeneous geometric features will be presented in next section.

4.1 Aided INS with Point Features

We first consider the aided INS with point features and conduct the observability analysis in a similar way
as in [14, 7]. In particular, as the unobservable directions of this aided INS span the right null space of

M(x) (35), we compute the measurement Jacobians H
(p)
Ik

based on (7) as follows [see (9)]:

H
(p)
Ik

=

[
Hr,k

Hb,k

] [
bIkP̂f×c 03 03 03 −IkG R̂ Ik

G R̂
]︸ ︷︷ ︸

Hf,k

= Hproj,k
Ik
G R̂

[
Hp1 03 03 03 −I3 I3

]
(36)

where we have used (8) and (9) as well as the following matrix:

Hp1 = b
(
GP̂f − GP̂Ik

)
×cIkG R̂

>
(37)



Specifically, for each block row of M(x) [see (35)], we have:

H
(p)
Ik

Φ(k,1) = Hproj,k
Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

]
(38)

where

Γ1 =

⌊(
GP̂f − GP̂I1 − GV̂I1δtk +

1

2
Gg(δtk)2

)
×
⌋
G
I1R̂

Γ2 =
⌊(

GP̂f − GP̂Ik

)
×
⌋
Ik
G R̂>Φ12 −Φ52

Γ3 = −I3δtk, Γ4 = −Φ54 (39)

where g =
∥∥Gg

∥∥ and Gg = [0, 0,−g]
>

, Note that for the analysis purpose, we assume that in computing
different Jacobians the linearization points for the same state variables remain the same. By inspection, it
is not difficult to see that the null space of M(x) in this case is given by:

N =

 Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f×cGg I3

 =:
[
Nr Np

]
(40)

where Ng is defined by:

Ng =

[(
I1
G R̂Gg

)>
01×3 −

(
bGV̂I1×cGg

)>
01×3

]>
(41)

It is interesting to notice that in (40), Np corresponds to the sensor’s global translation, while Nr relates
to the global rotation around the gravity direction. We thus see that the system has at least 4 unobservable
directions (Np and Nr). Moreover, in analogy to [14, 8, 20], we have further performed the nonlinear
observability analysis based on Lie derivatives [52] for the continuous-time nonlinear aided INS, which is
summarized as follows:

Lemma 4.1. The continuous-time nonlinear aided INS with point features (detected from generic range
and/or bearing measurements), has 4 unobservable directions.

Proof. See Appendix M.

4.2 Aided INS with Line Features

When navigating in structured environments, line features might be ubiquitous and should be exploited in
the aided INS to improve performance. In the following, we perform observability analysis for the aided INS
with line features to provide insights for building consistent estimators.

4.2.1 Single Line

With the line measurements (15), the measurement Jacobian is computed by (see (42) and Appendix D):

H
(l)
Ik

= Hl,k KIk
G R̂

[
Hl1 03×9 bGv̂L×c Hl2 Hl3

]︸ ︷︷ ︸
Hf,k

(42)

where we have employed the following identities:

Hl1 =
(
bGn̂L×c − bbGP̂Ik×cGv̂L×c

)
Ik
G R̂

>
(43)

Hl2 = bGn̂L×c − bGP̂Ik×cbGv̂L×c (44)

Hl3 = −
(
w2

w1

Gn̂L +
w1

w2
bGP̂Ik×cGv̂L

)
(45)



With this, the block row of the observability matrix M(x) (35) at time step k can be written as:

H
(l)
Ik

Φ(k,1) = Hl,kK
Ik
G R̂

[
Γl1 Γl2 bGv̂L×cδtk Γl3 bGv̂L×c Γl4 Γl5

]
(46)

where

Γl1 = (bGn̂L×c − bbGP̂Ik×cGv̂L×c+ bGv̂L×cbGP̂I1×c+bGv̂L×cbGV̂I1×cδtk −
1

2
bGv̂L×cbGĝ×cδt2k

−bGv̂L×cbGP̂Ik×c)GI1R̂

Γl2 =
(
bGn̂L×c − bbGP̂Ik×cGv̂L×c

)
Ik
G R̂

>
Φ12 + bGv̂L×cΦ52

Γl3 = bGv̂L×cΦ54, Γl4 = Hl2, Γl5 = Hl3

Therefore, we have the following result:

Lemma 4.2. The aided INS with a single line feature has at least 5 unobservable directions denoted by Nl:

Nl =


Ng 012×3 Nv

−bGP̂I1×cGg G
LR̂ 03×1

−Gg w2

w1

Gv̂ee>1 03×1

0 η2w2
2e>3 0

=:
[
Nl1 Nl2:5

]
(47)

where Gn̂e and Gv̂e are the normalized unit vectors of Gn̂L and Gv̂L, respectively, and Nv and G
LR̂ are

defined by:

Nv =
[
01×3 01×3

Gv̂>e 01×3

]>
(48)

G
LR̂ =

[
Gn̂e

Gv̂e bGn̂e×cGv̂e

]
(49)

Proof. See Appendix E.

It is not difficult to see that Nl1 relates to the sensor rotation around the gravitational direction, Nl2:4

associates with the sensor’s global translation, and Nl5 corresponds to the sensor motion along the line direc-
tion. Note also that the above analysis is based on the projective line measurement model (15). Additionally,
in Appendix F, we have also considered the direct line measurement model, for example, by extracting lines
from point clouds, and show that the same unobservable subspace Nl (47) holds.

4.2.2 Multiple Lines

We extend the analysis to the case where l > 1 general, unparallel lines are included in the state vector. To

this end, by noting that the rotation between line i and line j (i, j ∈ {1, . . . l}) is given by: LiLj R̂ = G
Li

R̂
>G
Lj

R̂,
we can prove that in this case there are 4 unobservable directions.

Lemma 4.3. The aided INS with l > 1 general, unparallel line features has at least 4 unobservable directions:

NL=



Ng 012×3

−bGP̂I1×cGg G
Li

R̂

−Gg
w1,2

w1,1

Gv̂e1e
>
1
L1

Li
R̂

0 η2
1w

2
1,2e

>
3
L1

Li
R̂

...
...

−Gg
wl,2
wl,1

Gv̂ele
>
1
Ll
Li

R̂

0 η2
l w

2
l,2e
>
3
Ll
Li

R̂


=:
[
NL1 NL2:4

]
(50)

where ηi, w1,i, w2,i and Gv̂ei are the parameters related to line i (i ∈ {1 . . . l}) [see (13)].

Proof. See Appendix G.

We want to point out again that the above Lemma 4.3 holds under the assumption that not all the lines
are parallel; if all parallel lines, the system will have one more unobservable direction, which coincides with
the line direction Gv̂e.



4.3 Aided INS with Plane Features

Now we perform observability analysis of the aided INS with plane features that are important geomet-
ric features commonly seen in structured environments. In particular, our analysis is based on the CP
parameterization of plane features.

4.3.1 Single Plane

We first consider a single plane feature GΠ included in the state vector:

x =
[
I
Gq̄
> b>g

GV>I b>a
Gp>I

GΠ>
]>

(51)

Based on the plane measurements (21), we can compute the Jacobians as [see (29), (32) and (33)]:

H
(π)
Ik

= Ik
G R̂

[
Hπ1 03 03 03 −Gn̂π

Gn̂>π Hπ2

]
(52)

where:

Hπ1 =
(
Gd̂− Gn̂>π

GP̂Ik

)
bGn̂π×cIkG R̂> (53)

Hπ2 =

(
Gd̂− Gn̂>π

GP̂Ik

)
I3 − Gn̂π

GP̂>Ik + 2Gn̂>π
GP̂Ik

Gn̂π
Gn̂>π

Gd̂
(54)

The block row of the observability matrix is computed by:

H
(π)
Ik

Φ(k,1) = Ik
G R̂

[
Γπ1 Γπ2 −Gn̂π

Gn̂>π δtk Γπ3 −Gn̂π
Gn̂>π Γπ4

]
(55)

where

Γπ1 =
[ (

Gd− Gn̂>π
GP̂Ik

)
bGn̂π×c − Gn̂π

Gn̂>π bGP̂I1 + GV̂I1δtk −
1

2
Ggδt2k − GP̂Ik×c

]
G
I1R̂ (56)

Γπ2 =
(
Gd̂− Gn̂>π

GP̂Ik

)
bGn̂π×cIkG R̂>Φ12 − Gn̂π

Gn̂>πΦ52 (57)

Γπ3 = −Gn̂π
Gn̂>πΦ54 (58)

Γπ4 = Hπ2 (59)

With that, we have the following result:

Lemma 4.4. The aided INS with a single plane feature has at least 7 unobservable directions:

Nπ =

 Ng 012×3 N123

−bGP̂I1×cGg G
ΠR̂ 03

−bGΠ̂×cGg Gn̂πe>3 03

 =:
[
Nπ1 Nπ2:4 Nπ5:7

]
(60)

In above expression, given Gn̂⊥1 and Gn̂⊥2 that are the unit vector orthonormal to each other and perpendicular
to Gn̂π, we have defined N123 and the plane orientation G

ΠR as follows:

N123 =


03×1 03×1

I1
G R̂Gn̂π

03×1 03×1 03×1
Gn̂⊥1

Gn̂⊥2 03×1

03×1 03×1 03×1

 (61)

G
ΠR̂ =

[
Gn̂⊥1

Gn̂⊥2
Gn̂π

]
(62)

Proof. See Appendix H.

Note that as compared to [34] where it was shown that the VINS with bearing measurements to planes
has 12 unobservable directions, we analytically show here that, given the direct plane measurements (21),
the aided INS with with a single plane feature has at least 7 unobservable directions: (i) Nπ1 that relates to
the rotation around the gravity, (ii) Nπ2:4 that associate with the position of the sensor platform, (iii) Nπ5:6

that correspond to the motions parallel to the plane, and (iv) Nπ7 that corresponds to the rotation around
the plane normal direction. This analysis is directly verified by numerical simulation results (see Fig. 3).



4.3.2 Multiple Planes

Assuming that there are s > 1 plane features in the state vector, we first note that the rotation between

plane i and plane j (i, j ∈ {1, . . . s}) is given by: Πi
Πj

R̂ = G
Πi

R̂
>G

Πj
R̂. We then can prove the following result:

Lemma 4.5. The aided INS system with s > 1 plane features in the state vector has the following unob-
servable directions:

NΠ =


Ng 012×1 Ni×j

−bGP̂I1×cGg G
Πi

R̂ 03×1

−bGΠ̂1×cGg Gn̂π1e
>
3

Π1

Πi
R̂ 03×1

...
...

...

−bGΠ̂s×cGg Gn̂πse
>
3

Πs
Πi

R̂ 03×1

 =:
[
NΠ1 NΠ2:4 NΠ5

]
(63)

where Gnπi is the normal direction vector for plane i (i, j ∈ {1 . . . s}) and Ni×j is defined by:

Ni×j =

[
01×6

(
bGn̂⊥πi×c

Gn̂⊥πj

)>
01×3

]>
(64)

Depending on the number of planes and their properties, we have the following observatioins:

• If s = 2 and the planes are not parallel, the system will have at least 5 unobservable directions given
by NΠ1:5.

• If s ≥ 3 and these planes’ intersections are not parallel, the system will have at least 4 unobservable
directions given by NΠ1:4.

Proof. See Appendix I.

Up to this point, we have shown from the system observability perspective that the minimal CP rep-
resentation is an appealing parameterization in part because it preserves the observability properties for
aided INS with plane features. Note that if all the planes are parallel, the linearized system will have three
more unobservable directions corresponding to the motion perpendicular to the plane normal direction and
rotation around the normal direction. If all the planes’ intersections are parallel, then the motion along
the plane intersection direction is unobservable. For completeness and comparison, in Appendix J we also
present the observability analysis for the aided INS with plane feature using the Hesse form (i.e., Model 2
in Table 1).

5 Observability Analysis for Aided INS with Heterogeneous Fea-
tures

In this section, we study the observability properties for the aided INS with different combinations of geo-
metrical features including points, lines and planes. To keep presentation concise, in the following we first
consider that case of one feature of each type included in the state vector, and then extend to the general
case of multiple heterogeneous features.

5.1 Point and Line Measurements

Consider a point feature GPf and a line feature GL in the state vector, yielding Gxf =
[
GP>f

GL>
]>

[see (1)]. If the sensor measures both the point and line features, we have the following measurement model
[see (7) and (15)]:

zpl =

[
zp
zl

]
(65)



For observability analysis, we compute the measurement Jacobians w.r.t. the point and line feature as
[see (36) and (42)]:

H
(pl)
Ik

=

[
Hproj,k 02×3

02×3 Hl,kK

] [Ik
G R̂ 03

03
Ik
G R̂

]
×
[
Hp1 03×9 −I3 I3 03 03×1

Hl1 03×9 bGv̂L×c 03 Hl2 Hl3

]
(66)

The k-th block row of the observability matrix M(x) becomes:

H
(pl)
Ik

Φ(k,1) =

[
Hproj,k 02×3

02×3 Hl,kK

] [Ik
G R̂ 03

03
Ik
G R̂

] [
Γ1 Γ2 Γ3 Γ4 −I3 I3 03 03×1

Γl1 Γl2 bGv̂L×cδtk Γl3 bGv̂L×c 03 Γl4 Γl5

]
(67)

It is not difficult to find the unobservable directions as:

Npl =


Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f×cGg I3

−Gg w2

w1

Gv̂ee>1
L
GR̂

0 η2w2
2e>3

L
GR̂

 =:
[
Npl1 Npl2:4

]
(68)

Clearly, for the aided INS with combination features of point and line, there are also at least 4 unobservable
directions: one is Npl1 which relates the rotation around the gravity direction, and the other three are Npl2:4

which correspond to the global position of the sensor platform.
Moreover, we can readily extend to the case of multiple points and lines. Assuming m points and l lines

in the state vector, we can show that there are also at least 4 unobservable directions:

NPL =



Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f1×cGg I3

...
...

−bGP̂fm×cGg I3

−Gg
w1,2

w1,1

Gv̂e1e
>
1
L1

G R̂

0 η2
1w

2
1,2e

>
3
L1

G R̂
...

...

−Gg
wl,2
wl,1

Gv̂ele
>
1
Ll
G R̂>

0 η2
l w

2
l,2e
>
3
Ll
G R̂>



=:
[
NPL1 NPL2:4

]
(69)

5.2 Point and Plane Measurements

Consider the case where we have a point and a plane in the state vector (1), and thus the feature state

xf =
[
GP>f

GΠ
]>

. Therefore, in this case, the measurement model consists of the point measurement and
plane measurement [see (7) and (21)]:

zpπ =

[
zp
zπ

]
(70)

The measurement Jacobian is computed as [see (36) and (34)]:

H
(pπ)
Ik

=

[
Hproj,k 02×3

03 I3

] [Ik
G R̂ 03

03
Ik
G R̂

]
×
[
Hp1 03×9 −I3 I3 03

Hπ1 03×9 −Gn̂π
Gn̂>π 03 Hπ2

]
(71)

The k-th block row of the observability matrix M(x) is:

H
(pπ)
Ik

Φ(k,1) =

[
Hproj,k 02×3

03 I3

] [Ik
G R̂ 03

03
Ik
G R̂

][
Γ1 Γ2 Γ3 Γ4 −I3 I3 03

Γπ1 Γπ2 −Gn̂π
Gn̂>π δtk Γπ3 −Gn̂π

Gn̂>π 03 Γπ4

]
(72)



where Γi,Γπi, i ∈ 1 . . . 4, are the same as in the previous sections. The unobservable directions can hence
be found as:

Npπ =


Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f×cGg I3

−bGΠ̂×cGg Gn̂Πe>3
Π
GR̂

 =:
[
Npπ1 Npπ2:4

]
(73)

Clearly, in this case, the unobservable directions of the aided INS consist of the rotation around the gravity
direction Npπ1, and the global position of the sensor platform Npπ2:4.

Similarly, we can extend this analysis to multiple features. Given m points and s planes in the state
vector, the null space of the observability matrix can be obtained as follows:

NPΠ =



Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f1×cGg I3

...
...

−bGP̂fm×cGg I3

−bGΠ1cGg Gn̂π1
e>3

Π1

G R̂
...

...

−bGΠscGg Gn̂πse
>
3

Πs
G R̂


=:
[
NPΠ1 NPΠ2:4

]
(74)

5.3 Line and Plane Measurements

Now consider the case where a line and a plane is in the state vector, i.e., xf =
[
GL> GΠ>

]>
. The

measurement model is given by [see (15) and (21)]:

zlπ =

[
zl
zπ

]
(75)

The measurement Jacobian becomes [see (42) and (34)]:

H
(lπ)
Ik

=

[
Hl,kK 02×3

03 I3

] [Ik
G R̂ 03

03
Ik
G R̂

][
Hl1 03×9 bGv̂L×c Hl2 Hl3 03

Hπ1 03×9 −Gn̂π
Gn̂>π 03 03×1 Hπ2

]
(76)

The k-th block row of the observability matrix M(x) is:

H
(lπ)
Ik

Φ(k,1) =

[
Hl,kK 02×3

03 I3

] [Ik
G R̂ 03

03
Ik
G R̂

][
Γl1 Γl2 bGv̂L×cδtk Γl3 bGv̂L×c Γl4 Γl5 03

Γπ1 Γπ2 −Gn̂π
Gn̂>π δtk Γπ3 −Gn̂π

Gn̂>π 03 03×1 Γπ4

]
(77)

Based on that, we have the following result:

Lemma 5.1. The aided INS with a single line and plane feature generally has the following unobservable
directions:

Nlπ =


Ng 012×3 Nv

−bGP̂I1×cGg I3 03×1

−Gg w2

w1

Gv̂ee>1 03×1

0 η2w2
2e>3

L
GR̂ 0

−bGΠ̂×cGg Gn̂πe>3
Π
GR̂ 03×1

 =:
[
Nlπ1 Nlπ2:4 Nlπ5

]
(78)

In particular, depending on the feature properties, we have:



• If the line is parallel to the plane, the linearized system will have at least 5 unobservable directions
given by Nlπ1:5.

• If the line is not parallel to the plane, the linearized system will have at least 4 unobservable directions
given by Nlπ1:4.

Proof. See Appendix K.

Similarly, we can extend the analysis to the case of multiple lines and planes. Given l lines and s planes,
the unobservable directions fo the aided INS with general, unparallel lines and planes are given by:

NLΠ =



Ng 012×3

−bGP̂I1×cGg I3

−Gg
w1,2

w1,1

Gv̂e1e
>
1
L1

G R̂

0 η2
1w

2
1,2e

>
3
L1

G R̂
...

...

−Gg
wl,2
wl,1

Gv̂ele
>
1
Ll
G R̂

0 η2
l w

2
l,2e
>
3
Ll
G R̂

−bGΠ1×cGg Gn̂π1
e>3

Π1

G R̂
...

...

−bGΠs×cGg Gn̂πse
>
3

Πs
G R̂



=:
[
NLΠ1 NLΠ2:4

]
(79)

5.4 Point, Line and Plane Measurements

Lastly, let us consider the case where all three types of features (a single point, line, and plane) are in in the

state vector, i.e., xf =
[
GP>f

GL> GΠ>
]>

. The measurement model becomes [see (7), (15) and (21)]:

zplπ =

zp
zl
zπ

 (80)

The measurement Jacobian can be computed as [see (36), (42) and (34)]:

H
(plπ)
Ik

=

Hproj,k
Ik
G R̂ 02×3 02×3

02×3 Hl,kK
Ik
G R̂ 02×3

03 03
Ik
G R̂

Hp1 03×9 −I3 I3 03 03×1 03

Hl1 03×9 bGv̂L×c 03 Hl2 Hl3 03

Hπ1 03×9 −Gn̂π
Gn̂>π 03 03 03×1 Hπ2

 (81)

The k-th block row of the observability matrix M(x) is:

H
(plπ)
Ik

Φ(k,1) =

Hproj,k
Ik
G R̂ 02×3 02×3

02×3 Hl,kK
Ik
G R̂ 02×3

03 03
Ik
G R̂

× (82)

 Γ1 Γ2 Γ3 Γ4 −I3 I3 03 03×1 03

Γl1 Γl2 bGv̂L×cδtk Γl3 bGv̂L×c 03 Γl4 Γl5 03

Γπ1 Γπ2 −Gn̂π
Gn̂>π δtk Γπ3 −Gn̂π

Gn̂>π 03 03 03×1 Γπ4


The observability properties of this aided INS are given by:



Lemma 5.2. The aided INS with one point, one line and one plane feature in the state vector, has at least
4 unobservable directions:

Nplπ =



Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f×cGg I3

−Gg w2

w1

Gv̂ee>1
L
GR̂

0 η2w2
2e>3

L
GR̂

−bGΠ̂×cGg Gn̂πe>3
Π
GR̂


=:
[
Nplπ1 Nplπ2:4

]
(83)

Proof. See Appendix L.

We also extend this analysis to multiple points, lines and planes. Given m points, l lines and s planes
for the estimation, the unobservable directions can be found as follows:

NPLΠ =



Ng 012×3

−bGP̂I1×cGg I3

−bGP̂f1×cGg I3

...
...

−bGP̂fm×cGg I3

−Gg
w1,2

w1,1

Gv̂e1e
>
1
L1

G R̂

0 η2
1w

2
1,2e

>
3
L1

G R̂
...

...

−Gg
wl,2
wl,1

Gv̂ele
>
1
Ll
G R̂

0 η2
l w

2
l,2e
>
3
Ll
G R̂

−bGΠ1×cGg Gn̂π1
e>3

Π1

G R̂
...

...

−bGΠs×cGg Gn̂πse
>
3

Πs
G R̂



=:
[
NPLΠ1 NPLΠ2:4

]
(84)

6 Observability Analysis of Aided INS with Global Measurements

Aided INS may also have access to (partially) global measurements provided by, for example, GPS receivers,
sun/star sensors, barometers and compasses. Intuitively, such measurements would alter the system observ-
ability properties, even if only partial (not full 6 DOF pose) information is available. In this section, we
systematically examine the impacts of such measurements on the system observability.

6.1 Global Position Measurements

We consider the case where besides the point, line and plane measurements, global position measurements
are also available from, for example, a GPS receiver or a barometer. In the following, we use such a global
measurement individually along x, y and z-axis.

6.1.1 Global x Measurement

If sensor’s translation along x direction is known, then the additional global x-axis measurement is given by
z(x) = e>1

GPI . The measurement Jacobian and the block row of observability matrix can be computed as
[see (82)]:

HIkΦ(k,1) =

[
H

(plπ)
Ik

Φ(k,1)

H
(x)
Ik

Φ(k,1)

]
(85)



where H
(x)
Ik

is the global x measurement Jacobian, yielding:

H
(x)
Ik

Φ(k,1) =
[
01×12 e>1 01×3 01×4 01×3

]
(86)

We can show that the unobservable subspace becomes:

Nx =



012×2

Ax

Ax
w2

w1

Gv̂ee>1
L
GR̂Ax

η2w2
2e>3

L
GR̂Ax

Gn̂πe>3
Π
GR̂Ax

 (87)

where Ax =
[
02×1 I2

]>
. As compared to N in (83) without global x measurements, both the global

translation in x direction and the rotation around the gravity direction become observable.

6.1.2 Global y Measurement

If sensor’s translation along y direction is known, then the additional global y-axis measurement is given by
z(y) = e>2

GPI . The measurement Jacobian and the block row of observability matrix can be computed as
[see (82)]:

HIkΦ(k,1) =

[
H

(plπ)
Ik

Φ(k,1)

H
(y)
Ik

Φ(k,1)

]
(88)

where H
(y)
Ik

is the global y measurement Jacobian, yielding:

H
(y)
Ik

Φ(k,1) =
[
01×12 e>1 01×3 01×4 01×3

]
(89)

We can show that the unobservable subspace becomes:

Ny =



012×2

Ay

Ay
w2

w1

Gv̂ee>1
L
GR̂Ay

η2w2
2e>3

L
GR̂Ay

Gn̂πe>3
Π
GR̂Ay

 (90)

where Ay =

[
1 0 0
0 0 1

]>
. As compared to N in (83) without global y measurements, both the global

translation in y direction and the rotation around the gravity direction become observable.

6.1.3 Global z Measurement

Proceeding similarly, if the global translation in z direction is directly measured, e.g., by a barometer, we
have an additional global z-axis measurement z(z) = e>3

GPI . In this case, the block row of the observability
matrix becomes:

HIkΦ(k,1) =

[
H

(plπ)
Ik

Φ(k,1)

H
(z)
Ik

Φ(k,1)

]
(91)



Since e3 is parallel to Gg, we have e>3 bGPI1×cGg = 0. Therefore, the system’s unobservable directions
become:

Nz =



Ng 012×2

−bGP̂I1×cGg Az

−bGP̂f×cGg Az

−Gg w2

w1

Gv̂ee>1
L
GR̂Az

0 η2w2
2e>3

L
GR̂Az

−bGΠ̂×cGg Gn̂πe>3
Π
GR̂Az


(92)

where Az =
[
I2 02×1

]>
. Clearly, only translation in z becomes observable, while, different from the previ-

ous case of the global x or y measurements, the rotation around the gravity direction remains unobservable.

6.2 Global Orientation Measurements

We here consider the case where the aided INS has access to global orientation measurements, for example,
provided by a sun sensor, or a magnetic compass, or by detecting a plane with known orientation [34, 55]:
z(n) = INn = I

GRGNn. In this case, the Jacobian and the block row of the observability matrix can be
computed as:

HIkΦ(k,1) =

[
H

(plπ)
Ik

Φ(k,1)

H
(n)
Ik

Φ(k,1)

]
(93)

where H
(n)
Ik

is the orientation measurement Jacobian, yielding:

H
(n)
Ik

Φ(k,1) = Ik
G R̂

[
bGNn×cGI1R̂ Γ5 03×19

]
(94)

where Γ5 = bGNn×cIkG R̂>Φ12. If GNn is not parallel to Gg, i.e., bGN×cGg 6= 0, the rotation around the
gravity direction becomes observable, and the unobservable directions are:

Nn =



012×3

I3

I3
w2

w1

Gv̂ee>1
L
GR̂

η2w2
2e>3

L
GR̂

Gn̂πe>3
Π
GR̂

 (95)

In summary, as expected, the global measurements will make the aided INS more observable. In partic-
ular, if a global full position measurements by GPS or a prior map are available, the system will become
fully observable, while global orientation measurements can make the rotation around gravitational direction
observable, as long as this orientation is not parallel to the direction of gravity.

7 Analysis of Degenerate Motion

While Wu et al. [24] have recently reported that pure translation and constant acceleration are degenerate for
monocular VINS with point features, in this section, we here perform a comprehensive study of degeneration
motion for the aided INS with heterogeneous features of points, lines and planes, which is important to
identify in order to keep estimators healthy.

In particular, to ease our analysis, we use the range and bearing parameterization (i.e., spherical coordi-
nates) of a point feature, instead of its conventional 3D position:

xf :=

rfθ
φ

⇒ rfbf = rf

cos θ cosφ
sin θ cosφ

sinφ

=

xf

yf

zf

 =: Pf (96)



where rf is the range, θ and φ are the horizontal and elevation angle of the point. In this case (point features),
the block row of the observability matrix can be computed as [see (38)]:

H
(p)
Ik

Φ(k,1) = Hproj,k
Ik
G R̂

[
Γ1 Γ2 Γ3 Γ4 −I3 b̂f

Gr̂f cos φ̂b̂⊥1
Gr̂f b̂

⊥
2

]
(97)

where

b̂⊥1 =
[
− sin θ̂ cos θ̂ 0

]>
(98)

b̂⊥2 =
[
− cos θ̂ sin φ̂ − sin θ̂ sin φ̂ cos φ̂

]>
(99)

By inspection, the unobservable directions can be found as:

Nrb =



Ng 012×3

−bGP̂I1×cGg I3

0 b̂>f

−g (b̂⊥
1 )

>

Gr̂f cos φ̂

0
(b̂⊥

2 )
>

Gr̂f


=:
[
Nrb,r Nrb,p

]
(100)

where Nrb,p and Nrb,r are the unobservable directions associated with the global translation and the global
rotation around the gravity direction, which, as expected, agrees with the preceding analysis (40).

7.1 Pure Translation

Based the above analysis of point measurements, we show that given point, line and plane measurements (80),
if the sensor undergoes pure translation, the system gains the following additional unobservable directions
(by noting that the state vector (1) includes the IMU state, one point in spherical coordinates (96), one line
and one plane):

NR =



I1
G R̂
03

−bGV̂I1×c
−I1G R̂bGg×c
−bGP̂I1×c
−Θ
−I3

01×3

−bGΠ×c


(101)

where Θ =

 0 0 0
Gr̂f cos θ̂ tan φ̂ sin θ̂ tan φ̂ −1

−Gr̂f sin θ̂ cos θ̂ 0

. Similar to [24], this unobservable direction can be easily verified

[see (82)]:

H
(plπ)
Ik

Φ(k,1)NR =

H
(p)
Ik

Φ(k,1)NR

H
(l)
Ik

Φ(k,1)NR

H
(π)
Ik

Φ(k,1)NR

 = 0 (102)

Specifically, using (5) and (39), we have this useful identity: Γ4
I1
G R̂ − 1

2δt
2
kI3 = −Φ54

I1
G R̂ − 1

2δt
2
kI3 = 0.

With this, we can easily verify each block row of (102) as follows:

H
(p)
Ik

Φ(k,1)NR = −Hproj,k
Ik
G R̂

(
Γ4

I1
G R̂− 1

2
δt2kI3

)
bGg×c = 0

H
(l)
Ik

Φ(k,1)NR = Hl,k
Ik
G R̂

[
bGv̂L×c

(
−Φ54

I1
G R̂− 1

2
δt2kI3

)
bGg×c−bGv̂L×cbGP̂Ik×c − bbGP̂Ik×cGv̂L×c+ bGP̂Ik×cbGv̂L×c

]
= 0

H
(π)
Ik

Φ(k,1)NR = Ik
G R̂Gn̂π

Gn̂>π

(
Φ54

I1
G R̂ +

1

2
δt2kI3

)
bGg×c = 0



where we have also employed the identities: b(a× b)×c = ba> − ab> and ba×cbb×c = ba> − a>bI.
We see from Θ that its first row corresponding to the range of the point feature [see (96)] are all zeros

and thus this unobservable direction (102) relates to the bearing of the feature. Note also that the global
rotation of the sensor becomes unobservable, rather than only the global yaw is unobservable for general
motions [see (102) and (83)]. It is important to notice that no assumption is made about the type of sensors
used, and thus, the aided INS with generic sensors (not including global sensors) with pure translation will
all gain additional unobservable directions of NR.

7.2 Constant Acceleration

As it is not straightforward to have direct plane measurements (21) for INS aided by a monocular camera,
to ease our analysis of VINS, from now on we focus on the point and line measurements (65). In particular,
if the camera moves with constant local acceleration, i.e., Ia is constant, then the system will have one more
unobservable direction given by:

Na =
[
01×6

GV̂>I1 −I â> GP̂>I1
Gr̂fe

>
1 01×3 −w2

w1

]>
(103)

Since a monocular amera provides only bearing measurements, Hproj,k = Hb,k =

[
I b̂>⊥1,k
I b̂>⊥2,k

]
, where I b̂⊥i,k

(i = 1, 2) are orthogonal to I b̂f (see Appendix B). In this case, we have:

HIkΦ(k,1)Na =

[
H

(p)
Ik

Φ(k,1)Na

H
(l)
Ik

Φ(k,1)Na

]
= 0 (104)

which can be verified by using the identity shown in [24]: Γ4
Ia = GP̂Ik − GP̂I1 − GV̂I1δtk:

H
(p)
Ik

Φ(k,1)Na = Hb,k
Ik
G R̂

(
−GV̂I1δtk − Γ4

I â− GP̂I1 + Grf
Gb̂f

)
= Hb,k

Ik
G R̂

(
GP̂f − GP̂Ik

)
= Hb,k

IkP̂f
(129)
= 0 (105)

H
(l)
Ik

Φ(k,1)Na = Hl,kK
Ik
G R̂

(
bGv̂L×cGP̂Ik +

w2
2

w2
1

Gn̂L + bGP̂Ik×cGv̂L

)
=
w2

2

w2
1

Hl,kK
Ik
G R̂Gn̂L

(20),(16)
= 0 (106)

Note that this unobservable subspace (103) relates only to the scale as its nonzeros all appear on the scale-
sensitive states. If using a sensor that can provide the scale (such as stereo and RGBD cameras), this
unobservable direction will vanish.

7.3 Pure Rotation

If the sensor has only rotational motion, then GPIk = 03×1. For monocular-camera based point and line
measurements (65), the system will gain the following extra unobservable directions corresponding to the
feature scale:

Ns =

[
01×15 e>1 01×3 0
01×15 01×3 01×3 1

]>
(107)

⇒ HIkΦ(k,1)Ns =

[
H

(p)
Ik

Φ(k,1)Ns

H
(l)
Ik

Φ(k,1)Ns

]
= 0 (108)

which can be seen as follows [see (105) and (106)]:

H
(p)
Ik

Φ(k,1)Ns =

[
Hb,k

I
GR̂Gb̂f

0

]
=

[
0
0

]
(109)

H
(l)
Ik

Φ(k,1)Ns =

[
0

−w2

w1
Hl,kK

Ik
G R̂Gn̂L

]
=

[
0
0

]
(110)



Note that the first row of Ns relates to the scale of the point feature (range rf ), and the second row to
the scale of the line (the shortest distance from the origin to the line), which implies that we have more
unobservable directions related to the feature scales.

7.4 Moving Towards Point Feature

With the point and line measurements (65), if the camera moving towards the point feature, the system will
gain one more unobservable direction related to the point scale (range):

N1 =
[
01×15 e>1 01×3 0

]>
(111)

This degenerate motion indicates that the sensor is moving along the direction of the point feature’s bearing
direction, that is: GPIk = αGbf , where α denotes the scale of the sensor’s motion. Then, we can arrive at:

IkPf = Ikrf
Ikbf = Ik

G R
(
Grf − α

)
Gbf (112)

Similar to the case of pure rotation, we can verify the additional unobservable direction N1 as follows
[see (105)]:

HIkΦ(k,1)N1 =

[
H

(p)
Ik

Φ(k,1)N1

H
(l)
Ik

Φ(k,1)N1

]
=

[
Ik r̂f
Gr̂f−αHb,k

Ik b̂f

0

]
=

[
0
0

]
(113)

7.5 Moving in Parallel to Line Feature

Similarly, if the camera is moving in parallel to the line feature, the system will also gain one more unob-
servable direction related to this line feature’s scale (distance):

N1 =
[
01×15 01×3 01×3 1

]>
(114)

This degenerate motion indicates that the sensor is moving parallel to the line direction, that is, bGPIk×cGvL =
0. Then, we have the following verification [see (106)]:

HIkΦ(k,1)N1 =

[
H

(p)
Ik

Φ(k,1)N1

H
(l)
Ik

Φ(k,1)N1

]
=

[
0

−w2

w1
Hl,kK

Ik
G R̂Gn̂L

]
=

[
0
0

]
(115)

8 Monte Carlo Simulations

To validate our observability analysis of aided INS using heterogeneous geometric features, we perform
extensive Monte Carlo simulations of vision-aided INS:3 (i) visual-inertial SLAM (VI-SLAM), and (ii) visual-
inertial odometry (VIO), which are among the most popular localization technologies in part due to their
ubiquitous availability and complementary sensing modality. To this end, we have adapted both the EKF-
based VI-SLAM and MSCKF-based VIO algorithms to fuse measurements of points, lines, planes and their
different combinations. To the best of our knowledge, algorithmically, we, for the first time, introduce
and evaluate the EKF-based VI-SLAM/VIO approaches with heterogeneous features (which are common
in structured environments). In particular, we have compared two different EKFs in both VI-SLAM and
VIO: (i) the ideal EKF that uses true states as the linearization points in computing filter Jacobians and
has been shown to have correct observability properties and expected to be consistent, thus being used as
the benchmark in simulations as in the literature (e.g., [39, 14, 11, 7, 8]); and (ii) the standard EKF that
uses current state estimates as the linearization points in computing filter Jacobians and has been shown
to be overconfident (inconsistent) [11, 7, 8]. The metrics used to evaluate estimation performance are the
root mean squared error (RMSE) and the average normalized (state) estimation error squared (NEES) [66].
The RMSE provides a measure of accuracy, while the NEES is a standard criterion for evaluating estimator
consistency, which (implicitly) indicates the correctness of the EKF system observability.

3Note that similar results as presented in this section would be expected if other aiding sensors are used, for example,
acoustic-aided INS was developed in our recent work [6].



The simulated trajectories and different geometric features are shown in the left of Figs. 1 and 2, where
we simulate a camera/IMU sensor suite is moving on the sinusoidal trajectories to collect measurements
to different features. For the results in Fig. 1, we developed the EKF-based VI-SLAM algorithm, which
simultaneously preforms visual-inertial localization and mapping by keeping different features in the state
vector. In contrast, for the results in Fig. 2, we adapated the MSCKF-based VIO [2], which estimates only
the sensor poses while marginalizing out different (not only points) features with null space operation. It is
clear from these results of both VI-SLAM and VIO in Figs. 1 and 2 that the standard EKF/MSCKF performs
worse than the benchmark ideal filter, which agrees with the literature (with point features only) [11, 7, 8].
This again reflects the importance of system observability for consistent state estimation.

Moreover, in order to directly validate the unobservable subspace of the aided INS found in our analysis,
using the same simulation setup as above but with a single feature, we have constructed the observability
matrix of the ideal EKF-based VI-SLAM with a single point (or line or plane) and numerically computed the
dimension of its null space, which is shown in Fig. 3. Clearly, the dimension of the unobservable subspace
for the (ideal) VI-SLAM with a single point (line or plane) is 4 (5 or 7), which agrees with our analysis.

9 Conclusions and Future Work

In this paper, we have performed observability analysis for aided INS with different geometric features
including points, lines and planes, which are detected from generic range and/or bearing measurements.
encompassing vision-aided INS (VINS) as a special case. As in practice, most aided-INS estimators are built
based on the linearized systems, whose observability properties directly impact the estimation performance,
this work has primarily focused on observability analysis of the linearized aided INS with points, lines, planes
and their combinations. In particular, in the case of point features, we analytically show that the aided INS
(both linearized and nonlinear) using generic range and/or bearing measurements has 4 unobservable direc-
tions. In the case of lines (planes), we prove that there exist at least 5 (7) unobservable directions with a
single line (plane) feature, and for the first time, analytically derived the unobservable directions for multi-
ple lines and planes. We have generalized this observability analysis for linearized aided INS with different
combinations of point, line and plane features and summarized important results in Table 2. Based on this
analysis, we have also systematically investigated the effects of global measurements on the observability of
aided INS, and found, as expected, that global information improves the system observability. Moreover, we
have identified comprehensively 5 types of degenerate motions that negatively impact the system observabil-
ity and should be avoided if possible (otherwise, extra sensors may be needed). Additionally, it should be
noted that, during our analysis, we have employed 2 different point representation (Euclidean and spherical
coordinates), 2 different plane representation (CP and Hesse form) and 2 different line measurement models
(projective and direct), to analytically show that the systems have the same observability properties regard-
less these different representations. To validate our analysis, we have developed EKF-based VI-SLAM and
MSCKF-based VIO using heterogeneous geometric features of points, lines and planes, and evaluated their
performance extensively in Monte-Carlo simulations.

In the future, we will leverage the insights gained from this observability analysis to design consistent
estimators for aided INS with different geometric features by enforcing proper observability constraints as
in our prior work [17]. We will also investigate the (stochastic) observability of aided INS under adversarial
attacks [67] or unknown inputs [51] in order to design secure estimators for robot navigation.

Appendix A: State Transition Matrix

Follow the reference [7], the state transition matrix Φ(k,1) is defined as:

Φ(k,1) =


Φ11 Φ12 03 03 03 03

03 I3 03 03 03 03

Φ31 Φ32 I3 Φ34 03 03

03 03 03 I3 03 03

Φ51 Φ52 Φ53 Φ54 I3 03

03 03 03 03 03 I3

 (116)



Figure 1: Monte-Carlo results of EKF-based VI-SLAM using different geometric features.



Figure 2: Monte-Carlo results of MSCKF-based VIO using different geometric features.



Figure 3: The dimension of the null space of the observability matrix (i.e., unobservable subspace) that is
numerically computed during the simulation of the ideal-EKF based VI-SLAM with a single point, line or
plane.

Table 2: Summary of Observability Analysis of Aided INS

Features Unobservable Directions

Single or multiple points 4 (N)

Unparallel lines 4 (NL)

Planes with unparallel intersections 4 (NΠ1:4)

Point and line 4 (NPL)

Point and plane 4 (NPΠ)

Single line unparallel to planes 4 (Nlπ1:4)

Plane Intersections unparallel to lines 4 (NLΠ)

Point, line and plane 4 (NPLΠ)

Single line 5 (Nl)

Single line parallel to single plane 5 (Nlπ1:5)

Two un-parallel planes 5 (NΠ)

Single plane 7 (Nπ)



where we have:

Φ11 = Ik
I1

R (117)

Φ31 = −b
(
GVIk − GVI1

)
+ Ggδtk×cGI1R (118)

Φ51 = bGPI1 + GVI1δtk −
1

2
Ggδt2k − GPIk×cGI1R (119)

Φ12 = −
∫ tk

t1

Iτ
Ik

R>dτ (120)

Φ32 =

∫ tk

t1

Is
GR>bIsa×c

∫ s

t1

Iτ
Is

R>dτds (121)

Φ52 =

∫ tk

t1

∫ θ

t1

Is
GR>bIsa×c

∫ ts

t1

Iτ
Is

R>dτdsdθ (122)

Φ53 = I3δtk (123)

Φ34 = −
∫ tk

t1

Iτ
G R>dτ (124)

Φ54 = −
∫ tk

t1

∫ ts

t1

Iτ
G R>dτds (125)

Appendix B: Sensor Measurements for Point Features

In this section, we will analyze the measurement model for lase sensors, camera sensors and 2D imaging
sonars. In this section, we refer to frame {X} as the sensor frame.

B.1: 1D Range Finder

1D range Finder can only get the range measurement of the point feature, and the measurement model can
be described as:

z(r) =
√
xP>f

xPf + n(r) =
√

(xxf )2 + (xyf )2 + (xzf )2 + n(r) (126)

where xrf =
√
xp>f

xpf represents the range for the point feature in the frame {X}. And we can linearizing

the measurement model at xP̂f as:

z̃(r) ' Hr
xP̃f + n(r) =

xP̂>f
xr̂f

xP̃f + n(r) (127)

B.2: Mono-camera

Mono-camera can only get the bearing measurements of the point feature, and the measurement model can
be represented as:

z(b) =

 e>
1
xPf

e>
3
xPf

e>
2
xPf

e>
3
xPf

+ n(b) =

[
xxf
xzfxyf
xzf

]
+ n(b) (128)

where ei ∈ R3×1 for i = 1, 2, 3 and e1 = [1 0 0]>, e2 = [0 1 0]> and e3 = [0 0 1]>. Inspired by [68],
we use a more universal measurement model for point feature with Mono-camera as:

z(b) = hb

(
xPf ,n

(b)
)

=

[
xb>⊥1
xb>⊥2

]
xPf + xzf

[
xb>⊥1
xb>⊥2

] [
I2

01×2

]
n(b) (129)

where b⊥i, i ∈ {1, 2} are two perpendicular vectors to the bearing xbf , and they can be constructed from
[68]. The advantage of this model is that it is suitable for both fish eye and normal projective camera model.



And the linearized model with xP̂f is:

z̃(b) ' Hb
xP̃f + Hnn(b) =

[
xb>⊥1
xb>⊥2

]
xP̃f + xẑf

[
xb̂>⊥1
xb̂>⊥2

] [
I2

01×2

]
n(b) (130)

B.3: 2D Imaging Sonar

2D imaging sonar’s measurement contains the range and horizontal bearing measurement of a point [6], and
the model can be represented as:

z =

[
z(r)

z(b)

]
+

[
n(r)

n(b)

]
=

[ √
xP>f

xPf

xθf

]
+

[
n(r)

n(b)

]
=

[ √
(xxf )2 + (xyf )2 + (xzf )2

xθf

]
+

[
n(r)

n(b)

]
(131)

and similar to the case of the Mono-camera, we rewrite the bearing measurement as:

z(b) = hb

(
xPf ,n

(b)
)

= xrf
[
cos
(
xθf + n(b)

)
cosφ sin

(
xθf + n(b)

)
cosφ sinφ

]
xb⊥ (132)

where xb⊥ =
[
− sin θ cos θ 0

]>
. Therefore, the linearized sonar measurement model with xP̂f as:

z̃ =

[
z̃(r)

z̃(b)

] [
Hr

xP̃f + n(r)

Hb
xP̃f + Hnn(b)

]
(133)

Hb = xb>⊥ (134)

Hn = xb>⊥
xP̂f

(
−sin

(
xθ̂f

)
cos
(
xφ̂f

)
+ cos

(
xθ̂f

)
cos
(
xφ̂f

))
(135)

where xθ̂f = arctan
xŷf
xx̂f

, xφ̂f = arctan
xẑf√

xx̂2
f +xŷ2f

.

B.4: 2D LiDAR

2D lidar measurement is quite similar to sonar measurement, except for an extra constraint that xzf =
e>3

xpf = 0 (or we can see as φ = 0). In order to distinguish with Eq. (131), we add this constrain to the
model, and hence:

z =

[
z(r)

z(b)

]
=


√
xP>f

xPf

xθf
e>3

xPf

+

[
n(r)

n
(b)
2×1

]
=

 √(xxf )2 + (xyf )2 + (xzf )2

xθf
xzf

+

[
n(r)

n
(b)
2×1

]
(136)

where n(b) =
[
n

(b)
1 n

(b)
2

]>
. Similarly, we can rewrite the bearing measurement as:

z(b) = hb

(
xPf ,n

(b)
)

=

xb>⊥1
xrf

[
cos
(
xθf + n

(b)
1

)
cosφ sin

(
xθf + n

(b)
1

)
cosφ sinφ

]>
xb>⊥2

xPf + n
(b)
2

 (137)

where b⊥1 =
[
− sin (xθf ) cos (xθf ) 0

]>
, b⊥2 =

[
0 0 1

]>
. Therefore, the linearized system with xP̂f

can be described as:

z̃ =

[
z̃(r)

z̃(b)

]
=

[
Hr

xP̃f + n(r)

Hb
xP̃f + Hnn(b)

]
(138)

where:

Hb =

[
b>⊥1

b>⊥2

]
(139)

Hn =

[
xb>⊥1

xP̂f

(
−sin

(
xθ̂f

)
cos
(
xφ̂f

)
+ cos

(
xθ̂f

)
cos
(
xφ̂f

))
xb>⊥2

]
(140)

where xθ̂f = arctan
xŷf
xx̂f

, xφ̂f = arctan
xẑf√

xx̂2
f +xŷ2f

.



B.5: 3D LiDAR

3D LiDAR can directly get the range and bearing information of the feature, therefore the measurement
model can be denoted as:

z =

[
z(r)

z(b)

]
=


√
xp>f

xpf

xθf
xφf

+

[
n(r)

n(b)

]
=

 √(xxf )2 + (xyf )2 + (xzf )2

xθf
xφf

+

[
n(r)

n(b)

]
(141)

where n(b) =
[
n

(b)
1 n

(b)
2

]>
. Similarly, we can rewrite the bearing measurement as:

z(b) = hb

(
xPf ,n

(b)
)

=

 xb>⊥1
xrf

[
cos
(
xθf + n

(b)
1

)
cosφ sin

(
xθf + n

(b)
1

)
cosφ sinφ

]>
xb>⊥2

xrf

[
cos (xθf ) cos

(
xφf + n

(b)
2

)
sin (xθf ) cos

(
xφf + n

(b)
2

)
sin
(
xφf + n

(b)
2

)]>
 (142)

where b⊥i, i ∈ {1, 2} are two perpendicular vectors to the bearing xbf , and they can be constructed from

[68]. Therefore, the linearized system with xP̂f can be described as:

z̃ =

[
z̃(r)

z̃(b)

]
=

[
Hr

xP̃f + n(r)

Hb
xP̃f + Hnn(b)

]
(143)

where:

Hb =

[
b>⊥1

b>⊥2

]
(144)

Hn =

 xb>⊥1
xP̂f

(
− sin

(
xθ̂f

)
cos
(
xφ̂f

)
+ cos

(
xθ̂f

)
cos
(
xφ̂f

))
xb>⊥2

xP̂f

(
− cos

(
xθ̂f

)
sin
(
xφ̂f

)
− sin

(
xθ̂f

)
sin
(
xφ̂f

)
+ cos

(
xφ̂f

)) (145)

where xθ̂f = arctan
xŷf
xx̂f

, xφ̂f = arctan
xẑf√

xx̂2
f +xŷ2f

.

B.6: RGBD Camera

RGBD camera can also get the range and bearing information of the feature, therefore:

z =

[
z(r)

z(b)

]
=


√
xP>f

xPpf

e>
1
xPf

e>
3
xPf

e>
2
xPf

e>
3
xPf

+

[
n(r)

n(b)

]
=


√

(xxf )2 + (xyf )2 + (xzf )2
xxf
xzfxyf
xzf

+

[
n(r)

n(b)

]
(146)

Therefore, we can rewrite the measurement model as:

z =

[
z(r)

z(b)

]
=

[√
xP>f

xPf + n(r)

hb
(
xPf ,n

(b)
) ]

=


√
xP>f

xPf + n(r)[
xb>⊥1
xb>⊥2

]
xPf + xzf

[
xb>⊥1
xb>⊥2

] [
I2

01×2

]
n(b)

 (147)

And we can linearize the system with xP̂f as:

z̃ =

[
z̃(r)

z̃(b)

]
'
[

Hr
xP̃f + n(r)

Hb
xP̃f + Hnn(b)

]
=


xP̂>

f
xr̂f

xP̃f + n(r)[
xb>⊥1
xb>⊥2

]
xP̃f + xẑf

[
xb̂>⊥1
xb̂>⊥2

] [
I2

01×2

]
n(b)

 (148)



B.7: Stereo Camera

Stereo-camera are two mono-cameras with known extrinsic transformations. Without lost of generalities, we
assume input images have already been rectified, thus the measurement model can be described as:

z =


e>
1
xPf

e>
3
xPf

e>
1
xPf−bs

e>
3
xPf

e>
2
xPf

e>
3
xPf

+

n
(b)
1

n
(b)
1

n
(b)
2

 =


xxf
xzfxxf−bs
xzfxyf
xzf

+

n
(b)
1

n
(b)
1

n
(b)
2

 (149)

where b is the baseline for the stereo-camera, which is a known scalar. Similar to the case of Mono-camera,
we can rewrite the Stereo camera measurement as:

z =

[
z

(b)
L

z
(b)
R

]
=

[
hbL

(
xPf ,n

(b)
)

hbR
(
xPf ,n

(b)
)] =


[
xb>⊥1L
xb>⊥2L

]
xPf + xzf

[
xb>⊥1L
xb>⊥2L

] [
I2

01×2

]
n(b)[

xb>⊥1R
xb>⊥2R

]
xP′f + xzf

[
xb>⊥1R
xb>⊥2R

] [
I2

01×2

]
n(b)

 (150)

where z
(b)
L and z

(b)
R represents the bearing measurement from the left-and right camera, respectively, xP′f =[

xxf − bs xyf
xzf
]>

. With xP̂f , we can linearize the system as:

z̃ =

[
z̃

(b)
L

z̃
(b)
R

]
=

[
HbL

xP̃f + Hnn(b)

HbR
xP̃f + Hnn(b)

]
=


[
xb̂>⊥1L
xb̂>⊥2L

]
xP̃f + xẑf

[
xb̂>⊥1L
xb̂>⊥2L

] [
I2

01×2

]
n(b)[

xb̂>⊥1R
xb̂>⊥2R

]
xP̃f + xẑf

[
xb̂>⊥1R
xb̂>⊥2R

][
I2

01×2

]
n(b)

 (151)

To sum up, the measurement model and its linearized model for aided INS can be generalized as (7).

Table 3: Measurement Model for Different Sensors

Sensor Range Full Bearing Partial Bearing
1D range finder X
mono-camera X

sonar X X
2D lidar X X
3D lidar X X

RGBD-camera X X
stereo-camera X X

All the sensor measurements to point feature can be seen as the combination of range measurements and
bearing measurements (as shown in Table 3). (Be noted from the table that camera sensors can get the full
bearing measurements, which in some sense is equivalent that we get the information of θ and φ. The sonar
can only get partial bearing information (θ), so we label it as partial bearing measurement in the table.)
Therefore, in order to fully analyze the observability property of aided INS, we will analyze the range only
measurement model and bearing only measurement model in the next section respectively.

Appendix C: Projection Matrix for Line

Assume we have two points IP1 = [px1, py1, pz1]> and IP2 = [px2, py2, pz2]> in the line and their related
projection points as x1 and x2. The first step is to compute the line parameters in the image. From camera
projection model, we have:

x1 =

u1

v1

1

 =

f1 0 c1
0 f2 c2
0 0 1

px1pz1
py1
pz1

1

 (152)



Therefore, we have:

u1 =
px1

pz1
f1 + c1 (153)

v1 =
py1

pz1
f2 + c2 (154)

Assume a 2D line can be parameterized as: u = av + c. And x1 and x2 are in the line, therefore, we
have:

a =
u1 − u2

v1 − v2
(155)

Plug in the x1 = [u1, v1, 1]>, we have:

u1 =
u1 − u2

v1 − v2
v1 + c⇒ c =

u2v1 − u1v2

v1 − v2
(156)

Therefore, we can write the projected 2D line as:

(u1 − u2)v − (v1 − v2)u+ (u2v1 − u1v2) = 0 (157)

Then, we can get:(
px1
pz1

f1 −
px2
pz2

f1

)
v −

(
py1
pz1

f2 −
py2
pz2

f2

)
u +

((
px2
pz2

f1 + c1

)(
py1
pz1

f2 + c2

)
−
(
px1
pz1

f1 + c1

)(
py2
pz2

f2 + c2

))
= 0

(158)

Finally we can get:

[
u v 1

]  px2pz1 − px1pz2
− (py2pz1 − py1pz2)

(px1py2 − px2py1) f1f2 + (px1pz2 − px2pz1) f1c2 + (py2pz1 − py1pz2) f2c1

 = 0 (159)

Then we can get the l′ as:

l′ =

l1l2
l3

 =

 (py1pz2 − py2pz1) f2

(px2pz1 − px1pz2) f1

(px1py2 − px2py1) f1f2 + (px1pz2 − px2pz1) f1c2 + (py2pz1 − py1pz2) f2c1

 (160)

=

 f2 0 0
0 f1 0

−f2c1 −f1c2 f1f2

(py1pz2 − py2pz1)
(px2pz1 − px1pz2)
(px1py2 − px2py1)

 (161)

=

 f2 0 0
0 f1 0

−f2c1 −f1c2 f1f2

 bIP1×cIP2 (162)

Appendix D: Line Measurement Jacobians

We compute the measurement Jacobians by perturbation. Specifically, based on (11) and (12) and with a

small perturbation δθL, we can find ∂GL
∂δθL

as follows:

GL ' (I− bδθLc) R̂L

∥∥Gn̂L
∥∥ 0

0
∥∥Gv̂L

∥∥
0 0

 = GL̂ +
[
bGn̂Lc bGv̂Lc

]
δθL (163)

Similarly, we perturb (13) with δφL and obtain:

WL '
[
cos φ̂L − δφL sin φ̂L − sin φ̂L − δφL cos φ̂L
sin φ̂L + δφL cos φ̂L cos φ̂L − δφL sin φ̂L

]



With that, we have:

cosφL =

∥∥GnL
∥∥√

‖GnL‖2 + ‖GvL‖2
, sinφL =

∥∥GvL
∥∥√

‖GnL‖2 + ‖GvL‖2

And then we get: ∥∥GnL
∥∥ ' √‖Gn̂L‖2 + ‖Gv̂L‖2

(
cos φ̂L − δφL sin φ̂L

)
=
∥∥Gn̂L

∥∥− ∥∥Gv̂L
∥∥ δφL (164)∥∥GvL

∥∥ ' √‖Gn̂L‖2 + ‖Gv̂L‖2
(

sin φ̂L + δφL cos φ̂L

)
=
∥∥Gv̂L

∥∥+
∥∥Gn̂L

∥∥ δφL (165)

Finally, we can read out the Jacobian ∂GL
∂δφL

from:

GL '
[
Gn̂L − w2

w1

Gn̂LδφL
Gv̂L + w1

w2

Gv̂LδφL
]

(166)

Appendix E: Proof of Lemma 4.2

For Nl1, we have:

H
(l)
Ik

Φ(k,1)Nl1 = Hl,kK
Ik
G R̂

(
bGg×cbGP̂Ik×cGv̂L + bGv̂LcbGg×cGP̂Ik + bGP̂Ik×cbGv̂L×cGĝ

)
= 0 (167)

For Nl2, we have:

H
(l)
Ik

Φ(k,1)Nl2 = Hl,kK
Ik
G R̂

(
bGv̂L×cGn̂e + bGn̂e×cGv̂L

)
= 0 (168)

For Nl3, we have:

H
(l)
Ik

Φ(k,1)Nl3 = Hl,kK
Ik
G R̂

(
bGv̂L×cGv̂e

)
= 0 (169)

For Nl4, we have:

H
(l)
Ik

Φ(k,1)Nl4 = − w1w
2
2

w2
1 + w2

2

Hk,lK
Ikn′L (170)

Ikn′L = Ik
G R̂b

(
w1

w2
bGn̂e×cGve + GPIk

)
×cGv̂e (171)

By geometry, Ikn′L is parallel to IknL. Since l′ = KIknL is the null space of Hl,k , and thus, KIkn′L is also

the null space of Hl,k. As a result, we have H
(l)
Ik

Φ(k,1)Nl4 = 0. For Nl5, we have:

H
(l)
Ik

Φ(k,1)Nl5 = Hk,lK
Ik
G R̂bGv̂L×cGv̂eδtk = 0 (172)

It should be noted that the structure of Nl reveals that Nl1:5 are linearly independent.

Appendix F: Observability with Direct Line Measurements

Given point clouds, we may directly extract a 3D line feature parameterized by its direction IvL and distance

to the sensor Id =
‖InL‖
‖IvL‖ . We describe such measurements as:

z =

[
bIvm×cIvL

Id

]
(173)



where Ivm and Id are the line direction measurement and the distance measurement in the sensor’s frame,
respectively. The measurement Jacobian is computed by:

∂z̃

∂x̃
=

∂z̃

∂IL

∂IL

∂x̃
(174)

∂z̃

∂IL
=

[
03 bIvm×c
In>
L

‖InL‖‖IvL‖ − ‖
InL‖
‖IvL‖3

Iv>L

]
(175)

∂IL

∂x̃
=

[
I
GR̂ 03

03
I
GR̂

][
Hl1 03×9 bGv̂L×c Hl2 Hl3

bGv̂L×cIGR̂
>

03×9 03 bGv̂L×c w1

w2

Gv̂L

]
(176)

Then, the block row of the observability matrix is given by:

H
(l)
Ik

Φ(k,1) =
∂z̃

∂IL

[
I
GR̂ 03

03
I
GR̂

]
× (177)[

Γl1 Γl2 bGv̂L×cδtk Γl3 bGv̂L×c Γl4 Γl5
bGv̂L×cGI1R̂ bGv̂L×cGIkR̂Φ12 03 03 03 bGv̂L×c w1

w2

Gv̂L

]
In this case, we show that the linearized aided INS system with a line feature still has at least 5 unobservable
directions Nl (47). To see this, we can first verify Nl2:3 and Nl5 in a similarly way as (168), (169)and (172).

Then, we need to verify Nl1 and Nl4. For Nl1, we can have H
(l)
Ik

Φk,1Nl1 = 0 with:[
bGg×cbGP̂Ik×cGv̂L + bGv̂LcbGg×cGP̂Ik + bGP̂Ik×cbGv̂L×cGĝ

bGv̂L×cGĝ − bGv̂L×cGĝ

]
= 0

For Nl4, we have:

∂z̃

∂IL

[
−Ikn′L
Ik
G R̂Gv̂e

]
=

 bIkvmcIkve
‖IknL‖
‖IkvL‖2

Ikn>e
Ikne −

‖IknL‖
‖IkvL‖2

Ikv>e
Ikve

=

[
0
0

]
(178)

where Ikne is the unit direction vector of IknL, Ikd is the distance of line to sensor in frame {Ik}. Ikn′L is
given by (171) and Ikn′L = −IkdIkne. With that we see that Nl4 lies in the null space:

H
(l)
Ik

Φk,1Nl4 =
w1w

2
2

w2
1 + w2

2

∂z̃

∂IL

[
−Ikn′L
Ik
G R̂Gv̂e

]
=

[
0
0

]
(179)

We thus conclude that the aided INS with direct line measurements has the same unobservable directions
Nl with projective line measurements.

Appendix G: Proof of Lemma 4.3

With l line features in the state vector, the block row of the observability matrix M(x) can be constructed
by:

H
(l)
Ik

Φ(k,1) =


HL1

Ik
Φ(k,1)

HL2

Ik
Φ(k,1)

...

HLl
Ik

Φ(k,1)

 =


ML1

k

ML2

k
...

MLl
k

 (180)

where HLi
Ik

and MLi
Ik

are the measurement Jacobians and the i-th block row of observability matrix for
line feature i, respectively. It is straightforward to verify NL1, which relates to the rotation around the
gravitational direction. Since we have multiple unparallel lines, the unobservable direction along the line
direction diminishes. Therefore, the main task to prove that NL2:4 are the null space of HIkΦ(k,1). NL2:4

are related to the sensor position and, from the analysis (47), for a single line feature, we can easily find



vectors αj ,βj ,γj which are the null space for M
Lj
k for feature j, and αi,βi,γi which are the null space for

MLi
k for feature i.

MLi
k

[
αi βi γi

]
= 03×1 (181)

M
Lj
k

[
αj βj γj

]
= 03×1 (182)

If we can show that {αj , βj , γj} can be linearly dependent on {αi, βi, γi}, i.e.,[
αj βj γj

]
=
[
αi βi γi

]
Λ (183)

then both αi, βi, γi and αj , βj , γj share the same bases if Λ is invertible, and they are the null space for both

M
Lj
k and MLi

k , that is: [
MLi

k

M
Lj
k

] [
αi βi γi

]
=

[
MLi

k

M
Lj
k

] [
αj βj γj

]
= 0 (184)

Based on the definition of NL2:4, N2:4 is the null space for line i. Then for the null space N
(j)
L2:4 for line j,

we can have:
N

(j)
L2:4 =

[
αj βj γj

]
=
[
αi βi γi

]
Li
Lj

R = NL2:4
Li
Lj

R (185)

As LiLjR is a rotation matrix, it is invertible. With (183) and (184), we have that both NL2:4 and N
(j)
L2:4 are

the null space of M
Lj
k and MLi

k . We have no assumption for the choice of i and j, and thus, NL2:4 is in the

null space of H
(l)
Ik

Φ(k,1).

Appendix H: Proof of Lemma 4.4

First of all, it is straightforward to verify Nπ1 as:

H
(π)
Ik

Φ(k,1)Nπ1 = Ik
G R̂

(
Gd̂πbGn̂π×c − bGΠ̂π×c

)
= 0 (186)

We here show Nπ2:4 is in the null space:

H
(π)
Ik

Φ(k,1)Nπ2:4 = Ik
G R̂

(
−Gn̂π

Gn̂>π
G
ΠR̂ + Γπ4

Gn̂πe>3

)
= Ik
G R̂

(
−Gn̂πe>3 + Gn̂πe>3

)
= 0 (187)

We then verify Nπ5:6 are also in the null space:

H
(π)
Ik

Φ(k,1)Nπ5 = −IkG R̂
(
Gn̂π

Gn̂>π
Gn̂⊥1 δtk

)
=0 (188)

H
(π)
Ik

Φ(k,1)Nπ6 = −IkG R̂
(
Gn̂π

Gn̂>π
Gn̂⊥2 δtk

)
=0 (189)

To verify Nπ7, we have:

H
(π)
Ik

Φ(k,1)Nπ7 = Ik
G R̂

[ (
Gd− Gn̂>π

GP̂Ik

)
bGn̂π×c − Gn̂π

Gn̂>π bGP̂I1 + GV̂I1δtk −
1

2
Ggδt2k − GP̂Ik×c

]
Gn̂π = 0

(190)

Finally, from the structure of Nπ, it can be seen that Nπ1:7 are linearly independent.

Appendix I: Proof of Lemma 4.5

Given s plane features in the state vector, the block row of the observability matrix becomes:

H
(π)
Ik

Φ(k,1) =


HΠ1

Ik
Φ(k,1)

HΠ2

Ik
Φ(k,1)

...

HΠs
Ik

Φ(k,1)

 =:


MΠ1

k

MΠ2

k
...

MΠs
k

 (191)



First of all, it is straightforward to verify NΠ1 that is related to the rotation around the gravitational
direction. If s = 2, the state vector has two plane features, whose intersection bGnπ1×cGnπ2 is perpendicular
to both plane normal directions. Therefore, the sensor motion along this intersection line NΠ5 will become
unobservable.

Similar to Appendix G, the main task is to prove NΠ2:4 are in the null space of H
(π)
Ik

Φ(k,1). To this end,

we can easily find vectors αj ,βj ,γj which are the null space of M
Πj
k for feature j, and αi,βi,γi which are

the null space of MΠi
k for feature i. Therefore, we have:

MΠi
k

[
αi βi γi

]
= 03×1 (192)

M
Πj
k

[
αj βj γj

]
= 03×1 (193)

If we can show that {αj , βj , γj} can be linearly represented by {αi, βi, γi} as (183), both αi, βi, γi and

αj , βj , γj share the same bases, and thus, they are the null space of both M
Πj
k and MΠi

k , that is:[
MΠi

k

M
Πj
k

] [
αi βi γi

]
=

[
MΠi

k

M
Πj
k

] [
αj βj γj

]
= 0 (194)

Based on the definition, NΠ2:4 is the null space for feature i, and thus, the null space N
(j)
Π2:4 for feature j

can be written as:
N

(j)
Π2:4 =

[
αj βj γj

]
=
[
αi βi γi

]
Πi
Πj

R = NΠ2:4
Πi
Πj

R (195)

Since Πi
Πj

R is a rotation matrix, it is invertible. Based on (183) and (194), both NΠ2:4 and N
(j)
Π2:4 are the

null space of M
Πj
k and MLi

k . As no assumption is made for the choice of i and j, NΠ2:4 is also in the null

space of H
(π)
Ik

Φ(k,1).

Appendix J: Observability for Plane Features of Hesse Form

Recall that a plane feature in Hesse form (Mode 2) is given by: Π =
[
n>π d

]>
, and we have defined:

n>πPf − d = 0. To find a minimal representation for the error state, we use the horizontal angle θ and the
elevation angle φ represent the normal direction nπ, i.e.,

nπ =

n1

n2

n3

 =

cos θ cosφ
sin θ cosφ

sinφ

 (196)

Then, the error state of the plane feature is denoted by: Π̃ =
[
θ̃ φ̃ d̃

]>
. We assume a direct plane measure-

ment (e.g., provided by plane detection from point clouds):

z =
[
Iθ Iφ Id

]>
(197)

The measurement Jacobian w.r.t. Inπ and Id is computed by:

HΠ =

 −
n̂2

n̂2
1+n̂2

2

n̂1

n̂2
1+n̂2

2
0 0

− n̂1n̂3√
n̂2
1+n̂2

2

− n̂2n̂3√
n̂2
1+n̂2

2

√
n̂2

1 + n̂2
2 0

0 0 0 1

 (198)

Then, the measurement Jacobian w.r.t. the state and the block row of the observability matrix can be
obtained as follows:

HIk :=
∂z̃

∂x̃
= HΠ

[
bIGR̂Gn̂π×c 03×9 03

I
GR̂Gn̂⊥1 cos φ̂ I

GR̂Gn̂⊥2 03×1

01×9 01×3 −Gn̂>π −GP̂>I
Gn̂⊥1 cos φ̂ −GP̂>I

Gn̂⊥2 1

]
(199)

HIkΦ(k,1) = HΠ

[
ΓΠ1 ΓΠ2

[
03

−Gn̂>π δtk

]
ΓΠ3

[
03

−Gn̂>π

]
ΓΠ4

]
(200)



where

ΓΠ1 =

[
Ik
G R̂bGn̂π×c

−Gn>π b
(
GP̂I1 + GV̂I1δtk − 1

2
Ggδt2k − GP̂Ik

)
×c

]
G
I1R̂ (201)

ΓΠ2 =

[
Ik
G R̂bGn̂π×cIkG R̂

>
Φ12

−Gn̂>πΦ52

]
(202)

ΓΠ3 =

[
03

−Gn̂>πΦ54

]
(203)

ΓΠ4 =

[ Ik
G R̂Gn̂⊥1 cos φ̂ Ik

G R̂Gn̂⊥2 03×1

−GP̂>Ik
Gn̂⊥1 cos φ̂ −GP̂>Ik

Gn̂⊥2 1

]
(204)

Gn⊥1 =
[
− sin θ̂ cos θ̂ 0

]>
(205)

Gn⊥2 =
[
− cos θ̂ sin φ̂ − sin θ̂ sin φ̂ cos φ̂

]>
(206)

It is not difficult to see that the aided INS with a single plane feature will have at least 7 unobservable
directions:

Nπ =

 Ng 012×3 N123

−bGP̂I1×cGg G
ΠR̂ 03

−ge1 e3e
>
3 03

 =:
[
Nπ1 Nπ2:4 Nπ5:7

]
(207)

Note that Nπ1 relates to the rotation around the gravitational direction, Nπ2:4 relates to the sensor’s global
translation, Nπ5:6 relate to the sensor motion perpendicular to the plane’s normal direction, while Nπ7

relates to the rotation around the normal direction of the plane.
Proceeding similarly, we can reach the same conclusion as in Lemma 4.5 in the case of s > 1 plane

features in the state vector – that is, (i) 5 unobservable directions (NΠ1:5) for s = 2 unparallel planes, and
(ii) 4 unobservable directions (NΠ1:4) for s > 2 planes with unparallel intersections.

NΠ =


Ng 012×3 Ni×j

−bGP̂I1×cGg G
ΠiR̂ 03×1

−ge1 e3e
>
3

Π1
Πi R̂ 03×1

...
...

...

−ge1 e3e
>
3

Πs
Πi R̂ 03×1

 =:
[
NΠ1 NΠ2:4 NΠ5

]
(208)

for i, j ∈ {1 . . . s}.

Appendix K: Proof of Lemma 5.1

First of all, it is straightforward to verify the null space Nlπ1 that relates to the rotation around the gravity
direction. If the line is parallel to the plane, we have the line direction vector Gve is perpendicular to the
plane normal direction GnΠ, i.e., Gv>e

GnΠ = 0, then we have:

H
(lπ)
Ik

Φ(k,1)Nlπ5 =
[
Hl,kK

Ik
G R̂ 0

0 Ik
G R̂

] [
bGv̂LcGv̂e

−Gn̂π
Gn̂>π

Gv̂>e

]
δtk = 0 (209)

Clearly, if the line is parallel to the plane, the system will have one more unobservable direction Nlπ5. To
verify Nlπ2:4 is in the null space, for simplicity, we write (77) as:

H
(lπ)
Ik

Φ(k,1) =

[
H

(l)
Ik

Φ(k,1)

H
(π)
Ik

Φ(k,1)

]
(210)

where Hl
Ik

and Hπ
Ik

are the Jacobians w.r.t. the IMU state and the line and plane features. It is not hard
to verify that:

H
(l)
Ik

Φ(k,1)Nlπ2:4
G
LR̂ = 0 (211)

H
(π)
Ik

Φ(k,1)Nlπ2:4
G
ΠR̂ = 0 (212)



Since G
ΠR̂ and G

LR̂ are rotation matrices (of full rank), by multiplying G
LR̂> and G

ΠR̂> from the left-hand
side of (211) and (212), respectively, we have:

H
(l)
Ik

Φ(k,1)Nlπ2:4 = 0 (213)

H
(π)
Ik

Φ(k,1)Nlπ2:4 = 0 (214)

which shows: H
(lπ)
Ik

Φ(k,1)Nlπ2:4 = 0.

Appendix L: Proof of Lemma 5.2

First of all, it is not difficult to verify the null space Nplπ1 corresponding to the rotation around the gravity
direction. What we need to verify is that Nplπ2:4 is in the unobservable subspace. To this end, for simplicity,
we write k-th block row of the observability matrix as:

H
(plπ)
Ik

Φ(k,1) =

H
(p)
Ik

Φ(k,1)

H
(l)
Ik

Φ(k,1)

H
(π)
Ik

Φ(k,1)

 (215)

where H
(p)
Ik

, H
(l)
Ik

and H
(π)
Ik

are the Jacobians w.r.t. the IMU state and the point, line and plane features,
respectively. We can easily verify the following:

H
(p)
Ik

Φ(k,1)Nplπ2:4 = 0 (216)

H
(l)
Ik

Φ(k,1)Nplπ2:4
G
LR̂ = 0 (217)

H
(π)
Ik

Φ(k,1)Nplπ2:4
G
ΠR̂ = 0 (218)

Similarly, since G
ΠR̂ and G

LR̂ are rotation matrices of full rank, by multiplying both sides of (217) and (218)

from left with G
ΠR̂> and G

LR̂
>

, respectively, we have:

H
(l)
Ik

Φ(k,1)Nplπ2:4 = 0 (219)

H
(π)
Ik

Φ(k,1)Nplπ2:4 = 0 (220)

Thus, we reach: H
(plπ)
Ik

Φ(k,1)Nplπ2:4 = 0.

Appendix M: Unobservable Directions for Point Features

M.1: Nonlinear Observability Analysis

we first provide an overview of the nonlinear observability rank condition test [52] and summarize the method
in [14][20][69][8] for finding the unobservable modes of nonlinear system. Consider a nonlinear system:{

ẋ = f0(x) +
∑`
i=1 fi(x)ui

z = h(x)
(221)

where x ∈ Rm is the state vector, u = [u1 · · · u`] ∈ R` is the system input, z ∈ Rk is the system output,
and fi for i ∈ {0, . . . , `} is the process function.

The zeroth order Lie derivative of a measurement function h is the function itself, i.e., L0h = h(x). For
any n-th order Lie derivative, Lnh, the n+1-th order Lie derivative Ln+1

fi
h with respect to a process function

fi can be computed as:
Ln+1

fi
h = ∇Lnh · fi (222)



where ∇ denotes the gradient operator with respect to x and ” · ” represents the vector inner product.
Similarly, mixed higher order Lie derivatives can be defined as:

Lnfifj...fkh = Lfi(Ln−1
fj...fk

h) = ∇Ln−1
fj...fk

h · fi (223)

where i, j, k ∈ {0, . . . , `}.
The observability of a nonlinear system is determined by calculating the dimension of the space spanned

by the gradients of Lie derivative of its output functions[52]. Hence, the observability matrix O of system
(221) is defined as:

O ,



∇L0h
∇L1

fi
h

...
∇Lnfifj...fkh

...

 (224)

To prove that a system is observable, it suffices to show that O is of full column rank. However, to prove
that a system is unobservable, we have to find the null space of matrix O, which may have infinitely many
rows. This can be very challenging especially for high-dimensional systems, such as aided INS. To address
this issue, we adopt the method proposed by [20] for analyzing observability of nonlinear systems in the form
of Eq. (221).

Theorem M.1. Assume that there exists a nonlinear transformation β(x) = [β1(x)> . . .βn(x)>]>(i.e., a
set of basis functions) of the variable x, such that:

1. The system measurement equation can be written as a function of β, i.e., z = h(x) = h(β)

2. ∂β
∂x fj, for j = {0, . . . , `}, is a function of β

Then the observability matrix of system (221) can be factorized as: O = ΞΩ where Ξ is the observability
matrix of the system: {

β̇ = g0(β) +
∑`
i=1 gi(β)ui

z = h(β)
(225)

and Ω can be represented as:

Ω =
∂β

∂x
(226)

Proof. See [20].

Note that system (225) results by pre-multiplying the process function to system (221) with ∂β
∂x :{

∂β
∂x

∂x
∂t = ∂β

∂x f0(x) + ∂β
∂x

∑`
i=1 fi(x)ui

z = h(x)
⇒
{
β̇ = g0(β) +

∑`
i=1 gi(β)ui

z = h(β)

where gi(β) , ∂β
∂x and h(β) , h(x).

Corollary M.2. If Ξ is of full column rank, i.e., system (225) is observable, then the unobservable directions
of system (225) will be spanned by the null vectors of Ω.

Proof. From O = ΞΩ, we have null(O) = null(Ω) ∪ (null(Ξ) ∩ range(Ω)). Therefore, if Ξ is of full column
rank, i.e., system (225) is observable, then null(O) = null(Ω).

Base on Theorem M.1 and Corollary M.2, to find the unobservable directions of a system, we first need
to define the basis functions, β, which fulfill the first and second conditions of Theorem M.1. Then, we
should prove that the infinite-dimensional matrix Ξ has full column rank, which satisfies the conditions of
Corollary M.2.



M.2: System Propagation Model

For the aided INS, the IMU measurements are used for state propagation while the measurements from
exteroceptive sensor are used for state update. The INS state xI can be defined as:

xI = [IGs> b>g
Gv>I b>a

Gp>I ]> (227)

where I
Gs is the Cayley-Gibbs-Rodriguez parameterization [70] representing the orientation of the global

frame {G} in the IMU frame of reference {I}. The time-continuous system evolution model:

I
Gṡ(t) = D(Iω(t)− bg(t))

ḃg(t) = ng
GV̇I(t) = Ga(t) = Gg + R(IGs(t))>(Ia(t)− ba(t)) (228)

ḃa(t) = na
GṖI(t) = GVI(t)

where D , ∂s
∂θ = 1

2 (I + bs×c+ ss>), θ = αk̂ represents a rotation by an angle α around the axis k̂, Iω(t) =
[ω1 ω2 ω3]> and Ia(t) = [a1 a2 a3]> are the rotational velocity and linear acceleration respectively,
measured by the IMU and represented in {I}. Gg is the gravitational acceleration, R(s) is the rotation matrix
corresponding to s, and ng and na are the gyroscope and accelerometer biases driving white Gaussian noises.

M.3: Observability Analysis for Point Feature

Based on the above analysis, the key is to prove Ξ is of full rank and then to find the unobservable direction
from the Ω. Ω is determined by the basis functions β. That means if we can find the same basis functions
set β for aided INS, we can prove that these systems have the same unobservable directions. Therefore, the
only job left unfinished is to check the rank of different Ξs for these systems.

M.3.1: Basis Functions For Point Measurement

With the generalized point measurement model and state propagation model, we can define the state vector
as:

x = [IGs> b>g
GV>I b>a

GP>I
GP>f ]> (229)

For simplicity, we retain only a few of the subscripts and superscripts in the state elements and denote the
system state vector as:

x = [s> b>g V> b>a P> P>f ]> (230)

Then the system state equation can be rewritten as:

ṡ

ḃg
V̇

ḃa
Ṗ

Ṗf

 =


−Dbg

0
g −R>ba

0
v
0


︸ ︷︷ ︸

f0

+


D
0
0
0
0
0


︸ ︷︷ ︸

F1

ω +


0
0

R>

0
0
0


︸ ︷︷ ︸

F2

a (231)

where R , R(s). Note that f0 is a 18 × 1 vector, while F1 and F2 are both 24 × 3 matrices which is a
compact form for representing process functions as:

F1ω = f11ω1 + f12ω2 + f13ω3 (232)

F2a = f21a1 + f22a2 + f23a3 (233)



Since all the terms in the preceding projections are defined based on the existing basis functions, we have
found a complete basis set (see N.1):

β =


β1

β2

β3

β4

β5

 =


R(pf − p)

bg
Rv
ba
Rg

 (234)

Therefore, the new system with β basis:
β̇1

β̇2

β̇3

β̇4

β̇5

 =


−bβ1×cβ2 − β3

0
−bβ3×cβ2 + β5 − β4

0
−bβ5×cβ2


︸ ︷︷ ︸

g0

+


bβ1×c

0
bβ3×c

0
bβ5×c


︸ ︷︷ ︸

G1

ω +


0
0
I3

0
0


︸ ︷︷ ︸

G2

a (235)

where g0 is a 18×1 vector, while G1 and G2 are both 24×3 matrices which is compact form for representing
process functions as:

G1ω = g11ω1 + g12ω2 + g13ω3 (236)

G2a = g21a1 + g22a2 + g23a3 (237)

Base on the Theorem M.1, the observability matrix O of the aided INS is the product of observability matrix
Ξ with the derivatives of the basis functions Ω. In what follows, we will first prove that matrix Ξ is of full
column rank. Then, the null space of matrix Ω corresponds to the unobservable directions of the aided INS.

From the generalized measurement model Eq. (7), the Ξ contains two parts:

Ξ =

[
Ξ(r)

Ξ(b)

]
(238)

where Ξ(r) and Ξ(b) represents observability matrix from the range measurement and bearing measurement
respectively. Therefore, in order to prove that matrix Ξ is of full column rank, we will inspect the column
rank of Ξ(r) and Ξ(b) respectively. In Appendix N.2 and N.3 we showed that for range measurement and
fulling bearing measurement Ξ(r) and Ξ(b) will have full column rank

M.3.2: Unobservable Direction

According to the basis set of β, we have:

Ω =
∂β

∂x
=


bR(pf − p)×c∂θ∂s 0 0 0 −R R

0 I3 0 0 0 0
bRv×c∂θ∂s 0 R 0 0 0

0 0 0 I3 0 0
bRg×c∂θ∂s 0 0 0 0 0

 (239)

Assuming A is the null space of Ω, and A should have the following form:

A =
[
A>1 A>2 A>3 A>4 A>5 A>6

]> 6= 0 (240)

such that:
ΩA = 0 (241)



Hence, the system’s unobservable directions can be described as:

A =



∂s
∂θRg 0

0 0
−bv×cg 0

0 0
−bp×cg I3

−bpf×cg I3

 (242)

Therefore, the unobservable directions are the global position of exteroceptive sensor and the the point
landmark, and the rotation about the gravity vector.

Appendix N: Basis Function and Rank Test for Point Measurement

N.1: Basis Functions for Point Measurement

According to the two conditions of Theorem M.1, we define the system’s first basis function according to
Eq. (8):

β1 , R(pf − p) (243)

According to the second condition of Theorem M.1, we will compute:

∂β1

∂x
=

[
∂β1

∂s

∂β1

∂bg

∂β1

∂v

∂β1

∂ba

∂β1

∂p

∂β1

∂pf

]
(244)

=

[
bR(pf − p)×c∂θ

∂s
0 0 0 −R R

]
(245)

∂β1

∂x
f0 = −bR(pf − p)×cbg −Rv , −bβ1×cβ2 − β3 (246)

∂β1

∂x
f1i = bR(pf − p)×cei , bβ1×cei (247)

∂β1

∂x
f2i = 0 (248)

where ∂θ
∂s D = ∂θ

∂s
∂s
∂θ = I3, i ∈ {1, 2, 3} and we have defined two new basis elements: β2 , ba, β3 , Rv.

Similarly, for the span of β2, we have:

∂β2

∂x
=

[
∂β2

∂s

∂β2

∂bg

∂β2

∂v

∂β2

∂ba

∂β2

∂p

∂β2

∂pf

]
(249)

= [0 I3 0 0 0 0] (250)

∂β2

∂x
f0 = 0 (251)

∂β2

∂x
f1i = 0 (252)

∂β2

∂x
f2i = 0 (253)

where i ∈ {1, 2, 3}.



Then, for the span of β3, we have:

∂β3

∂x
=

[
∂β3

∂s

∂β3

∂bg

∂β3

∂v

∂β3

∂ba

∂β3

∂p

∂β3

∂pf

]
(254)

=

[
bRv×c∂θ

∂s
0 R 0 0 0

]
(255)

∂β3

∂x
f0 = −bRv×cbg + Rg − ba , −bβ3×cβ2 + β5 − β4 (256)

∂β3

∂x
f1i = bRv×cei , bβ×cei (257)

∂β3

∂x
f2i = I3ei (258)

where i ∈ {1, 2, 3}, and we have defined β4 , ba and β5 , Rg.
Then, for the span of β4 and β5 we have:

∂β4

∂x
=

[
∂β4

∂s

∂β4

∂bg

∂β4

∂v

∂β4

∂ba

∂β4

∂p

∂β4

∂pf

]
(259)

= [0 0 0 I3 0 0] (260)

∂β4

∂x
f0 = 0 (261)

∂β4

∂x
f1i = 0 (262)

∂β4

∂x
f2i = 0 (263)

where i ∈ {1, 2, 3}.

∂β5

∂x
=

[
∂β5

∂s

∂β5

∂bg

∂β5

∂v

∂β5

∂ba

∂β5

∂p

∂β5

∂pf

]
(264)

=

[
bRg×c∂θ

∂s
0 0 0 0 0

]
(265)

∂β5

∂x
f0 = −bRg×cbg , −bβ5×cβ2 (266)

∂β5

∂x
f1i = bRg×cei , bβ5×cei (267)

∂β5

∂x
f2i = 0 (268)

where i ∈ {1, 2, 3}.

N.2: Rank test for Ξ(r)

Since the for the range measurement:r =
√
xP>f

xPf and r ≥ 0, we take r2 = xP>f
xPf as the equivalent

measurement to simplify the mathematical analysis. Hence, the range measurement model can be expressed
in terms of basis functions as:

h
(r)

= β>1 β1 (269)

Then we will perform the nonlinear observability rank condition test according to [52].

• The zeroth-order Lie derivatives of the measurement function is:

L0h
(r)

= β>1 β1 (270)

Then, the gradient of the zeroth order Lie derivative is:

∇L0h
(r)

=
∂h

(r)

∂β
=
[
2β>1 0 0 0 0

]
(271)



• The first-order Lie derivative of h
(r)

with respect to g0, g1i and g2i are computed respectively, as:

L1
g0

h
(r)

= ∇L0h
(r) · g0 = −2β>1 β3 (272)

L1
g1i

h
(r)

= ∇L0h
(r) · g1i = 0 (273)

L1
g2i

h
(r)

= ∇L0h
(r) · g2i = 0 (274)

while the corresponding gradients are given by:

∇L1
g0

h
(r)

=
∂L1

g0
h

(r)

∂β
=
[
−2β>3 0 − 2β>1 0 0

]
(275)

∇L1
g1i

h
(r)

=
∂L1

g1i
h

(r)

∂β
= [0 0 0 0 0] (276)

∇L1
g2i

h
(r)

=
∂L1

g2i
h

(r)

∂β
= [0 0 0 0 0] (277)

• The second-order Lie derivatives are as following:

L2
g0g0

h
(r)

= ∇L1
g0

h
(r) · g0 = 2β>3 β3 − 2β>1 β5 + 2β>1 β4 (278)

L2
g0g1i

h
(r)

= ∇L2
g0

h
(r) · g1i = 0 (279)

L2
g0g2i

h
(r)

= ∇L1
g0

h
(r) · g2i = −2β>1 ei (280)

while the corresponding gradients are:

∇L2
g0g0

h
(r)

=
∂L2

g0g0
h

(r)

∂β
=
[
−2(β>5 − β

>
4 ) 0 4β>3 2β>1 − 2β>1

]
(281)

∇L2
g0g1i

h
(r)

=
∂L2

g0g1i
h

(r)

∂β
= [0 0 0 0 0] (282)

∇L2
g0g2i

h
(r)

=
∂L2

g0g2i
h

(r)

∂β
=
[
−2e>1 0 0 0 0

]
(283)

• The third-order Lie derivatives are as following:

L3
g0g0g0

h
(r)

= ∇L2
g0g0

h
(r) · g0 = 6β>3 β5 − 6β>3 β4 − 2β>4 bβ1×cβ2 (284)

L3
g0g0g1i

h
(r)

= ∇L2
g0g0

h
(r) · g1i = 2β>4 bβ1×cei (285)

L3
g0g0g2i

h
(r)

= ∇L2
g0g0

h
(r) · g2i = 4β>3 ei (286)

L3
g0g2ig0

h
(r)

= ∇L2
g0g2i

h
(r) · g0 = 2e>i bβ1×cβ2 + 2e>i β3 (287)

L3
g0g2ig1j

h
(r)

= ∇L2
g0g2i

h
(r) · g1j = −2e>i bβ1×cej (288)



while the corresponding gradients are:

∇L3
g0g0g0

h
(r)

=
∂L3

g0g0g0
h

(r)

∂β
(289)

=
[
2β>4 bβ2×c − 2β4bβ1×c 6(β>5 − β

>
4 ) − 6β>3 + 2β>2 bβ1×c 6β>3

]
∇L3

g0g0g1i
h

(r)
=

∂L3
g0g0g1i

h
(r)

∂β
=
[
−2β>4 bei×c 0 0 − 2e>i bβ1×c 0

]
(290)

∇L3
g0g0g2i

h
(r)

=
∂L3

g0g0g2i
h

(r)

∂β
=
[
0 0 4e>i 0 0

]
(291)

∇L3
g0g2ig0

h
(r)

=
∂L3

g0g2ig0
h

(r)

∂β
=
[
−2e>i bβ2×c 2e>i bβ1×c 2e>i 0 0

]
(292)

∇L3
g0g2ig1j

h
(r)

=
∂L3

g0g2ig1j
h

(r)

∂β
=
[
2e>i bej×c 0 0 0 0

]
(293)

• The fourth-order Lie derivatives are as following:

L4
g0g0g0g0

h
(r)

= ∇L3
g0g0g0

h
(r) · g0

= −2β>4 bβ2×cbβ1×cβ2 − 8β>4 bβ2×cβ3 + 6(β>4 − β
>
5 )(β4 − β5) (294)

L4
g0g0g2ig0

h
(r)

= ∇L4
g0g0g2i

h
(r) · g0 = −4e>i bβ3×cβ2 + 4e>i β5 − 4e>i β4 (295)

while the corresponding gradients are:

∇L4
g0g0g0g0

h
(r)

=

[
∂L4

g0g0g0g0
h
(r)

∂β1

∂L4
g0g0g0g0

h
(r)

∂β2

∂L4
g0g0g0g0

h
(r)

∂β3

∂L4
g0g0g0g0

h
(r)

∂β4

∂L4
g0g0g0g0

h
(r)

∂β5

]
(296)

∇L4
g0g0g2ig0

h
(r)

=
∂L4

g0g0g2ig0
h

(r)

∂β
=
[
0 − 4e>i bβ3×c 4e>i bβ2×c − 4e>i 4e>i

]
(297)

where the terms in Eq. (296) are:

∂L4
g0g0g0g0

h
(r)

∂β1

= 2β>4 bβ2×c2 (298)

∂L4
g0g0g0g0

h
(r)

∂β2

= −2β>4 bβ2×cbβ1×c+ 2β>2 bβ1×cbβ4×c+ 8β>4 bβ3×c (299)

∂L4
g0g0g0g0

h
(r)

∂β3

= −8β>4 bβ2×c (300)

∂L4
g0g0g0g0

h
(r)

∂β4

= −2β>2 bβ1×cbβ2×c+ 8β>3 bβ2×c+ 12(β>4 − β
>
5 ) (301)

∂L4
g0g0g0g0

h
(r)

∂β5

= 12(β>5 − β
>
4 ) (302)

• The fifth-order Lie derivatives are as following:

L5
g0g0g2ig0g1j

h
(r)

= ∇L4
g0g0g2ig0

h
(r) · g1j = 4e>i bβ2×cbβ3×cej + 4e>i bβ5×cej (303)

while the corresponding gradients are:

∇L5
g0g0g2ig0g1j

h
(r)

=
∂L5

g0g0g2ig0g1j
h

(r)

∂β
(304)

=
[
0 − 4e>j bβ3×cbei×c − 4e>i bβ2×cbej×c 0 − 4e>i bej×c

]



Therefore, we can construct the Ξ(r) matrix (305) and we can find out that Ξ(r) is of full rank.

Ξ(r) =



∇L2
g0g21

h
(r)

∇L2
g0g22

h
(r)

∇L2
g0g23

h
(r)

∇L5
g0g0g21g0g12

h
(r)

∇L5
g0g0g22g0g13

h
(r)

∇L5
g0g0g23g0g11

h
(r)

∇L3
g0g0g21

h
(r)

∇L3
g0g0g22

h
(r)

∇L3
g0g0g23

h
(r)

∇L4
g0g0g21g0

h
(r)

∇L4
g0g0g22g0

h
(r)

∇L4
g0g0g23g0

h
(r)

∇L5
g0g0g21g0g13

h
(r)

∇L5
g0g0g22g0g11

h
(r)

∇L5
g0g0g23g0g12

h
(r)



=



−2e>1 0 0 0 0
−2e>2 0 0 0 0
−2e>3 0 0 0 0

0 −4e>2 bβ3×cbe1×c −4e>1 bβ2×cbe2×c 0 −4e>1 be2×c
0 −4e>3 bβ3×cbe2×c −4e>2 bβ2×cbe3×c 0 −4e>2 be3×c
0 −4e>1 bβ3×cbe3×c −4e>3 bβ2×cbe1×c 0 −4e>3 be1×c
0 0 4e>1 0 0
0 0 4e>2 0 0
0 0 4e>3 0 0
0 −4e>1 bβ3×c 4e>1 bβ2×c −4e>1 4e>1
0 −4e>1 bβ3×c 4e>2 bβ2×c −4e>2 4e>2
0 −4e>1 bβ3×c 4e>3 bβ2×c −4e>3 4e>3
0 −4e>3 bβ3×cbe1×c −4e>1 bβ2×cbe3×c 0 −4e>1 be3×c
0 −4e>1 bβ3×cbe2×c −4e>2 bβ2×cbe1×c 0 −4e>2 be1×c
0 −4e>2 bβ3×cbe3×c −4e>3 bβ2×cbe2×c 0 −4e>3 be2×c



(305)

Given random motion, the diagonal block of the Ξ(r) are all of full rank (3). Therefore, Ξ(r) is of full column
rank.

N.3: Rank test for Ξ(b)

For the analysis, with the generalized point measurement model(7), we consider the noise free case, and
define γ = b⊥1, γ = b⊥2. Then we will perform the nonlinear observability rank condition test according
to [52].

• The zeroth-order Lie derivatives of the measurement function is:

L0h
(b)

=

[
L0h

(b)

1

L0h
(b)

2

]
=

[
γ>1 β1

γ>2 β1

]
=

[
γ>1
γ>2

]
β1 (306)

Then, the gradients of the zeroth-order Lie derivative is:

∇L0h
(b)

=

[
∇L0h

(b)

1

∇L0h
(b)

2

]
=

 ∂h
(b)
1

∂β

∂h
(b)
2

∂β

 =

[
γ>1 0 0 0 0
γ>2 0 0 0 0

]
=

[
γ>1
γ>2

] [
I3 0 0 0 0

]

• The first-order Lie derivative of h
(b)

with respect to g0, g1i and g2i are computed respectively, as:

L1
g0

h
(b)

= ∇L0h
(b) · g0 =

[
∇L0h

(b)

1 · g0

∇L0h
(b)

2 · g0

]
(307)

=

[
−γ>1 bβ1×cβ2 − γ>1 β3

−γ>2 bβ1×cβ2 − γ>2 β3

]
=

[
γ>1
γ>2

]
[−bβ1×cβ2 − I3β3] (308)

L1
g1i

h
(b)

= ∇L0h
(b) · g1i =

[
∇L0h

(b)

1 · g1i

∇L0h
(b)

2 · g1i

]
=

[
γ>1 bβ1×cei
γ>2 bβ1×cei

]
=

[
γ>1
γ>2

]
[bβ1×cei] (309)

L1
g2i

h
(b)

= ∇L0h
(b) · g2i =

[
∇L0h

(b)

1 · g2i

∇L0h
(b)

2 · g2i

]
=

[
0
0

]
(310)



while the corresponding gradients are given by:

∇L1
g0
h
(b)

=

[
∇L1

g0
h
(b)
1

∇L1
g0
h
(b)
2

]
=

 ∂L1
g0

h
(b)
1

∂β

∂L1
g0

h
(b)
2

∂β

 =

[
γ>1 bβ2×c −γ>1 bβ1×c −γ>1 0 0

γ>2 bβ2×c −γ>2 bβ1×c −γ>2 0 0

]
(311)

=

[
γ>1
γ>2

] [
bβ2×c −bβ1×c −I3 0 0

]
(312)

∇L1
g1i

h
(b)

=

[
∇L1

g1i
h
(b)
1

∇L1
g1i

h
(b)
2

]
=

 ∂L1
g1i

h
(b)
1

∂β

∂L1
g1i

h
(b)
2

∂β

 =

[
−γ>1 bei×c 0 0 0 0

−γ>2 bei×c 0 0 0 0

]
(313)

=

[
γ>1
γ>2

] [
−bei×c 0 0 0 0

]
(314)

∇L1
g1i

h
(b)

=

[
∇L1

g1i
h
(b)
1

∇L1
g1i

h
(b)
2

]
=

 ∂L1
g1i

h
(b)
1

∂β

∂L1
g1i

h
(b)
2

∂β

 =

[
0
0

]
(315)

• The second-order Lie derivatives are as following:

L2
g0g0

h
(b)

= ∇L1
g0

h
(b) · g0 =

[
∇L1

g0
h

(b)

1 · g0

∇L1
g0

h
(b)

2 · g0

]
(316)

=

[
γ>1
γ>2

]
[−bβ2×cbβ1×cβ2 − bβ2×cβ3 + bβ3×cβ2 − β5 + β4] (317)

L2
g0g1i

h
(b)

= ∇L1
g0

h
(b) · g1i =

[
∇L1

g0
h

(b)

1 · g1i

∇L1
g0

h
(b)

2 · g1i

]
=

[
γ>1
γ>2

]
[bβ2×cbβ1×c − bβ3×c] ei (318)

L2
g1ig0

h
(b)

= ∇L1
g1i

h
(b) · g0 =

[
∇L1

g1i
h

(b)

1 · g0

∇L1
g1i

h
(b)

2 · g0

]
=

[
γ>1
γ>2

]
[bei×cbβ1×cβ2 + bei×cβ3] (319)

L2
g1ig1j

h
(b)

= ∇L1
g1i

h
(b) · g1j =

[
∇L1

g1i
h

(b)

1 · g1j

∇L1
g1i

h
(b)

2 · g1j

]
=

[
γ>1
γ>2

]
[−bei×cbβ1×cej ] (320)

with the corresponding gradients as:

∇L2
g0g0

h
(b)

=

[
∇L2

g0g0
h
(b)
1

∇L2
g0g0

h
(b)
2

]
=

 ∂L2
g0g0

h
(b)
1

∂β

∂L2
g0g0

h
(b)
2

∂β

 (321)

=

[
γ>1
γ>2

] [
bβ2×c

2 − bβ2×cbβ1×c+ bbβ1×cβ2×c+ 2bβ3×c − 2bβ2×c I3 − I3
]

∇L2
g0g1i

h
(b)

=

[
∇L2

g0g1i
h
(b)
1

∇L2
g0g1i

h
(b)
2

]
=

 ∂L2
g0g1i

h
(b)
1

∂β

∂L2
g0g1i

h
(b)
2

∂β

 (322)

=

[
γ>1
γ>2

]
[−bβ2×cbei×c − bbβ1×cei×c bei×c 0 0] (323)

∇L2
g1ig0

h
(b)

=

[
∇L2

g1ig0
h
(b)
1

∇L2
g1ig0

h
(b)
2

]
=

 ∂L2
g1ig0

h
(b)
1

∂β

∂L2
g1ig0

h
(b)
2

∂β

 (324)

=

[
γ>1
γ>2

]
[−bei×cbβ2×c bei×cbβ1×c bei×c 0 0] (325)

∇L2
g1ig1j

h
(b)

=

[
∇L2

g1ig1j
h
(b)
1

∇L2
g1ig1j

h
(b)
2

]
=

 ∂L2
g1ig1j

h
(b)
1

∂β

∂L2
g1ig1j

h
(b)
2

∂β

 =

[
γ>1
γ>2

]
[bei×cbej×c 0 0 0 0] (326)



• The third-order Lie derivatives are as following:

L3
g0g0g1i

h
(b)

= ∇L2
g0g0

h
(b) · g1i =

[
∇L2

g0g0
h

(b)

1 · g1i

∇L2
g0g0

h
(b)

2 · g1i

]
(327)

=

[
γ>1
γ>2

] [
bβ2×c2bβ1×c − 2bβ2×cbβ3×c − bβ5×c

]
ei (328)

L3
g0g0g2i

h
(b)

= ∇L2
g0g0

h
(b) · g2i =

[
∇L2

g0g0
h

(b)

1 · g2i

∇L2
g0g0

h
(b)

2 · g2i

]
=

[
γ>1
γ>2

]
[−2bβ2×c] ei (329)

(330)

L3
g0g1ig0

h
(b)

= ∇L2
g0g1i

h
(b) · g0 =

[
∇L2

g0g1i
h

(b)

1 · g0

∇L2
g0g1i

h
(b)

2 · g0

]
(331)

=

[
γ>1
γ>2

]
[bβ2×cbei×cbβ1×cβ2 + bβ2×cbei×cβ3 − bei×cbβ3×cβ2 + bei×cβ5 − bei×cβ4]

with the corresponding gradients as:

∇L3
g0g0g1i

h
(b)

=

[
∇L3

g0g0g1i
h
(b)
1

∇L3
g0g0g1i

h
(b)
2

]
=

 ∂L3
g0g0g1i

h
(b)
1

∂β

∂L3
g0g0g1i

h
(b)
2

∂β

 (332)

=

[
γ>1
γ>2

][
∂L3

g0g0g1i
h
(b)

∂β1

∂L3
g0g0g1i

h
(b)

∂β2

∂L3
g0g0g1i

h
(b)

∂β3

∂L3
g0g0g1i

h
(b)

∂β4

∂L3
g0g0g1i

h
(b)

∂β5

]
(333)

∇L3
g0g1ig0

h
(b)

=

[
∇L3

g0g1ig0
h
(b)
1

∇L3
g0g1ig0

h
(b)
2

]
=

 ∂L3
g0g1ig0

h
(b)
1

∂β

∂L3
g0g1ig0

h
(b)
2

∂β

 (334)

=

[
γ>1
γ>2

][
∂L3

g0g1ig0
h
(b)

∂β1

∂L3
g0g1ig0

h
(b)

∂β2

∂L3
g0g1ig0

h
(b)

∂β3

− beic beic

]
(335)

∇L3
g0g0g2i

h
(b)

=

[
∇L3

g0g0g2i
h
(b)
1

∇L3
g0g0g2i

h
(b)
2

]
=

 ∂L3
g0g0g2i

h
(b)
1

∂β

∂L3
g0g0g2i

h
(b)
2

∂β

 =

[
γ>1
γ>2

]
[0 0 2bei×c 0 0] (336)



where in the equations:

∂L3
g0g0g1i

h
(b)

∂β1

=

 ∂L3
g0g0g1i

h
(b)
1

∂β1

∂L3
g0g0g1i

h
(b)
2

∂β1

 =

[
γ>1
γ>2

] [
−bβ2×c

2bei×c
]

(337)

∂L3
g0g0g1i

h
(b)

∂β2

=

 ∂L3
g0g0g1i

h
(b)
1

∂β2

∂L3
g0g0g1i

h
(b)
2

∂β2

 (338)

=

[
γ>1
γ>2

]
[−bbβ2×cbβ1×cei×c − bβ2×cbbβ1×cei×c+ 2bbβ3×cei×c] (339)

∂L3
g0g0g1i

h
(b)

∂β3

=

 ∂L3
g0g0g1i

h
(b)
1

∂β3

∂L3
g0g0g1i

h
(b)
2

∂β3

 =

[
γ>1
γ>2

]
[2bβ2×cbei×c] (340)

∂L3
g0g0g1i

h
(b)

∂β4

=

 ∂L3
g0g0g1i

h
(b)
1

∂β4

∂L3
g0g0g1i

h
(b)
2

∂β4

 =

[
0
0

]
(341)

∂L3
g0g0g1i

h
(b)

∂β5

=

 ∂L3
g0g0g1i

h
(b)
1

∂β5

∂L3
g0g0g1i

h
(b)
2

∂β5

 =

[
γ>1
γ>2

]
[bei×c] (342)

∂L3
g0g1ig0

h
(b)

∂β1

=

 ∂L3
g0g1ig0

h
(b)
1

∂β1

∂L3
g0g1ig0

h
(b)
2

∂β1

 =

[
γ>1
γ>2

]
[−bβ2×cbei×cbβ2×c] (343)

∂L3
g0g1ig0

h
(b)

∂β2

=

 ∂L3
g0g1ig0

h
(b)
1

∂β1

∂L3
g0g1ig0

h
(b)
2

∂β1

 =

[
γ>1
γ>2

]
[bβ2×cbei×cbβ1×c − bbei×cbβ1×cβ2×c − bei×cbβ3×c − bbei×cβ3×c]

∂L3
g0g1ig0

h
(b)

∂β3

=

 ∂L3
g0g1ig0

h
(b)
1

∂β1

∂L3
g0g1ig0

h
(b)
2

∂β1

 =

[
γ>1
γ>2

]
[bβ2×cbei×c+ bei×cbβ2×c] (344)

Therefore, we can construct the Ξ(b) matrix as (345). Note that the diagonal block are all of full column



rank and, hence the matrix Ξ(b) is of full column rank.

Ξ(b) =



∇L1
g11

h
(b)

∇L1
g12

h
(b)

∇L1
g13

h
(b)

∇L3
g0g0g21

h
(b)

∇L3
g0g0g22

h
(b)

∇L3
g0g0g23

h
(b)

∇L2
g11g0

h
(b)

∇L2
g12g0

h
(b)

∇L2
g13g0

h
(b)

∇L3
g0g11g0

h
(b)

∇L3
g0g11g0

h
(b)

∇L3
g0g11g0

h
(b)

∇L3
g0g0g11

h
(b)

∇L3
g0g0g12

h
(b)

∇L3
g0g0g13

h
(b)



=



−γ>1 be1×c 0 0 0 0
−γ>2 be1×c 0 0 0 0
−γ>1 be2×c 0 0 0 0
−γ>2 be2×c 0 0 0 0
−γ>1 be3×c 0 0 0 0
−γ>2 be3×c 0 0 0 0

0 2γ>1 be1×c 0 0 0
0 2γ>2 be1×c 0 0 0
0 2γ>1 be2×c 0 0 0
0 2γ>2 be2×c 0 0 0
0 2γ>1 be3×c 0 0 0
0 2γ>2 be3×c 0 0 0

−γ>1 be1×cbβ2×c γ>1 be1×cbβ1×c γ>1 be1×c 0 0
−γ>2 be1×cbβ2×c γ>2 be1×cbβ1×c γ>2 be1×c 0 0
−γ>1 be2×cbβ2×c γ>1 be2×cbβ1×c γ>1 be2×c 0 0
−γ>2 be2×cbβ2×c γ>2 be2×cbβ1×c γ>2 be2×c 0 0
−γ>1 be3×cbβ2×c γ>1 be3×cbβ1×c γ>1 be3×c 0 0
−γ>2 be3×cbβ2×c γ>2 be3×cbβ1×c γ>2 be3×c 0 0

∂L3
g0g11g0

h
(b)
1

∂β1

∂L3
g0g11g0

h
(b)
1

∂β2

∂L3
g0g11g0

h
(b)
1

∂β3
−γ>1 be1×c γ>1 be1×c

∂L3
g0g11g0

h
(b)
2

∂β1

∂L3
g0g11g0

h
(b)
2

∂β2

∂L3
g0g11g0

h
(b)
2

∂β3
−γ>2 be1×c γ>2 be1×c

∂L3
g0g12g0

h
(b)
1

∂β1

∂L3
g0g12g0

h
(b)
1

∂β2

∂L3
g0g12g0

h
(b)
1

∂β3
−γ>1 be2×c γ>1 be2×c

∂L3
g0g12g0

h
(b)
2

∂β1

∂L3
g0g12g0

h
(b)
2

∂β2

∂L3
g0g12g0

h
(b)
2

∂β3
−γ>2 be2×c γ>2 be2×c

∂L3
g0g13g0

h
(b)
1

∂β1

∂L3
g0g13g0

h
(b)
1

∂β2

∂L3
g0g13g0

h
(b)
1

∂β3
−γ>1 be3×c γ>1 be3×c

∂L3
g0g13g0

h
(b)
2

∂β1

∂L3
g0g13g0

h
(b)
2

∂β2

∂L3
g0g13g0

h
(b)
2

∂β3
−γ>2 be3×c γ>2 be3×c

∂L3
g0g0g11

h
(b)
1

∂β1

∂L3
g0g0g11

h
(b)
1

∂β2

∂L3
g0g0g11

h
(b)
1

∂β3
0 γ>1 be1×c

∂L3
g0g0g11

h
(b)
2

∂β1

∂L3
g0g0g11

h
(b)
2
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