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Abstract—The ability to reliably detect faults is essential in many real-
world tasks that robot swarms have the potential to perform. Most studies
on fault detection in swarm robotics have been conducted exclusively in
simulation, and they have focused on a single type of fault or a specific task.
In a series of previous studies, we have developed a robust fault-detection
approach in which robots in a swarm learn to distinguish between normal
and faulty behaviors online. In this paper, we assess the performance of
our fault-detection approach on a swarm of seven physical mobile robots.
We experiment with three classic swarm robotics tasks and consider several
types of faults in both sensors and actuators. Experimental results show that
the robots are able to reliably detect the presence of hardware faults in one
another even when the swarm behavior is changed during operation. This
paper is thus an important step toward making robot swarms sufficiently
reliable and dependable for real-world applications.

Index Terms—Collective behavior, fault detection, multirobot systems,
robot swarms.

1. INTRODUCTION

As robots become increasingly prevalent and take on new classes
of tasks, safety and reliability are key issues to address. Robot mal-
functions have the potential to cause damage to humans, other robots,
infrastructure, vegetation, or animals present in the environment. Unless
robot control can be explicitly designed to tolerate common malfunc-
tions [1], reliable detection of the presence of faults is essential in
many real-world scenarios to minimize the impact and risk associated
with faults that inevitably occur. It is, however, challenging to give
autonomous robots the capacity to detect faults in themselves as faults
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often cannot be detected directly. Instead, the presence of faults must
be inferred from erroneous behavior [2]. While an autonomous robot
operating alone must rely on its own sensors to detect the presence of
faults, collective robots have the potential to detect faults cooperatively.
In particular, robots that are able to observe one another have the
potential to exogenously detect erroneous behavior. A robot is thus not
limited to its own sensors, but can benefit from the presence of other
robots in the environment to detect its abnormal behavior. A number
of fault-detection approaches have been proposed for exogenous fault
detection in decentralized multirobot systems. In some of the most basic
approaches, fault detection is based on periodic communication [3],
[4], which means that only those faults that render a robot unable
to communicate can be reliably detected. In other approaches, actual
behavior is compared to one or more models of expected or normal
behavior [5]-[7], robots compare sensory readings when they meet [8],
or they compare their individual contributions to the task-solving
effort [9].

If robots adapt their behavior during operation [10], it may, however,
not be possible to characterize normal behavior prior to deployment.
Also, approaches that rely on comparison of performance require that
individual task performance is easily quantifiable and performance
assessment can be made relatively frequently, which is not always the
case. In a series of past studies [11]-[14], we have proposed and devel-
oped a fault-detection system in which the presence of faults is inferred
based on a continually learnt classification model that distinguishes
between normal and abnormal behaviors of individual robots. Each
robot characterizes the behavior of neighboring robots over a certain
time window and then compares behaviors to detect any abnormalities
that could be the result of a fault.

Large-scale decentralized mutirobot systems, or robot swarms, have
significant potential to take on real-world tasks [15], but they are still
mainly confined to research environments. Timely and robust detection
of faults is essential in many real-world scenarios, but studies on faults
and fault detection in robot swarms have almost exclusively been
conducted in simulation (exceptions include [4], [16]). Since faults
are intimately linked to robot hardware, experimentation on physical
robots is, however, an important step toward bringing swarm robotics
systems to real-world applications.

The main contribution of this paper is that we demonstrate decentral-
ized fault detection based on behavioral observation in a physical swarm
robotics system. Observed robot behaviors are encoded as feature
vectors, and abnormalities in robot behavior are detected as outliers
with the corresponding robots being labeled as faulty by its neighboring
robots in the swarm. For our experiments, we use a swarm of seven
mobile robots that perform a number of common swarm behaviors,
and we consider different types of faults, both in sensors and actuators.
We show that our fault detection system is robust to changes in swarm
behavior and faults are reliably detected in a timely manner.
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Fig. 1. E-puck robot of the swarm augmented with an ARM AT91SAM9260
extension board and with an ArUco fiducial marker tag.

II. METHODOLOGY

A. Behavior-Driven Fault Detection

Our process of exogenous fault detection in a robot swarm is com-
prised of the following phases, occurring in sequence. First, robots
of the swarm sense their behavior over a window of time and char-
acterize it as a binary feature vector, shared with neighboring robots
in the swarm. Second, individual robots of the swarm execute an
immunology-inspired outlier detection algorithm—the crossregulation
model (CRM) [13]—to detect outlier feature vectors corresponding to
abnormal behaviors, where abnormalities are consequent to faults in the
neighboring robots. Second, a voting scheme is employed to consolidate
an individual robot’s decision on the identity of a faulty neighboring
robot with decisions made by its other neighboring robots in the swarm.

The individual robots of the swarm execute the CRM to classify
the behavioral feature vectors of their neighbors as inliers or outliers.
The feature vectors corresponding to behaviors, which are exhibited by
the majority of the neighboring robots, are treated as inliers. By contrast,
feature vectors corresponding to behaviors exhibited by one or a few
robots—abnormal behaviors—are flagged as outliers by the observing
robot. In employing such an instance-based learning approach for
outlier detection, the robot swarm is capable of establishing a dynamic
signature of normality that allows fault detection to be resilient to
changes in robot swarm behavior.

B. Experiment Hardware for Fault Detection

The hardware setup for our experiments comprises a swarm of e-puck
robots (see Fig. 1). The e-puck is a two-wheeled differential drive open
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hardware mobile robot. The basic e-puck model is 7 cm in diameter and
5 cmin height, and comprises eight infrared (IR) transceivers positioned
around the circular chassis of the robot to perceive obstacles in the
robot’s immediate environment. The e-puck’s actuators are a pair of
miniature stepper motors driving the two wheels at the base of the
robot with speeds up to 13 cm/s.

The e-puck is also enhanced with a range-and-bearing sensor [17],
which provides individual robots with sensor readings on the distance
of neighboring robots (range up to 1 m) and the angular positions of
neighboring robots (bearing between [0°, 360°]). However, the physical
range-and-bearing sensor boards were not available for our experi-
ments. Therefore, we employed a virtual range-and-bearing sensor for
each physical robot of the swarm, using a realistic and noisy sensor
model of Garattoni et al. [18] to emulate the hardware based on an
overhead camera tracking system.

C. Behavioral Feature Vectors for Fault Detection

The observed robot swarm behaviors are characterized with respect
to a number of predefined primitive swarm behavioral components
(e.g., presence or absence of neighboring robots in close proximity
based on readings from the range-and-bearing sensor, and the robot’s
motor reaction when neighboring robots are encountered). For behavior
characterization as feature vectors, Boolean features associated with
different behavioral components are set based on the presence (set to 1)
and absence (set to 0) of the behavioral components in the observed
swarm behavior. Binary features encoding the different behavioral
components are then concatenated to form the behavioral feature vector.

Our design of a behavioral feature vector generalizable across vari-
ous behavior tasks is the result of empirical data gathered from previous
experiments in simulation [13]. We investigated the interplay between
the choice of feature vector and fault detection performance with 15
different behavioral features that covered various characterizations of
arobot’s neighborhood, its absolute and relative speeds, and the nature
of its interactions in the presence and absence of sensory stimuli. This
paper revealed six Boolean features (F'i, F'2... F'6) that provided
a robust discrimination between 16 different normal-faulty behavior
combinations, which are easy to sense and compute on the physical
e-puck platform and are independent of the controller architecture used
to execute the robot’s behavior. The selected features encode for the
robot’s sensor inputs (features F'1 and F'2), motor outputs (features
F'3 and F4), and sensor—-motor interactions (features F's and F's).
All computations for the feature vectors were executed on the ARM
extension board on each of the e-puck robot platforms of the swarm.

1) Sensor Inputs: The first two features F'1 and F'2 encode the
number of neighboring robots in proximity to the robot. We define a
Heaviside step function H(x) whose value is 0 for a negative argument
and 1 for a positive argument as

17
H(z) = {0

The first feature F'1; of robot r; encodes the presence or absence of
neighbors in close proximity of r;. For feature F'1,(7) of r; at time T,
we have

ifx >0
(D

otherwise

T S CLA )]
PR DD D

0, otherwise
where for robot r; at time ¢, we define Ne; () as the set of neighboring

robots in close proximity to r; (up to 15 cm), and 7% is the number
of control cycles of past observations. The feature F'1; is set to 1
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TABLE I
PARAMETERS OF THE BEHAVIORAL FEATURE VECTORS

Parameter  Description Value
VUmaz Maximum linear speed 10cm/s
v Desired linear speed —
Wmaz Maximum angular speed 1.9 radians/s
w Desired angular speed -
At Length of control cycle 10 ms
Ne Number of neighboring robots in  —
close proximity of [0cm, 15cm)
Ny Number of neighboring robots in  —
far proximity of [15cm, 30 cm]
Ts Length of the time window for es-  10s
timating number of neighbors and
the distance traversed by observed
robot
T Length of the time window for  30s

estimating alterations in heading of
observed robot

if robot r; had at least one neighboring robot within [0 cm, 15 cm)
for the majority of the past time window of length 7’ (all feature vector
parameters are listed in Table I).

The second feature F'2;(7) for observed robot r; encodes the pres-
ence or absence of neighboring robots in far proximity of r; at time 7
as

N H(INy, (0)])
1 f ———= >0.5
F2i(T) = ’ ! Zt:T*Ts Ts - (3)

0, otherwise

where Ny, (t) is the set of neighboring robots further away from robot
r; (between [15 cm, 30 cm]). The feature F'2; is set if r; has at least one
neighbor in far proximity for the majority of the past time window of
length 7.

2) Motor Outputs: The third and fourth features of r;, F'3; and
F4;, pertain to the motor actions performed by 7; during task execution.

The third feature F'3;(7) at time interval 7 encodes if r; has moved
in the past Ts time intervals

1, if Dist(ry, 7,Ts) > 0.15 vyaTs
Fs(t) = “4)
0, otherwise

where Dist(r;, 7, T) at time 7 is an estimate of the distance traversed
by robot r; over a time window of 7’s (using a forward kinematics model
of a two-wheeled nonholonomic differential-drive mobile robot), and
Umax 15 the maximum linear speed of the robot. The feature F'3; is setto 1
if the distance traversed by r; exceeds 15% of the maximum traversable
distance by the robot in the time window 7’s. The 15% threshold is set to
compensate for errors in e-puck odometry. The effect of odometric drift
on the estimate of distance traversed by the robot is also reduced with
the use of a short time window (7’s is set to 10 s in our experiments).
The fourth feature F'4;(7) at time 7 encodes the number of instances
r; has altered its heading in the past 7; time intervals. An alteration of
the robot’s heading is detected by a change in its angular acceleration,
exceeding 15% of the maximum angular acceleration of the robot; the
threshold was set to compensate for inaccurate estimates of changes in

robot headings. For r;, at time 7, an altered heading is detected as

Mi(7) 1, if |wi(7)] > 0.15 |Wayl )
i\T) = .
0, otherwise

where w; (7) is the angular acceleration of robot r; at time 7 and Wyax
is the maximum angular acceleration. Angular acceleration values are
updated at each time interval and computed as the difference between
angular velocity values at consecutive time intervals.

The feature F4; is set to 1 if the robot r; has altered its heading at
least once in the past 7; time intervals

1, if Zt:FTZ M;(t) >0

0, otherwise.

F4i (T) = (6)

3) Sensor—-Motor Interactions: The fifth and sixth features of
observed robot r;, F's; and Fs;, account for the motor actions per-
formed by r; in the presence and absence of neighboring robots. For
the feature F's;, we define the function Sm(t) as follows:

Sm(t) = H(INe; (8) + Ny ())) A Mi(t) @)

where the Heaviside step function H(| V.., (¢) + Ny, (¢)]) has value 1 if
neighboring robots are present in proximity of the observed robot r; at
time ¢.

The feature F's;, computed from (7), is set to 1 if r; alters its heading
at least once in the presence of neighboring robots in time window 7;

FS»L'(T)—{L if3te{r—"T,...7}:Sm(t) is true )

0, otherwise

The feature F's; encodes robot movement in the absence of neigh-
boring robots. For this feature, we define function Sn(t) as follows:

Sn(t) = = H(INe; (¢) + Ny, (D)) A My (2) ©

where = H(| N, (t) + Ny, (t)]) has value 1 if no neighboring robots are
present in the vicinity of r; at time ¢.

The feature F's;, computed from (9), is set to 1 if r; alters its heading
at least once in the absence of neighboring robots over the time window
T,

1, ifdte{r—"T,...7}:Sn(t)is true
Fe;(1) = (10)

0, otherwise

The behavioral feature vector F'(7) comprising (F'1(7), ... , F's(T))
was computed for all time intervals 7 in the duration of the experiment.
Parameters for the behavioral feature vectors in Table I have been set
according to the physical characteristics of the e-puck robot hardware.
The length of the robot observation time windows were set to be long
enough to allow for robust characterization of the robots” behavior while
still being short enough to allow for timely fault detection.

D. Detection of Faulty Robots in the Swarm

In every time-interval of the experiment, each robot of the swarm
shares its behavioral feature vector with neighboring robots in range
and line-of-sight of its range-and-bearing sensors. Subsequently, an
outlier detection algorithm—the CRM—is executed by each robot for
the detection of outlier behavioral feature vectors exhibited by faulty
robots in its neighborhood. The algorithmic implementation of the
CRM and parameters for its execution are detailed in [14].

In order to trigger appropriate recovery actions for a faulty robot, the
robots of the swarm have to first translate their individual decisions on
their neighboring robots based on their own respective CRM instances,
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into the swarm’s decision on the normal/faulty state of the robots. A
voting scheme is employed for this purpose: a robot is identified as
faulty if its behavior is classified as an outlier by the simple majority of
its neighbors; otherwise, the robot is treated as behaving normally by
the rest of the swarm (for details see [13]).

III. EXPERIMENTAL SETUP

For our experiments, we use a swarm of seven e-puck robots. The
robots are situated in a 2.1 x 1.2 m? area surrounded by white walls.
We evaluate our fault-detection approach in a series of experiments
where the robots perform classic swarm robotics behaviors, namely
aggregation, dispersion, and homing—behaviors widely used in pre-
vious studies, both in simulation and in physical robot laboratory
experiments [19], [20]. The robots are placed at random locations and
with random orientations in the beginning of each experiment. The
onboard control programs follow the subsumption architecture [21],
and they are written in C++ and compiled for the ARM extension board.

A. Faults

We inject simulated faults [2] in a robot by providing an erroneous
input to its onboard control program in the case of sensor faults, and
by ignoring or perturbing its output in the case of actuator faults. The
behavioral control logic assumes that the robot on which it is executed
is fully operational, and there are no mechanisms present to compensate
for faulty sensors or actuators. The behavior exhibited by a faulty robot
is thus the result of executing the control logic on the robotic platform
with malfunction corresponding to the injected fault.

We consider the following sensor and actuator faults.

1) PMIN. The minimum possible value (0) is returned by the four

front proximity sensors.

2) PMAX. The maximum possible value (1) is returned by the four
front proximity sensors.

3) ROFS. An offset is applied to the readings from the robot’s range-
and-bearing board. The position estimate offset is sampled from
a uniform distribution in the interval [75 cm, 100 cm], and the
orientation estimate offset is sampled from a uniform distribution
in [—180°, 180°].

4) LRACT. A fault in either the robot’s left wheel or its right
wheel actuator (selected at random at the start of the experiment)
causing its speed to be set to 0 cm/s.

5) BACT. A fault in both the robot’s left and right wheel actuator
causing their speed to be set to 0 cm/s.

As discussed in [14], these fault types are representatives of five

different scenarios involving permanent failure in the e-puck’s sensors
and actuators.

B. Swarm Behaviors

1) Dispersion: In dispersion, robots of the swarm combine obsta-
cle avoidance and navigation for maximizing the sensing coverage of
large areas in patrolling and monitoring missions [22]. In our imple-
mentation of dispersion, the robots, first, perform a simple random-walk
behavior, moving straight in arandomly selected direction and selecting
a new direction with probability 0.02 (per second), and, second, avoid
obstacles within 5 cm of their position. The presence of obstacles is
registered with the IR proximity sensors of the basic e-puck model.

2) Aggregation: In the aggregation behavior, the robots of the
swarm are tasked to form a coherent and stable cluster. In our im-
plementation, aggregating robots use their range-and-bearing sensors
to move toward the center of mass of neighboring robots within range
of 1 m while avoiding obstacles with the dispersion behavior.
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3) Homing: In homing, the swarm is tasked to surround and cage
a moving beacon, such as an intruder [22]. In our implementation of
homing, one of the robots of the swarm serves as a beacon and performs
dispersion behavior. The remaining robots of the swarm avoid obstacles
while heading in the direction of the beacon when it is in range of their
range-and-bearing sensors.

C. Experimental Protocol and Data Collection

At the beginning of each experiment, the server broadcasts a signal.
On receiving the signal, the robots perform arandom walk with obstacle
avoidance behavior for a duration of 30 s, following which individual
robots stop and send an acknowledgement signal to a server. Once the
server has received acknowledgement signals from all the robots of
the swarm, it broadcasts another signal and the robots start executing
their tasks. Each experiment lasts for a duration of 300 s. During the
experiment, we record sensor readings, control signals, operational
states, and behavioral feature vectors of each e-puck in the swarm,
used offline for the computation of behavioral outliers. In experiments
requiring an injection of a fault, we inject the fault at the very beginning
of the experiment.

IV. RESULTS

In this section, we present the results of a series of experiments
involving seven physical robots. We first analyze true-positive perfor-
mance, that is, the robots’ capacity to detect the presence of faults in
one another. We then analyze false-positive performance, that is, the
robots’ capacity to avoid labeling fault-free robots as faulty. Finally,
we show that robots are able to reliably tolerate changes in swarm
behavior. Detailed results of our experiments are available online in
Supplementary Material' (see Sections S2—-S4).

A. True-Positive Performance

We conducted five replicates for each combination of task (ag-
gregation, dispersion, and homing) and fault type (PMIN, PMAX,
ROFS, LRACT, and BACT). The results indicating the true-positive
performance, measured as the mean 4+ SD percentage of time a robot
with a fault, was detected as behaving abnormally is summarized in
Table II. The italicized values indicate the true-positive performance
during the three consecutive 100-second intervals in the experiment.
True-positive performance over higher resolution 30-second intervals
is presented in Figs. S1 (aggregation), S3 (dispersion), and S4 (homing)
in Section S2 of Supplementary Material.

The swarm’s fault-detection performance often changes during an
experiment and depends strongly on the type of fault (see Table II). Our
fault-detection approach relies on online comparison of behavior, and
thus only faults that result in a divergence from normal behavior can
be detected. In the extreme case of the aggregation/PMIN experiments,
in which the minimum value is returned by the four front proximity
sensors, the faulty robotis never detected, because all robots—including
the one with the fault—consistently aggregate into a single, coherent
cluster. The PMIN fault thus does not provoke a divergence from normal
fault-free behavior, and the fault is therefore not detected (see link to
videos in Section S1 of Supplementary Material).

The results of the aggregation/LRACT experiments, in which either
the left or the right wheel stops moving, show that the swarm’s ability
to detect the faulty robot decreases during the experiment (see Table II).
The change in fault detection performance during an experiment is a
result of the collective aggregation behavior. Initially, all robots try to

![Online]. Available: http://doi.org/10.5281/zenodo.3333824
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TABLE I
TRUE-POSITIVE PERFORMANCE

Aggregation Dispersion Homing

PMIN i 70.1+3.1% 53.1+17.9%
49.7%  85.0% 75.6% 37.0% 63.6% 58.7%

PMAX 69.1 &+ 8.8% 85.7 +10.3% 92.9 + 3.2%
78.7% 68.4% 60.3% 71.1%  89.5% 96.6% 79.7% 98.9%  100.0%

ROFS 50.5 +3.7% } 49.0 +£12.1%
38.9% 55.0% 54.0% 41.2% 56.2% 48.9%

LRACT 31.1+12.7% 83.5 +£5.4% 71.6 + 4.8%
45.5% 23.9% 23.9% 73.7%  86.6% 90.3% 58.6% 85.2% 70.9%

BACT 95.3 +1.6% 94.7 + 1.6% 96.6 + 0.1%
85.9%  100.0%  100.0% 84.2%  99.7%  100.0% 89.8% 100.0%  100.0%

Mean =+ SD percentage of time for each type of faults is detected for the three different tasks. Percentages in italics are over intervals of 100 s. In the aggregation/PMIN
experiment and in the dispersion/ROFS experiment, the injected fault had no impact on behavior or performance, and could therefore not be detected (see text for

details).

Robot 0 (true positive) ‘ Robot 0 (false negative)

e |

Fig. 2. Frames from one of the aggregation experiments in which a fault is
injected in the right wheel actuator (RACT) of robot number 0. In the first frame
(t = 57 s) the faulty robot is correctly detected by the rest of the swarm. In the
second frame (t = 1 m 52 s), the fault is not detected as the robot has become
a part of the aggregate and exhibits limited motion similar to the normally
functioning robots of the tightly packed aggregate (for video, see Section S1
in Supplementary Material).

move toward one another to form an aggregate, but since the robot with
compromised locomotion is anchored by its unresponsive wheel, its
behavior differs significantly from the other, fully operational robots.
However, the fully operational robots eventually aggregate around
the faulty robot, and its behavior therefore becomes indistinguish-
able from the other robots in the aggregate (see example in Fig. 2).
In the experiments in which the injected fault affected both wheel
actuators (BACT), the faulty robot is rendered completely immobile,
which makes its behavior easily distinguishable from the other robots
(see Table II).

In the aggregation experiments where a fault is affecting the range-
and-bearing sensor (ROFS) and where the four front proximity sensors
return the maximum possible reading (PMAX), the swarm’s ability to
correctly detect the faulty robot changes throughout the experiment
with no clear trend. In those experiments, we observed that the fault
would continually lead to the robot with the fault joining and leaving
the aggregate.

In the dispersion and homing tasks, we observed significant dif-
ferences in fault-detection performance with respect to the different
faults (see Table II). While the robots were unable to detect the PMIN
fault in the aggregation task, the fault was detected more than 50% of
the time, on average, in both the dispersion task and in the homing
task. The reason for the differences in fault-detection performances are
again the interplay between the specific fault’s impact on the individual
robot’s behavior, the task, and the collective behavior displayed by the

TABLE III
PROPORTION OF FALSE POSITIVES

Aggregation  Dispersion Homing
Unfiltered  0.06+£0.05 0.094+0.06  0.09£0.07
Majority 0.02£0.04 0.05+0.05  0.05£0.06
Exclusive ~ 0.00£0.00 0.00+£0.02  0.01£0.03

Mean £ SD proportion of time for each type of classifications for the
three different tasks.

other robots in the swarm. A fault in the range-and-bearing sensor can
therefore be reliably detected in both the aggregation task and in the
homing task, but not in the dispersion task, as the range-and-bearing
sensor readings were not used by the dispersion behavior.

Similar to how the range-and-bearing sensor fault (ROFS) only
periodically leads to abnormal behavior in the aggregation task (see
example in Fig. S2 of Supplementary Material), several faults are only
periodically detected in the dispersion and homing tasks. In the extreme
case of the PMIN fault in the homing task (see Table II), the mean
proportion of time the fault was detected is above 50%, but the minimum
remains close to 0% after the first 30 s, whereas the maximum is close
to 100% across the five replicates. In different replicates, the fault was
detected at different times depending on the spatial configuration of the
robots. In four of five replicates, the faulty robot was detected 100%
of the time by the swarm in at least one 30 s time interval. In the fifth
replicate, the faulty robot was detected over 80% of the time in one
30 s time interval. The fault was thus detected in all replicates but at
different times.

B. False-Positive Results

We ran five experiments for each task in which no faults were injected
to determine the swarm’s capacity to correctly label fully operational
robots as fault-free. The proportion of time a fully operational robot is
wrongly labeled as faulty was on average relatively high at 0.08 across
all tasks (for Mean 4 SD see unfiltered classification in Table III),
and reached over 0.19 in some cases (see Fig. S5 in Section S3 of
Supplementary Material). A fully operational robot is wrongly labeled
as faulty by the other robots when its behavior is dissimilar to the
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6
= -
J ' Robot 8 (true negative)
Robot 8 (false positive) !
' Beacon
&
Fig. 3. Frames from one of the homing experiments in which all the robots

are fully operational. In the first frame (¢ = 24 s), robot 8 is the only robot of
the swarm that is unable to locate the beacon (encircled) and is therefore labeled
as faulty by the rest of the swarm, whereas in the second frame (¢ =4 m 23 s),
robot 8 locates and homes toward the beacon, and is correctly labeled as being
fully operational (for video, see Section S1 in Supplementary Material).

behavior of other robots. A robot’s behavior can be distinct either as
the result of a particular situation during the experiment or due to initial
conditions. For instance, a robot may take longer than the rest of the
swarm to localize the beacon in a homing task (see example experiment
snapshots in Fig. 3).

The number of false positives can be significantly reduced when
classification is done based on output of the CRM accumulated for a
series of consecutive time steps, rather than based on the output in a
single time step. We assessed two different approaches to classify the
state of robots based on outputs across a time window: majority and
exclusive. In majority-based classification, a robot is classified as faulty
if the CRM has classified its state as abnormal for the majority of the
time steps within the previous 10 s. In exclusive-based classification,
on the other hand, a robot is only classified as faulty if the CRM has
classified it as abnormal in all time steps in the previous 10 s. While
basing classification on a series of consecutive outputs of the CRM
significantly reduced the proportion of false-positive incidents (see
Mean £ SD false-positive incidents in Table III), it leads to a high
latency in fault detection [14].

C. Tolerance to Transitions in Swarm Behavior

Swarms of robots that operate in real-world scenarios must often
display a number of different collective behaviors in order to complete
amission (see for instance [22]) or adapt their behavior on the fly (see for
instance [23]). It is therefore important for a fault-detection approach
to be able to tolerate changes in swarm behavior.

‘We established a series of experiments in which the swarm had to first
perform one task and then gradually switch to perform another, in order
to assess the capacity of our fault-detection approach to tolerate changes
in swarm behavior. At the start of the task-switching experiments, the
robots first performed the aggregation task. A probabilistic transition to
the dispersion tasks was triggered halfway through the experiment, after
which the robots would gradually switch from the aggregation behavior
to the dispersion behavior. We tested two different mean task-switching
times in separate and independent experiments, namely 5 s and 10 s.
The times were selected to cover a range of transition rates whilst still
allowing for all robots to reliably switch their behavior before the end
of the experiment. Each task-switching experiment had a duration of
300 s and was replicated five times.

We recorded the feature vectors displayed by the robots at each
control cycle during the task-switching experiments, and found that the
feature vector distribution and the dominant feature vector changed after
the behavior transition started. Despite the change in the distribution
of feature vectors caused by the task switching, the proportions of
false-positive incidents were not significantly affected (Mean £+ SD
for experiments with no change in behavior, 5 s behavior transition
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time, and 10 s behavior transition time were 0.08 4= 0.02, 0.08 4= 0.01,
and 0.08 £ 0.0 respectively).

V. DISCUSSION

Previously proposed fault-detection approaches rely on detailed
descriptions of normal (no faults present) robot behavior [5]-[7], easily
quantifiable task performance measures [9], and learnt models of nor-
mal behavior and faulty behavior [2], or are limited to a specific type
of faults [3], [4], [8]. In our approach, on the other hand, the notion
of normal and abnormal behavior is learnt online, based on a mutual
interrobot observation. Robot behavior is characterized as a vector of six
abstract binary features. The same binary features was used for all tasks,
and we did not thus have to craft task-specific behavior characterizations
to achieve reliable fault detection. Furthermore, as individual robots in
the swarm detect faults in their neighboring robots, our fault-detection
approach scales well to large-scale swarms (demonstrated in swarms
of up to 100 simulated robots, see [13]).

The exclusive reliance on binary features to characterize behavior
may, however, be inefficient. In this paper, for instance, two features
(Fy and F3) were used to denote if a given robot had any neighbors
within arange of [0 cm, 15 cm) and [15 cm, 30 cm], respectively. Those
features and values were found to work well in general with respect to
the robot platform and the traditional swarm robotics tasks consid-
ered. However, integer-valued or real-valued features that, for instance,
denote the number of neighbors or the average distance to neighbors
could be used instead. We speculate that such features could yield a
better fault-detection performance as they enable more precise, yet still
task-agnostic, characterization of behavior. Also, other methods, such
as local outlier factor (LOF) or k-nearest neighbors (KNN), could be
used for outlier detection in place of the CRM. We did, in fact, test both
the LOF and the KNN on the data collected during our physical-robot
experiments, and while their performance was found to be inferior to
that of the CRM, they may perform well on nonbinary feature vectors.

Our behavior-driven approach to exogenous fault detection requires
an accurate characterization of robot behavior—encoded as a behavioral
feature vector—for the timely detection of the faulty robots in the
swarm. For our experiments with the e-puck robot swarm, sensory
data provided by the range-and-bearing sensors [17] were employed to
characterize the robot’s behavioral feature vector. While such reflected-
signal-strength based IR sensor hardware may not function in sunlight,
for outdoor robots employing our fault-detection system, odometric
sensors, such as accelerometers, may be used to characterize the be-
havioral features pertaining to robot motion over short time scales.
Additionally, GPS sensor data shared between robots of the swarm
may be used to characterize if a robot has any neighboring robots in its
vicinity, and the nature of their interactions, such as the frequency of
heading angle, changes in the presence of neighboring robots in close
proximity. Odometric and localization sensor hardware is commonly
outfitted onboard most outdoor robot platforms, thus enabling our
exogenous fault-detection system to be employed in outdoor mission
scenarios.

In our experiments, fault detection was demonstrated on a robot
swarm performing three tasks: aggregation, dispersion to maximize
the sensing coverage of large areas, and homing toward a moving
beacon that may represent an intruder. The selected tasks are simple
and commonly used as benchmarks in the field of swarm robotics [19].
While our designed behavioral feature vector was found to yield a good
fault-detection performance in the swarm robotics tasks considered in
this paper, it may not be sufficient in other scenarios. For more complex
swarms and tasks, for instance, it may be necessary to re-engineer the
behavioral feature vectors to achieve reliable fault detection. Herein,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS

machine learning algorithms could enable the robots to learn relevant
features for a robust discrimination between normal and faulty behavior
conditions. Following the detection of the faulty robot, fault accommo-
dation procedures may be executed to limit the impact of the faulty
robot on the performance of the swarm. Accommodation procedures
may comprise caging the faulty robot, diagnosing the nature of the fault
[24], and consequently adapting the behavior of the faulty robot [25].

VI. CONCLUSION

Fault tolerance is an essential attribute for robots taking on real-world
tasks. To ensure safe operation, robots must be able to detect abnormal
behavior consequent to the presence of faults, such as those resulting
from inevitable hardware failure. In this paper, we assessed the per-
formance of our approach to detect abnormal behavior in a swarm of
physical robots. We conducted extensive experiments, involving setups
with three swarm robotics tasks, five types of faults (3 x 5 = 15), one
setup for each task where no fault was present (3), and two additional
setups in which the swarm transitioned from one task to another
(2). With five experimental trials conducted in each setup, a total of
100 physical-robot experiments were performed as part of this paper.
Ourresults showed that decentralized fault detection based on interrobot
behavioral observation and abnormal behavior detection—independent
of the robot’s controller architecture, and with no requirements on a
measure of task performance—was feasible in a physical robot swarm.
The capability of robots to distributedly detect a wide range of faults
in one another is essential for swarm robotics systems to move out of
tightly controlled laboratory environments and take on real-world tasks.
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