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Abstract—Dynamically changing environments, unreliable state
estimation, and operation under severe resource constraints are
fundamental challenges that limit the deployment of small au-
tonomous drones. We address these challenges in the context of
autonomous, vision-based drone racing in dynamic environments.
A racing drone must traverse a track with possibly moving gates
at high speed. We enable this functionality by combining the per-
formance of a state-of-the-art planning and control system with
the perceptual awareness of a convolutional neural network. The
resulting modular system is both platform independent and domain
independent: it is trained in simulation and deployed on a physical
quadrotor without any fine-tuning. The abundance of simulated
data, generated via domain randomization, makes our system ro-
bust to changes of illumination and gate appearance. To the best of
our knowledge, our approach is the first to demonstrate zero-shot
sim-to-real transfer on the task of agile drone flight. We extensively
test the precision and robustness of our system, both in simulation
and on a physical platform, and show significant improvements
over the state of the art.

Index Terms—Drone racing, learning agile flight, learning for
control.

1. INTRODUCTION

RONE racing is a popular sport in which professional
pilots fly small quadrotors through complex tracks at high
speeds (see Fig. 1). Drone pilots undergo years of training to
master the sensorimotor skills involved in racing. Such skills
would also be valuable to autonomous systems in applications
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Fig. 1. The Perception block of our system, represented by a convolutional
neural network (CNN)), is trained only with nonphotorealistic simulation data.
Due to the abundance of such data, generated with domain randomization, the
trained CNN can be deployed on a physical quadrotor without any fine-tuning.

such as disaster response or structure inspection, where drones
must be able to quickly and safely fly through complex dynamic
environments [1].

Developing a fully autonomous racing drone is difficult due to
challenges that span dynamics modeling, on-board perception,
localization and mapping, trajectory generation, and optimal
control. For this reason, autonomous drone racing has attracted
significant interest from the research community, giving rise to
multiple autonomous drone racing competitions [2], [3].

One approach to autonomous racing is to fly through the
course by tracking a precomputed global trajectory. However,
global trajectory tracking requires to know the race-track layout
in advance, along with highly accurate state estimation, which
current methods are still not able to provide [4]-[6]. Indeed,
visual-inertial odometry (VIO) [4], [5] is subject to drift in
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estimation over time. Simulateneous Localization and Mapping
(SLAM) methods can reduce drift by relocalizing in a previously
generated, globally consistent map. However, enforcing global
consistency leads to increased computational demands that
strain the limits of on-board processing. In addition, regardless
of drift, both odometry and SLAM pipelines enable navigation
only in a predominantly static world, where waypoints and
collision-free trajectories can be statically defined. Generating
and tracking a global trajectory would therefore fail in applica-
tions where the path to be followed cannot be defined a priori.
This is usually the case for professional drone competitions since
gates can be moved from one lap to another.

In this article, we take a step toward autonomous, vision-
based drone racing in dynamic environments. Instead of relying
on globally consistent state estimates, our approach deploys a
CNN to identify waypoints in local body-frame coordinates.
This eliminates the problem of drift and simultaneously enables
our system to navigate through dynamic environments. The
network-predicted waypoints are then fed to a state-of-the-art
planner [7] and tracker [8], which generate a short trajectory
segment and corresponding motor commands to reach the de-
sired location. The resulting system combines the perceptual
awareness of CNNs with the precision offered by state-of-the-art
planners and controllers, getting the best of both worlds. The
approach is both powerful and lightweight: all computations
run fully onboard.

An earlier version of this article [9] (Best System Paper Award
at the Conference on Robotic Learning, 2018) demonstrated the
potential of our approach both in simulation and on a physical
platform. In both domains, our system could perform complex
navigation tasks, such as seeking a moving gate or racing through
a dynamic track, with higher performance than state-of-the-art,
highly engineered systems. In this article, we extend the ap-
proach to generalize to environments and conditions not seen
at training time. In addition, we evaluate the effect of design
parameters on closed-loop control performance, and analyze the
computation-accuracy tradeoffs in the system design.

In the earlier version [9], the perception system was track
specific: it required a substantial amount of training data from
the target race track. Therefore, significant changes in the
track layout, background appearance, or lighting would hurt
performance. In order to increase the generalization abilities
and robustness of our perception system, we propose to use
domain randomization [10]. The idea is to randomize during data
collection all the factors to which the system must be invariant,
i.e., illumination, viewpoint, gate appearance, and background.
We show that domain randomization leads to an increase in
closed-loop performance relative to our earlier work [9] when
evaluated in environments or conditions not seen at training time.
Specifically, we demonstrate performance increases of up to
300% in simulation (see Fig. 6) and up to 36% in real-world
experiments (see Fig. 14).

Interestingly, the perception system becomes invariant not
only to specific environments and conditions but also to the
training domain. We show that after training purely in nonpho-
torealistic simulation, the perception system can be deployed on
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a physical quadrotor that successfully races in the real world.
On real tracks, the policy learned in simulation has comparable
performance to one trained with real data, thus alleviating the
need for tedious data collection in the physical world.

II. RELATED WORK

Pushing a robotic platform to the limits of handling gives
rise to fundamental challenges for both perception and con-
trol. On the perception side, motion blur, challenging lighting
conditions, and aliasing can cause severe drift in vision-based
state estimation [4], [11], [12]. Other sensory modalities, e.g.,
LIDAR or event-based cameras, could partially alleviate these
problems [13], [14]. Those sensors are however either too bulky
or too expensive to be used on small racing quadrotors. More-
over, state-of-the-art state estimation methods are designed for
a predominantly static world, where no dynamic changes to the
environment occur.

From the control perspective, plenty of work has been done to
enable high-speed navigation, both in the context of autonomous
drones [7], [15], [16] and autonomous cars [17]-[20]. How-
ever, the inherent difficulties of state estimation make these
methods difficult to adapt for small, agile quadrotors that must
rely solely on on-board sensing and computing. We will now
discuss approaches that have been proposed to overcome the
aforementioned problems.

A. Data-Driven Algorithms for Autonomous Navigation

A recent line of work, focused mainly on autonomous driving,
has explored data-driven approaches that tightly couple per-
ception and control [21]-[24]. These methods provide several
interesting advantages, e.g., robustness against drifts in state
estimation [21], [22] and the possibility to learn from fail-
ures [24]. The idea of learning a navigation policy end-to-end
from data has also been applied in the context of autonomous,
vision-based drone flight [25]-[27]. To overcome the problem
of acquiring a large amount of annotated data to train a policy,
Loquercio et al. [26] proposed to use data from ground vehicles,
whereas Gandhi et al. [27] devised a method for automated
data collection from the platform itself. Despite their advan-
tages, end-to-end navigation policies suffer from high sample
complexity and low generalization to conditions not seen at
training time. This hinders their application to contexts where
the platform is required to fly at high speed in dynamic environ-
ments. To alleviate some of these problems while retaining the
advantages of data-driven methods, a number of works propose
to structure the navigation system into two modules: perception
and control [28]-[32]. This kind of modularity has proven to
be particularly important for transferring sensorimotor systems
across different tasks [29], [31] and application domains [30],
[32].

We employ a variant of this perception-control modularization
in this article. However, in contrast to prior work, we enable
high-speed, agile flight by making the output of our neural per-
ception module compatible with fast and accurate model-based
trajectory planners and trackers.
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B. Drone Racing

The popularity of drone racing has recently kindled significant
interest in the robotics research community. The classic solution
to this problem is image-based visual servoing, where a robot is
given a set of target locations in the form of reference images
or patterns. Target locations are then identified and tracked
with hand-crafted detectors [33]—[35]. However, the handcrafted
detectors used by these approaches quickly become unreliable
in the presence of occlusions, partial visibility, and motion blur.
To overcome the shortcomings of classic image-based visual
servoing, recent work proposed to use a learning-based approach
for localizing the next target [36]. The main problem of this
kind of approach is, however, limited agility. Image-based visual
servoing is reliable when the difference between the current and
reference images is small, which is not always the case under
fast motion.

Another approach to autonomous drone racing is to learn end-
to-end navigation policies via imitation learning [37]. Methods
of this type usually predict low-level control commands, in the
form of body rates and thrust, directly from images. Therefore,
they are agnostic to drift in state estimation and can potentially
operate in dynamic environments, if enough training data are
available. However, despite showing promising results in simu-
lated environments, these approaches still suffer from the typical
problems of end-to-end navigation: 1) limited generalization to
new environments and platforms and 2) difficulties in deploy-
ment to real platforms due to high computational requirements
(desired inference rate for agile quadrotor control is much higher
than what current on-board hardware allows).

To facilitate robustness in the face of unreliable state esti-
mation and dynamic environments, while also addressing the
generalization and feasibility challenges, we use modulariza-
tion. On one hand, we take advantage of the perceptual aware-
ness of CNNs to produce navigation commands from images.
On the other hand, we benefit from the high speed and reli-
ability of classic control pipelines for generation of low-level
controls.

C. Transfer From Simulation to Reality

Learning navigation policies from real data has a shortcom-
ing: high cost of generating training data in the physical world.
Data need to be carefully collected and annotated, which can
involve significant time and resources. To address this problem,
arecent line of work has investigated the possibility of training a
policy in simulation and then deploying it on a real system. Work
on transfer of sensorimotor control policies has mainly dealt
with manual grasping and manipulation [38]-[43]. In driving
scenarios, synthetic data were mainly used to train perception
systems for high-level tasks, such as semantic segmentation
and object detection [44], [45]. One exception is the work
of Miiller et al. [32], which uses modularization to deploy
a control policy learned in simulation on a physical ground
vehicle. Domain transfer has also been used for drone control:
Sadeghi and Levine [25] learned a collision avoidance policy by
using three-dimensional (3-D) simulation with extensive domain
randomization.

Fig. 2. Pose . of the quadrotor is projected on the global trajectory ¢, to
find the point p,s. The point at distance d from the current quadrotor position
Pe, wWhich belongs to ¢ in the forward direction with respect to p,., defines the
desired goal position p;. To push the quadrotor toward the reference trajectory
tg4, a short trajectory segment ¢ is planned and tracked in a receding horizon
fashion.

Akin to many of the aforementioned methods, we use domain
randomization [10] and modularization [32] to increase general-
ization and achieve sim-to-real transfer. Our work applies these
techniques to drone racing. Specifically, we identify the most
important factors for generalization and transfer with extensive
analyses and ablation studies.

III. METHOD

We address the problem of robust, agile flight of a quadrotor
in a dynamic environment. Our approach makes use of two
subsystems: perception and control. The perception system uses
a CNN to predict a goal direction in local image coordinates,
together with a desired navigation speed, from a single image
collected by a forward-facing camera. The control system uses
the navigation goal produced by the perception system to gener-
ate a minimum-jerk trajectory [7] that is tracked by a low-level
controller [8]. In the following, we describe the subsystems in
more detail.

Perception system: The goal of the perception system is to
analyze the image and provide a desired flight direction and
navigation speed for the robot. We implement the perception
system by a convolutional network. The network takes as input
a 300 x 200 pixel RGB image, captured from the on-board
camera, and outputs a tuple {Z, v}, where ¥ € [—1,1]? is a 2-D
vector that encodes the direction to the new goal in normalized
image coordinates, and v € [0, 1] is a normalized desired speed
to approach it. To allow for on-board computing, we employ a
modification of the DroNet architecture of Loquercio et al. [26].
In Section IV-C, we will present the details of our architecture,
which was designed to optimize the tradeoff between accu-
racy and inference time. With our hardware setup, the network
achieves an inference rate of 15 frames per second while running
concurrently with the full control stack. The system is trained by
imitating an automatically computed expert policy, as explained
in Section III-A.

Control system: Given the tuple {Z, v}, the control system
generates low-level commands. To convert the goal position
Z from 2-D normalized image coordinates to 3-D local frame
coordinates, we back-project the image coordinates & along the
camera projection ray and derive the goal point at a depth equal
to the prediction horizon d (see Fig. 2). We found setting d
proportional to the normalized platform speed v predicted by



the network to work well. The desired quadrotor speed vges 1S
computed by rescaling the predicted normalized speed v by a
user-specified maximum speed Vmax: Udes = Umax - - This way,
with a single trained network, the user can control the aggres-
siveness of flight by varying the maximum speed. Once p,, in the
quadrotor’s body frame and vy are available, a state interception
trajectory ¢, is computed to reach the goal position (see Fig. 2).
Since we run all computations onboard, we use computationally
efficient minimum-jerk trajectories [7] to generate ¢4. To track
ts,1.e., to compute the low-level control commands, we employ
the control scheme proposed by Faessler et al. [8].

A. Training Procedure

We train the perception system with imitation learning, us-
ing automatically generated globally optimal trajectories as a
source of supervision. To generate these trajectories, we make
the assumption that at training time the location of each gate
of the race track, expressed in a common reference frame,
is known. Additionally, we assume that at training time the
quadrotor has access to accurate state estimates with respect
to the latter reference frame. Note however that at test time
no privileged information is needed and the quadrotor relies
on image data only. The overall training setup is illustrated
in Fig. 2.

Expert policy: We first compute a global trajectory ¢, that
passes through all gates of the track, using the minimum-snap
trajectory implementation from Mellinger and Kumar [15]. To
generate training data for the perception network, we imple-
ment an expert policy that follows the reference trajectory.
Given a quadrotor position p, € R3, we compute the closest
point p» € R? on the global reference trajectory. The desired
position pj, € R? is defined as the point on the global reference
trajectory the distance of which from p.. is equal to the prediction
horizon d € R. We project the desired position pj; onto the image
plane of the forward facing camera to generate the ground truth
normalized image coordinates #, corresponding to the goal
direction. The desired speed v, is defined as the speed of the
reference trajectory at p normalized by the maximum speed
achieved along t,.

Data collection: To train the network, we collect a dataset
of state estimates and corresponding camera images. Using the
global reference trajectory, we evaluate the expert policy on
each of these samples and use the result as the ground truth
for training. An important property of this training procedure
is that it is agnostic to how exactly the training dataset is
collected. We use this flexibility to select the most suitable
data collection method when training in simulation and in the
real world. The key consideration here is how to deal with the
domain shift between training and test time. In our scenario,
this domain shift mainly manifests itself when the quadrotor
flies far from the reference trajectory t,. In simulation, we
employed a variant of DAgger [46], which uses the expert policy
to recover whenever the learned policy deviates far from the
reference trajectory. Repeating the same procedure in the real
world would be infeasible: allowing a partially trained network
to control a unmanned aerial vehicle (UAV) would pose a high
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risk of crashing and breaking the platform. Instead, we manually
carried the quadrotor through the track and ensured a sufficient
coverage of off-trajectory positions.

Generating data in simulation: In our simulation experiment,
we perform a modified version of DAgger [46] to train our
flying policy. On the data collected through the expert policy (see
Section III-A) (in our case, we let the expert policy fly for 40 s),
the network is trained for ten epochs on the accumulated data.
In the following run, the trained network is predicting actions,
which are only executed if they keep the quadrotor within a
margin e from the global trajectory. In case the network’s action
violates this constraint, the expert policy is executed, generating
a new training sample. This procedure is an automated form of
DAgger [46] and allows the network to recover when deviating
from the global trajectory. After another 40 s of data generation,
the network is retrained on all the accumulated data for ten
epochs. As soon as the network performs well on a given margin
€, the margin is increased. This process repeats until the network
can eventually complete the whole track without help of the
expert policy. In our simulation experiments, the margin e was
set to 0.5 m after the first training iteration. The margin was
incremented by 0.5 m as soon as the network could complete
the track with limited help from the expert policy (less than 50
expert actions needed). For experiments on the static track, 20 k
images were collected, whereas for dynamic experiments 100 k
images of random gate positions were generated.

Generating data in the real world: For safety reasons, it is not
possible to apply DAgger for data collection in the real world.
Therefore, we ensure sufficient coverage of the possible actions
by manually carrying the quadrotor through the track. During
this procedure, which we call handheld mode, the expert policy
is constantly generating training samples. Due to the drift of
on-board state estimation, data are generated for a small part
of the track before the quadrotor is reinitialized at a known
position. For the experiment on the static track, 25 k images were
collected, whereas for the dynamic experiment additional 15 k
images were collected for different gate positions. For the narrow
gap and occlusion experiments, 23 k images were collected.

Loss function: We train the network with a weighted MSE
loss on point and velocity predictions

L= ||j_fg|‘2+7(v_vg)2 (1)

where 7, denotes the ground truth normalized image coordinates
and v, denotes the ground truth normalized speed. By cross-
validation, we found the optimal weight to be v = 0.1, even
though the performance was mostly insensitive to this parameter
(see the Appendix for details).

Dynamic environments: The described training data genera-
tion procedure is limited to static environments since the trajec-
tory generation method is unable to take the changing geometry
into account. How can we use it to train a perception system that
would be able to cope with dynamic environments? Our key
observation is that training on multiple static environments (for
instance with varying gate positions) is sufficient to operate in
dynamic environments at test time. We collect data from multiple
layouts generated by moving the gates from their initial position.
We compute a global reference trajectory for each layout and
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Fig. 3.
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To test the generalization abilities of our approach, we randomize the visual properties of the environment (background, illumination, gate shape, and

gate texture). This figure illustrates the random textures and shapes applied both at training (a) and test time (b). For space reasons, not all examples are shown. In
total, we used 30 random backgrounds during training and ten backgrounds during testing. We generated six different shapes of gates and used five of them for
data generation and one for evaluation. Similarly, we used ten random gate textures during training and a different one during evaluation. (a) Random backgrounds
used during training data generation. (b) Random backgrounds used at test time. (c) Gate textures. (d) Selection of training examples illustrating the gate shapes

and variation in illumination properties.

train a network jointly on all of these. This simple approach
supports generalization to dynamic tracks with the additional
benefit of improving the robustness of the system.

Sim-to-real transfer: One of the big advantages of perception-
control modularization is that it allows training the perception
block exclusively in simulation and then directly applying on
the real system by leaving the control part unchanged. As we
will show in the experimental section, thanks to the abundance
of simulated data, it is possible to train policies that are ex-
tremely robust to changes in environmental conditions, such
as illumination, viewpoint, gate appearance, and background.
In order to collect diverse simulated data, we perform visual
scene randomization in the simulated environment while keep-
ing the approximate track layout fixed. Apart from randomizing
visual scene properties, the data collection procedure remains
unchanged.

We randomize the following visual scene properties:

i) the textures of the background, floor, and gates;

ii) the shape of the gates;

iii) the lighting in the scene.

For 1), we apply distinct random textures to background and
floor from a pool of 30 diverse synthetic textures [see Fig. 3(a)].
The gate textures are drawn from a pool of ten mainly red/orange

textures [see Fig. 3(c)]. For gate shape randomization ii), we
create six gate shapes of roughly the same size as the original
gate. Fig. 3(d) illustrates four of the different gate shapes used
for data collection. To randomize illumination conditions iii), we
perturb the ambient and emissive light properties of all textures
(background, floor, gates). Both properties are drawn separately
for background, floor, and gates from uniform distributions
with support [0, 1] for the ambient property and [0, 0.3] for the
emissive property.

While the textures applied during data collection are synthetic,
the textures applied to background and floor at test time represent
common indoor and outdoor environments [see Fig. 3(b)]. For
testing we use held-out configurations of gate shape and texture
not seen during training.

B. Trajectory Generation

Generation of global trajectory: Both in simulation and in
real-world experiments, a global trajectory is used to generate
ground truth labels. To generate the trajectory, we use the im-
plementation of Mellinger and Kumar [15]. The trajectory is
generated by providing a set of waypoints to pass through a



maximum velocity to achieve, as well as constraints on maxi-
mum thrust and body rates. Note that the speed on the global
trajectory is not constant. As waypoints, the centers of the gates
are used. Furthermore, the trajectory can be shaped by additional
waypoints, for example, if it would pass close to a wall otherwise.
In both simulation and real-world experiments, the maximum
normalized thrust along the trajectory was set to 18 ms—2 and
the maximum roll and pitch rate to 1.5 rad s~!. The maximum
speed was chosen based on the dimensions of the track. For the
large simulated track, a maximum speed of 10 ms~! was chosen,
whereas on the smaller real-world track 6 ms~! was chosen.

Generation of trajectory segments: The proposed naviga-
tion approach relies on constant recomputation of trajectory
segments t; based on the output of a CNN. Implemented as
state-interception trajectories, ¢ can be computed by specifying
a start state, goal state, and a desired execution time. The
velocity predicted by the network is used to compute the desired
execution time of the trajectory segment 5. While the start state
of the trajectory segment is fully defined by the quadrotor’s
current position, velocity, and acceleration, the end state is
only constrained by the goal position p,, leaving velocity and
acceleration in that state unconstrained. This is, however, not
an issue since only the first part of each trajectory segment
is executed in a receding horizon fashion. Indeed, any time a
new network prediction is available, a new state interception
trajectory ¢ is calculated.

The goal position p, is dependent on the prediction horizon d
(see Section I1I-A), which directly influences the aggressiveness
of a maneuver. Since the shape of the trajectory is only con-
strained by the start state and end state, reducing the prediction
horizon decreases the lateral deviation from the straight-line
connection of start state and end state but also leads to more
aggressive maneuvers. Therefore, a long prediction horizon is
usually required on straight and fast parts of the track, whereas
a short prediction horizon performs better in tight turns and
in proximity of gates. A long prediction horizon leads to a
smoother flight pattern, usually required on straight and fast parts
of the track. Conversely, a short horizon performs more agile
maneuvers, usually required in tight turns and in the proximity
of gates.

The generation of the goal position p, differs from training
to test time. At training time, the quadrotor’s current position
is projected onto the global trajectory and propagated by a
prediction horizon dy;,i,. At test time, the output of the network
is back-projected along the camera projection ray by a planning
length dyest.

At training time, we define the prediction horizon d, i, as a
function of distance from the last gate and the next gate to be
traversed

2

where sp.qt € R? and spext € R? are the distances to the cor-
responding gates and d,;, represents the minimum prediction
horizon. The minimum distance between the last and the next
gate is used instead of only the distance to the next gate to
avoid jumps in the prediction horizon after a gate pass. In our
simulated track experiment, a minimum prediction horizon of

dtrain = max (dmiln min (||Slast||7 ||3next||))

IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 1, FEBRUARY 2020

dmin = 1.5 m was used, whereas for the real track we used
dmin =1.0m.

At test time, since the output of the network is a direction
and a velocity, the length of a trajectory segment needs to be
computed. To distinguish the length of trajectory segments at test
time from the same concept at training time, we call it planning
length at test time. The planning length of trajectory segments
is computed based on the velocity output of the network (com-
putation based on the location of the quadrotor with respect
to the gates is not possible at test time since we do not have
knowledge about gate positions). The objective is again to adapt
the planning length such that both smooth flight at high speed
and aggressive maneuvers in tight turns are possible. We achieve
this versatility by computing the planning length according to
this linear function

dtest = min [dmaxa max (dmim mdvout)] 3)

where mg = 0.6 s, dppin = 1.0 m, and d,,,.x = 2.0 min ourreal-
world experiments, and mg = 0.5 s, dyin = 2.0 m, and d . =
5.0 m in the simulated track.

IV. EXPERIMENTS

We extensively evaluate the presented approach in a wide
range of simulated and real scenarios. We first use a controlled,
simulated environment to test the main building blocks of our
system, i.e., the convolutional architecture and the perception-
control modularization. Then, to show the ability of our approach
to control real quadrotors, we perform a second set of exper-
iments on a physical platform. We compare our approach to
state-of-the-art methods, as well as to human drone pilots of dif-
ferent skill levels. We also demonstrate that our system achieves
zero-shot simulation-to-reality transfer. A policy trained on large
amounts of cheap simulated data shows increased robustness
against external factors, e.g., illumination and visual distractors,
compared to a policy trained only with data collected in the
real world. Finally, we perform an ablation study to identify
the most important factors that enable successful policy transfer
from simulation to the real world.

A. Experimental Setup

For all our simulation experiments we use Gazebo as the
simulation engine. Although nonphotorealistic, we have selected
this engine since it models with high fidelity the physics of a
quadrotor via the RotorS extension [47].

Specifically, we simulate the AscTec Hummingbird multiro-
tor, which is equipped with a forward-looking 300 x 200 pixels
RGB camera.

The platform is spawned in a flying space of cubical shape
with side length of 70 m, which contains the experiment-specific
race track. The flying space is bounded by background and
floor planes whose textures are randomized in the simulation
experiments of Section I'V-E.

The large simulated race track [see Fig. 4(b)] is inspired by a
real track used in international competitions. We use this track
layout for all of our experiments, except the comparison against
end-to-end navigation policies. The track is traveled in the same
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(a)

Fig. 4.
placed at different heights and spans a total length of 116 m.

direction (clockwise or counterclockwise) at training and testing
time. We will release all code required to run our simulation
experiments upon acceptance of this manuscript.

For real-world experiments, except for the ones evaluating
sim-to-real transfer, we collected data in the real world. We used
an in-house quadrotor equipped with an Intel UpBoard and a
Qualcomm Snapdragon Flight Kit. While the latter is used for
VIO, the former represents the main computational unit of the
platform. The Intel UpBoard was used to run all the calculations
required for flying, from neural network prediction to trajectory
generation and tracking.

B. Experiments in Simulation

Using a controlled simulated environment, we perform an
extensive evaluation to i) understand the advantages of our
approach with respect to end-to-end or classical navigation
policies, ii) test the system’s robustness to structural changes
in the environment, and iii) analyze the effect of the system’s
hyperparameters on the final performance.

Comparison to end-to-end learning approach: In our first
scenario, we use a small track that consists of four gates in a
planar configuration with a total length of 43 m [see Fig. 4(a)].

We use this track to compare the performance to a naive deep
learning baseline that directly regresses body rates from raw
images. Ground truth body rates for the baseline were provided
by generating a minimum snap reference trajectory through all
gates and then tracking it with a low-level controller [8]. For
comparability, this baseline and our method share the same net-
work architecture. Our approach was always able to successfully
complete the track. In contrast, the naive baseline could never
pass through more than one gate. Training on more data (35 k
samples, as compared to 5 k samples used by our method) did not
noticeably improve the performance of the baseline. We believe
that end-to-end learning of low-level controls [37] is suboptimal
for the task of drone navigation when operating in the real
world. Since a quadrotor is an unstable platform [48], learning
the function that converts images to low-level commands has
a very high sample complexity. Additionally, the network is
constrained by computation time. In order to guarantee stable
control, the baseline network would have to produce control
commands at a higher frequency (typically 50Hz) than the

(®)

Illustration of the simulated tracks. The small track (a) consists of four gates and spans a total length of 43 m. The large track (b) consists of eight gates

camera images arrive (30 Hz) and process them at a rate that
is computationally infeasible with existing on-board hardware.
In our experiments, since the low-level controller runs at 50 Hz, a
network prediction is repeatedly applied until the next prediction
arrives.

In order to allow on-board sensing and computing, we propose
a modularization scheme that organizes perception and control
into two blocks. With modularization, our approach can benefit
from the most advanced learning-based perceptual architectures
and from years of study in the field of control theory [49].
Because body rates are generated by a classic controller, the
network can focus on the navigation task, which leads to high
sample efficiency. Additionally, because the network does not
need to ensure the stability of the platform, it can process
images at a lower rate than required for the low-level controller,
which unlocks on-board computation. Given its inability to
complete even this simple track, we do not conduct any further
experiments with the direct end-to-end regression baseline.

Performance on a complex track: In order to explore the
capabilities of our approach of performing high-speed racing, we
conduct a second set of experiments on a larger and more com-
plex track with eight gates and a length of 116 m [see Fig. 4(b)].
The quantitative evaluation is conducted in terms of average task
completion rate over five runs initialized with different random
seeds. For one run, the task completion rate linearly increases
with each passed gate while 100% task completion is achieved
if the quadrotor is able to successfully complete five consecutive
laps without crashing. As a baseline, we use a pure feedforward
setting by following the global trajectory ¢, using state estimates
provided by VIO [4].

The results of this experiment are shown in Fig. 5(a). We
can observe that the VIO baseline, due to accumulated drift,
performs worse than our approach. Fig. 5(b) illustrates the influ-
ence of drift on the baseline’s performance. While performance
is comparable when one single lap is considered a success, it
degrades rapidly if the threshold for success is raised to more
laps. On a static track [see Fig. 5(a)], a SLAM-based state
estimator [5], [11] would have less drift than a VIO baseline, but
we empirically found the latency of existing open-source SLAM
pipelines to be too high for closed-loop control. A benchmark
comparison of latencies of monocular visual-inertial SLAM
algorithms for flying robots can be found in [50].
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Fig. 5. (a) Results of simulation experiments on the large track with static gates for different maximum speeds. Task completion rate measures the fraction of

gates that were successfully completed without crashing. A task completion rate of 100% is achieved if the drone can complete five consecutive laps without
crashing. For each speed ten runs were performed. (b) Analysis of the influence of the choice of success threshold. The experimental setting is the same as in
and different success thresholds. The y-axis is shared with Fig. 5(a). (c) Result of
our approach when flying through a simulated track with moving gates. Every gate independently moves in a sinusoidal pattern with an amplitude proportional to
its base size (1.3 m), with the indicated multiplier. For each amplitude ten runs were performed. As for the static gate experiment, a task completion rate of 100%
is achieved if the drone can complete five consecutive laps without crashing. Maximum speed is fixed to 8 ms™!. The y-axis is shared with Fig. 5(a). Lines denote
mean performance, whereas the shaded areas indicate one standard deviation. The reader is encouraged to watch the supplementary video to better understand the

Fig. 5(a), but the performance is reported for a fixed maximum speed of 10 ms

experimental setup and the task difficulty.

Our approach works reliably up to a maximum speed of
9 ms~! and performance degrades gracefully at higher veloci-
ties. The decrease in performance at higher speeds is mainly due
to the higher body rates of the quadrotor that larger velocities
inevitably entail. Since the predictions of the network are in
the body frame, the limited prediction frequency (30 Hz in the
simulation experiments) is no longer sufficient to cope with the
large roll and pitch rates of the platform at high velocities.

Generalization to dynamic environments: The learned policy
has a characteristic that the expert policy lacks of: the ability
to cope with dynamic environments. To quantitatively test this
ability, we reuse the track layout from the previous experiment
[see Fig. 4(b)], but dynamically move each gate according to
a sinusoidal pattern in each dimension independently. Fig. 5(c)
compares our system to the VIO baseline for varying amplitudes
of gates’ movement relative to their base size. We evaluate the
performance using the same metric as explained in Section [V-B.
For this experiment, we kept the maximum platform velocity
Umax constant at 8 ms~!. Despite the high speed, our approach
can handle dynamic gate movements up to 1.5 times the gate
diameter without crashing. In contrast, the VIO baseline cannot
adapt to changes in the environment, and fails even for small gate
motions up to 50% of the gate diameter. The performance of our
approach gracefully degrades for gate movements larger than 1.5
times the gate diameter, mainly due to the fact that consecutive
gates get too close in flight direction while being shifted in other
directions. Such configurations require extremely sharp turns
that go beyond the navigation capabilities of the system. From
this experiment, we can conclude that the proposed approach
reactively adapts to dynamic changes in the environment and
generalizes well to cases where the track layout remains roughly
similar to the one used to collect training data.
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Fig.6. Generalization tests on different backgrounds after domain randomiza-

tion. More comprehensive randomization increases the robustness of the learned
policy to unseen scenarios at different speeds. Lines denote mean performance,
whereas the shaded areas indicate one standard deviation. Background ran-
domization has not been included in the analysis: without it the policy fails
to complete even a single gate pass.

Generalization to changes in the simulation environment:
In the previous experiments, we have assumed a constant en-
vironment (background, illumination, gate shape) during data
collection and testing. In this section, we evaluate the general-
ization abilities of our approach to environment configurations
not seen during training. Specifically, we drastically change the
environment background [see Fig. 3(b)] and use gate appearance
and illumination conditions held out at training time.

Fig. 6 shows the result of this evaluation. As expected, if data
collection is performed in a single environment, the resulting
policy has limited generalization (red line). To make the pol-
icy environment-agnostic, we performed domain randomization
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Fig. 7.  Sensitivity analysis of planning length parameters dy,in and dpyax On
a simulated track. Maximum speed and (static) track layout are kept constant
during the experiment.

while keeping the approximate track layout constant (details in
Section III-A). Clearly, both randomization of gate shape and
illumination lead to a policy that is more robust to new scenarios.
Furthermore, while randomization of a single property leads to
a modest improvement, performing all types of randomization
simultaneously is crucial for good transfer. Indeed, the simulated
policy needs to be invariant to all of the randomized features in
order to generalize well.

Surprisingly, as we show in the following, the learned policy
can not only function reliably in simulation but is also able to
control a quadrotor in the real world. In Section IV-E, we present
an evaluation of the real-world control abilities of this policy
trained in simulation, as well as an ablation study to identify
which of the randomization factors presented above are the most
important for generalization and knowledge transfer.

Sensitivity to planning length: We perform an ablation study
of the planning length parameters dy,i, and dp.x on a sim-
ulated track. Both the track layout and the maximum speed
(10.0 ms™!) are kept constant in this experiment. We varied
dmin between 1.0 and 5.0 m and dy,.x between (dpin + 1.0) m
and (dpin + 5.0) m. Fig. 7 shows the results of this evaluation.
For each configuration, the average task completion rate (see
Section IV-B) over five runs is reported. Our systems performs
well over a large range of dp,i, and dpax, With performance
dropping sharply only for configurations with very short or
very long planning lengths. This behavior is expected since
excessively short planning lengths result in very aggressive
maneuvers, whereas excessively long planning lengths restrict
the agility of the platform.

C. Analysis of Accuracy and Efficiency

The neural network at the core of our perception sys-
tem constitutes the biggest computational bottleneck of our
approach. Given the constraints imposed by our processing unit,
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Fig. 8. Test loss and inference time for different network capacity factors.

Inference time is measured on the actual platform.
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Fig. 9. Comparison of different network capacities on different backgrounds

after domain randomization.

we can guarantee real-time performance only with relatively
small CNNs. Therefore, we investigated the relationship be-
tween the capacity (hence the representational power) of a neural
network and its performance on the navigation task. We measure
performance in terms of both prediction accuracy on a validation
set, and closed-loop control on a simulated platform, using, as
above, completion rate as metric. The capacity of the network
is controlled through a multiplicative factor on the number of
filters (in convolutional layers) and number of nodes (in fully
connected layers). The network with capacity 1.0 corresponds
to the DroNet architecture [26].

Fig. 8 shows the relationship between the network capacity,
its test loss [root-mean-square error (RMSE)] on a validation
set, and its inference time on an Intel UpBoard (our on-board
processing unit). Given their larger parameterization, wider
architectures have a lower generalization error but largely in-
crease the computational and memory budget required for their
execution. Interestingly, a lower generalization loss does not
always correspond to a better closed-loop performance. This
can be observed in Fig. 9, where the network with capacity 1.5
outperforms the one with capacity 2.0 at high speeds. Indeed, as
shown in Fig. 8, larger networks entail smaller inference rates,
which result in a decrease in agility.
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Fig. 10.

Setup of the narrow gap and occlusion experiments.

TABLE I
SUCCESS RATE FOR FLYING THROUGH A NARROW GAP FROM
DIFFERENT INITIAL ANGLES

Relative angle range [°] \ Handcrafted detector ~ Network
[0,30] 70% 100%
(30,70] 0% 80%
[70,90]* 0% 20%

Each row reports the average of ten runs uniformly spanning the range. The
gate was completely invisible at initialization in the experiments marked with*.

In our previous conference paper [9], we used a capacity
factor of 1.0, which appears to have a good time-accuracy
tradeoff. However, in the light of this article, we select a capacity
factor of 0.5 for all our new sim-to-real experiments to ease
the computational burden. Indeed, the latter experiments are
performed at a speed of 2 ms™*, where both 0.5 and 1.0 have
equivalent closed-loop control performance (see Fig. 9).

D. Experiments in the Real World

To show the ability of our approach to function in the real
world, we performed experiments on a physical quadrotor. We
compared our model to state-of-the-art classic approaches to
robot navigation, as well as to human drone pilots of different
skill levels.

Narrow gate passing: In the initial set of experiments the
quadrotor was required to pass through a narrow gate, only
slightly larger than the platform itself. These experiments are
designed to test the robustness and precision of the proposed
approach. An illustration of the setup is shown in Fig. 10. We
compare our approach to the handcrafted window detector of
Falanga et al. [34] by replacing our perception system with the
handcrafted detector and leaving the control system unchanged.

Table I summarizes a comparison between our approach and
the baseline. We tested the robustness of both approaches to
the initial position of the quadrotor by placing the platform
at different starting angles with respect to the gate (measured
as the angle between the line joining the center of gravity of
the quadrotor and the gate, respectively, and the optical axis of
the forward facing camera on the platform). We then measured
the average success rate at passing the gate without crashing.
The experiments indicate that our approach is not sensitive to
the initial position of the quadrotor. The drone is able to pass
the gate consistently, even if the gate is only partially visible.
In contrast, the baseline sometimes fails even if the gate is
fully visible because the window detector loses tracking due
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Fig. 11. Success rate for different amounts of occlusion of the gate. Our

method is much more robust than the baseline method that makes use of
a hand-crafted window detector. Note that at more than 60% occlusion, the
platform has barely any space to pass through the gap.
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Fig. 12. Results on a real race track composed of four gates. Our learning-

based approach compares favorably against a set of baselines based on visual-
inertial state estimation. Additionally, we compare against an intermediate and
a professional human pilot. We evaluate success rate using the same metric as
explained in Section IV-B.

to platform vibrations. When the gate is not entirely in the field
of view, the handcrafted detector fails in all cases.

In order to further highlight the robustness and generaliza-
tion abilities of the approach, we perform experiments with an
increasing amount of clutter that occludes the gate. Note that
the learning approach has not been trained on such occluded
configurations. Fig. 11 shows that our approach is robust to
occlusions of up to 50% of the total area of the gate (see
Fig. 10), whereas the handcrafted baseline breaks down even for
moderate levels of occlusion. For occlusions larger than 50%,
we observe a rapid drop in performance. This can be explained
by the fact that the remaining gap was barely larger than the
drone itself, requiring very high precision to successfully pass
it. Furthermore, visual ambiguities of the gate itself become
problematic. If just one of the edges of the window is visible, it
is impossible to differentiate between the top and bottom part.
This results in overcorrection when the drone is very close to
the gate.

Experiments on a race track: To evaluate the performance of
our approach in a multigate scenario, we challenge the system
to race through a track with either static or dynamic gates. The
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Fig. 13.

Track configuration used for the real-world experiments.

TABLE II
COMPARISON OF OUR APPROACH WITH A PROFESSIONAL HUMAN PILOT ON A
STATIC AND A DYNAMIC TRACK

‘ Task completion (average) Best lap time [s]

Method static dynamic static  dynamic
Ours 95% 95% 12.1 15.0
Professional pilot | 90% 80% 5.0 6.5

We evaluate the performance using the same metric as explained in Section IV-B.

track is shown in Fig. 13. It is composed of four gates and has a
total length of 21 m.

To fully understand the potential and limitations of our ap-
proach, we compared to a number of baselines, such as a classic
approach based on planning and tracking [51] and human pilots
of different skill levels. Note that due to the smaller size of
the real track compared to the simulated one, the maximum
speed achieved in the real-world experiments is lower than
in simulation. For our baseline, we use a state-of-the-art VIO
approach [51] for state estimation in order to track the global
reference trajectory.

Fig. 12 summarizes the quantitative results of our evaluation,
where we measure success rate (completing five consecutive
laps without crashing corresponds to 100%), as well as the
best lap time. Our learning-based approach outperforms the
VIO baseline, whose drift at high speeds inevitably leads to
poor performance. In contrast, our approach is insensitive to
state estimation drift since it generates navigation commands in
the body frame. As a result, it completes the track with higher
robustness and speed than the VIO baseline.

In order to see how state-of-the-art autonomous approaches
compare to human pilots, we asked a professional and an in-
termediate pilot to race through the track in first-person view.
We allowed the pilots to practice the track for ten laps before
lap times and failures were measured (see Table II). It is evident
from Fig. 12 that both the professional and the intermediate
pilots were able to complete the track faster than the autonomous
systems. However, the high-speed and aggressive flight by hu-
man pilots comes at the cost of increased failure rates. The
intermediate pilot in particular had issues with the sharp turns
present in the track, leading to frequent crashes. Compared
with the autonomous systems, human pilots perform more agile
maneuvers, especially in sharp turns. Such maneuvers require a

level of reasoning about the environment that our autonomous
system still lacks.

Dynamically moving gates: We performed an additional ex-
periment to understand the abilities of our approach to adapt
to dynamically changing environments. In order to do so, we
manually moved the gates of the race track (see Fig. 13) while the
quadrotor was navigating through it. Flying the track under these
conditions requires the navigation system to reactively respond
to dynamic changes. Note that moving gates break the main as-
sumption of traditional high-speed navigation approaches [52],
[53], specifically that the trajectory can be preplanned in a static
world. They could thus not be deployed in this scenario. Due
to the dynamic nature of this experiment, we encourage the
reader to watch the supplementary video.! Table II provides a
comparison in term of task completion and lap time with respect
to a professional pilot. Due to the gates’ movement, lap times
are larger than the ones recorded in static conditions. However,
while our approach achieves the same performance with respect
to crashes, the human pilot performs slightly worse, given the
difficulties entailed by the unpredictability of the track layout. It
is worth noting that training data for our policy were collected
by changing the position of only a single gate, but the network
was able to cope with movement of any gate at test time.

E. Simulation to Real-World Transfer

We now attempt direct simulation-to-real transfer of the nav-
igation system. To train the policy in simulation, we use the
same process to collect simulated data as in Section IV-B, i.e.,
randomization of illumination conditions, gate appearance, and
background. The resulting policy, evaluated in simulation in
Fig. 6, is then used without any fine-tuning to fly a real quadrotor.
Despite the large appearance differences between the simulated
environment [see Fig. 3(d)] and the real one (see Fig. 13), the
policy trained in simulation via domain randomization has the
ability to control the quadrotor in the real world. Thanks to
the abundance of simulated data, this policy can not only be
transferred from simulation to the real world but is also more
robust to changes in the environment than the policy trained
with data collected on the real track. As can be seen in the
supplementary video, the policy learned in simulation can not
only reliably control the platform but is also robust to drastic
differences in illumination and distractors on the track.

To quantitatively benchmark the policy learned in simulation,
we compare it against a policy that was trained on real data.
We use the same metric as explained in Section I'V-B for this
evaluation. All experiments are repeated ten times and the results
averaged. The results of this evaluation are shown in Fig. 14. The
data that were used to train the “real” policy were recorded on
the same track for two different illumination conditions: easy
and medium. Illumination conditions are varied by changing the
number of enabled light sources: 4 for the easy, 2 for the medium,
and 1 for the difficult. The supplementary video illustrates the
different illumination conditions.

![Online]. Available: http://youtu.be/SRILnqPxols
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Fig. 14.  Performance comparison (measured with task completion rate) of the

model trained in simulation and the one trained with real data. With easy and
medium illumination (on which the real model was trained on), the approaches
achieve comparable performance. However, with difficult illumination the sim-
ulated model outperforms the real one since the latter was never exposed to
this degree of illumination changes at training time. The supplementary video
illustrates the different illumination conditions.

The policy trained in simulation performs on par with the
one trained with real data in experiments that have the same
illumination conditions as the training data of the real pol-
icy. However, when the environment conditions are drastically
different (i.e., with very challenging illumination), the policy
trained with real data is outperformed by the one trained in sim-
ulation. Indeed, as shown by previous work [41], the abundance
of simulated training data makes the resulting learning policy
robust to environmental changes. We invite the reader to watch
the supplementary video to understand the difficulty of this last
set of experiments.

What is important for transfer? We conducted a set of ablation
studies to understand what are the most important factors for
transfer from simulation to the real world. In order to do so,
we collected a dataset of real-world images from both indoor
and outdoor environments in different illumination conditions,
which we then annotated using the same procedure as explained
in Section III. More specifically, the dataset is composed of
approximately 10 k images and is collected from three indoor
environments under different illumination conditions. Sample
images of this dataset are shown in the Appendix.

During data collection in simulation, we perform randomiza-
tion of background, illumination conditions, and gate appear-
ance (shape and texture). In this experiment, we study the effect
of each of the randomized factors, except for the background
that is well known to be fundamental for transfer [10], [25],
[41]. We use as metric the RMSE in prediction on our collected
dataset. As shown in Fig. 15, illumination is the most important
of the randomization factors, whereas gate shape randomization
has the smallest effect. Indeed, while gate appearance is similar
in the real world and in simulation, the environment appearance
and illumination are drastically different. However, including
more randomization is always beneficial for the robustness of
the resulting policy (see Fig. 6).
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V. CONCLUSION

In this article, we presented a new approach to autonomous,
vision-based drone racing. Our method used a compact CNN to
continuously predict a desired waypoint and speed directly from
raw images. These high-level navigation directions were then
executed by a classic planning and control pipeline. As a result,
the system combined the robust perceptual awareness of modern
machine learning pipelines with the precision and speed of
well-known control algorithms.

We investigated the capabilities of this integrated approach
over three axes: precision, speed, and generalization. Our exten-
sive experiments, performed both in simulation and on a physical
platform, show that our system is able to navigate complex race
tracks, avoids the problem of drift that is inherent in systems
relying on global state estimates, and can cope with highly
dynamic and cluttered environments.

Our previous conference work [9] required collecting a sub-
stantial amount of training data from the track of interest. Here,
instead we proposed to collect diverse simulated data via do-
main randomization to train our perception policy. The resulting
system can not only adapt to drastic appearance changes in
simulation but can also be deployed to a physical platform in
the real world even if only trained in simulation. Thanks to
the abundance of simulated data, a perception system trained
in simulation can achieve higher robustness to changes in en-
vironment characteristics (e.g., illumination conditions) than a
system trained with real data.

Itisinteresting to compare the two training strategies—on real
data and sim-to-real—in how they handle ambiguous situations
in navigation, for instance when no gate is visible or multiple
gates are in the field of view. Our previous work [9], which was
trained on the test track, could disambiguate those cases by using
cues in the environment, for instance discriminative landmarks
in the background. This can be seen as implicitly memorizing a
map of the track in the network weights. In contrast, when trained
only in simulation on multiple tracks (or randomized versions of
the same track), our approach can no longer use such background
cues to disambiguate the flying direction and has instead to rely
on a high-level map prior. This prior, automatically inferred from
the training data, describes some common characteristics of the
training tracks, such as, for instance, to always turn right when
no gate is visible. Clearly, when ambiguous cases cannot be
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resolved with a prior of this type (e.g., an eight-shaped track),
our sim-to-real approach would likely fail. Possible solutions
to this problem are fine-tuning with data coming from the real
track, or the use of a metric prior on the track shape to make
decisions in ambiguous conditions [54].

Due to modularity, our system can combine model-based
control with learning-based perception. However, one of the
main disadvantages of modularity is that errors coming from
each submodule degrade the full system performance in a cu-
mulative way. To overcome this problem, we plan to improve
each component with experience using a reinforcement learning
approach. This could increase the robustness of the system and
improve its performance in challenging scenarios (e.g., with
moving obstacles).

While our current set of experiments was conducted in the
context of drone racing, we believe that the presented approach
could have broader implications for building robust robot nav-
igation systems that need to be able to act in a highly dynamic
world. Methods based on geometric mapping, localization, and
planning have inherent limitations in this setting. Hybrid systems
that incorporate machine learning, like the one presented in this
article, can offer a compelling solution to this task, given the
possibility to benefit from near-optimal solutions to different
subproblems. However, scaling our proposed approach to more
general applications, such as disaster response or industrial
inspection, poses several challenges. First, due to the unknown
characteristics of the path to be flown (layout, presence and type
of landmarks, obstacles), the generation of a valid teacher policy
would be impossible. This could be addressed with techniques
such as few-shot learning. Second, the target applications might
require extremely high agility, for instance in the presence of
sharp turns, which our autonomous system still lacks of. This
issue could be alleviated by integrating learning deeper into the
control system [22].
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