
IEEE TRANSACTIONS ON ROBOTICS, VOL. 36, NO. 4, AUGUST 2020 1135

Designing Dynamic Machines With
Large-Scale Root Finding

Mark M. Plecnik , Member, IEEE, and Ronald S. Fearing , Member, IEEE

Abstract—Achieving high-performance dynamic behavior in a
robot requires careful design of morphology. However, searching
for a global optimum morphology in an intensely nonlinear design
space is difficult, especially if stochastic seeding is used. In contrast
to optimization, we encode design requirements into a polynomial
system with a huge number of isolated roots. Each root describes
an alternate robot morphology in the design space. Following this,
the computation of nearly all isolated roots constitutes design space
exploration. Previously, these systems were intractable, due to the
heavy burden of degenerate roots. We relieve this burden by using
the finite root generation (FRG) method to enable the discovery of
nearly all isolated roots for a certain six-bar design problem for
the first time. The FRG synthesis method enables the design of a
transmission function from motor dynamics to a loaded end effec-
tor to influence the overall dynamic behavior. In an example, we
formulate synthesis equations which were previously intractable,
obtain 1 528 608 isolated roots (estimated 99.0%), and find 3764
physical designs. Design options are compared according to their
sensitivity to joint errors.

Index Terms—Computational geometry, dynamics, kinematics,
mechanism design.

I. INTRODUCTION

THERE are no simple tools for designing machines that
exhibit some desired dynamic behavior. The leading ap-

proaches are based on optimization and intuition. In this article,
we exclude the former and lessen dependence on the latter.
We propose a scheme for design space exploration powered
by the recent finite root generation (FRG) algorithm, a method
for obtaining nearly all isolated roots to a system of equations.
FRG was first introduced and benchmarked on a system with
known roots in [1], but its main objective is to compute systems
which were previously intractable. The first realization of this
is presented here. In this article, the algorithm is applied be-
yond a known benchmark to a system that formerly remained
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unchartered due to its size and complexity. This new system was
chosen because it is particularly useful for designing dynamic
machines. It describes a planar six-bar linkage with variable
transmission properties specified along its end effector path. As
a main contribution, the solutions of these equations may be used
to influence the dynamic behavior of a machine, demonstrating
a new design capability.

This article differs from design methods based on optimiza-
tion. For given robot dimensions, software tools such as rigid
body dynamics solvers already exist to analyze dynamic be-
havior. Pairing these with general purpose optimizers forms an
update loop between design parameters (robot dimensions) and
the resulting behavior. Once a meaningful objective function
is established, global optimums are sought but are challenged
by design space nonlinearities. For example, nonlinearities de-
crease the likelihood that search strategies based on stochastic
seeding will find relevant optimums in the design space.

Here, we take a different approach. Design requirements are
translated into a system of equations which exhibit intense non-
linearities. The algorithms of numerical homotopy continuation
are well equipped to handle these nonlinearities. By formulating
a synthesis system to be square, its roots become isolated. These
roots might be visualized as a spread of points across the design
space. Each of these points indicates a portion of the design space
where requirements are met. Therefore, the action of obtaining
nearly all roots constitutes design space exploration. FRG is
able to obtain 99.0% of candidate design points. In contrast,
locating these points through a high-dimensional grid search in
a nonlinear space would be computationally prohibitive.

In practice, synthesis systems are riddled with roots at infinity,
a type of degenerate root which is physically irrelevant. This
is where current homotopy root-finding algorithms fall short.
It is often the case that upwards of 95% of computations are
dedicated to discovering useless roots at infinity. Hauenstein
et al. [2] introduced the regeneration homotopy method to reduce
the quantity of divergent paths. Their method was applied to a
system of degree 264,241,152 [3]. In contrast, FRG precludes
all computations of roots at infinity, allowing the computation
of nearly all isolated roots for synthesis systems larger than
before. In this article, we find nearly all isolated roots for one
such system, and demonstrate new design capabilities that FRG
offers. The design work conducted in this article considers a
planar six-bar linkage. It may be surprising to some readers that
not all isolated roots of all planar linkages were found in the past.
Perhaps even more surprising, the frontier of this knowledge
begins as soon as one deviates from the simple four-bar linkage.
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Fig. 1. Six-bar linkage transforms input torque to output force in a highly
nonlinear way.

The reason these computations have not taken place in the past
is the overwhelming presence of roots at infinity in the synthesis
equations. These calculations have remained computationally
prohibitive even with tremendous growth in computer speeds
and parallelization. FRG approaches this challenge from the
algorithm level.

From the standpoint of new design capabilities, the finite,
isolated roots that we compute are used to perform design
exploration for mechanisms that produce a prescribed transmis-
sion function from its motor’s dynamics onto the path of its
end effector. This allows us to explicitly prescribe torque/force
ratios between the motor and load at different points in the
configuration space. Control over these force ratios gives us
control over dynamic behavior. Performing design exploration
over these dynamic machines gives us an unprecedented design
tool.

Specifically, we desire to design machines consisting of rigid
links and springs that perform some specified motion when sub-
jected to expected loads. We narrow the scope of expected loads
by considering only actuator torque (input) and the force acting
on an end effector point (output), see Fig. 1. The time-varying
magnitudes of this force and torque define inertial motion, but
their ratio (called mechanical advantage) is purely geometric,1

connecting kinematic constraints to dynamic behavior.
To explain our approach, consider the three models illustrated

in Table I . The most complete model consists of the inertial
parameters of a robot body, the inertial parameters of all leg
links, a series-elastic actuator, and intermittent leg contact. This
model is governed by hybrid, differential algebraic equations.
Its form may be suitable for a general purpose optimizer, but
it is not clear how to unearth any prevailing structure that
dictates its dynamics. Instead, the dynamics could be distilled to
a more simplified model, such as the middle column of Table I.
Consider a series-elastic actuator pushing a mass equivalent to
the robot’s body through a variable transmission ratio (mechan-
ical advantage). This model provides a good approximation
of a robot propelling itself off the ground. What is more, it
indicates useful forms of variable mechanical advantage, which
represents a prevailing structure that dictates dynamic behavior.
To instantiate one of these forms, the model of the right column
of Table I is most useful. Mechanical advantage can be posed as
geometric requirements between input–output parameters using

1Neglecting losses.

TABLE I
DETAILED DYNAMIC MODEL IS DIFFICULT TO WORK

WITHIN A DESIGN CONTEXT.

A simplified dynamic model reveals underlying structure which influences the dynamics.
Customization of this structure sets algebraic constraints. When these constraints are
satisfied, the dynamics of the simplified and detailed models are influenced in an intended
manner.

purely algebraic equations. If the design task of instantiating
these requirements is successful, then the dynamic behavior of
the more complete models up to the chain can be influenced.

Finding limb geometries that produce forms of mechanical
advantage that suit our customization needs requires investiga-
tion of a sufficiently complex design space. We consider a planar
six-bar linkage, shown in Fig. 1. Despite its simple structure, it
is capable of producing complex, constrained motions, e.g., it
may draw a degree 16 plane curve [4]. On the other hand, this
same simple structure begets challenging nonlinearities within
its synthesis equations. To corral these nonlinearities, FRG was
implemented and found approximately 1.5× 106 finite, isolated
roots for a numerically general version of the synthesis system.
This set of roots serves as a new design instrument, which can
be used repeatedly in conjunction with the well-established pa-
rameter continuation technique [5] to efficiently compute nearly
all isolated roots of any system of this structure in the future.

Our treatment of design involves dealing with algebraic
equations rather than geometric constructions. This makes our
method technically simple for designers without prior knowl-
edge of mechanism parameters, reducing the need for geometric
creativity. Furthermore, by generating multiple design options,
a designer is better equipped to account for secondary require-
ments, such as sensitivity to fabrication errors.

In this article, we perform design space exploration by finding
nearly all isolated roots of the synthesis system, something that
was not possible on this scale in the past. In particular, we are
able to perform design exploration for machines with control
over the ratios between input torque and load. This gives us
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control over dynamic behavior. Since these sets of isolated roots
were only recently computable by FRG, we present a design
exploration tool for dynamic machines that was not possible in
the past.

To illustrate our approach and demonstrate its utility for
designing a machine with some desired dynamic behavior, we
design a leg mechanism suitable for a small running robot.
The mechanism is powered by a series-elastic actuator, with
mechanical advantage specified in order to deliver kinetic en-
ergy during push-off at powers greater than its motor’s output.
This behavior is termed power modulation [6]. In addition to
achieving the required mechanical advantage, we design a foot
path that recycles the leg each step with the motor running only
in the forward direction. In a related work [7], this mechanism
was prototyped and tested.

II. LITERATURE REVIEW

A. Mechanism Synthesis

Previous design methods that produce dynamic characteris-
tics in mechanisms focus on reducing the shaking forces and
moments that act on the fixed frame or reducing fluctuations in
actuator torque. Berkof, Tepper, and Lowen [8]–[10] formulated
conditions for fixing the center of mass of a moving linkage,
which removes the shaking force during dynamic operation at
any speed. Skreiner [11] demonstrated how to reduce speed
fluctuations and pin forces by adding a spring to a four-bar.
Conte et al. [12] included kinetostatic force equations at a
sampling of configurations for a four-bar linkage with prescribed
motion in order to compute optimal dimensions that minimize
shaking forces/moments, bearing forces, or input torques. Yao
and Yan [13] use noncircular gears to reduce fluctuations in
driving torque for planar linkages. Yan and Yan [14] present a
comprehensive optimization procedure for the design of four-bar
linkages that satisfies kinematic requirements while reducing
shaking force/moment and motor power dissipation. They con-
sider link dimensions, mass, input speed trajectory, and servo-
motor control parameters as design variables. Moore et al. [15]
computed the complete set of force and moment balanced
four-bars.

A few approaches more explicitly deal with time and motion
specifications. Sherwood [16] and Liniecki [17] designed slider-
crank mechanisms that achieve desired positions and velocities
coordinated in time by modifying dimensions between numer-
ical dynamic computations. Halter and Carson [18] developed
a design procedure to add mechanical elements to an existing
mechanism in order to obtain a desired motion-time response.
Desired generalized forces of to-be-synthesized mechanical
elements were computed from inverse dynamics calculations.
Design parameters of these mechanical elements were then
computed through optimization as a curve fitting problem to the
desired generalized forces. Zhen [19] applied dynamic spring
synthesis to spatial mechanisms.

Starr [20] considered not just how to implement desired
dynamic motions, but how to specify those motions using op-
timal control theory. Later, Manoochehri and Seireg [21] also
employed these optimal control techniques. Chen and Tsai [22]

discussed how to design gearing for a manipulator to possess
both kinematic isotropy and good acceleration capacity.

Another dynamic consideration is the presence of vibrations
in high-speed machinery. Matthew and Tesar [23] considered
the effects of vibrations and inertial forces on cam design. Li
and Kota [24] analyzed the frequency response of a microma-
chined stroke amplifying mechanism for an electrostatic actuator
and conducted sensitivity analyses useful for synthesis. Moti-
vated by their investigation of parallel manipulators, Martini
et al. [25] studied mass balanced and elastically compensated
closed chains through the addition of weights and springs. De-
sign methods that consider the kineto-elastodynamic effects in
mechanisms were presented by Imam and Sandor [26]. Several
authors have investigated improving compliant wing flapping
mechanisms through careful design. Baek et al. [27] consider
the use of resonance to reduce the battery consumption, Khatait
et al. [28] minimized peak driving torque, and Tantanawat and
Kota [29] investigated the benefits of dynamic strain energy
storage.

B. Design Principles for Legged Robots

One motivation for this article is to design dynamic machines
suitable for legged robots. The literature indicates various design
principles and outstanding challenges to direct the formulation
of design requirements. As opposed to the previous section
which focused on design methods to achieve a dynamic re-
sponse, this section exposes design principles that have been
indicated by the literature. The latter is more focused on require-
ments specification while the former is based on the techniques
to achieve those requirements.

With respect to small hexapedal running robots, Clark
et al. [30] and Hoover et al. [31] indicate the importance
of passive mechanics, self-stabilization, open-loop/feedforward
control, minimal actuation, and integrated manufacturing tech-
niques in order to negotiate the strict limits on power, com-
putation, and weight associated with small robots. Zarrouk
et al. [32] addressed the need of high speed turning in a
hexapedal runner by taking advantage of the dynamic roll and
pitch instabilities. The challenges of legged robots listed by
Buehler [33] include underactuated dynamics, friction limited
horizontal ground forces, short stance times to apply control,
bandwidth limitations, and limited power/energy densities of
commercial actuators. Collins et al. [34] leveraged passive-
dynamics to create robots that mimic human walking with
simple actuators that do not require precise joint-angle control.
Curran et al. [35] indicated the role of series-elastic actuation in
decoupling the limits of a dc motor from a dynamic task. Semini
et al. [36] stressed the importance of high powered actuators.
In the analysis of a symmetric five-bar linkage, Kenneally and
Koditschek [37] measured performance according to the con-
version of battery energy into body energy, the minimization
of touchdown losses, and the storing/return of energy during
stance. Blackman et al. [38] extended their analysis, highlighting
the ability of this symmetric five-bar to achieve greater speeds
and stability in one configuration, but greater jump height in
another. Brown et al. [39] analyzed the ability of this five-bar
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and other linkage designs to balance workloads between motors.
Kalouche [40] designed a spatial linkage based on this five-bar.
Wensing et al. [41] demonstrated the importance of torque
density, high-bandwidth force control, and impact mitigation
in a quadrupedal running robot.

C. Homotopy Continuation

The role of homotopy continuation methods in mecha-
nism design traces back to Roth and Freudenstein’s bootstrap
method [42]. Many important advancements have been made
since then. A full recount is inappropriate here, so we refer
readers to general references [43]–[45]. Here, we note a few
specific contributions most relevant to the current work. Multi-
homogeneous homotopies take advantage of sparse monomial
structures in order to reduce the number of homotopy paths to
track [46]. Polyhedral homotopies are capable of obtaining the
optimum number of paths [47]. To find approximately complete
sets of roots more efficiently, Hauenstein et al. [2] introduced
regeneration homotopy, which exploits the sparse monomial
structure of a system one equation at a time to find nearly all
of its isolated roots. Plecnik and Fearing [1] introduced the
FRG method for efficiently collecting the roots of mechanism
synthesis systems. This article compared FRG to other homo-
topy methods, such as those available through the software
Bertini [48], on a well-known benchmark problem. The problem
considered in this article is not a well-known benchmark. FRG
quickly generates startpoints and start systems that track only
to finite endpoints, eliminating expensive homotopy paths that
diverge to infinity. More recently, methods based on monodromy
loops have led to efficient root finding techniques [49], [50].

In this article, we create a design procedure for instanti-
ating dynamic behavior into a machine by applying FRG to
obtain nearly all isolated roots of a system that was previously
computationally prohibitive. The process begins by posing a
simplified system, referred to as a dynamic mock-up, which
captures the desired dynamics, presented in Section III. The
mock-up indicates geometric constraints which are encoded
into relevant synthesis equations, presented in Section IV. The
FRG method was applied to obtain nearly all isolated roots of
these equations, presented in Section V. These roots serve as a
design instrument to efficiently obtain the roots of the synthesis
equations for different geometric requirements. We demonstrate
this in Section VI by applying the results of FRG to the design of
a leg mechanism that modulates power beyond its motor’s output
during a fully rotatable running motion. The sensitivity of design
candidates to dimensional errors is analyzed in Section VII and
Section VIII concludes this article.

III. DYNAMIC MOCK-UP

To begin, we consider the dynamics of the mock-up system
illustrated in Fig. 2. A motor twists a series spring, transmitting
torque T to an input crank. This torque is transformed by the
mechanical advantage of a to-be-designed linkage into a force
Ft at an end effector point that is resisted by an attached mass
m and in contact with a sliding mass M . The direction of Ft

Fig. 2. Mock-up dynamic system used to inform desirable kinematic prop-
erties of a to-be-designed linkage. The fixed motor is connected in series with
a spring to an input crank. Without any linkage existing yet, a user-defined
angle-arc length relationship describes how torques at the crank transform to
forces at the masses.

lies tangent to a point path C constrained by the to-be-designed
linkage.

A. Specifying Mechanism Characteristics

Although this to-be-designed linkage does not yet exist, we
may freely specify its would-be characteristics. In particular,
we specify its constrained point path and variable mechanical
advantage as a function of the point’s position along this path.
We accomplish this by clicking points on a computer screen,
and interpolating curves through these points. We choose the
Fourier-based interpolation method used in [51] to create peri-
odic curves that are smooth everywhere.

For example, the red points shown in Fig. 3(a) were entered
manually with a computer mouse. The interpolated curve is
parameterized by the Fourier series

x̃(τ) = 1
2a0 +

o∑

k=1

(ak cos(2πkτ) + bk sin(2πkτ))

ỹ(τ) = 1
2c0 +

o∑

k=1

(ck cos(2πkτ) + dk sin(2πkτ)) (1)

such that C = {(x̃(τ), ỹ(τ))| τ ∈ [0, 1]}. The values of Fourier
coefficients for the example problem are displayed in
Appendix A. Order o may be freely specified.

Next, we replace parameter τ with arc length s. To do this, we
integrate alongC to densely sample points (s, τ), then interpolate
through them with a cubic Hermite spline creating a monotonic
function for τ of s. Substituting this function into (1) yields a
numerical arc length parameterization of C

x(s) = x̃(τ(s))

y(s) = ỹ(τ(s)). (2)

Equation (2) is valid for s = [0, stotal], the arc length of the entire
closed curve.

We follow a similar process for specifying mechanical advan-
tage with a few modifications. First, mechanical advantage γ is
defined as a function of normalized arc length ŝ so that points
are entered manually with a mouse in the ŝ-γ plane shown in
Fig. 3(b). Second, the endpoints at ŝ = 0 and ŝ = 1 are always
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Fig. 3. Mechanism properties were specified by clicking the red points on a
computer screen and interpolating. Specified properties are (a) the point trace
path and (b) mechanical advantage coordinated with path arc length. In (c), the
angle-arc length relationship is computed by integrating (b).

specified and share the same γ value. Third, after interpolation,
the resulting Fourier series γ(ŝ) must be vertically shifted. For
a fully rotatable input crank, the area under γ(ŝ) must be 2π. To
see this, note that mechanical advantage is equal to the ratio of
input and output velocities

dφ

dŝ
= γ(ŝ). (3)

For a full traversal of C, the crank must rotate 2π or rather

2π =

∫ 1

0

γ(ŝ)dŝ. (4)

The Fourier coefficients of γ(ŝ) are given in Appendix A as
values (αk, βk).

Fig. 4. Detail of force notation at the interaction of m and M . Corresponds
to Fig. 2.

Next, function γ(ŝ) is rewritten to accept a nonnormalized arc
length s argument

γ(s) :=
γ(s/stotal)

stotal
. (5)

Note we take a notational liberty in (5) by redefining function γ
in terms of itself instead of making up new notation. Integration
of γ(s) yields an angle-arc length relationship, which creates
the specified mechanical advantage

φ(s) =

∫ stotal

0

γ(s)ds+ constant. (6)

For our example, this curve is plotted in Fig. 3(c). For conve-
nience, the constant of integration is chosen so that φ(0) = 0.

B. Equations of Motion

After specifying the characteristics of a to-be-designed link-
age, Fig. 3, the mock-up system illustrated in Fig. 2 may be
simulated.

The motor dynamics obeys a linear torque-speed law

T = −Tstall

ωfree
θ̇m + Tstall (7)

where Tstall is stall torque and ωfree is free-running speed.
The torque transmitted through the spring follows:

T = −kspring(φ− θm)− cdamp(φ̇− θ̇m) (8)

where kspring is stiffness and cdamp is damping.
The mechanical advantage transformation from torque to

output force is

Ft = Tγ(s) (9)

where Ft is the force acting on mass m tangent to curve C, and
γ(s) follows (5).

Finally, the forces acting on masses m and M follow the
diagrams drawn in Fig. 4. That is

Ft cos ν − Fn sin ν − Fb = mẍ

Ft sin ν + Fn cos ν = mÿ

Fb =MẌ (10)

and if m and M are in contact

ẍ = Ẍ (11)

else

Fb = 0 (12)
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TABLE II
VALUES OF SIMULATION PARAMETERS

Fig. 5. Simulation results of the model shown in Fig. 2 for the mechanism
properties shown in Fig. 3. The mechanical power output associated with the
mass surpasses the motor’s limit. Note that here we plot spring power as the
negative of the time derivative of spring energy in order to illustrate its peak
compared to the motor’s limit.

where Fn is the constraint force normal to C, Fb is the reaction
force between m and M , (x, y) are the coordinates of m con-
strained to C according to (2), X is the coordinate of M , and ν
is the tangency angle of C at (x, y), that is

ν = arctan
ẏ

ẋ
. (13)

Equations (7)–(13) in conjunction with x(s), y(s), γ(s), and
φ(s) specified in Section III-A form the equations of motion. In
particular, we point out the appearance of mechanical advantage
γ in (9). It is here that mechanical advantage influences dynamic
behavior. To solve these equations, they were rewritten into the
form of an initial value problem for use with standard ODE
solvers.

C. Mock-Up Example

The mechanism characteristics shown in Fig. 3 were specified
to create a recycling foot path with a fully rotatable crank that
modulates the kinetic power ofM beyond the motor’s limit along
the bottom portion of C. These specifications were informed by
intuition, past experience, and bioinspiration [6].

The values of physical parameters are displayed in Table II.
The results of numerical simulation are shown in Fig. 5. Simula-
tion shows that modulation of motor power by a factor of 3.0 is
possible. A leg designed with these mechanical characteristics
might deliver 95 mJ of kinetic energy in one stance phase.

IV. SYNTHESIS EQUATIONS

After determining desired mechanism characteristics in
Section III, our objective is to synthesize a linkage that exhibits

Fig. 6. Diagram describing the notation used in the synthesis formulation.
Linkage pivots in a reference configuration are marked with complex numbers
A, B, C, D, F , G, and H . The j th displaced configuration is shown here.

those characteristics. In particular, we desire a physical instan-
tiation of x(s), y(s), and φ(s). The latter of the three is desired
more so for its derivative γ(s) rather than its direct curve, but
we employ it directly as a design goal nonetheless. The design
problem of finding a linkage which creates a desired endpoint
path is called the path generation. When this path is additionally
coordinated with the angle of an input crank, this problem is
referred to as timed curve generation [52].

In this section, we formulate synthesis equations for a
Stephenson II six-bar linkage. The choice to investigate six-bars
is not arbitrary. These linkages are capable of single degree-of-
freedom motions, which are much more complex than four-bars,
the next simplest single degree-of-freedom linkage. However,
the choice to particularly investigate the Stephenson II type
of six-bar is partially arbitrary. There are other types worth
investigation too, which are not considered in this article.

Specifically, we formulate the synthesis equations for a
Stephenson II six-bar linkage to track an endpoint attached
to one of its floating binary links through eight positions that
are coordinated with its binary input crank angle. Later in
Section V, an approximately complete set of isolated roots of
these equations are obtained for the first time.

A. Formulation

A Stephenson II six-bar linkage is drawn in Fig. 6. It is com-
posed of seven joints. Fig. 6 displays a reference configuration
and the j th displaced configuration. There are N − 1 displaced
configurations. Joint coordinates in the reference configuration
are stored in the real and imaginary components of the complex
numbers A, B, C, D, F , G, and H . The coordinates of the end
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effector point in the reference configuration is P0 and in the j th
displaced configuration is Pj . The angular displacement of each
of the five moving links is measured by φj , ρj , ψj , θj , and μj
as marked in Fig. 6.

Planar vectors written in complex form may be rotated by
multiplication with rotation operators

Qj = eiφj , Rj = eiρj , Sj = eiψj ,

Tj = eiθj , Uj = eiμj , j = 1, . . . , N − 1. (14)

For the synthesis problem of interest, we take it that all
values of crank rotation Qj , j = 1, . . . , N − 1 and end point
positionPj , j = 0, . . . , N − 1 are known. All other symbols are
variables to be solved for or eliminated. Note the index j = 0
does not exist for Qj because this simply refers to the reference
configuration.

To begin deriving the synthesis equations, first form three
independent loop equations from Fig. 6

Rj(H − C) = Pj −A−Qj(C −A)− Uj(P0 −H) (15)

Sj(F −B) = Pj −B − Uj(P0 − F ) (16)

Tj(G−D)=A−B+Qj(C −A)+Rj(G− C)−Sj(D −B)

j = 1, . . . , N − 1. (17)

The vectors associated with (15)–(17) are labeled in Fig. 6. To
eliminateRj , Sj , and Tj from these equations, (15) and (16) are
solved for Rj and Sj , respectively, then substituted into (17).
The result is then multiplied by its own conjugate. Equations
(15) and (16) are also multiplied by their own conjugates. After
partial expansion, this yields the equations below. The overbar
denotes conjugation

βj + β̄j − PjP̄j − P0P̄0 = 0 (18)

ξj + ξ̄j − PjP̄j − P0P̄0 = 0 (19)

Ujλζ̄j + Ūj λ̄ζj − ζj ζ̄j − λλ̄ + (G−D)(Ḡ− D̄) = 0 (20)

j = 1, . . . , N − 1.

The new intermediate variables βj , ξj , ζj , λ are introduced
only for compact presentation and illustrating equation structure.
They are defined

βj = Uj(P0 −H)
(
P̄j − Ā− Q̄j(C̄ − Ā)

)

+Qj(C −A)(P̄j − Ā) +A(P̄j + C̄ − Ā) +H(P̄0 − C̄)

ξj = Uj(P0 − F )(P̄j − B̄) + PjB̄ + F (P̄0 − B̄)

ζj = A−B +Qj(C −A) +
G− C

H − C

× (Pj −A−Qj(C −A))− D −B

F −B
(Pj −B)

λ =
G− C

H − C
(P0 −H)− D −B

F −B
(P0 − F ). (21)

Conjugates β̄j , ξ̄j , ζ̄j , λ̄ are defined as expected. Equations
(18)–(20) were simplified by the fact that a rotation operator
multiplied by its conjugate equals one, eliminating Rj , Sj , and
Tj . The remaining unknown rotation operator is Uj . Its values

must obey

UjŪj = 1. (22)

In order to estimate the number of roots of our synthesis
system, we convert (18)–(20) to polynomials. To do this, we
first change our interpretation of the overbar. Rather than a con-
jugate operation, variables with an overbar are considered sep-
arate unknowns. That is, instead of considering the coordinated
pair (Re[A], Im[A] ), we consider isotropic coordinates (A, Ā )
[53]. The two are related by an invertible linear transformation

{
A
Ā

}

=

[
1 i

1 −i

]{
Re[A]
Im[A]

}

. (23)

Next, we introduce the following substitutions to make (20)
polynomial and help reduce the total degree of our synthesis
system:

a = AH̄, ā = ĀH (24)

b = BF̄ , b̄ = B̄F (25)

c = (C −A)H̄, c̄ = (C̄ − Ā)H (26)

d =
D −B

F −B
, d̄ =

D̄ − B̄

F̄ − B̄
(27)

g =
G− C

H − C
, ḡ =

Ḡ− C̄

H̄ − C̄
(28)

k=g(P0 −H)−d(P0 − F ), k̄ = ḡ(P̄0 − H̄)− d̄(P̄0 − F̄ ).
(29)

Substituting (24)–(29) into (18)–(20) obtains

βj + β̄j − PjP̄j − P0P̄0 = 0 (30)

ξj + ξ̄j − PjP̄j − P0P̄0 = 0

Ujkζ̄j + Ūj k̄ζj − ζj ζ̄j − kk̄ (31)

+ (g(H − C) + C − d(F −B)−B)

× (
ḡ(H̄ − C̄) + C̄ − d̄(F̄ − B̄)− B̄

)
= 0

j = 1, . . . , N − 1 (32)

where

βj = Uj
(
P0

(
P̄j − Ā− Q̄j(C̄ − Ā)

)− P̄jH + ā+ Q̄j c̄
)

+Qj(C −A)(P̄j − Ā)+A(P̄j + C̄ − Ā)+!H(P̄0 − C̄)

ξj = Uj
(
P0(P̄j − B̄)− P̄jF + b̄

)
+ PjB̄ + P0F̄ − b

ζj = A−B +Qj(C −A)

+ g (Pj −A−Qj(C −A))− d(Pj −B). (33)

When N = 8, (22), (24)–(26), (29)–(33) are 36 equations in 36
unknowns
{
A, Ā,B, B̄, C, C̄, F, F̄ ,H, H̄, a, ā, b, b̄, c, c̄, d, d̄, g, ḡ, k, k̄

}
,

{
Uj , Ūj

}
, j = 1, . . . , 7. (34)

The total degree of a system of polynomials is computed as
the product of the degree of each individual equation, in this
case 2728272747 ≈ 8.8× 1012. The total degree represents an
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upper bound on the number of isolated finite roots that exist. For
sparse systems, such as the one at hand, the total degree is a huge
overestimation. More accurate root counting techniques include
the multihomogeneous number, product decomposition, and the
BKK bound [53], but applying these techniques requires a more
thorough investigation of the polynomials’ structure than we
offer in this article. A quick application of multihomogeneous
root counting [46] to the above equations shows the degree to
decrease to 3.5× 1012 when variables are partitioned according
to the eight groups displayed in (34). An advantage of FRG is
that no special knowledge of the equations’ structure is needed
beforehand to achieve computational efficiency. After applying
FRG in the next section, an estimate of 1.5× 106 finite roots is
computed.

V. FINITE ROOT GENERATION

FRG was first proposed in [1]. The method is based in ho-
motopy continuation and is used for obtaining nearly all iso-
lated roots, both real and complex, to large kinematic synthesis
systems.

Generally, homotopy solvers work to find roots of a poly-
nomial target system by first constructing a polynomial start
system with easily obtainable roots and a monomial structure
at least more general than that of the target system. Then, a
homotopy between the systems is constructed and start system
roots, startpoints, are tracked continuously to target system
roots, endpoints. Through this method, nearly all finite roots
of the target system can be found.

The problem that arises is that start systems often possess far
more startpoints than target systems possess finite endpoints.
The residual of this mismatch, which tends to be huge,
manifests itself as startpoints that track to roots at infinity. FRG
circumvents these useless calculations by constructing start
systems with the exact monomial structure as target systems.
This is accomplished by generating random complex linkage
parameters and extracting a start system from its motion and a
startpoint from its dimensions. Note that a linkage with random
complex dimensions may not have a physical manifestation, but
its kinematics equations are still valid in complex space. This
single startpoint will indeed track to a finite root of the target
system. This aspect is the key to the method and occurs robustly
in practice. To get a second root, this process is repeated. As the
set of finite target roots we aim to obtain is very large, chances are
that this second startpoint will track to a different endpoint, with
no guarantee. Repeating this process, roots are accumulated. As
FRG trials progress, eventually the odds of acquiring a new root
become unfavorable. FRG trades away computations of roots at
infinity for computations of duplicate roots. For sparse systems,
the latter tends to be far fewer than the former, making it a good
tradeoff. The frequency of duplicate roots was characterized
in [54]. Tracking their occurrence allows an in-process
estimate of the percentage of the total root set that has been
obtained.

FRG provides additional computation savings by exploiting
known solution structures in a straightforward way. For linkage
synthesis equations, this structure is primarily provided by the

presence of linkage cognates. The cognate of a single degree-
of-freedom linkage is another linkage with different dimensions
that exactly reproduces some aspect of the original linkage’s
continuous motion. For a given linkage type (e.g., Stephenson II)
and motion of interest (e.g., timed curve generation), the pres-
ence and number of cognates is often known. As well, geometric
transformations between cognates are known too. Using these
transformations, an entire set of cognate roots can be quickly
computed from one endpoint. Each root in a cognate set is a
separate isolated solution, and cognate sets have no intersection
with each other. Combining cognate structures with other exist-
ing symmetries (if present) partitions target roots into a smaller
number of sets, thereby reducing the expected computational
load by the multiple size of a single cognate root set.

Finally, any time one intends to obtain isolated roots for
several systems within a specific family, this is accomplished
efficiently using the parameter homotopy method [5]. That is,
in order to obtain a complete set of isolated roots for a new
instance of our synthesis system, say for a different set of task
parameters, we do not need to start from scratch. First, nearly all
roots are found for a numerically general member of the family
of systems of interest. This is called an ab initio solution and may
be found using any method, in our case FRG. The ab initio roots
may then serve as startpoints for a homotopy that transforms
parameters of the ab initio system into any other member of
the family of interest. These subsequent parameter homotopies
only need to track as many paths as the number of roots from
the ab initio system, saving computational effort. Following
this strategy, the synthesis system below from which we obtain
nearly all roots is for ab initio task parameters specified as
random complex numbers that do not correspond to anything
physical. In Section VI, this ab initio solution is used as the
start in parameter homotopies for physically relevant target
systems.

A. Reformulation of Synthesis Equations

FRG is heuristic and does not rely on root counts from alge-
braic geometry. Therefore, rather than moving forward with the
formulation of our synthesis system presented in (22), (24)–(26),
(29)–(33), we choose a formulation with fewer equations and
unknowns, (18)–(22). This formulation is further reduced by
substituting Ūj = 1/Uj , j = 1, . . . , 7 into (18)–(20) to elimi-
nate seven more variables. Although these equations are not
polynomial, FRG applies without modification. We name this
system S , its variables z, and its defining parameters q

S(z,q) = 0. (35)

The vector of variables z contains the unknowns we intend to
solve for

z = {A,U}
where A = {A,B,C,D, F,G,H, Ā, B̄, C̄, D̄, F̄ , Ḡ, H̄}

U = {U1, . . . , U7}. (36)
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The vector of parameters q defines the system we are attempting
to solve

q = {P, P̄,Q, Q̄}
where P = {P0, . . . , P7}, P̄ = {P̄0, . . . , P̄7}

Q = {Q1, . . . , Q7}, Q̄ = {Q̄1, . . . , Q̄7}. (37)

B. Constructing Start Systems

Each FRG iteration begins with the generation of a single
startpoint and corresponding start system. A startpoint is defined
by a vector of variables z (36) and a start system is defined
by a vector of parameters q (37). To generate a pair (z,q)
that satisfies (35), some values are randomly generated and
others are computed from those values. First, random complex
values are assigned to A, P0, and P̄0. Values were chosen
from a square in the complex plane with corners −5− 5i and
5 + 5i over a uniform distribution. Variables with the overbar
notation were not chosen to be conjugate to their nonoverbar
counterparts, but were also randomly selected, abandoning their
physical meaning. We assume this provides a sufficiently general
well-distributed set of startpoints.

Although physically relevant values were not used, the rest of
the variables and parameters within z and q are computed from
the forward kinematics equations of a physical six-bar model.
Physical or not, the result still satisfies (35), which is our goal at
the moment. As a six-bar is a one degree-of-freedom linkage, in
order to extract random configurations from its motion, we must
provide random values for a single configuration parameter. We
chooseRjŪj , j = 1, . . . , 7, the complex number associated with
angle ρj − μj , because it makes the forward kinematics com-
putations simple and fast. It may be noted that the complexity
of the solution process of the forward kinematics is dependent
on the choice of a specified configuration parameter. Perhaps
intuitively, RŪ is a good choice because it defines one angle of
the floating four-bar DGHF , which segments calculations to
one variable at a time after that. Solving the forward kinematics
equations provides all remaining values in z and q. A homotopy
path may then be tracked from the startpoint z that solves the
system defined by q to a finite root that solves a target system
defined by a different set of parameters.

FRG path tracking begins with startpoints and parameters that
are complex and have no conjugate structure, then terminates
to endpoints and parameters that are complex and have no
conjugate structure. Furthermore, no special structure develops
anywhere along homotopy paths with probability one by virtue
of the “gamma trick” [46]. All homotopy paths are nicely
behaved and the Jacobian matrix stays nonsingular throughout.
Following this, the ab initio roots are considered general as they
have no structure that enforces physical manifestations.

These roots supply a nearly complete set of startpoints ideal
for ensuing repeated parameter homotopies. It is during this
second step that homotopy paths are set to track to physically
meaningful specifications of q. The ab initio roots serve as
startpoints and a percentage of them track to endpoints with
physical manifestations. The special structure enforced by a
physically relevant specification of q does not appear until the
very end of the homotopy path.

In addition, we emphasize that many such parameter homo-
topies can be computed from the general ab initio roots. Each
set will correspond to a different physical task and could have a
different number of physically relevant solutions. If the ab initio
system had only physically relevant roots stored from the onset,
then the ensuing parameter homotopies would be problematic.
First, because the physically relevant roots only represent a
subset of all finite roots, and second, because there is only a
small chance that this physically relevant subset would connect
to the physically relevant roots of another physically relevant
system. Therefore, we did not pursue this route.

C. Cognate Structure

The roots of S are organized into the structure afforded by
the linkage cognates of a Stephenson II timed curve generator.
More specifically, we are dealing with a Stephenson II where the
trace point is connected to one of the floating binary links. We
also could have attached the trace point to ternary link CGH .
In this case, the mechanism would still be useful but the results
here do not apply.

Dijksman has enumerated the timed curve cognates we
seek [52, p. 183]. There are four. Their geometric construction
is outlined in [55]. Here, we present their equations.

Given a linkage defined by X

X = {A,B,C,D, F,G,H, P0} (38)

its first two cognates are called the 1/2-cognate and 3/4-cognate.
To obtain the 1/2 cognate, we define a map κ1/2 : C8 �→ C8

κ1/2(X) : =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ(A)
B

Υ(C)
(Υ ◦ Ξ)(D)
B + P0 − F
(Υ ◦ Ξ)(G)

Υ(H)
P0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(39)

where Ξ(z) : =
B − F

D − F
(z −H) +H

Υ(z) : =
P0 − F

H − F
(z −B) +B.

To obtain the 3/4 cognate, we define a map κ3/4 : C8 �→ C8

κ3/4(X) : =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Λ ◦ Γ)(A)
B

(Λ ◦ Γ)(C)
Λ(D)
F

Λ(D +H −G)
Λ(H)
P0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(40)

where Γ(z) : =
H −G

C −G
(z −D) +D

Λ(z) : =
B − F

Γ(B)− F
(z − F ) + F.
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To gain some geometric intuition on Ξ, Υ, Γ, and Λ, note
that they take the form of a stretch-rotation about a pole. For
example, Γ may be interpreted as a rotation of ∠HGC2 about
D combined with a dilation by |H −G|/|C −G| centered on
D. Both κ1/2 and κ3/4 are their own inverses

κ−1
1/2 ≡ κ1/2, κ−1

3/4 ≡ κ3/4. (41)

The final cognate is called the 1/2-3/4 cognate. It is obtained
from the commutative composition of κ1/2 and κ3/4

κ1/2-3/4 := κ1/2 ◦ κ3/4 ≡ κ3/4 ◦ κ1/2. (42)

Following (39), (40), and (42), the set of six-bars defined by
{
X, κ1/2(X), κ3/4(X), (κ1/2 ◦ κ3/4)(X)

}
(43)

all trace the exact same coupler curve with the exact same
angular displacement of crank AC.

These equations demonstrate how to transform a linkage into
its cognates. To be useful for FRG, we need to transform a
solution z of the form shown in (36) to its cognate solutions.

For the 3/4-cognate solution, we need only to append conju-
gate unknowns and duplicate the vector U (36)

z3/4 =
{
κ3/4(X), κ3/4(X̄), U

}
. (44)

For the 1/2- and 1/2-3/4 cognate solutions, we append con-
jugate unknowns and transform the vector U according to the
geometric construction given in [55]

z1/2 =
{
κ1/2(X), κ1/2(X̄), U′}

z1/2-3/4 =
{
(κ1/2 ◦ κ3/4)(X), (κ1/2 ◦ κ3/4)(X̄), U′}

where U′ = {U ′
1, . . . , U

′
7},

U ′
j =

Pj −B − Uj(P0 − F )

F −B
, j = 1, . . . , 7. (45)

Equations (45) only apply to cases, where corresponding
components Qj and Q̄j of q (37) are defined to be reciprocal.
This is due to certain simplifications taken in Section IV. The
start systems constructed in Section V-B and the target system
constructed for the ab initio system were defined with Qj and
Q̄j , j = 1, . . . , 7 as unrelated random complex numbers. There-
fore, only (44) applies to them, reducing the size of our cognate
sets to two. Defining Qj and Q̄j as reciprocal for start systems
was possible, but this increased the numerical precision needed
for path tracking such that the cost outweighed the benefit. With
cognate sets of size two, the expected amount of computation
is cut in half. For every finite root found, its cognate partner
is readily computed from (44). To find nearly all roots, we only
must find nearly all cognate sets, of which there are half as many.

D. Computational Work

Using the start system construction method of Section V-B
and exploiting the cognate structure of Section V-C, FRG was
applied to find the ab initio rootsz of a numerically general target

2To be more precise, this is the angle that rotates GH to lie parallel with GC
(not vice versa). The “∠” notation does not convey direction.

Fig. 7. Accumulation of roots over the procession of the FRG algorithm. An
estimated 99.0% of roots were found in 3.56× 106 trials. To find 99.9% would
take about 50% more computational effort.

system S(z,q1) = 0. Target parameters q1 were randomly gen-
erated and are printed in Appendix B. After generating this ab
initio solution, these roots can be used repeatedly in conjunction
with the parameter homotopy method to obtain isolated roots
for any other system S(z,q2) = 0, where q2 might be defined
by a specific synthesis task. In Section VI, we will define q2

according to analyses in Section III, to design a novel machine.
A single FRG iteration consists of generating a random start-

point/start system (see Section V-B), tracking a homotopy path
from this startpoint to an endpoint root of the target system,
computing the cognate set of that endpoint (see Section V-C),
and finally checking whether the cognate set found is a dupli-
cate from a previous iteration.3 By tracking the occurrence of
duplicates, and assuming equal probability of happening upon
any root of the target set during each iteration, an in-process
estimate of the number of finite roots found is computed. The
algorithm ends when this estimate is sufficiently high.

Tracking a homotopy path involves following the values of
root z from its startpoint z = z0 that solves the start system
S(z,q0) = 0 to its endpoint z = z1 that solves the target system
S(z,q1) = 0. Path tracking was performed using a predictor–
corrector technique based on Runge–Kutta and Newton itera-
tions. This technique is presented in Appendix C.

FRG was written in CUDA and run on a laptop GPU for
3 563 520 trials over 24 h. It found 764 894 distinct cognate
sets indicating 1 529 788 finite roots. Of these, 1180 roots were
suspected of being singular due to high condition numbers and so
were discarded, leaving 1 528 608 nonsingular roots. According
to the FRG estimation technique, this is 99.0% of roots. We note
that this estimate assumes random startpoints were sufficiently
distributed. Benchmark work in [54] gives evidence that this is
a good assumption. But as the six-bar problem of this article has
not been characterized in the past, our assumption may prove
faulty in the end. About 0.14% of paths ended in numerical fail-
ure, usually from the Newton corrector step not converging due
to precision limitations. Fig. 7 displays root accumulation over
FRG iterations. The diminishing returns of FRG are documented

3A slight improvement can be made if cognate construction is computed only
after a root is shown not to be a duplicate.
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TABLE III
SPECIFICATION OF qTASK FOR THE LEG MECHANISM EXAMPLE

in [54]. We estimate the algorithm would have found 99.9% of
roots with 1.77× 106 more trials.

VI. APPLICATION TO LEG MECHANISM

The ab initio implementation of FRG presented in Section V-
D found nearly all finite roots for a numerically general system
S(z,q1) = 0. This root set can be used to efficiently obtain
nearly all isolated roots for systems of the form S henceforth.
Parameter homotopies can be constructed that use these roots as
startpoints to track to the roots of some other systems of the form
S(z,q2) = 0. However, the vector of parameters q [defined in
(37)] for these systems were composed of physical specifications
informed by the analysis of Section III.

When physically relevant values of q are specified, some of
the roots z [defined in (36)] of system S will be physically
relevant as well. These roots contain the pivot locations (de-
sign parameters) of six-bar linkages that produce the kinematic
characteristics encoded in q. These kinematic characteristics
were chosen to instantiate some dynamic behavior as informed
by simplified simulations (see Section III). Bringing this all
together forms a design process capable of finding six-bar
linkages that produce some dynamic behavior under known
loading conditions. In this way, the ab initio root set obtained
in Section V-D serves as an instrument for designing dynamic
machines.

To demonstrate this process, we design a leg mechanism for
a small running robot capable of producing propulsive motions
with energetics beyond its motor’s power limit. We continue
from the task specification introduced in Section III, where we
established a cyclic path and coordinated crank angle function
that would dynamically modulate the power output of a series-
elastic actuator under load to increase the kinetic energy during
push-off of a single stance phase. This task was transferred to a
vector qtask by picking eight end effector positions (xj , yj) and
coordinated crank angles φj , printed in Table III. Components
of qtask are specified as

Pj = xj + iyj , P̄j = xj − iyj , j = 0, . . . , 7

Qj = eiφj , Q̄j = e−iφj , j = 1, . . . , 7. (46)

Note that (Q0, Q̄0) is automatically specified as (1,1) without
loss of generality, making the number of angles eight.

All isolated roots of the system S(z,qtask) = 0 were obtained
by setting up a parameter homotopy with the ab initio roots as
startpoints. However, instead of computing 1 528 608 paths, one
root from each cognate set was tracked, cutting this number in

TABLE IV
DESIGN VARIABLES CORRESPONDING TO MECHANISMS (a)–(d),

SHOWN IN Fig. 9

Complex numbers indicate x-y pivot locations in home configurations. Dimensions are cm.

Fig. 8. Condition numbers of Jacobian matrices at the roots found during
the leg mechanism example. These Jacobian matrices contain derivatives of
the synthesis equations with respect to synthesis variables. They were not
normalized beforehand. Roots with condition numbers greater than 1015 were
assumed to indicate singular points.

half. Only one root is needed to establish its cognate set of roots
of the target system at the end of a homotopy. The parameter
homotopy had a higher path failure rate of 41%. Of these
failures, 91% were triggered by the Jacobian condition number
rising above 1018, which occurred on average at t = 0.997
(±0.037 S.D.). Although it is not certain, this is an indicator that
those paths might have been headed toward singular endpoints,
which often are not useful for engineering applications. Singular
endpoints are usually more common when S is defined with
additional structure, such as the case with qtask. A histogram
of endpoint condition numbers is shown in Fig. 8. Informed by
this, we chose a condition number of 1015 to separate endpoints
considered nonsingular and singular.

There were 419 576 nonsingular cognate pairs of roots found.
A subset Ω of size 1861 were physically relevant, that is when
variables and their overbar counterparts, e.g., (A, Ā), are conju-
gate. Recall from Section V-C that when parameters Qj and Q̄j
are reciprocal, such as with the members ofΩ, the cognate opera-
torκ1/2 extends the cognate sets from size two to four. Therefore,
we should expect the cognate pairs of Ω to divide into half as
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Fig. 9. Linkage designs that exhibit the desired dynamic behavior. Linkages
(a) and (b) are cognates that trace the exact same path with the same coordination
of mechanical advantage over arc length. The same goes for (c) and (d). Moving
pivots are drawn in displaced positionsC ′,D′,F ′,G′,H ′. Home position values
are listed in Table IV.

many cognate foursomes. However, 1861/2 /∈ N, indicating a
problem. Sorting outΩ, we instead found 920 cognate foursomes
and 21 incomplete cognate pairs. Missing cognates were most
likely lost during numerical work, but are readily producible
in postprocess using the cognate transforms of Section V-C.
Expanding out all 941 cognate foursomes obtains 3764 linkage
designs.

These linkage designs are susceptible to a known list of
linkage defects: circuit, branch, order, and full rotatability de-
fects [56]. To sort these out, all designs were kinematically
analyzed. Occasionally designs were found to possess circuit
defects, but were still deemed useful. That is, if a mechanism
circuit missed one or two task points but still approximated the
motion thatqtask was chosen to approximate in the first place, that
mechanism was considered useful. In addition, linkages must
have pivots in acceptable locations (e.g., not underground) and
ideally be compact. A few linkage designs which satisfy these
criteria are drawn in Fig. 9. The linkages shown in Fig. 9(a) and
(b) are cognates, likewise with 9(c) and (d). That being the case,
they produce the same point path with the same coordination

of mechanical advantage across that path. Therefore, the plots
printed under each pair in Fig. 9 describe both linkages above.

The cycling foot path is broken into three regions. First, the
foot point makes ground contact and mechanical advantage de-
creases, nearly stalling motion and energizing the series-elastic
element. Second, while still in stance mechanical advantage
increases, converting elastic energy into high-powered propul-
sion. And third, the foot goes out of contact and recycles back
to its starting position. Although only a single low mechanical
advantage region was desired, a second is seen in the unloaded
regions of Fig. 9. It was common to nearly all designs that had
the foot path entirely below the ground pivots that installing a
low mechanical advantage region on one part of the curve begot
another low mechanical advantage region elsewhere. It is unclear
whether it is possible to exclude this second region and maintain
pivots above the foot path. This characteristic might be intrinsic
of the design space. Since the second low spot appears in the
unloaded region, it is not problematic.

VII. SENSITIVITY ANALYSIS

A feature of the proposed approach is to survey the design
space and produce multiple options. There are many criteria
by which designs can be evaluated. Foremost, we consider
dynamic behavior. Another important consideration is a design’s
sensitivity to fabrication errors. Since our design specifications
involve instantiating a configuration space with near singular
conditions, there is a good chance the resulting designs will be
sensitive to dimensional errors. An analysis was conducted to
compare the four designs shown in Fig. 9.

First, the combined effect of fabrication errors in the planar
model was considered. Perturbations were introduced into the
14-D space made up of the seven planar pivot locations {A,
B, C, D, F , G, H}. Normal distributions were defined inside
circles centered at each pivot. In polar coordinates, deviation
radii were selected with a standard deviation of 0.1 cm from
the pivots’ true location and deviation angles were selected
with equal probability. For each design shown in Fig. 9, the
motion of 1000 perturbed linkages was computed. For (a) and
(b), mechanical advantage of the perturbed linkages is plotted
in Fig. 10 over the course of their motion. In particular, we
care to keep track of the minimum absolute value of mechanical
advantage in the energization region. For brevity, we will refer to
this as the low MA value. This minimum is important because it
dictates the maximum amplification of ground forces through
the mechanism into a reaction torque acting on the motor.
Consequently, it effects how near the motor gets to producing
its stall torque and how much energy might be transiently stored
in the spring for a high-powered motion.

Fig. 10 identifies branch defective curves (which pass through
zero) and defect free curves alongside the ideal form. The low
MA value of the ideal linkage is indicated with a star. At times,
mechanical advantage passed through zero. This indicates that
a perturbed linkage encountered a singular configuration and
is thus branch defective. For our application, these dimensional
errors would be problematic. In application, they would bring the
motor to stall as the linkage jams. On the other hand, if the low
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Fig. 10. Mechanical advantage profiles for mechanisms randomly deviated
from the true pivot locations of mechanisms (a) and (b) shown in Fig. 9. Random
noise in pivot positions simulates fabrication errors. Pivot locations were varied
according to normal distributions centered at their true location with a standard
deviation of 1 mm. A quantity of 1000 samples were generated for each plot.
Sample mechanisms that possess a zero mechanical advantage configuration are
branch defective. Statistics corresponding to these plots are given in Table V.

TABLE V
EFFECT OF RANDOM DEVIATIONS OF PIVOTS FROM THEIR TRUE POSITIONS

FOR MECHANISMS (a)–(d) SHOWN IN Fig. 9

∗Excluding branch defective linkages.
Statistics correspond to the data plotted in Fig. 10.

MA value is too high, power modulation will not occur. Statistics
corresponding to Fig. 10 are shown in Table V. They indicate
a 22.8% chance for random dimensional errors of mechanism
(b) to result in a branch defect. On the other hand, design (a) is
higher with 59.1%.

Fig. 11. Spatial 12-bar linkage used to understand spatial joint misalignments
in a planar six-bar. (a) Schematic denotes 13 revolute (R) joints and plainly
shows connectivity. (b) More realistic 3-D rendering illustrates misaligned joint
axes.

To create a more realistic error model, we also considered the
effect that spatial misalignments and joint play have on the low
MA value. References on the sensitivity of parallel manipulators
to fabrication errors include [57]–[59]. For our model, all but
one revolute joint was split into two nonparallel, nonintersecting
joint axes. This yields a 12-bar spatial one degree-of-freedom
mechanism, shown in Fig. 11. This model is defined by 13
screw axes. The directional vectors for these screw axes are
sA, sB , sB′ , sC , sC ′ , sD, sD′ , sF , sF ′ , sG, sG′ , sH , and sH ′ ,
refer to Fig. 11. Reference points that locate each screw axis
are represented by 3-D vectors A, B, B′, C, C′, D, D′, F,
F′, G, G′, H, and H′. Corresponding joint rotations around
each axis are φ, ζB , ψ, ζC , ρ, ζD, θ, ζF , ζG, ζH , and μ. The
angles φ, ψ, ρ, θ, and μ roughly correspond to their planar
analogues in Section IV, except that they are relative instead of
absolute. The new ζ angles correspond to new small links that
represent joint deviations. P0 locates the endpoint in a home
configuration.

To model this spatial linkage, first we define the screw matrix

[T (θ, s, c)] :=

[
[R(θ, s)] ([I]− [R(θ, s)])c

0 1

]

(47)
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where [R(θ, s)] is defined in equation (48) which appears at the
bottom of this page. The two loop closure equations are then

[T1]

{
G′

1

}

− [T2]

{
G′

1

}

= 0 (49)

and

[T3]

{
F′

1

}

− [T4]

{
F′

1

}

= 0 (50)

where

[T1] = [T (φ, sA,A)][T (ζC , sC ,C)]

× [T (ρ, sC ′ ,C′)][T (ζG, sG,G)]

[T2] = [T (ζB , sB ,B)][T (ψ, sB′ ,B′)]

× [T (ζD, sD,D)][T (θ, sD′ ,D′)]

[T3] = [T (φ, sA,A)][T (ζC , sC ,C)][T (ρ, sC ′ ,C′)]

× [T (ζH , sH ,H)][T (μ, sH ′ ,H′)]

[T4] = [T (ζB , sB ,B)][T (ψ, sB′ ,B′)][T (ζF , sF ,F)]. (51)

In addition, the orientation equations should be satisfied

[R1]sG′ − [R2]sG′ = 0 (52)

and

[R3]sF ′ − [R4]sF ′ = 0 (53)

where [Ri] is the corresponding upper left rotation matrix of
[Ti]. Equations (49) and (50) provide three equations each. The
x, y components of (52) and (53) provide two equations each,
for a total of 10 equations that govern the motion of the 11 joint
axis angles. We name the governing equations f .

Mechanical advantage of the spatial linkage is computed by
taking the derivative of f

[
∂f

∂θ

]

θ̇ = 0

where θ = {φ, ρ, ψ, θ, μ, ζB , ζC , ζD, ζF , ζG, ζH}. (54)

The Jacobian matrix above is 10 × 11. Equation (54) is a homo-
geneous linear system. Its one-dimensional null space describes
the joint velocity ratios at a particular configuration. By taking
the derivative of

[T3]P0 = P (55)

and substituting the solution of (54) into it, one may obtain values
for φ̇ and Ṗ. Mechanical advantage is computed as

MA =
φ̇

|Ṗ| . (56)

Fig. 12. Standard deviation provides a measure of sensitivity that each joint
of each design has toward misalignment errors. Labels (a)–(d) correspond to the
designs of Fig. 9.

Each planar design of Fig. 9 was taken at its low MA con-
figuration and perturbed into a spatial 12-bar of the likes of
Fig. 11. Perturbations took place in an axis-by-axis manner. A
single perturbation split a joint axis apart in some direction by
a distance r, then skewed these joint axes away from each other
in some direction by an angle α. Distance r was varied from
0 to 3 mm and angle α was varied from 1◦ to 15◦. Choosing
15 increments for r, α, and their respective directions lead to a
population of 50 625 deviations for each joint axis. Additional
random 0.5◦ perturbations were added to all other screw axes
to keep each linkage spatially general. Mechanical advantage
was computed according to (56). Variation in the value of MA
is displayed in Fig. 12 for spatial perturbations of each joint of
each design in Fig. 9. Standard deviations show that design (a)
is the most sensitive to misalignments and slop within its joints.
In particular, its joints D and F are the most sensitive. Design
(b) is less sensitive to these dimensional errors.

In practice, designs should be fabricated with a precision
adjustment to compensate for their sensitivity. A single dimen-
sional deviation can often be identified to calibrate a linkage.
Adjustment can lead a design from branch defective to low and
high MA values. Of course, sensitivity to joint errors is only one
measure of a design’s worth. Other selection criteria include the
packaging footprint and packaging convenience of a mechanism.
The former considers the space occupied by the mechanism
while the latter considers how complicated links need to be
to avoid interferences. Despite its sensitivity, design (a) (see
Fig. 9) is a strong candidate. Simulation of its motion takes a
time evolution similar to Fig. 5 using the parameters of Table II,
and reveals this mechanism is able to deliver kinetic energy at
peak powers up to 3.0 times that of the motor’s maximum.

VIII. CONCLUSION

In this article, we presented a method for designing the
dynamic behavior of a loaded mechanism. First, we analyzed a

[R(θ, s)] :=

⎡

⎢
⎣

cθ + s2x(1− cθ) sxsy(1− cθ)− szsθ sxsz(1− cθ) + sysθ

sysx(1− cθ) + szsθ cθ + s2y(1− cθ) sysz(1− cθ)− sxsθ

szsx(1− cθ)− sysθ szsy(1− cθ) + sxsθ cθ + s2z(1− cθ)

⎤

⎥
⎦ (48)
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simplified model of our proposed system in order to discover the
kinematic characteristics that would result in the desired dynam-
ics. The model was run according to user-defined kinematic char-
acteristics in the absence of a mechanism design. Instead, these
characteristics serve as a design goal for a to-be-designed mech-
anism found during a subsequent kinematic synthesis step. The
prescribed characteristics included a single degree-of-freedom
point path and a coordinated mechanical advantage profile.
Kinematic synthesis was executed to discover six-bar linkages
that exhibit the desired mechanism characteristics. These char-
acteristics were encoded into design constraints resulting in a
highly nonlinear system of design equations. Nearly all isolated
roots of this system of equations were obtained for the first time
in this article using the FRG technique. The generation of a
complete set of isolated roots of such a large system allows an
exploration of the design space to be conducted. We applied
our methodology to the design of a leg mechanism for a small
running robot powered by a series-elastic actuator. The leg mech-
anism is capable of propelling itself forward at powers beyond its
motor’s limit while recycling foot position during every stride
with the motor only rotating in the forward direction. A few
linkage design solutions were presented, and compared against
each other according to their sensitivity to errors in the revolute
joints.

APPENDIX A
FOURIER COEFFICIENTS

Fourier coefficients for the path displayed in Fig. 3(a).

Fourier coefficients for the mechanical advantage curve dis-
played in Fig. 3(b).

APPENDIX B
TARGET PARAMETERS

APPENDIX C
HOMOTOPY PATH TRACKING

Here, we present a method for tracking the homotopy paths
of a system f(z,q) = 0. The vector of variables z has n com-
ponents, and the vector of parameters q has m components. We
define parameters for a start system and target system as q0 and
q1, respectively. Our goal is to track the values of a root z from
a startpoint z = z0 that solves the start system f(z,q0) = 0 to
an endpoint z = z1 that solves the target system f(z,q1) = 0.
To do this, we construct a homotopy parameterized by t

f(z,q(t)) = 0 (57)

where q(t) =
γ(1− t)q0 + tq1

γ(1− t) + t
. (58)

The definition of q(t) follows the “gamma trick” [45]. At t = 0,
(57) is the start system. At t = 1, it is the target system.

In order to gain some numerical benefits [46], path tracking
is done in projective space. Therefore, we define homogeneous
coordinates of z as

Z = [Z1, . . . , Zn, Z0] where

{
z

1

}

= Z/Z0. (59)

The modified version of f that receives Z as an argument is
named F. A linear patch is needed for projective computations,
defined as

u ·
{
Z

t

}

− 1 = 0 (60)

where u is an n+ 2 dimensional vector of random complex co-
efficients. Repackaging Z and t into a single vector Y = {Z, t},
the homotopy is written as

H(Y) =

{
F(Z,q(t))

u ·Y − 1

}

= 0. (61)
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Y may be considered a function of the homotopy path’s arc
length s. Taking the derivative of H with respect to s obtains

[
∂H

∂Y

]
dY

ds
= 0. (62)

Expansion of the Jacobian matrix on the left side of (62) obtains

[
∂H

∂Y

]

=

[ [
∂F
∂Z

]
dF
dt

· · ·uT · · ·

]

where
dF

dt
=

[
∂F

∂q

]
dq

dt

and
dq

dt
= (q1 − q0)

γ

(γ(1− t) + t)2
. (63)

In (63), [∂H∂Y ] is an (n+ 1)× (n+ 2) matrix, [∂F∂Z ] is an n×
(n+ 1) matrix, dFdt is an n× 1 vector, [∂F∂q ] is an n×mmatrix,
dq
dt is an m× 1 vector, and uT is a 1× (n+ 2) vector.

At a given point on a homotopy path, the vector space tangent
to the path may be obtained by solving for dY

ds in the homo-
geneous linear system given in (62). Note that the row vectors
of [∂H∂Y ] are normal to the homotopy path so that the solutions
of (62) define the 1-D vector space perpendicular to all n+ 1
normal vectors, i.e., tangent to the curve. Numerically, (62) is
solved by appending a random row vector to [∂H∂Y ], appending 1
to the zero vector on the right-hand side, then solving this square
linear system. For numerical stability, the appended row vector
may be the tangent vector from the previous homotopy step.
The solution of this square system can be multiplied by complex
scalars to achieve any vector in the C1 null space of [∂H∂Y ]. For
the implementation given here, solutions were chosen to have
unit magnitude and were scaled so that the last component of
dY
ds (corresponding to t) is a positive real number.

This solution process for discovering a tangent vector may
be posed as an initial value problem, Y′ = f(Y). At the ith
tracking step, a Runge–Kutta method can be applied to this
initial value problem to compute from the current value Yc an
appropriate step size Δs, an estimate of the next value Ỹn, and
an estimate of the next tangent vector Ṽn.

This estimate is corrected by solving (61) with Newton’s
method using Ỹn as the initial guess. Since (61) has one less
equation than variables in Y, we modify the process slightly.
An extra equation is appended to H(Y)

Ĥ(Y) =

{
H(Y)

Ṽn · (Y − δỸn)

}

= 0. (64)

This is the equation of a plane nearly coincident to Ỹn and
normal to Ṽn. The new variable δ is a small-valued complex
scalar that serves as a correction factor to ensure an advancing
value of t is computed. Assuming Ṽn is a good estimate of
the homotopy path’s tangent at the i+ 1th step, the intersection
of the plane and path should be nearly perpendicular, aiding in
numerical stability.

To compute the Newton iteration from Yk to Yk+1, first
evaluate the inverse of the Jacobian of (64) for Yk

[ Γ ]k =

⎡

⎣

[
∂H
∂Y

]
k

ṼT
n

⎤

⎦

−1

. (65)

Note that δ, which has not yet been evaluated, drops out of (65).
To evaluate δ, consider the Newton update rule

Yk+1 = Yk − [ Γ ]kĤ(Yk). (66)

The last component of (66) can be broken out and written

tk+1 = tk − Γk,n+2 ·
{

H(Yk)

Ṽn · (Yk − δỸn)

}

(67)

where Γk,n+2 is the last row of [ Γ ]k. At this point, everything
in (67) has been numerically evaluated except tk+1 and δ.
We set tk+1 equal to the last component of Ỹn, then solve
for δ, which is straightforward. Now, we are able to evaluate
Yk+1 in (66) and Newton’s method proceeds as usual. The
value it converges to is the next homotopy path point Yn.
An accurate tangent vector Vn is also produced by Newton’s
method. The predictor–corrector path tracking process is re-
peated from these points. When t = 1 is reached, stop condi-
tions for the Newton corrector are set to obtain more accurate
solutions.

Occasionally, path tracking fails due to numerical precision
limitations. If this error is detected, the algorithm attempts to
salvage the computation by switching projective linear patches,
(60), before reporting the failure. Patch switching is described
in [44].

To create a new patch, a vector unew is randomly generated

unew = {u1 . . . un u0 ut}. (68)

To continue computations, the vector of homogeneous coordi-
nates Z must be multiplied by some scalar σ so that it satisfies
the new projective patch

unew ·
{
σZ

t

}

− 1 = 0. (69)

Solving (69) for σ obtains

σ =
1− utt

unew ·
{
Z

0

} . (70)

Tracking continues with Y replaced with Ynew =
{
σZ
t

}
.

Numerical homotopy continuation softwares such as
Bertini [48] and PHCpack [60] contain additional features that
increase the robustness of path tracking, including adaptive
precision, path crossing detection, and endgames [61].
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