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Robust Distributed Planar Formation Control for
Higher-Order Holonomic and Nonholonomic Agents

Kaveh Fathian, Sleiman Safaoui, Tyler H. Summers, Nicholas R. Gans

Abstract—We present a distributed formation control strategy
for agents with a variety of dynamics to achieve a desired planar
formation. Our approach is based on the barycentric-coordinate-
based (BCB) control, which is fully distributed, does not require
inter-agent communication or a common sense of orientation,
and can be implemented using relative position measurements
acquired by agents in their local coordinate frames. This removes
the need for global positioning or alignment of local coordinate
frames, which are required across several existing strategies. We
show how the BCB control for agents with the simplest dynamical
model, i.e., the single-integrator dynamics, can be extended to
agents with higher-order dynamics such as quadrotors, and
nonholonomic agents such as unicycles and cars. Specifically, our
extension preserves the desired convergence and robustness guar-
antees of the BCB approach and is provably robust to saturations
in the input and unmodeled linear actuator dynamics for unicycle
and car agents. We further show that under our proposed BCB
control design, the agents can move along a rotated and scaled
control direction without affecting the convergence to the desired
formation. This observation is used to design a fully distributed
collision avoidance strategy, which is often not considered in
the formation control literature. We demonstrate the proposed
approach in simulations and further present a distributed robotic
platform to test the strategy experimentally. Our experimental
platform consists of off-the-shelf equipment that can be used
to test and validate other multi-agent algorithms. The code and
implementation instructions for this platform are available online.

Index Terms—Multi-agent systems, formation control, dis-
tributed collision avoidance, distributed robotic platform.

SUPPLEMENTARY MATERIAL

Video of paper summary, simulations, and experiments is
available at https://youtu.be/1pfgXESMHxE. Code for simula-
tions and the distributed multi-robot platform can be download
from https://goo.gl/QH5qhw.

I. INTRODUCTION

Technological advances in recent years has made it increas-
ingly possible to deploy a large fleet of agents to cooperatively
map and monitor an environment [1], [2], deliver goods [3], or
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Fig. 1. The proposed formation control strategy implemented on our dis-
tributed robotic platform to form the letters UTD.

manipulate objects [4]–[6]. In these applications, the ability to
bring the agents to a desired geometric shape is a fundamental
building block upon which more sophisticated maneuvering
and navigation policies are constructed. By assigning local
control laws to individual agents, distributed formation control
strategies ensure that a desired geometric shape emerge from
the collective behavior of agents. Compared to the centralized
methods, distributed strategies have better scalability, naturally
parallelized computation, resilience to communication loss and
hardware failure, and robustness to uncertainty and lack of
global measurements.

In this work, we present a unified, distributed control
strategy for planar formations of agents with a variety of
dynamics. In particular, we consider agents with linear or
input-to-state linearizable dynamics, and further extend the
results to agents with nonholonomic unicycle and car dynam-
ics. Our approach is based on the barycentric-coordinate-based
(BCB) control, which is fully distributed, does not require
inter-agent communication or a common sense of orientation,
and can be implemented using relative position measurements
acquired by agents in their local coordinate frames. We start
by formulating a semidefinite program (SDP) to compute
the control gains needed for agents with the single-integrator
model. Thanks to this design strategy, convergence to the
desired formation is invariant to any (strictly) positive scaling
of the control vector and any rotation amounting up to ±90◦.
This observation leads to provable robustness guarantees such
as robustness to saturations in the input and disturbances in
the control direction. This observation is further exploited to
design a fully distributed collision avoidance strategy, which
is often not considered in the formation control literature. The
control for single-integrator agents is extended subsequently to
agents with higher-order linear, feedback-to-state linearizable,
nonholonomic unicycle, and nonholonomic car dynamics. The
main challenges addressed in these extensions are to 1) ensure
convergence guarantees to the desired formation are preserved;
2) ensure robustness properties are preserved (e.g., robustness
to input saturations and unmodeled/unknown linear actuator
dynamics); 3) have a unified design by using the same control
gains computed from the SDP approach for single-integrator
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agents. To vet the theoretical results, several simulations are
presented for quadrotors, differential drive robots with unicy-
cle dynamics, and cars, where it is shown that agents achieve
a desired formation without collision. To typify the results
further, the proposed control strategy is tested experimentally
on a distributed differential-drive wheeled robotic platform
with different numbers of robots and desired formations.

A. Related Work and Contributions

There exists a notable body of work on distributed for-
mation control (see survey papers [7]–[9]). These works can
be differentiated by the assumed sensing and measurements
(e.g., global versus relative/local) and the use of inter-agent
communication (e.g., allowed versus limited). Examples of
methods that require global measurements (e.g., GPS) are
[10]–[12]. Consensus-based methods, such as [13]–[16], or
techniques based on distributed pose estimation [17], on the
other hand, do not require global sensing. However, agents
must communicate to peers during the mission to estimate
their pose, synchronize their orientation, or register their local
coordinate frames with respect to a common heading direction.

Unlike the aforementioned methods, certain class of forma-
tion control strategies are concerned with the most challenging
case: when measurements are local/relative and inter-agent
communication is limited or not allowed. Examples of the
latter class include distance-based [18]–[20], bearing-based
[21]–[24], and the BCB formation control strategies [25]–[31].
Due to challenging nonlinear dynamics, no distance-based
formation control algorithm with global convergence to the
desired formation (in the general setting) is known to this day
in the literature. Moreover, bearing-based formation control
methods with global convergence guarantees require alignment
of local coordinate frames [32]. Unlike the aforementioned
methods, convergence guarantees of the BCB control to the
desired shape are global (except for a measure zero set, which
is inconsequential for the implementation).

The BCB control strategy was introduced by Lin et al.
[33], [34], who presented the general theory for agents with
single-integrator dynamics and derived the (almost) global
convergence guarantees. As these guarantees hold for agents
with linear dynamics, it is therefore essential to extend them
to agents with nonlinear and nonholonomic dynamics that are
commonly encountered in robotics applications. In this paper,
we leverage the gradient-descent control framework developed
by Zhao et al. [35], [36] for agents with nonholonomic dynam-
ics and show that for a subclass of sensing topologies that
are undirected and universally rigid, the global convergence
guarantees extend to agents with higher-order, input-to-state
feedback linearizable, and nonholonomic unicycle and car dy-
namics. We further show that under the proposed SDP design,
robustness guarantees of the BCB control for single-integrator
agents extend to agents with unicycle and car dynamics, and
the proposed control is provably robust to saturation of the
input and unmodeled linear actuator dynamics.

A contribution of this work is a fully distributed collision
avoidance strategy that naturally arises from the robustness
properties of the control and preserves the stability of the

closed-loop system. Much of the distributed formation control
literature do not consider collision avoidance (e.g., in the
original BCB approach [33], [34]), and existing collision
avoidance approaches are often centralized. Furthermore, an ad
hoc augmentation of a distributed formation control strategy
with collision avoidance, e.g., using potential functions, can
lead to undesired behaviors or even instability (e.g., robots
may drift or move in a limit cycle indefinitely).

We further present a portable and low-cost distributed
robotic platform that consists of off-the-shelf components
(see Fig. 1). This platform is used to validate our proposed
formation control experimentally and can be used to test other
multi-agent control strategies. Since the platform is distributed,
the number of robots used for an experiment is only limited by
the available resources. The code and technical implementation
details related to this platform are made available online, and
are accessible in the Supplementary Material section.

In order to make the paper self-contained, this comprehen-
sive work contains a summary of the relevant results derived
in our previous papers [37]–[40] and subsequent extensions
after the submission of this manuscript [41], [42]. Specifically,
[37] studied the BCB control design under arbitrary switching
sensing typologies, [38] presented the initial extension of the
BCB control to agents with higher order linear dynamics, [39]
presented an augmentation of the BCB control to fix the for-
mation scale with convergence guarantees, and [40] presented
the extension to agents with a kinematic unicycle model,
particularly for fixed-wing aerial vehicles. Contributions of
this work include extension of the BCB control to agents with
dynamic unicycle and car models with convergence guarantees
even in the presence of unmodeled linear actuator dynam-
ics, and collision avoidance with stability guarantees. These
contributions are accompanied by thorough simulation and
experimental evaluations on an open-source robotic platform.
Our latest extensions [41], [42] expand the BCB control to 3D
formations and leverage task assignment to mitigate gridlock
scenarios that arise due to the distributed collision avoidance,
respectively.

In summary, the main contributions of this paper are
• A distributed, provably convergent and robust formation

control strategy for vehicles with a large variety of holo-
nomic and nonholonomic dynamics, which eliminates the
need for global position measurements, common heading
direction, inter-agent communication, and complete sens-
ing graph required in existing formation control literature.

• A fully distributed collision avoidance algorithm natu-
rally incorporated in the formation control strategy with
stability guarantees.

• A low-cost distributed robotic platform with off-the-shelf
components for validation of formation control pipeline.

B. Paper Organization

The notation and assumptions used throughout the paper are
introduced in Section II. In Section III, the control strategy
for agents with single-integrator dynamics is introduced, the
SDP gain design algorithm is presented, and robustness of
the proposed approach to perturbations and saturated input is
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proven. Gains designed for single-integrator agents are used
in Section IV to extend the control to agents with higher order
linear or linearizable holonomic dynamics such as quadrotors.
In Sections V and VI, the control is further extended to
agents with nonholonomic unicycle and car dynamics, where
robustness to saturations in the input and unmodeled dynam-
ics is shown. Additional topics such as collision avoidance,
time-varying sensing topologies, scale of the formation, and
extension to 3D case are discussed in Section VII. Lastly, in
Sections VIII and IX simulation and experimental results are
presented to typify the proposed strategy.

II. NOTATION AND ASSUMPTIONS

We consider a team of n ∈ N agents with the inter-agent
sensing topology described by an undirected graph G= (V,E),
where V= Nn := {1, 2, . . . , n} is the set of vertices, and E⊂
V×V is the set of edges. Each vertex of the graph represents
an agent. An edge from vertex i ∈ V to j ∈ V indicates that
agents i and j can measure the relative position of each other
in their local coordinate frames. In such a case, agents i and j
are called neighbors. The set of neighbors of agent i is denoted
by Ni := { j ∈ V |(i, j) ∈ E}. We denote by eig(A)⊂C the set
of eigenvalues of matrix A.

Throughout this paper we assume that the desired formation
and the sensing topology are such that achieving the formation
is physically feasible. In particular, we assume that the sensing
topology is undirected and universally rigid. This assumption
is both necessary and sufficient [34], [43] for guaranteeing the
existence of control gains that are computed from the proposed
SDP approach. We further point out that by “formation”
we imply a desired geometric shape up to a positive scale
factor. To fix the scale of the formation to a desired value an
augmented control is presented in Section VII.

III. FORMATION CONTROL FOR SINGLE-INTEGRATOR
DYNAMICS

In this section, we present the distributed formation control
strategy introduced in [33] for agents with single-integrator dy-
namics. We then propose a novel design approach for finding
stabilizing control gains by formulating a convex optimization
problem. The results of this section are a cornerstone for
formation control of agents with more complicated dynamic
models that are discussed in the subsequent sections.

A. Control Strategy

The single-integrator dynamics can be described as

q̇i = ui, (1)

where qi := [xi, yi]
> ∈R2 is the coordinate of agent i∈Nn in a

common global coordinate frame (unknown to the agent), and
ui ∈ R2 is the control law. To bring the agents to a desired
formation, the control law for each agent can be chosen as

ui := ∑
j∈Ni

Ai j (q j−qi), (2)
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Fig. 2. Example of three agents with agents 2 and 3 neighbors of agent 1.

where Ai j ∈ R2×2 are constant control gain matrices that will
be designed later, and each has the form

Ai j :=
[

ai j bi j
−bi j ai j

]
, ai j, bi j ∈ R. (3)

Thanks to the commutativity property of the Ai j matrices, the
closed-loop dynamics with coordinates qi and q j expressed in
agents’ local coordinate frames is identical to the case that
coordinates are expressed in a global coordinate frame (for
more details see [37]). The geometric intuition behind the
control strategy (2) is explained in the following example.

Example 1. Consider three agents in Fig. 2, where agents
2 and 3 are neighbors of agent 1. Let q2 = [2, 3]> and
q3 = [3, 1]> denote the position of neighbors in agent 1’s local
coordinate frame, and assume that control gains for agent 1
are given as

A12 =

[
2 −1
1 2

]
, A13 =

[
−1 3
−3 −1

]
. (4)

From (2), the control vector for agent 1 is computed as

u1 = A12 q2 +A13 q3 =

[
1
−2

]
, (5)

which is shown in the figure and can be interpreted geomet-
rically as follows. At any instance of time, agent 1 moves
along the control vector with the speed equal to the vector’s
magnitude. Note that due to the special structure of gain
matrices A12, A13, they can be interpreted as scaled rotation
matrices that rotate and scale vectors connecting agent 1 to its
neighbors. One can see that this action is independent of agent
1’s local coordinate frame position and orientation, hence, q1
and q2 can replaced by their coordinates in a global coordinate
frame for analysis.

Let q := [q>1 , q>2 , . . . ,q
>
n ]
> ∈R2n denote the aggregate state

vector of all agents. Using this notation, the closed-loop
dynamics under the control strategy (2) can be expressed as

q̇ = Aq, (6)

A =


−∑

n
j=2 A1 j A12 · · · A1n

A21 −∑
n
j=1
j 6=2

A2 j · · · A2n

...
. . .

...
An1 An2 · · · −∑

n−1
j=1 An j

 ∈ R2n×2n,

where for j /∈ Ni the Ai j block is defined as a zero matrix.
Note that the 2×2 diagonal blocks of A are the negative sum
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of the rest of the blocks on the same row. Hence, A has block
Laplacian structure, and it follows that vectors

1 := [1, 0, 1, 0, . . . , 1, 0]> ∈ R2n

1̄ := [0, 1, 0, 1, . . . , 0, 1]> ∈ R2n (7)

are in the kernel1 of A.
Let q∗ ∈R2n denote the coordinates of agents at the desired

formation (the orientation, translation, and scale of the desired
formation can be chosen arbitrarily). Further, let q̄∗ ∈ R2n

denote the coordinates of agents when the desired formation is
rotated by 90 degrees about the origin. The following theorem
states the conditions that guarantee the convergence of agents
to the desired formation.

Theorem 1. Consider agents with single-integrator dynamics
(1) and control (2). If the Ai j’s are chosen such that in (6)

(i) A has null vectors 1, 1̄, q∗ and q̄∗,
(ii) Other than the four zero eigenvalues associated with these

null vectors, all eigenvalues of A have negative real parts,
then, agents globally converge to the desired formation.

Proof. The formal proof can be found in our previous work
[37, Thm. 1], and is based on the observation that if nonzero
eigenvalues of matrix A have negative real parts, all trajectories
of the linear system q̇ = Aq exponentially converge to the
kernel of A. The kernel of A is nothing but all rotations,
translations, and non-negative scale factors of the desired
formation.

Note that in Theorem 1 convergence to the desired forma-
tion implies that the formation is achieved up to a rotation and
translation in the global coordinate frame, and a non-negative
scale factor. As we will discuss in Section VII, in applications
where the scale is important, the control can be augmented to
attain the desired scale. We should point out that null vectors
1, 1̄ correspond to the case where all agents coincide, which
can be interpreted as the desired formation achieved with the
zero scale. It can be shown that the set of initial conditions
that converge to this coinciding equilibrium is measure zero.
Notice that in practice, trajectories of agents cannot remain
on a measure zero set (due to noise, disturbances, etc.), thus,
coinciding agents are not of practical concern.

Remark 1. The topological conditions that guarantee the
existence of a symmetric matrix A satisfying the conditions
of Theorem 1 are studied in [25, Thm. 3.2], which presents
the necessary and sufficient condition2 that the sensing graph
is undirected and universally rigid. Throughout this paper, we
assume that this condition is met.

Remark 2. Motion of the ensemble set of agents, during and
after getting into formation, can be addressed in various ways.
We have previously employed leader-follower strategies and
preassigned high-level control tasks [40]. Such a task may
require global information and is not discussed further here.

1If A ∈ Rn×n, the kernel or null space of A is defined as
ker(A) := {v ∈ Rn |Av = 0}.

2To be specific, the necessary and sufficient condition is for a generic
desired formation. For certain desired formations matrix A exists even when
the graph is not universally rigid.

B. Control Gain Design

Given a desired formation for agents with a universally
rigid sensing topology, we present a novel algorithm to find
control gain matrices that meet the conditions of Theorem 1.
Let N := [q∗, q̄∗, 1, 1̄]∈R2n×4 be the set of bases for the kernel
of A, where 1, 1̄ are given in (7), q∗ ∈R2n is the coordinates of
agents at the desired formation, and q̄∗R2n is the 90◦ rotated
coordinates about the origin. Let U SV> = N be the (full)
singular value decomposition (SVD) of N, where

U = [Q̄, Q] ∈ R2n×2n, (8)

with Q ∈ R2n×(2n−4) defined as the last 2n−4 columns of U .

Lemma 1. Using Q in (8), define

Ā := Q>AQ ∈ R(2n−4)×(2n−4). (9)

Matrices A and Ā have the same set of nonzero eigenvalues.

Proof of Lemma 1 follows by observing that U is an
orthogonal matrix, and range(Q̄) = range(N). Therefore Ā
is the restriction of A onto the orthogonal complement of
range(N), which removes the zero eigenvalues of A.

For an undirected sensing topology, by imposing the con-
straints ai j = a ji, bi j = −b ji in (3) matrix A can be designed
to be symmetric. Note that from Remark 1 existence of such
matrix is guaranteed. In this case, Ā is symmetric, and its
eigenvalues are real and can be ordered. Hence, A can be
computed by solving the optimization problem

A = argmax
ai j ,bi j

λ1(−Ā) (10)

subject to AN = 0
trace(A) = constant.

where λ1(·) denote the smallest eigenvalue of a matrix and
the last constraint ensures that the solution remains bounded.
Note that (10) is a concave maximization problem [44], and
can be formulated as the SDP problem

A = argmax
ai j ,bi j ,γ

γ (11)

subject to Ā+ γ I � 0
AN = 0
trace(A) = constant.

where the first constraint is a linear matrix inequality. The
proposed approach for finding stabilizing gain matrix A is
summarized in Algorithm 1.

Several effective algorithms for solving SDPs are developed
in recent years [45] that can be used to solve problem (10).
CVX [46] is well-suited to solve (10) when the number of
agents is less than 50, and it features a relatively simple inter-
face. For scenarios with larger number of agents, customized
and more computationally efficient solvers can be leveraged
to obtain an answer. In [42], we presented an ADMM-based
customized solver for (10). Table I shows the time required to
solve (10) for a random sensing topology in MATLAB using
an Intel Core i7-7700K with 16GB RAM. As it can be seen,
by using the ADMM-based solver gains for formations of 100
agents can be computed in less than 11 seconds.
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TABLE I. Execution time of the CVX solver used for (10) vs. our cus-
tomized ADMM solver in [42] for obtaining 2D formation gains for different
number of agents. Reported times are in seconds and rounded to two decimals.

Algorithm Number of Agents

5 20 50 100 200

CVX-SDP time 0.49 9.71 6042.96 OOM OOM
ADMM time 0.01 0.05 1.06 10.91 123.76

OOM: Out of memory

Algorithm 1: Formation control gain design.
input : Desired formation coordinates q∗.
output: Gain matrix A.

step 1: Let N := [q∗, q̄∗, 1, 1̄].
step 2: Compute SVD of N =U SV>.
step 3: Define Q as the last 2n−4 columns of U .
step 4: Solve (10) using a SDP solver.

It is important to note the distinction between the design
phase and implementation in our approach. Designing the
control gains by Algorithm 1 is a centralized paradigm (which
requires the knowledge of the sensing topology). These gains
are transmitted from the base station to agents to be used
during the mission. The implementation of our approach is
distributed, where agents use the prescribed gains to achieve
the desired formation without a need for communication and
using only relative/local position measurements. Distributed
optimization techniques can solve (11) without relying on the
complete knowledge of the sensing topology. An example of
such distributed design can be found in [25]. However, these
techniques require inter-agent communication, which we avoid
in this work.

C. Robustness to Perturbations

An important characteristic of the proposed design approach
is that the gains found via (10) lead to significant robustness
to perturbations. For instance, noise and disturbances can
cause an agent to move in a direction that is different from
the desired control vector. The following theorem shows that
by using the gains computed from (10) positive scaling and
rotation of the control vectors (up to ±90◦) does not affect
the convergence.

Theorem 2. Given control gain matrix A designed from (10),
let Ri ∈ SO(2) denote a rotation matrix of αi radians, and
ci ∈ R be a scalar. If αi ∈ [−π

2 + ε, π

2 − ε] for an arbitrary
small ε > 0, and ci > 0, under the perturbed control

ui := ci Ri ∑
j∈Ni

Ai j (q j−qi) (12)

single-integrator agents achieve the desired formation.

We first present and prove the following lemma that is used
in the proof of Theorem 2.

Lemma 2. Let R∈ SO(2) represent a rotation of α ∈ [−π, π)
radians. If |α|< π

2 , then R+R> is positive definite.

Proof. Matrix R∈ SO(2) can be represented as R =

[
c −s
s c

]
,

where c, s are shorthand notations for cos(α), sin(α), respec-

tively. Hence, R+R> =

[
2c 0
0 2c

]
, which since for |α| < π

2

we have c > 0, and matrix R+R> is positive definite.

We now present the proof of Theorem 2.

Proof. Under the perturbed control (12), the aggregate dynam-
ics can be represented by

q̇ := PAq (13)

where P := diag(c1R1, c2R2, . . . , cnRn) ∈ R2n×2n is a block
diagonal matrix that contains the perturbation terms. Consider
the Lyapunov function candidate V := −q>Aq. Note that
V is positive semidefinite since by design A is negative
semidefinite, and V = 0 if and only if q ∈ ker(A). Noting that
A> = A, derivative of V along the trajectories of (13) is

V̇ =−q̇>Aq−q>Aq̇ =−q>A
(

P>+P
)

Aq. (14)

Matrix P>+P is block diagonal and each diagonal block is
given by ci (R>i +Ri) ∈ R2×2. From Lemma 2, we have that
if |αi|< π

2 and ci > 0 for all i ∈ {1, . . . , n}, then all diagonal
blocks are positive definite. This implies that P>+P is positive
definite, and consequently V̇ < 0 for all q /∈ ker(A). From the
Lyapunov stability theory and LaSalle’s invariance principle
[47] it then follows that all trajectories of (13) converge to
the invariant set q ∈ ker(A), which shows that the desired
formation is achieved.

D. Robustness to Saturated Input

In practice, the velocity of an agent cannot take arbitrary
large values. Thus, any large control input will be saturated by
a maximum feasible/allowed speed. This, however, does not
affect convergence of agents to the desired formation.

Theorem 3. Consider single-integrator agents with dynamics
(1) and assume that umax > 0 is a real positive scalar. If ui is
saturated such that |ui| ≤ umax, then under the control (2) the
desired formation is achieved globally.

Proof. We first discuss the following Lemma and Corollary:

Lemma 3. [48, Sec. 2.1.2] Consider the family of switched
systems ẋ = fi(x), with i = 1,2, . . . ,N. Let V : Rn → R be a
positive definite, continuously differentiable, and radially un-
bounded function. If ∂V

∂x fi(x)< 0, ∀x 6= 0, ∀i, then the switched
system is globally uniformly asymptotically stable.

Corollary 1. Lemma 3 can be extended to a positive semidef-
inite V with the zero set of Z := {x ∈Rn : V (x) = 0} . In this
case, if ∂V

∂x fi(x) < 0, ∀x /∈ Z, ∀i, then all trajectories globally
uniformly asymptotically converge to Z.

To model the input saturation we can define the diagonal
matrix S ∈ Rn×n with diagonal elements

(S)ii =

{
1 if |ui| ≤ umax
umax
|ui| if |ui|> umax.

(15)

As illustrated in Fig. 3, diagonal elements of S can be
considered as functions that saturate any large input to the
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Fig. 3. Top: The i-th diagonal entry of matrix S. Bottom: The effect of
saturation on the control.

maximum value umax. The closed-loop dynamics under the
saturated input can be expressed in the vector form via

q̇ = SAq (16)

System (16) should be understood as a family of switched
dynamical systems, for which the solution is well-defined in
the Filippov sense (see Chapter 2 in [48] for more details). To
show that this system is uniformly stable, we consider

V :=−1
2

q>Aq≥ 0 (17)

as a common Lyapunov function candidate for all systems.
Note that since A is negative semidefinite, V is a positive
semidefinite scalar valued function. Time derivative of V along
the trajectory of (16) is

V̇ =−q>Aq̇

=−q>ASAq

=−(S
1
2 Aq)>(S

1
2 Aq) =−‖S

1
2 Aq‖2 ≤ 0, (18)

where S
1
2 is the diagonal matrix with elements given by the

square root of diagonal entries of S. Note that all diagonal
elements of S are strictly positive, hence S

1
2 is well-defined.

Since V is a positive semidefinite, continuously differentiable,
and radially unbounded function, from Lemma 3, Corollary 1,
and LaSalle’s invariance principle it follows that all trajectories
of (16) converge to the zero set of V , which is the kernel of
A. Thus, the desired formation is achieved.

Remark 3. To reject steady state errors, the control law (2)
can be augmented by an integrator term as

ui := k0 ∑
j∈Ni

Ai j (q j−qi)+ k1

∫ t

0
∑

j∈Ni

Ai j (q j−qi)dτ, (19)

where k0, k1 ∈ R are scalar control gains. It can be shown
that if k0, k1 > 0, this augmented control rejects constant in-
put/output disturbances (see [38, Sec. III-D] for more details).

Remark 4. The robustness properties of control (2), such as
robustness to positive scaling and rotations up to ±90◦, are
similar to the properties of the first-order consensus methods.
This originates from the structure of the Lyapunov analysis
that is similar in both approaches. However, consensus-based
methods [13], [14] require alignment of agents’ local coordi-
nate frames, whereas the formation control strategy studied in
this work does not have this constraint.

IV. FORMATION CONTROL FOR AGENTS WITH
HIGHER-ORDER DYNAMICS

In this section, we extend the single-integrator control strat-
egy to agents with higher-order dynamics. We show how the
control gains designed for single-integrator agents in Section
III-B can be used directly to control higher-order agents
without having to find a new control strategy or redesign the
gains by solving a new optimization problem. This means the
same formation can be regulated for any type of vehicle using
the same gains. We assume that the aggregate higher-order
dynamics of all agents can be expressed in the controllable
canonical form

q̇
q̇(1)

...
q̇(m−1)

q̇(m)

=


0 I 0 · · · 0
0 0 I 0
...

. . .
...

0 0 0 I
0 0 0 · · · 0




q

q(1)
...

q(m−1)

q(m)

+


0
0
...
0
I

 u, (20)

where q ∈ R2n is the aggregate position vector of all agents,
q( j) ∈ R2n denotes the j’th derivative of q, and I ∈ Rn×n is
the identity matrix. Although at first sight (20) may seem
restrictive, in fact, it encompasses a large class of agents. This
is because by coordinate transformation techniques such as
feedback linearization, or approximation techniques such as
linearization and gain scheduling, dynamics of many systems
can be expressed as (20).

Given the gain matrix A designed for agents with the single-
integrator model, the control for agents with dynamics (20) can
be chosen as

u = k0 Aq+ k1 Aq(1)+ · · ·+ km Aq(m), (21)

where k0, k1, . . . , km ∈ R are scalar control gains, and u :=
[u>1 , u>2 , . . . ,u

>
n ]
> ∈ R2n denote the aggregate control vector.

Note that (21) can be implemented locally using only the
relative measurements (due to the special structure of A).
Under this control, the closed-loop dynamics is given by

q̇
q̇(1)

...
q̇(m-1)

q̇(m)

=


0 I 0 · · · 0
0 0 I 0
...

. . .
...

0 0 0 I
k0A k1A k2A · · · kmA


︸ ︷︷ ︸

E


q

q(1)
...

q(m-1)

q(m)

 . (22)

Theorem 4. If for all nonzero µ ∈ eig(A) roots of the
polynomial equation

λ
m+1− km µ λ

m−·· ·− k1 µ λ − k0 µ = 0 (23)

have negative real parts, then under control (21), agents with
dynamics (20) globally converge to the desired formation.

Before we present the proof of Theorem 4, we present and
prove the following Lemma.

Lemma 4. Let p(·) be a given polynomial. If µ is an
eigenvalue of matrix A with v as the associated eigenvector,
then p(µ) is an eigenvalue of the matrix p(A) with v as the
associated eigenvector.
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Proof. Let p(·) be a polynomial of degree k, and consider

p(A)v = akAkv+ak−1Ak−1v+ · · ·+a1Av+a0 v, (24)

where a j’s, j = 0, . . . ,k, are coefficients of the polyno-
mial. Since v is an eigenvector, we have A jv = A j−1(Av) =
A j−1(µ v) = µ(A j−1v) = · · ·= µ jv. Thus, from (24) we get

p(A)v = (akµ
k +ak−1µ

k−1 + · · ·+a1µ +a0)v = p(µ)v,

which concludes the proof.

We now present the proof of Theorem 4.

Proof. The closed-loop state matrix E, defined in (22), is in
the (block) controllable canonical form. From this observation
and Lemma 4, the characteristic equation of E is given by

det(λ m+1 I− km λ
m A−·· ·− k1 λ A− k0 A)

= ∏
µ∈eig(A)

(λ m+1 I− km λ
m

µ−·· ·− k1 λ µ− k0 µ) = 0, (25)

which from the assumption of the theorem implies that the
nonzero eigenvalues of E have negative real parts.

To find gains k0, k1, . . . ,km that satisfy the condition of
Theorem 4, the Routh-Hurwitz criterion can be used.

Remark 5. In the above analysis, the control can alternatively
be chosen as

u = k0 Aq+ k1 q(1)+ · · ·+ km q(m). (26)

In this case, agents do not need measurements of states
q(1), . . . , q(m) for their neighbors (since A is replaced by the
identity matrix). Note that (26) can also be implemented using
only the local relative measurements.

Remark 6. There are several methods that can be used to de-
termine the relative position of agents; e.g., our previous work
[49] used vision sensors. LIDAR could be used to augment
vision for accurate displacement measurements. In what was
discussed above, relative velocity, acceleration, etc., can be
computed by taking time derivatives of the measured relative
position and using appropriate filtering when measurements
are noisy.

Example 2. (Quadrotor dynamics)
Quadrotor dynamics can be described as [50]ẍ

ÿ
z̈

= R

 0
0
ua

−
0

0
g

 , (27a)

ϕ̇

θ̇

ψ̇

= T

ωx
ωy
ωz

 , (27b)

ω̇x
ω̇y
ω̇z

= J−1

ux

uy

uz

− J−1

ωx
ωy
ωz

 × J

ωx
ωy
ωz

 , (27c)

where, as illustrated in Fig. 4, x, y, z∈R are coordinates of the
quadrotor’s center of mass in the world frame, ϕ, θ , ψ are roll,
pitch, yaw angles that describe the orientation of the quadrotor
body frame in the world frame, ωx, ωy, ωz are the angular

Fig. 4. Illustration of a quadrotor’s body frame in the world frame.

body rates about associated body axes, g is the gravitational
constant, ua is a mass-normalized thrust input, and ux,uy,uz

are moment inputs applied to the airframe about corresponding
body axes. Further, J ∈ R3×3 is the mass moment of inertia
matrix, R∈ SO(3) is the rotation matrix parameterized in terms
of z-x-y Euler angles as

R :=

cψ cθ − sϕ sψ sθ −cϕ sψ cψ sθ + cθ sϕ sψ

cθ sψ + cψ sϕ sθ cϕ cψ sψ sθ − cψ cθ sϕ

−cϕ sθ sϕ cϕ cθ

 , (28)

where c, s are respectively shorthand notations for
cos(·), sin(·) functions, and

T :=
1

cϕ

cϕ cθ 0 −cθ

sϕ sθ cϕ −cθ sϕ

−sθ 0 cθ

 ∈ R3×3 (29)

is the transformation matrix that relates the roll, pitch, yaw
derivatives to the angular velocities in the body frame.

Linearizing dynamics (27) about the hover point x = y =
z = ẋ = ẏ = ż = 0, ωx = ωy = ωz = 0, ux = uy = uz = 0, and
ua = g gives the quadrotor linearized dynamics

δ ẍ = gδθ δ θ̈ = uy

δ ÿ =−gδϕ δϕ̈ = ux

δ z̈ = ua δψ̈ = uz
(30)

where δ represents a small displacement about the equi-
librium/linearization point. Since we are interested in 2D
formations, we only consider the lateral dynamics along the
x-y axes, and separately control the quadrotor’s altitude by
setting ua = g

cϕ cθ
to stabilize it at a constant altitude.

To represent the dynamics in the canonical form (20), we
define

δ θ̄i := gδθi, δ ϕ̄i :=−gδϕi, ūy
i := guy

i , ūx
i :=−gux

i ,

where subscript i is used to distinguish agents. Using this
notation, (30) can be described in the vector form as

ṗi =


0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 pi +


0
0
0
I

ui (31)

where

pi :=[δxi, δyi, δ ẋi, δ ẏi, δ θ̄i, δ ϕ̄i, δ
˙̄
θi, δ ˙̄ϕi]

>,

ui :=[ūy
i , ūx

i ]
>,

(32)

are respectively the state and control vectors, and I ∈ R2×2

is the identity matrix. Note that by defining the aggregate
position vector as q = [δx1, δy1, . . . , δxn, δyn]

>, dynamics of
agents can be expressed in the form (20). This model will be
used in the Simulations section to achieve a desired formation.
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V. FORMATION CONTROL FOR AGENTS WITH UNICYCLE
DYNAMICS

Motion profile of many vehicles, e.g., differential drive
robots or fixed-wing aerial vehicles, can be described via the
unicycle model. In this section, we introduce the unicycle
model and propose a formation control strategy to achieve the
desired formation using the control gains that were designed
for single-integrator agents. We then show that the desired
formation is achieved even if the input is saturated, and the
control strategy is robust to unknown dynamics that are not
considered in the kinematic unicycle model. We assume hence-
forth that a symmetric negative semidefinite gain matrix A is
designed for the desired formation by solving the optimization
problem (10).

A. Unicycle Dynamics

Consider a unicycle agent located at position [xi, yi]
> ∈ R2

in a global coordinate frame (unknown to the agent), and
assume that the unicycle’s heading direction makes angle
θi ∈ [0, 2π) with the x-axis of the global coordinate frame.
This scenario is illustrated in Fig. 5. The unicycle dynamics
can be described in the global coordinate frame by

ẋi = vi cos(θi)

ẏi = vi sin(θi)

θ̇i = ωi

(33)

where scalars vi, ωi ∈R are respectively the linear and angular
velocities of the agent. In the unicycle kinematic model, it
is assumed that vi and ωi are control variables and can be
changed instantaneously.

In the global coordinate frame, the unit norm heading vector
of the unicycle, hi ∈R2, and its perpendicular vector h⊥i ∈R2,
are given by

hi :=
[

cos(θi)
sin(θi)

]
, h⊥i :=

[
−sin(θi)
cos(θi)

]
. (34)

Seeing that ḣi = h⊥i θ̇i, (33) can be equivalently described by

q̇i = hi vi

ḣi = h⊥i ωi.
(35)

Let q := [q>1 , q>2 , . . . , q>n ]
> ∈ R2n be the aggregate position

vector of all agents, and similarly let h ∈R2n, v ∈Rn, ω ∈Rn

be the aggregate heading, linear velocity, and angular velocity
vectors, respectively. Using this notation, the motion of all
agents can be collectively expressed as

q̇ = H v

ḣ = H⊥ω.
(36)

where matrices H, H⊥ ∈ R2n×n are defined as

H :=


h1 0 · · · 0
0 h2 0
...

. . .
...

0 0 · · · hn

 , H⊥ :=


h⊥1 0 · · · 0
0 h⊥2 0
...

. . .
...

0 0 · · · h⊥n

 .
(37)

	௜ߠ

௜ݔ

௜ݕ

݄௜

݄௜ୄ

௜ݒ

߱௜

	௜ݑ

Fig. 5. An agent with unicycle dynamics at position (xi,yi) in the global
coordinate frame. The agent’s heading is denoted by hi, and makes the angle
θi with the global coordinate frame’s x-axis. Scalars vi and ωi are defined as
the length of the control vector ui projected on hi and h⊥i , respectively.

B. Control Strategy

Consider a team of n unicycle agents with dynamics (35).
We seek to assign controls vi and ωi such that agents au-
tonomously achieve a desired formation. Let A ∈ R2n×2n be
a symmetric gain matrix designed in Section III-B for agents
with single-integrator model to achieve the desired formation.
Further, let ui given in (2) be the desired holonomic control
direction for agent i. The proposed control strategy is as
follows. Each agent computes the control vector ui and projects
it on its local heading and perpendicular heading directions.
The projected vectors are then used as the linear and angular
velocity commands. In the global coordinate frame, which is
unknown to agent, this strategy can be described by

vi := h>i ui

ωi := h⊥>i ui,
(38)

as illustrated in Fig. 5. Implementation of (38) does not rely
on a global coordinate system. This is because hi is a unit
vector along the direction of vehicle, which is known by the
agent locally, and ui is the single-integrator control given in
the agent’s local coordinate frame.

Theorem 5. Let A be a symmetric gain matrix designed
for single-integrator agents. Under the control (38), unicycle
agents globally converge to the desired formation.

Proof. By replacing the control (38) in (35), the closed-loop
dynamics can be expressed in the vector form by

q̇ = H H>Aq

ḣ = H⊥H⊥>Aq.
(39)

Since A is symmetric and negative semidefinite, we can
consider

V :=−1
2

q>Aq≥ 0 (40)

as a Lyapunov function candidate. Time derivative of V along
the trajectory of (39) is

V̇ =−q>Aq̇

=−q>AH H>Aq

=−(H>Aq)>(H>Aq) =−‖H>Aq‖2 ≤ 0, (41)

which implies that the system is stable. To show convergence
to the desired formation we use the LaSalle’s invariance princi-
ple and show that q converges to the kernel of A. Since V̇ = 0
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implies that H>Aq = 0, by LaSalle’s invariance principle q
converges to the largest invariant set in {q∈R2n |H>Aq≡ 0}.
Thus, one of the following cases must hold:

(i) Aq≡ 0
(ii) Aq 6= 0, H>Aq≡ 0

Case (i) implies that the desired formation is achieved.
In case (ii), H>Aq ≡ 0 implies that there exists constants
c1, c2, . . . , cn ∈ R, with at least one ci 6= 0, such that

Aq =


c1h⊥1
c2h⊥2

...
cnh⊥n

 6= 0. (42)

Since H>Aq ≡ 0, from (39) we get q̇ ≡ 0. Thus, q and Aq
are constant, and from (42) we conclude that h⊥i (and thus hi)
is constant for all nonzero ci. From the definition of H⊥ in
(37), one can see that H⊥ has full column rank. Therefore,
it does not have a right null vector, and from (42) we have
H⊥>Aq 6= 0. This shows H⊥H⊥>Aq 6= 0, and consequently
from (39) we get ḣ 6= 0. This implies that the heading vectors
are not fixed and rotating, which is a contradiction and shows
that case (ii) cannot happen.

Remark 7. From the closed-loop dynamics (39) one can see
that when agents are at the desired formation, i.e., Aq = 0,
we have ḣ = 0 and hence the heading directions do not vary.
This implies that the controller drives agents to the desired
formation, however their heading at the desired formation is
not controlled and can take an arbitrary value. If desired,
a supplementary control can be added to regulate heading
angles after convergence.

Remark 8. It is worth pointing out that the control (38)
can drive unicycle agents with a cart attached to the desired
formation. In this case the position and orientation of the
attached carts are not controlled. The dynamics of a unicycle
agent with cart attached is similar to the dynamics of a car,
which is studied in the next section.

C. Robustness to Saturated Input
In practice, the linear and angular velocities that an agent

can execute are often limited to a certain range. We show that
under a saturated input, convergence of agents to the desired
formation is not affected.

Theorem 6. Consider the unicycle model (35) and assume
that vmax, ωmax > 0 are two real positive scalars. If vi and ωi
are saturated such that |vi| ≤ vmax , |ωi| ≤ ωmax, then under
the control (38) the desired formation is achieved globally.

Proof. To model the input saturation we can define the diag-
onal matrices S, E ∈ Rn×n with diagonal elements

(S)ii =

{
1 if |vi| ≤ vmax
vmax
|vi| if |vi|> vmax

(43)

and

(E)ii =

{
1 if |ωi| ≤ ωmax
ωmax
|ωi| if |ωi|> ωmax.

(44)

Elements of S, E can be considered as functions that saturate
any large input to the maximum allowed values vmax, ωmax (cf.
Fig. 3 for saturated single-integrator control). The closed-loop
dynamics under the saturated input can be expressed in the
vector form via

q̇ = H SH>Aq

ḣ = H⊥E H⊥>Aq.
(45)

System (45) should be understood as a family of switched
dynamical systems, for which we choose V := − 1

2 q>Aq ≥ 0
as a common Lyapunov function candidate. Time derivative
of V along the trajectory of (45) is

V̇ =−q>Aq̇

=−q>AH SH>Aq

=−(S
1
2 H>Aq)>(S

1
2 H>Aq) =−‖S

1
2 H>Aq‖2 ≤ 0. (46)

Thus, V satisfies conditions of Lemma 3 and Corollary 1,
and from LaSalle’s invariance principle it follows that all
trajectories of (45) converge to the zero set of V , which is
the set of all desired formations.

D. Robustness to Unmodeled Linear Actuator Dynamics

In practice, the linear and angular velocities of a vehicle
cannot change instantaneously. The dynamic behavior of these
velocities, which is not accounted for in the unicycle model
(33), can be modeled by

ẋi = vi cos(θi)

ẏi = vi sin(θi)

v̇i =−avi +bsi

θ̇i = ωi

ω̇i =−cωi +d ri

(47)

where si, ri ∈ R are controls to adjust the linear and angular
velocities, and a,b,c,d ∈R are strictly positive scalars, which
depend on the vehicle’s inertia, motor dynamics, friction, etc.,
and are in general unknown. We show that unmodeled velocity
dynamics does not affect the convergence of the unicycle
control strategy (38). That is, applying the control

si := h>i ui

ri := h⊥>i ui
(48)

in (47) results in the desired formation.

Theorem 7. Let A be a symmetric gain matrix designed for
single-integrator agents. Under the control (48) agents with
dynamics (47) globally converge to the desired formation.

Proof. Substituting (48) in (47) gives the closed-loop dynam-
ics in the vector form as

q̇ = H v

v̇ = bH>Aq−av

ḣ = H⊥ω

ω̇ = d H⊥>Aq− cω

(49)
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where v := [v1, v2, . . .vn]
> ∈ Rn and ω := [ω1, ω2, . . .ωn]

> ∈
Rn are aggregate linear and angular velocity vectors, respec-
tively. Consider the Lyapunov function candidate

V :=−b
2

q>Aq+
1
2

v>v ≥ 0. (50)

Time derivative of V along the trajectory of (49) is

V̇ =−bq>Aq̇+ v̇>v

=−bq>AH v+bq>AH v−av>v

=−av>v ≤ 0. (51)

Similar to the proof of Theorem 5, we use LaSalle’s invariance
principle and show that the largest invariant set consists of
the desired formations. By setting V̇ ≡ 0 to find the invariant
sets, from (51) we get v ≡ 0, which implies that v̇ ≡ 0.
Consequently, from (49) we should have that bH>Aq ≡ 0,
which implies one of the following two cases:

(i) Aq≡ 0
(ii) Aq 6= 0, H>Aq≡ 0.

Case (i) implies that the desired formation is achieved,
where by replacing Aq≡ 0 in (49) the dynamics reduces to

ḣ = H⊥ω

ω̇ =−cω.
(52)

This shows ω, ḣ → 0, and therefore ω converges to
zero and h converges to a constant value. Thus, the set{
[q>, v>, g>, ω>]> ∈ R6n : Aq = 0, v = 0

}
, which consists of

the desired formations, is an invariant set.
We now show that case (ii) cannot be an invariant set.

Using a similar reasoning to the proof of Theorem 5, from
v ≡ 0, H>Aq ≡ 0, and dynamics (49) one can conclude that
in this case q, Aq, and h are all constant and nonidentical
to zero. Further, H⊥>Aq 6≡ 0, which from (49) implies that
ω̇ 6≡ 0 and hence ω 6≡ 0. This, together with H⊥ having full
column rank implies that ḣ 6≡ 0, which is a contradiction to
h being constant. This shows that case (ii) is not an invariant
set, which concludes the proof.

Remark 9. In (47), we assumed that a, b, c, d have the same
value for all agents. This assumption was made to simplify
the notation and does not affect the generality of the results.
One can assign a different value to these parameters for each
agent and use the same analysis to prove the convergence.

Remark 10. In (47), the assumption a, c > 0 implies that
agents are zero-input stable, which often holds in practice.
However, for a, c < 0 the control can be modified using the
velocity feedback as

si :=−ks (vi−h>i ui)

ri := h⊥>i ui,
(53)

where ks ∈R is a positive control gain. Using similar analysis
to the proof of Theorem 7, one can show that if ks is chosen
such that a + ks b > 0, the agents converge to the desired
formation. Lastly, with multiplying si, ri by the sign of b, d,
respectively, the assumption b, d > 0 can be relaxed to only
knowing the sign of these parameters.

	௜ߜ
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Fig. 6. A car at position (xi,yi) in the global coordinate frame. The agent’s
heading is denoted by hi, and makes the angle θi with the global coordinate
frame’s x-axis. The front wheels’ steering direction is along the vector gi,
which makes the angle δi with the x-axis.

VI. FORMATION CONTROL FOR AGENTS WITH CAR
DYNAMICS

Cars are another common platform for which attaining
a desired formation is often of interest (e.g., in intelligent
transportation systems). In this section, we present a control
strategy for agents with both front and rear-wheel drive car
model. We then show that the convergence is not affected when
the input is saturated, and the control is robust to unmodeled
dynamics. Similar to previous section, henceforth we assume
that a symmetric negative semi-definite control gain matrix A
is designed by solving the optimization problem (10).

A. Control Strategy for Front-Wheel Drive Car

Consider an agent with the front-wheel drive car model as
illustrated in Fig. 6. The motion of this agent can be described
by the dynamics

ẋi = vi cos(θi +ϕi)

ẏi = vi sin(θi +ϕi)

θ̇i =
vi

l
sin(ϕi)

ϕ̇i = ωi

(54)

where xi, yi ∈R2 are the coordinates of the front axle’s center,
vi ∈ R is the driving velocity, θi ∈ [0, 2π) is the heading
angle, ϕi ∈ [0, 2π) is the steering angle, ωi is the steering
velocity, and l ∈R is the wheelbase. In this kinematic model,
it is assumed that vi and ωi are inputs and can be controlled
directly. By defining

δi := θi +ϕi, (55)

one can alternatively write (54) as [51]

ẋi = vi cos(δi)

ẏi = vi sin(δi)

θ̇i =
vi

l
sin(δi−θi)

δ̇i =
vi

l
sin(δi−θi)+ωi.

(56)

Note that to simplify the notation, we have assumed that l is
identical for all agents. This does not affect the generality of
the following results, and one can carry the following analysis
with a different l for each agent.

To derive an alternative formulation for (56) that is more
suitable for the control design, we define the steering vector



11

gi ∈ R2 and its perpendicular g⊥i ∈ R2, and heading vector
hi ∈ R2 and its perpendicular h⊥i ∈ R2 as

gi :=
[

cos(δi)
sin(δi)

]
, g⊥i :=

[
−sin(δi)
cos(δi)

]
,

hi :=
[

cos(θi)
sin(θi)

]
, h⊥i :=

[
−sin(θi)
cos(θi)

]
.

(57)

Seeing that ġi = g⊥i δ̇i, ḣi = h⊥i θ̇i, and sin(δi − θi) =
sin(δi)cos(θi)−cos(δi)sin(θi) = h⊥>i gi, we can describe (56)
equivalently by

q̇i = gi vi

ġi = g⊥i

(
1
l

h⊥>i gi vi +ωi

)
ḣi = h⊥i

(
1
l

h⊥>i gi vi

)
.

(58)

From (58), the dynamics of all agents can be collectively
expressed in the vector form

q̇ = Gv

ġ =
1
l

G⊥H⊥>Gv+G⊥ω

ḣ =
1
l

H⊥H⊥>Gv.

(59)

where q, g, h ∈ R2n are aggregate state, steering, and heading
vectors, and v, ω ∈ Rn are aggregate control vectors. Further,
H, H⊥ are defined according to (37), and G, G⊥ are defined
by replacing hi’s by gi’s in (37).

Using a similar strategy to the unicycle agents in Section
V, we define the driving and steering velocity controls as the
projections of the holonomic control vector along the steering
direction and its perpendicular by

vi := g>i ui

ωi := g⊥>i ui,
(60)

where ui is given in (2). We emphasize that (60) can be imple-
mented using only the local relative position measurements.

Theorem 8. Let A be a symmetric gain matrix designed
for single-integrator agents. Under the control (60), agents
with front-wheel drive car dynamics globally converges to the
desired formation.

Proof. The proof follows from similar analysis to the proof
of Theorem 5. By substituting (60) in (59), the closed-loop
dynamics is given in the vector form as

q̇ = GG>Aq

ġ =
1
l

G⊥H⊥>GG>Aq+G⊥G⊥>Aq

ḣ =
1
l

H⊥H⊥>GG>Aq.

(61)

Using V := − 1
2 q>Aq ≥ 0 as a Lyapunov function candidate,

one can show that the time derivative of V along the trajectory
of (61) is V̇ = −‖G>Aq‖2 ≤ 0, which implies the stability
of system. Convergence to the desired formation follows from
the LaSalle’s invariance principle. In particular, in the case
that Aq 6= 0 but G>Aq ≡ 0, dynamics of g in (61) reduces

to ġ = G⊥G⊥>Aq, which is the same as dynamics for h in
the unicycle model (39). By the same token, this case cannot
be a invariant set, and the only possibility is Aq ≡ 0, which
indicates that the desired formation is achieved.

Remark 11. Similar to the unicycle agents, the final heading
and steering angles of agents with car dynamics at the the
desired formation are not controlled and can take arbitrary
values.

B. Control Strategy for Rear-Wheel Drive Car

The dynamics of a rear-wheel drive car is identical to the
front-wheel drive car except that the front wheels’ driving
velocity vi is indirectly controlled via the rear wheels’ driving
velocity vr

i . The relation between the front and rear wheels’
driving velocities is given by

vi =
1

cos(ϕi)
vr

i . (62)

To set vi to the desired value defined in (60), from (62) we
have that the rear wheels’ driving velocity should be

vr
i := cos(ϕi)g>i ui. (63)

The main difference between the rear and front-wheel drive
car is that when ϕi =±π

2 , from (63) vr
i , and hence vi, become

zero. On the contrary, vi in a front-wheel drive car can take
any desired value in this case (one can interpret this as the car
pivoting about its rear wheels).

Theorem 9. Under the conditions of Theorem 8 with driving
velocity control (63), agents with rear-wheel drive car dynam-
ics almost globally converge to the desired formation.

Proof. Under the control (63), the closed-loop dynamics is
similar to (61), except when the steering angles are ±π

2 ,
in which case the driving velocity is zero. By defining the
diagonal matrix Γ ∈ Rn×n with diagonal entries

(Γ)ii =

{
1 if ϕi 6=±π

2
0 if ϕi =±π

2
(64)

driving velocity can be expressed as v = ΓG>Aq, and from
(59) the closed-loop dynamics of a rear-wheel drive car is
given by

q̇ = GΓG>Aq

ġ =
1
l

G⊥H⊥>GΓG>Aq+G⊥G⊥>Aq

ḣ =
1
l

H⊥H⊥>GΓG>Aq.

(65)

We use V := − 1
2 q>Aq ≥ 0 as a common Lyapunov function

candidate for the switched system (65) to prove stability and
convergence in a manner similar to Theorem 8. By direct
calculation, derivative of V along the trajectory of (65) is
V̇ = ‖ΓG>Aq‖2 ≤ 0. When the diagonal elements of Γ are all
ones, i.e., no heading angle is equal to ±π

2 , the dynamics (65)
is identical to (61) and convergence follows from the proof of
Theorem 8. Thus, we only need to analyze instances where
ϕi =±π

2 . At such instances, one of the following cases hold
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(i) ∃i,ϕi 6=±π

2 or G⊥>Aq 6= 0
(ii) ∀i,ϕi =±π

2 and G⊥>Aq = 0.
If agents are not at the desired formation, i.e., Aq 6= 0, case
(i) cannot be an invariant set. This is because V̇ ≡ 0 implies
ΓG>Aq ≡ 0, and hence from (65) we get ġ = G⊥G⊥>Aq,
which shows g is varying and the heading angles cannot
remain at ±π

2 . On the other hand, case (ii) is an invariant set
at which the agents stop moving without reaching the desired
formation. From the Picard-Lindelof theorem on the existence
and uniqueness of solutions, only one trajectory of system
(61) passes through the point where all ϕi’s are π

2 . Thus, the
number of trajectories at which all heading angles are either π

2
or −π

2 is 2n. In the space of all trajectories, these trajectories
are a measure zero set (i.e., they have zero volume). This
shows almost global convergence of system (65) to the desired
formation.

Remark 12. Due to noise, unmodeled dynamics, disturbances,
etc., in practice agents cannot stay on a measure zero set of
trajectories. Furthermore, as we will show subsequently, the
steering angle of a car can be bounded to remain less than ±π

2
and avoid the undesired case (ii) in the proof. Consequently,
the “almost" global convergence of rear-wheel drive car in
Theorem 9 does not affect the applicability of the control
strategy.

Due to the similarity of the dynamics and analysis for the
front and rear-wheel drive car models, we only consider the
front-wheel drive car model throughout the rest of this section.

C. Robustness to Saturated Input and Bounded Steering Angle
The steering angle and the driving and steering velocities

of a car often cannot take arbitrary values and must be
bounded by practical limits. This, however, does not affect
the convergence of the agents to the desired formation.

Theorem 10. Consider car dynamics (54), and assume that
vmax, ωmax, ϕmax > 0 are real positive scalars. If vi and ωi are
saturated such that |vi| ≤ vmax , |ωi| ≤ ωmax, and the steering
angle is bounded by |ϕi| ≤ ϕmax, then under the control (60)
the desired formation is achieved globally.

Proof. To model the input saturation, we consider the diagonal
matrices S, E ∈ Rn×n defined in (43), (44). Further, to model
the bounded steering angel we define the diagonal matrix Γ ∈
Rn×n via

(Γ)ii =

{
1 if |ϕi| ≤ ϕmax

0 if |ϕi|> ϕmax
(66)

The closed-loop dynamics under the saturated input and
bounded steering angle can be expressed in vector form as

q̇ = GSG>Aq

ġ =
1
l

G⊥H⊥>GSG>Aq+G⊥ΓE G⊥>Aq

ḣ =
1
l

H⊥H⊥>GSG>Aq.

(67)

The solutions of switched system (67) are well-defined in the
Filippov sense. Similar to the proof of Theorem 6, by con-
sidering V :=− 1

2 q>Aq≥ 0 as a common Lyapunov function

candidate, the time derivative of V along the trajectory of
(65) is V̇ = −‖S 1

2 G>Aq‖2 ≤ 0. The Lyapunov function V
satisfies the conditions of Lemma 3, and from Corollary 1
and LaSalle’s invariance principle, it follows that the desired
formation is achieved.

D. Robustness to Unmodeled Linear Actuator Dynamics

Since in practice the driving and steering velocities of a car
cannot change instantaneously, the car dynamics (54) can be
modified as

ẋi = vi cos(θi +ϕi)

ẏi = vi sin(θi +ϕi)

v̇i =−avi +bsi

θ̇i =
vi

l
sin(ϕi)

ϕ̇i = ωi

ω̇i =−cωi +d ri

(68)

to incorporate the dynamics of these velocities. In (68),
si, ri ∈ R are control inputs to adjust the driving and steering
velocities. Further, we assume that a,b,c,d ∈ R are strictly
positive, but unknown. The following theorem shows that the
unmodeled velocity dynamics does not affect the convergence
of the control strategy (60). That is, applying the control

si := g>i ui

ri := g⊥>i ui
(69)

in (68) results in the desired formation.

Theorem 11. Let A be a symmetric gain matrix designed for
single-integrator agents. Under the control (69), agents with
dynamics (68) globally converge to the desired formation.

Proof. By substituting (69) in (68), the closed-loop dynamics
is given in the vector from by

q̇ = Gv

v̇ = bG>Aq−av

ġ =
1
l

G⊥H⊥>Gv+G⊥ω

ḣ =
1
l

H⊥H⊥>Gv

ω̇ = d G⊥>Aq− cω

(70)

where v, ω are the aggregate driving and steering velocity
vectors. Similar to the proof of Theorem 7, we consider V :=
− b

2 q>Aq+ 1
2 v>v ≥ 0 as a Lyapunov function candidate. After

simplifications, the time derivative of V along the trajectory
of (70) is given by −av>v ≤ 0. To show convergence using
LaSalle’s invariance principle, we set V̇ ≡ 0 to find the largest
invariant set. This implies that v ≡ 0, and therefore v̇ ≡ 0.
Consequently, from (70) we should have that bG>Aq ≡ 0,
which implies one of the following two cases:

(i) Aq≡ 0
(ii) Aq 6= 0, G>Aq≡ 0.
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Case (i) implies that the desired formation is achieved,
where by replacing v ≡ 0 and Aq ≡ 0 in (70) the dynamics
reduces to

ġ = G⊥ω

ω̇ =−cω.
(71)

This shows ω, ġ → 0, and therefore ω converges to
zero and g converges to a constant value. Thus, the set{
[q>, v>, g>, ω>]> ∈ R6n : Aq = 0, v = 0

}
, which consists of

the desired formations, is an invariant set.
We now show that case (ii) cannot be an invariant set.

Using a similar reasoning to the proof of Theorem 7, from
v ≡ 0, G>Aq ≡ 0, and dynamics (70) one can conclude that
in this case q, Aq, and g are all constant and nonidentical
to zero. Further, G⊥>Aq 6≡ 0, which from (70) implies that
ω̇ 6≡ 0 and hence ω 6≡ 0. This, together with G⊥ having full
column rank implies that ġ 6≡ 0, which is a contradiction to
g being constant. This shows that case (ii) is not an invariant
set, which concludes the proof.

Remark 13. On a similar note to Remarks 9 and 10, in (68)
parameters a, b, c, d can take different values for each agent.
Further, if ks ∈R is chosen such that a+ks b > 0, the modified
control

si :=−ks(vi−g>i ui)

ri := g⊥>i ui
(72)

can bring agents with a, c < 0 to the desired formation.

VII. EXTENSIONS AND VARIATIONS

In this section, we briefly address additional topics such
as collision avoidance, stability under a time-varying sensing
topology, and formation scale adjustment, which are important
in a practical implementation.

A. Collision Avoidance

As discussed in Section III-C, by using the control gains
computed from Algorithm 1, positive scaling and rotation of
the the control vectors up to ±90◦ does not affect convergence
of agents to the desired formation. This observation can be
used to implement a distributed collision avoidance strategy.
Fig. 7 illustrates a scenario where the desired control direction
of agent i can potentially cause collision with an adjacent
agent. Tangent lines from agent i to circles of radius r ∈ R
centered at the adjacent agents define collision avoidance
cones, where by rotating the control vector to a direction
outside of these cones the collision is prevented. To preserve
the stability properties, the rotation is limited to ±90◦ of
the original control direction, e.g., in Fig. 7 the control ui
cannot be rotated below the solid black line. In a case where
there is no possible direction of motion within the allowed
rotation range the control is set to zero, and the agent stops
until a feasible control direction is available. To alter the
control direction as little as possible, one can define a distance
threshold dc ∈ R such that the collision avoidance strategy is
triggered only when the distance to an adjacent agent is less
than this threshold. The above collision avoidance strategy is

Fig. 7. Control vector of agent i rotated outside of the collision cones.

Algorithm 2: Distributed collision avoidance.

input : Desired control direction ui ∈ R2

Collision circle radius r ∈ R
Activation threshold dc ∈ R

output: Modified control direction u′i ∈ R2

step 1: Construct collision cones with circles of radius r
centered at agents closer than dc.

step 2: Find rotation R(θ) ∈ SO(2) with minimum |θ |
such that Rui is outside of collision cones.

step 3: If step 2 is infeasible or |θ | ≥ 90◦ set u′i = 0,
otherwise set u′i = R(θ)ui.

outlined in Algorithm 2. Note that this strategy is distributed
and does not required inter-agent communication.

If the initial inter-agent distances are greater than r, it is
straightforward to show that collision avoidance is guaranteed
for single-integrator agents under Algorithm 2 (this follows
by showing that inter-agent distances cannot become less
than r). For agents with higher-order dynamics, r should
be chosen large enough to accommodate for the maximum
braking distance. We should point out that convergence to
the desired formation under the proposed strategy is heuristic
and not always guaranteed. In particular, one can construct
counter examples where agents are caught in a gridlock due
to unavailability of feasible control direction. However, in our
simulation and experimental studies we observed that if agents
are initially spaced far apart, they can resolve gridlocks and
converge to the desired formation. We are not aware of any
existing collision avoidance strategy that is distributed, does
not require communication, and can guarantee convergence of
agents to the desired formation. Commonly used distributed
strategies such as safety barrier functions [52] and traffic
circles [53] have similar gridlock situations. We point out
that in scenarios where inter-agent communication is possible,
distributed task assignment techniques can be leveraged to
resolve gridlocks (see our recent work [42]).

On the other hand, under the proposed strategy, stability of
the overall system is guaranteed by Theorem 2. This distin-
guishes the proposed strategy from an ad hoc augmentation of
the control to avoid collision, e.g., via potential functions. Such
augmentations may lead to undesired behavior or instability of
the overall system. For example, they may cause the robots to
drift along a direction or circle in a limit cycle indefinitely.
Such behaviors are not present in the proposed approach, and
if the robots do not go to a gridlock, convergence to the desired
shape is guaranteed.
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B. Time-Varying Sensing Topology

In a time-varying or switching sensing topology, the agents
can lose or acquire sensing capability of other agents in the
group. For example, if a vision sensor is used to provide posi-
tion measurements, sensing capability is lost when a neighbor
agent is obstructed by another agent and acquired when an
agent moves in the line of sight. The following theorem shows
that by using the proposed gain design approach a switching
sensing topology does not affect the convergence of single-
integrator agents to the desired formation.

Theorem 12. Let G := {G1,G2, . . . ,Gm} denote a finite set
of undirected and universally rigid sensing topologies, with
associated gain matrices A1, A2, . . . , Am ∈ R2n×2n computed
from Algorithm 1. If single-integrator agents use the associated
gains for each topology, under control (2) the agents globally
converge to the desired formation while the sensing graph can
switch in G arbitrarily.

Proof. The closed-loop dynamics under the proposed control
strategy is given by q̇ = Ai q, where i ∈ 1, 2, . . . ,m denote the
index of the sensing topology. By considering V := q> q ≥ 0 as
a common Lyapunov function candidate for the this family of
switched systems, we derive V̇ = q>Ai q. Since Ai is negative
semidefinite by design for every i, it follows that V̇ ≤ 0. Hence,
from Lemma 3 and Corollary 1 we have that the desired
formation is achieved under an arbitrary switching among
topologies.

Theorem 12 ensures convergence under an arbitrary switch-
ing of sensing topologies provided that stabilizing gain ma-
trices are computed for each topology. To ensure that the
formation control strategy is applicable in a switching scenario
without inter-agent communication, additional constraints can
be enforced to obtain gains that jointly stabilize all sensing
topologies. To elaborate this point, consider the example of
four sensing topologies illustrated in Fig. 8. In topologies
numbered as (1) and (3), agent 1 has the same set of neighbors,
namely agents 2 and 4. Since agent 1 is not aware of the
overall sensing topology, from its point of view topologies (1)
and (3) are indistinguishable. Consequently, the control gains
for agent 1 in matrices A1 and A3 should be identical to ensure
they jointly stabilize both topologies.

To find gain matrices that jointly stabilize switching sensing
topologies, the optimization problem (10) can be modified as
follows. We define the block diagonal matrix Λ ∈ R2nm×2nm

as Λ := diag(Ā1, Ā2, . . . , Ām), where Āk is defined according
to (9). The gain matrices that jointly stabilize the topologies
are found by solving

maximize
ak

i j ,b
k
i j

λ1(−Λ)

subject to Ak N = 0 ∀k∈Nm

trace(Λ) = constant
A(Λ) = 0

(73)

Here, ak
i j, bk

i j are entries of Ak, the first constraint ensures that
N is the kernel of all gain matrices, and the second constraint
ensures that the problem is bounded. The expression A(Λ) = 0
encapsulates the constraints that enforce the block diagonal

structure of Λ and ensure agents with identical set of neighbors
in two (or more) topologies have the same set of gains.

In a manner similar to problem (10), the objective of (73)
aims to minimize the largest eigenvalue of all gain matrices
(note that eigenvalues of a block diagonal matrix consist of the
eigenvalues of each diagonal block). While universal rigidity
of the sensing graph is necessary and sufficient to ensure
Algorithm 1 results in a stabilizing gain matrix, to ensure a
group of gain matrices are jointly stabilizing additional sensing
is often required. A sufficient conditions under which joint
stabilizability is guaranteed is provided in our prior work [37,
see Thm. 4], which depends on the number and topology of
the sensing graphs.

While the focus of this work is formation control without
inter-agent communication, we point out that in scenarios
where communication is possible, other techniques can be
leveraged to handle switching topologies. For example, the
gains can be found online for each topology via solving (10)
using a distributed ADMM techniques [54], which requires
inter-agent communication to converge. Ultimately, the appro-
priate method for handling a switching scenario depends on
the hardware and communication constraints.

Lastly, we emphasize that the result of Theorem 12 are
based on the single-integrator dynamics. Due to the conver-
gence properties of control for unicycle and car dynamics in
a fixed topology, under suitable assumptions that switching is
slow enough (i.e., large dwell time), convergence of unicycles
and cars to the desired formation in the switching case can be
expected. Deriving a lower bound for the dwell time will be
a topic of future work.

C. Scale Adjustment

To fix the scale of the final formation, control law (2) can
be augmented by a bounded smooth map f : R→ R as

ui = ∑
j∈Ni

Ai j (q j−qi)+ f (di j−d∗i j)(q j−qi), (74)

where di j := ‖q j − qi‖ denote the distance between agent i
and j, d∗i j ∈ R is its desired value, and f is chosen such that
x f (x) > 0 for x 6= 0, and f (0) = 0. Possible choices for f
are f : x 7→ 1

k arctan(x) or f : x 7→ 1
k tanh(x), where k > 0 is

an arbitrary constant. The role of f in (74) is to pull agents
toward their neighbors when the distance between them is
larger than the desired value, and vice versa. For agents with
single-integrator dynamics, we have shown that agents almost
globally converge to the desired formation [39]. The study
of global asymptotic stability for agents with higher order
dynamics is a topic of future research.

D. 3D Formations

The proposed control approach, together with the con-
vergence and robustness properties, can be extended to 3D
formations. This extension has been done in our recent work
[41], where experimental validations on a fleet of Crazyflie
quadrotors are performed to demonstrate the strategy.
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Fig. 8. Top: Four sensing topologies. Bottom: Switching among the topolo-
gies vs. time.

VIII. SIMULATIONS

To validate the proposed approach, we present several
simulations for planar formation of quadrotors, unicycles, and
cars. Links to simulation code and videos are provided in the
Supplementary Material section.

A. Quadrotors

Based on the quadrotor dynamics described in Example 2,
a simulation with 9 quadrotors and a scale-free square grid
desired formation is performed. Although the control design
is based on the linearized dynamics about the quadrotor’s
hover point, the original nonlinear quadrotor dynamics given
in (27) is used for the simulation. To demonstrate robustness to
switches in the inter-agent sensing topology, the sensing graph
is switched among the topologies illustrated in Fig. 8 based
on a randomly generated switching signal shown in the figure.

We further performed simulations in which the topology
changes are based on the robots’ proximity. Since performance
was similar to the results presented here, we do not report
the results, however, they can be viewed in the supplemental
video available at https://youtu.be/3IcikoWBZJE. The control
gains associated with the desired formation are computed
from Algorithm 1, where we used (73) to obtain gains that
jointly stabilize all topologies. The nonzero eigenvalues of
computed A∈R18×18 matrices range from −0.035 to −0.497.
The control law used for each quadrotor is chosen according
to (26), where gains are set as k0 = 2, k1 = 2, k2 = 3, k3 = 3 to
make the closed-loop state matrix Ā stable for all topologies.
Using these gains, the real part of nonzero eigenvalues of
Ā matrices range from −0.038 to −2.0. To avoid collision
among quadrotors, the distributed collision avoidance strategy
in Algorithm 2 with dc = 8 and r = 4 units of length is
employed.

Fig. 9(a)-(e) shows the top view of quadrotors at different
time instances. The sensing graph among agents is shown
by gray lines connecting the quadrotors. This sensing graph
switches throughout the simulation according to Fig. 8. The
initial positions of the quadrotors are chosen randomly, and
are shown in Fig. 9(a). As can be seen in Figs. 9(b)-(e), the
proposed control strategy brings the agents to the desired for-
mation. Note that when the distance between two quadrotors
becomes less than 8 units of length, the collision avoidance

strategy is engaged to rotate the control direction outside of the
collision cone. Consequently, none of the quadrotors collide
during the simulation. Further notice that since the control
only uses the local relative position measurements, the desired
formation is achieved up to a rotation and translation. That is,
the orientation of the square formation is not controlled.

We point out that in the quadrotor Example 2, the inputs
are ux, uy and the outputs are the x-y positions (since we are
concerned with planar formations). The input ua affects the
x-y positions through R due to the coupled dynamics, and the
zero dynamics consists of the state variables z, ψ, ωz, which
are unobservable from the outputs, however, are asymptotically
stable. The theoretical convergence guarantees of the proposed
control are based on the assumption of input-to-state feedback
linearizability. Nonetheless, as can be seen from the simulation
results which are based on the original nonlinear dynamics,
the quadrotors achieve the desired formation. This suggests
potential applicability of the proposed control to systems with
asymptotically stable zero dynamics, which can be expected
due to the robustness properties.

B. Unicycles

The control strategy (38) for agents with unicycle dynamics
is considered in a simulation with 9 unicycles and a square
grid desired formation. The unicycle dynamics (47) are used to
test the performance of control in the presence of unmodeled
dynamics, where values of parameters a, b, c, d are chosen
randomly for each agent with uniform distribution in the
interval [5, 10]. All linear and angular velocities are saturated
by the maximum allowed velocities of vmax = 3 units of length
per second and ωmax = π/4 radians per second, respectively.
The control gain matrices designed for quadrotors in the
previous section are used for unicycle agents, showing that
the control gains found from Algorithm 1 can be used for
vehicles with a variety of dynamics to achieve the same desired
formation.

To allow a better comparison between trajectories of agents
with different dynamics, the unicycle agents start from the
same initial condition as quadrotors, as can be seen in
Fig. 10(a), and the sensing topology among them switches
according to Fig. 8. The position of agents at other time
instances are shown in Figs. 10(b)-(e), where by using the
collision avoidance strategy in Algorithm 2 with dc = 8 and
r = 4 units of length, no collisions occur as the unicycles
converge to the desired formation. Similar to quadrotors, the
desired formation is scale-free and achieved up to a rotation
and translation with respect to the global coordinate frame that
is unknown to agents.

C. Cars

The control strategy (60) for agents with front-wheel drive
car dynamics is considered in a simulation with 9 cars and
a square grid desired formation. The car dynamics (68) is
used to test the performance of control in the presence of
unmodeled dynamics, where values of parameters a, b, c, d
are chosen as the same values for unicycle agents to allow a
better comparison. The driving and steering velocities of cars

https://youtu.be/3IcikoWBZJE
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Fig. 9. Simulation of 9 quadrotors with a square grid desired formation (actual size of vehicles increased by a factor of 1.5 for better visibility). (a) Top
view at t = 0s. (b) t = 4s. (c) t = 8s. (d) t = 21s. (e) t = 80s.
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Fig. 10. Simulation of 9 unicycles with a square grid desired formation (actual size of vehicles increased by a factor of 1.5 for better visibility). (a) Top
view at t = 0s. (b) t = 17s. (c) t = 25s. (d) t = 45s. (e) t = 80s.
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Fig. 11. Simulation of 9 cars with a square grid desired formation (actual size of vehicles increased by a factor of 1.5 for better visibility). (a) Top view at
t = 0s. (b) t = 18s. (c) t = 29s. (d) t = 43s. (e) t = 80s.

are saturated by the maximum allowed velocities of vmax = 3
units of lengths per second and ωmax = π/4 radians per second,
respectively. Furthermore, all steering angles are confined to
the interval of [−π/4, π/4] radians to model the practical
bounds on the steering angle of wheels in cars. The control
gain matrices used for quadrotors and unicycles are used in
the simulation.

The sensing topology switches according to Fig. 8, and the
initial position of cars is shown in Fig. 11(a), which is the
same as quadrotors and unicycles to allow a better comparison.
The position of cars at other instances of time are shown in
Figs. 11(b)-(e), where by using the collision avoidance strategy
with dc = 8 and r = 4 units of length no collisions occur as the
cars converge to the desired formation. Note that the attained
square grid formation is with respect to the front axle’s center
of each car, i.e., the origin of car’s local coordinate frame
in Fig. 6. Furthermore, the heading of the cars at the final
formation is not specified and can take an arbitrary value.

IX. EXPERIMENTAL RESULTS

In this section, we validate the proposed control strategies
experimentally on a distributed multi-robot platform. Our ex-
perimental study is limited to the cases of single-integrator and
unicycle dynamics, as we do not have a fleet of autonomous
cars. Links to the implementation code and technical details
is provided in the Supplementary Material section.

A. Experimental Platform

Our experimental platform consists of the Sphero 2.0 robots,
laptop computers with Bluetooth adapters to control the robots,
and Logitech C920 webcams to provide vision feedback. As
illustrated in Fig. 12, a group of Sphero robots are placed in an
arena that is overseen by webcams. The video stream provided
by each webcam is used in an image processing script to
detect and track the Spheros via blob detection [55, Sec.13.1].
The coordinates of each robot are estimated by mapping the
pixel position of the robot in the image to the x-y Euclidean
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Fig. 12. Schematics of the experimental setup.

Fig. 13. Schematics of a Sphero robot.

coordinates on the arena floor. This is done by initially placing
a checkerboard at an arbitrary location on the floor and
using PnP algorithm [56] to estimate the relative orientation
of the ground plane in the camera’s coordinate frame. The
coordinates are then given by finding the intersection of the
ray through the robot image and the ground plane generated
by PnP.

The estimated coordinates of Spheros are used by each
computer to calculate the control according to the specified
distributed formation control strategy. The desired control
action is then communicated to each robot over Bluetooth.
The experimental setup is distributed in the sense that each
computer is responsible for controlling a subset of robots,
and computers do not communicate during the experiment.
Furthermore, the control computed by each computer respects
the sensing graph specified by the user and does not use any
additional information that may be available.

The schematics of a Sphero robot are shown in Fig. 13.
The robot consists of a differential-wheeled internal platform
that is enclosed in a spherical shell. Rotation of the internal
wheels induces a roll motion of the outer shell. To test the
control strategy proposed for single-integrator agents, a low-
level PID controller is employed to first orient the internal
platform along the desired direction, and then roll the robot
forward at the desired speed. For the unicycle agents, the low-
level PID controller adjusts the wheel velocities such that the
internal differential drive platform have the desired angular
and linear velocities.

B. Triangle Formation

Our first set of experiments correspond to an equilateral
triangle formation with 6 robots. For this experiment only two
computers are used, where the first computer controls robots
numbered 1 to 3, and the remaining robots are controlled by
the second computer. The sensing topology among the robots
is illustrated by gray lines in Fig. 14 and is fixed throughout the
experiment. Nonzero eigenvalues of the computed gain matrix

-400 0 400 800

-400

0

400

800
1

2

3
4

5

6

(a) (b)

Fig. 14. Trajectory of robots estimated from webcam images (a) under
single-integrator control, (b) under unicycle control. Units are in millimeter.
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Fig. 15. Trajectory of robots estimated from webcam images (a) under
single-integrator control, (b) under unicycle control. Units are in millimeter.

A ∈ R12×12 range from −1.52 to −0.22. Collision avoidance
strategy in Algorithm 2 is used with the activation threshold
dc = 400 mm and r = 100 mm. The speed of each robot is
bounded to 1/3 of its upper limit, which gives the maximum
speed of around 200 mm/s.

The trajectory of robots under the single-integrator control
strategy (2) is shown in Fig. 14(a). These trajectories are
reconstructed from the images provided by the first webcam.
The sensing topology among robots is illustrated by gray lines
in the figure. At their initial position, the robots roughly form
a line. Starting from this initial position, they achieve the
desired formation as can be further seen from the snapshots
of experiment video at different instances of time in Fig. 17.

In a similar experiment with robots starting roughly from
the same initial positions, the unicycle control strategy (38) is
used to achieve the desired formation. Estimated trajectory of
robots under this control strategy is shown in Fig. 14(b). As
the robots get closer to the desired formation, the magnitude of
their control vectors become smaller. Once the desired speed
is small enough, the floor friction prevents the robots from
moving further. This can cause an small steady state error,
which can be observed in Fig. 14. Note that no collisions
occur as the robots converge to the desired formation.

C. Hexagon Formation

Using the same experimental setup for the triangle forma-
tion, we repeat a new set of experiments with the desired
formation defined as a hexagon. The inter-agent sensing
topology is chosen as a cyclic graph, as illustrated by gray
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Fig. 16. Trajectory of robots estimated from webcam images (a) under
single-integrator control, (b) under unicycle control. Units are in millimeter.

lines in Fig. 15, and is fixed throughout the experiment. The
nonzero eigenvalues of matrix A for this desired formation
range from −2 to −1. The reconstructed trajectories from
webcam images are shown in Fig. 15(a) for the single-
integrator control, and in Fig. 15(b) for the unicycle control.
Snapshots of the experiment video corresponding to the single-
integrator controller are shown in Fig. 18. As can be seen from
the figures, starting from the initial positions, agents converge
to the desired formation.

D. Square-Grid Formation
In our last set of experiments we consider a square-grid

desired formation of 9 robots with the sensing topology chosen
as a complete graph and fixed throughout the experiment.
Here, 3 computers are used to control the robots, where the
first computer controls robots numbered 1 to 3, the second
computer controls robots 4 to 6, and the third computer con-
trols the remaining robots. The parameters used for collision
avoidance strategy and the maximum allowed speed of the
robots remain the same as previous experiments.

The trajectory of robots reconstructed from the images of
the first webcam is shown in Fig. 16(a) for the single-integrator
control strategy, and snapshots of experiment video is shown
in Fig. 19. If the distance between two robots is less than
the collision avoidance threshold dc, the collision avoidance
strategy rotates the control direction outside of the collision
cones. However, if the required rotation is more than ±90◦

of the original control direction, the control is set to zero and
the robot stops until a feasible direction becomes available.
The effect of collision avoidance strategy is most notable for
robot 2, which is initially surrounded by robots 1, 3, and 4.
Consequently, due to the lack of a feasible direction robot 2
remains stationary initially until the surrounding robots move
further and a feasible direction becomes available. Similar
experiments are performed by using the unicycle control
strategy, where the reconstructed trajectory of robots are shown
in Fig. 16(b). Due to using different PID gains for the low-level
controllers implemented on robots 4 to 9, their trajectories
are more distinguished than their corresponding trajectories in
Fig. 16(a).

X. CONCLUDING REMARKS AND FUTURE WORK

We presented a distributed formation control strategy for a
team of agents with a variety of dynamics to autonomously

achieve a desired planar formation. Under the assumption
that the sensing graph is undirected and universally rigid,
we showed that formation control gains can be designed by
solving a SDP problem. This design enjoys several robustness
properties, such as robustness to positive scaling and rotation
(up to ±90◦) of the control vector, saturations in the input, and
switches in the sensing topology. The control was extended
to agents with higher-order linear (or linearizable) holonomic
dynamics, such as quadrotors, followed by further extension
to agents with nonholonomic unicycle and car dynamics. An
important outcome of this work was to show that under the
proposed control the convergence and robustness guarantees
hold for agents with more complex dynamics. Further, a fully
distributed collision avoidance algorithm emerged naturally
from the robustness properties. To typify the control, simu-
lations for vehicles with different dynamics were presented,
and experiments on a distributed robotic platform where
performed.

Future work includes investigating additional requirements,
such as inter-agent communication, to guarantee that the col-
lision avoidance algorithm can overcome gridlock scenarios.
Moreover, inter-agent communication can be exploited in a
distributed optimization scheme to solve the SDP problem in
a decentralized way. Other possible research avenues include
formation control of heterogeneous vehicles and time-varying
formations.
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