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Abstract—In this article, we propose a trajectory planning algo-
rithm that enables autonomous surface vessels to perform socially
compliant navigation in a city’s canal. The key idea behind the
proposed algorithm is to adopt an optimal control formulation
in which the deviation of movements of the autonomous vessel
from nominal movements of human-operated vessels is penalized.
Consequently, given a pair of origin and destination points, it finds
vessel trajectories that resemble those of human-operated vessels.
To formulate this, we adopt kernel density estimation (KDE) to
build a nominal movement model of human-operated vessels from
a prerecorded trajectory dataset, and use a Kullback–Leibler
control cost to measure the deviation of the autonomous vessel’s
movements from the model. We establish an analogy between our
trajectory planning approach and the maximum entropy inverse
reinforcement learning (MaxEntIRL) approach to explain how our
approach can learn the navigation behavior of human-operated
vessels. On the other hand, we distinguish our approach from
the MaxEntIRL approach in that it does not require well-defined
bases, often referred to as features, to construct its cost function
as required in many of inverse reinforcement learning approaches
in the trajectory planning context. Through experiments using a
dataset of vessel trajectories collected from the automatic identifi-
cation system, we demonstrate that the trajectories generated by
our approach resemble those of human-operated vessels and that
using them for canal navigation is beneficial in reducing head-on
encounters between vessels and improving navigation safety.

Index Terms—Autonomous vehicle navigation, learning from
demonstration, marine robotics, motion and path planning.

I. INTRODUCTION

MANY cities are seeking sustainable ways to transform
their waterways to improve the public transportation

capacity [1]. One example is the Roboat project [2], which
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Fig. 1. Roboat: Robotic boats designed to serve as a platform for trash removal
and as a new means of transportation in Amsterdam canal.

Fig. 2. Examples of vessel trajectories in Dutch canals. We observe that each
trajectory typically lies on the right-hand side of the waterway. However, its
exact distance from the canal boundary or from opposite trajectories varies from
location to location, which is a potential cause of difficulties in designing a
planning algorithm that can generate similar trajectories.

aims at developing a fleet of autonomous surface vessels that
can transport people and provide delivery and trash removal
services through the canal network in the city of Amsterdam.
Fig. 1 illustrates use cases of the Roboat project.

Autonomous vessels operating in the city’s waterway need to
perform socially compliant navigation to safely interact among
themselves and also with human-operated vessels. Unlike road
vehicles whose operations are, in general, governed by well-
structured and universal guidelines/regulations for road safety,
the vessels are expected to follow region-specific regulations
and norms that are hard to be formalized in unstructured space
where lanes are not well defined. Using illustrative examples,
Fig. 2 explains difficulties in formalizing norms for safe canal
navigation.

To address this issue, in this article, we investigate the problem
of designing a trajectory planning algorithm for finding vessel
trajectories that resemble those of human-operated vessels and
that allow autonomous vessels to perform socially compliant
navigation. For this reason, we refer to the algorithm as social
trajectory planning and to outcomes of it as social trajectories.
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Of relevance to our social trajectory planning problem are
learning-from-demonstration approaches in which the main goal
is for robots to learn socially compliant navigation behavior
of human demonstrators (also called experts) [3]–[14]. Except
a few [12]–[14], many of the works in the literature focus
on learning local interaction rules from human demonstrations
and use the learned rules to guarantee safety when robots are
navigating in human-populated environments. However, as such
approaches are designed for collision-free multirobot motion
planning, which is more suitable for shorter term planning
scenarios, the interaction rules are not rich enough to explain
the emergence of long-term and global trajectory patterns (as
illustrated in Fig. 2) and, hence, are not sufficient to model
navigation behavior of human-operated vessels for larger scale
trajectory planning.

Different from existing ones, our approach aims at synthe-
sizing long-term and global trajectories. The key idea behind
our approach is to design the trajectory planning algorithm
based on an optimal control formulation in which the vessel’s
movements—speed and heading direction—that deviate from
nominal movements of human-operated vessels are penalized.
To implement the idea, we use a prerecorded vessel trajectory
dataset to learn nominal movements of human-operated vessels
and adopt a Kullback–Leibler (KL) control cost approach to
impose such penalty. Interestingly, the analysis presented in
Section V shows that our social trajectory planning can be
viewed as a featureless equivalent of an inverse reinforcement
learning (IRL) approach.

The main contributions of this article are summarized as
follows.

1) We propose the trajectory planning algorithm, referred to
as social trajectory planning. The algorithm leverages a
KL control cost approach to define its cost function in
which we derive the cost using a kernel density estima-
tion (KDE) scheme and a dataset of prerecorded vessel
trajectories.

2) We provide analytical results that support our claim that
the social trajectory planning is capable of learning naviga-
tion behavior of human-operated vessels. In particular, by
establishing its relation to maximum entropy IRL (Max-
EntIRL) trajectory planning, we show that our approach
is qualified as a learning-from-demonstration approach.
On the other hand, we distinguish our approach from
existing learning-from-demonstration approaches in that
it does not require a set of features to define its formula-
tion. Through experiments, we empirically verify that our
approach outperforms MaxEntIRL trajectory planning,
which is a feature-based IRL approach.

3) We demonstrate through data analysis that, in com-
parison with minimum travel-time (MinTravelTime)
trajectory planning—a nonlearning-from-demonstration
approach—and MaxEntIRL trajectory planning, the au-
tonomous vessels adopting our social trajectory plan-
ning experience less head-on encounters1 against both

1A precise definition of the head-on encounter and the motivation for adopting
such encounter as a performance metric are provided in Section VI-A3.

other autonomous vessels (also adopting the social trajec-
tory planning) and human-operated vessels. This suggests
that the social trajectory planning essentially reduces the
amount of effort autonomous vessels should make to avoid
collisions against other vessels in the canal. In addition,
head-on encounters on social trajectories occur further
away from the canal boundary, which suggests that in
case the vessels undergo the encounters, they would have
more room to avoid vessel-to-vessel collisions. From these
analyses, we conclude that the social trajectory planning
reduces the likelihood of vessel-to-vessel collisions stem-
ming from head-on encounters.

The rest of this article is organized as follows. In Section II,
we provide a comparative review of work related to our prob-
lem. In Section III, we formally introduce the social trajectory
planning problem that aims at finding trajectories resembling
those of human-operated vessels. The key idea behind our social
trajectory planning approach is to adopt an optimal control
formulation in which a KL control cost is used to penalize the
deviation of the velocity of the autonomous vessel from those
of human-operated vessels. In Section IV, we explain how to
construct the KL control cost using a vessel trajectory dataset
and to numerically compute a solution to the social trajectory
planning problem. In Section V, we examine our trajectory
planning approach from a perspective of the IRL. To analyze
benefits of our approach, we perform extensive experiments
and data analysis using a dataset recorded from the automatic
identification system (AIS), which we report in Section VI.
Finally, Section VII concludes this article.

II. RELATED WORK

Trajectory planning for safe autonomous vehicle navigation
has been an active research area whose topics range from
classical formulations of cost-minimizing trajectory planning to
recent developments on pedestrian-inspired and learning-based
planning for navigation in human-populated environments. In
this section, we review some of recent work in literature focusing
on autonomous vehicle navigation that are relevant to our social
trajectory planning problem. We refer the interested reader to a
review article on autonomous vehicle planning for more in-depth
discussions [15].

A fundamental aspect of safe robot navigation is to require
robots to avoid collision against objects, such as other robots
or pedestrians, while navigating toward their destinations. The
work of van den Berg et al. [4] presents the idea of reciprocal
collision avoidance for collision-free multirobot navigation. To
allow robots to perform more human-like navigation and obsta-
cle avoidance, Guzzi et al. [5] and Luo et al. [6] propose algo-
rithms that incorporate observed pedestrian models. Simulation
results of Guzzi et al. [5] demonstrate a performance improve-
ment of the algorithm over the reciprocal collision avoidance.
Experimental results of Luo et al. [6] validate the efficacy
of the algorithm in robot navigation in pedestrian-populated
environments.

The work of Knepper and Rus [16] proposes a collision
avoidance method that, based on the idea of equivalence relation
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on local paths [17], encodes the avoidance behavior inherent
to pedestrians. In addition, using the formalism of topological
braids, recent work [18] proposes a framework that is capable of
generating legible collision-free paths for multirobot navigation.

Furthermore, Chen et al. [11] introduce a deep reinforce-
ment learning framework to design a robot motion planning
algorithm. The framework, which builds on simple yet explicit
local interaction rules observed in pedestrian navigation, en-
ables robots to execute socially aware collision avoidance in
pedestrian-populated environments.

Different from the aforementioned references, the learning-
based navigation approaches adopt the principle of learning-
from-demonstration. These approaches aim at learning naviga-
tion behavior of experts from their demonstrations by designing
data-driven frameworks for trajectory planning that allow robots
to perform socially compliant navigation, e.g., avoiding other
obstacles via a certain side of corridors while maintaining a
safety distance to walls. Motivated by the so-called “freezing
robot” problem, the work of Trautman et al. [19] develops
an effective robot navigation framework that considers joint
collision avoidance between robots and pedestrians, where a
pedestrian movement dataset is used to train their Gaussian
process model.

Other important developments in this research area build on
the IRL approaches. Notably the work in [8]–[10] adopt different
types of IRL approaches to enable robots to learn experts’ local
interaction rules from their demonstrations and use them for
safe navigation in human-populated areas. Both simulation and
experimental results reported in the work demonstrate that IRL
approaches find trajectories resembling those of pedestrians and
allowing robots to safely navigate in crowded environments.

More specific to the robot planning context related to our
problem, applications of an IRL approach to route and tra-
jectory planning are discussed in [12] and [13]. In particular,
Ziebart et al. [12] investigate a route planning problem based on
the MaxEntIRL approach to learn the route preference of cab
drivers. The work demonstrated the potential of MaxEntIRL
as a learning-based approach that allows robots to navigate
like human drivers. The work of Ziebart et al. [13] describes
an application of MaxEntIRL in modeling goal-directed tra-
jectory planning of pedestrians and proposes a robot planning
framework that, using the pedestrian trajectory planning model,
enables robots to minimize the chances of hindering pedestrian
movements while executing their assigned tasks.

The work of Wulfmeier et al. [14] proposes a deep neural
network based MaxEntIRL approach for robot path planning.
In particular, the authors investigate the problem of learning a
cost function for path planning from experts’ vehicle driving
demonstrations and devise deep neural network architectures
that are capable of reconstructing a cost function using LIDAR
data from the vehicle and a driving demonstration dataset.

Our approach is relevant to the learning-from-demonstration
approaches in that it aims at learning safe navigation of human-
operated vessels using a prerecorded dataset. However, it is
substantially different from these approaches in that, first, our
framework finds global trajectories (rather than local interaction
rules that are more suitable for generating trajectories over

TABLE I
LIST OF BASIC NOTATION

shorter time periods) for safe canal navigation, and second,
the framework relates to the IRL-based trajectory planning
approaches, but it does not require a well-defined set of features
(either manually selected or learned from sensor data) to learn
experts’ navigation behavior.

We remark that, different from many of the references we
reviewed here, collision avoidance is not the main focus of
this article. However, our approach can be used to compute,
for instance, a (socially compliant) reference trajectory for any
local planning algorithm, which would refine the trajectory to
ensure collision avoidance against other vessels.

III. METHOD FOR SOCIAL TRAJECTORY PLANNING

In this section, we formally describe the social trajectory plan-
ning approach discussed in this article. We begin by describing
preliminaries needed to explain our approach. For convenience,
in Table I, we summarize basic notation used throughout this
article.

A. Preliminaries

1) Admissible Position and Velocity: Given a map of the
canal, as depicted in Fig. 3, we denote by X ⊂ R2 the set
of admissible vessel positions representing the locations that
are within the canal map and where the vessel can navigate.
We impose the constraint that the vessel position x = (x, y)
satisfies x ∈ X. We denote by V ⊂ R2 the set of admissible
velocity vectors representing the vessel velocities that are within
the speed limit in the canal. We require the vessel velocity
v = (vx, vy) to satisfy v ∈ V .

2) Control Policy and Trajectory: Given the sets X and V of
admissible positions and velocity vectors, respectively, we call
by a control policy a mapping μ : X → V with which a vessel
trajectory (x0, . . . , xTf) can be computed according to

xt = x0 +

t−1∑
τ=0

μ(xτ ), t ∈ {0, . . . , Tf} (1)

where x0 is the initial position of the vessel and we require that
(x0, . . . , xTf) is contained in X.

B. Social Trajectory Planning

Our social trajectory planning aims for the following goal.
Given an origin xo ∈ X and a destination xd ∈ X, find a control
policy μ : X → V that minimizes a cost J (μ) for which its
resulting trajectory (x0, . . . , xTf), determined by (1), satisfies
the following two requirements.
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Fig. 3. Portion of Amsterdam canal map. The three orange regions on the map
indicate the segments within which we perform the validation of the proposed
approach using a vessel trajectory dataset collected from AIS (see Section VI).

1) Global navigation: It holds that x0 = xo and there is a
finite terminal time index Tf such that xTf = xd.

2) Safety: It holds thatxt ∈ X, vt ∈ V for all t in{0, . . . , Tf}.
The cost J (μ) should encapsulate how well the autonomous

vessel performs socially compliant navigation under the control
policy μ; hence, the key in the social trajectory planning is to
design an appropriate cost function J . In what follows, we
explain the design of the function J using the KL control
cost [20], which is used to impose restrictions on the movements
of the vessel.

The KL control cost (2) defined below measures the deviation
of the velocity v of the autonomous vessel from velocities of
human-operated vessels at its position x on the canal map

DKL (δ (u− v | x) ‖ p (u | x))

:=

∫
V
δ (u− v | x) ln δ (u− v | x)

p (u | x) du

= − ln p (v | x) +
∫

V
δ (u− v | x) ln δ (u− v | x) du (2)

where δ(u− v | x) is the Dirac delta function (centered at v)
that is regarded as the distribution of the autonomous vessel’s
velocity at its position x, and p(u | x) is the probability den-
sity function that describes the distribution of human-operated
vessels’ velocities at x.

Noting that the second term in (2) does not depend on v
and is, in fact, a constant, the KL control cost is equivalent
to − ln p(v | x) up to the constant term. The key idea in the
KL control cost approach is to construct an appropriate distri-
bution p(u | z) at every admissible location z in X and impose
restrictions on the velocity v of the autonomous vessel using

it. In Section IV-A, based on a kernel density estimation (KDE)
scheme, we describe howp(u | z) can be computed from a dataset
consisting of trajectories of human-operated vessels.

Using the KL control cost (2), we define the cost J (μ) by2

J (μ) := λTf︸︷︷︸
penalty due to travel time

+

Tf∑
t=0

− ln p (vt | xt)︸ ︷︷ ︸
KL control cost

. (3)

In light of (2), the second term, which we refer to as the KL
control cost, quantifies the deviation of the velocity vt of the
autonomous vessel from velocities of human-operated vessels at
its current position xt and at time instant t. The cost (3) expresses
the tradeoff between the total travel time and the KL control cost
where the positive constant λ determines the importance of the
travel-time penalty against the KL control cost. Once we find the
control policy μ minimizing (3), using (1), we can generate a
trajectory (x0, . . . , xTf) for which the requirements on the global
navigation and safety are satisfied.

In the cost function (3), a higher value of λ assigns more
emphasis on the total travel time. Hence, as the value of λ

becomes larger, the resulting trajectory becomes closer to a
minimum travel-time (MinTravelTime) trajectory. Vessel move-
ments along such trajectory would frequently violate what are
considered as socially acceptable. For instance, as we will show
in Section VI, the vessels traveling along MinTravelTime tra-
jectories experience more head-on encounters with one another
than those traveling along social trajectories.

On the other hand, as the value of λ becomes smaller, the
resulting trajectory has longer travel time but induces smaller
KL control cost, suggesting that the autonomous vessel moves
more like human-operated vessels.

IV. CONTROL POLICY SYNTHESIS FOR SOCIAL TRAJECTORY

PLANNING

Two key technical aspects in the social trajectory planning
are constructing an appropriate KL control cost and computing
a control policy μ minimizing the cost function (3). For this
purpose, we adopt the following methods.

1) Given a dataset of vessel trajectories collected from the
AIS [21], we interpolate and estimate the pose and velocity
of a vessel associated with each trajectory data.

2) KDE to construct the probability density function p(u | z)
using the estimated trajectories. The probability density
function will be used to construct the KL control cost as
in (3).

3) Value iteration to implement dynamic programming and
to numerically find an optimal solution to the social tra-
jectory planning.

Fig. 4 illustrates an overview of our social trajectory planning
approach.

2In addition to the KL control cost, the cost function (3) penalizes the travel
time to ensure that resulting trajectories terminate at given destination points.
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Fig. 4. Overview of the social trajectory planning: From an AIS dataset, we interpolate and estimate vessel trajectories; using KDE, from the estimated trajectories,
we construct the KL control cost for (3); and by finding the optimal policy μ for (3) using the value iteration, we compute a social trajectory.

A. KDE Using AIS Dataset

We describe how to compute the probability density function
p(u | z) from an AIS dataset using the KDE scheme [22]. The
dataset consists of multiple sequences of time-stamped location
data (GPS coordinates) where each sequence is associated with
a vessel identified by a unique vessel ID. We denote the number
of registered vessels and the location data (transformed in a
Cartesian coordinate system), respectively, byM and {y(i)tj

}Ni
j=1,

where Ni is the number of data points associated with vessel i
and y

(i)
tj

∈ R2 represents the location data of the vessel at time
instant tj .

1) Trajectory Estimation: As a first step, given the data points
{y(i)tj

}Ni
j=1, we interpolate the position x

(i)
t and estimate the

linear velocity v
(i)
t , the heading direction θ

(i)
t , and the rotational

velocity ω
(i)
t , which will be used in the KDE step. Consider

finding {(x(i)t , θ
(i)
t , v

(i)
t , ω

(i)
t )}tNi

t=t1
that minimizes

Ni∑
j=1

∥∥∥x(i)tj
− y

(i)
tj

∥∥∥2︸ ︷︷ ︸
interpolation distortion

+

tNi
−1∑

τ=t1

[ ∥∥∥RotT (θ
(i)
τ+1) v

(i)
τ+1 −RotT (θ(i)τ ) v(i)τ

∥∥∥2︸ ︷︷ ︸
penalty on linear acceleration

+
∥∥∥ω(i)

τ+1 − ω(i)
τ

∥∥∥2︸ ︷︷ ︸
penalty on angular acceleration

+
∥∥∥RotT2 (θ

(i)
τ ) v(i)τ

∥∥∥2︸ ︷︷ ︸
penalty on lateral motion

]

subject to x
(i)
t+1 = x

(i)
t + v

(i)
t

θ
(i)
t+1 = θ

(i)
t + ω

(i)
t

(4)

where given the heading angle θ, the matrix Rot(θ) represents
the rotation matrix defined by

Rot(θ) =
(

Rot1(θ) Rot2(θ)
)
=

(
cos θ − sin θ

sin θ cos θ

)
.

Note that Rot2(θ) used in (4) denotes the second column of
Rot(θ).

The second term in (4) is the regularization that penalizes the
linear and angular accelerations and lateral motion of vessel i.

The penalty on the acceleration is to enforce the estimated
trajectory to be sufficiently smooth, and the penalty on the lateral
motion is to take into account the fact that vessels in general
cannot move laterally. The left plot in Fig. 4 depicts vessel
trajectories estimated based on (4) using the AIS dataset in one
canal segment. Each blue rectangle and gray curve, respectively,
represent the initial pose and estimated trajectory of a vessel.

2) Kernel Density Estimation: After we interpolate vessel
trajectories and estimate linear and angular velocities from the
data, we estimate the probability density function p(u | z). We
use the KDE scheme in which we adopt the Gaussian kernel to
represent each vessel’s velocity distribution.

We assume that the velocity of each vessel i at each time
instant t is distributed according to a Gaussian distribution
centered at the velocity data point v(i)t . Based on the assumption,
we adopt the Gaussian kernel KGaussian(u− v

(i)
t ) defined as

KGaussian(u− v
(i)
t )

:=
1

Z(i)
t

exp

[
− 1

2α
(u− v

(i)
t )T (u− v

(i)
t )

]
(5)

whereα is a parameter specifying the bandwidth of the Gaussian
kernel, which we select to match the (estimated) variance (=
0.2916 m2/s2) of v(i)t , and Z(i)

t is the normalizing factor given
by

Z(i)
t =

∫
R2

exp

[
− 1

2α
(u− v

(i)
t )T (u− v

(i)
t )

]
du.

On the other hand, we approximate the shape of each vessel i
with a rectangle rotated by the vessel’s heading angle θ

(i)
t and

represent the points on the canal map occupied by the vessel at
each time instant t using the following indicator function. For
each location z in X

I
(i)
t (z) :=

{
1 if RotT (θ(i)t )(z− x

(i)
t ) ∈ Bw,l

0 otherwise
(6)

where

Bw,l =
{
(z1, z2) ∈ R2

∣∣ − l/2 ≤ z1 ≤ l/2,

−w/2 ≤ z2 ≤ w/2}
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Fig. 5. Illustration of the probability density function p(u | z) at four different locations. The graphs in (b) depict p(u | z) evaluated at the four different locations
indicated by the black dots in (a). In (a), the arrows represent the vessel velocities corresponding to the modes of the probability density functions, depicted in (b).

is the set of points constituting a two-dimensional rectangle with
width w and length l for which we select w and l to match them
with the width and length of each vessel i, respectively.

Combining (5) and (6), we define K(i), which represents the
velocity distribution of vessel i at location z, as follows:

K(i) (u | z)

=

⎧⎪⎨
⎪⎩

∑tNi
τ=t1

KGaussian

(
u−v

(i)
τ

)
·I(i)

τ (z)

∑tNi
τ=t1

I
(i)
τ (z)

if
∑tNi

τ=t1
I
(i)
τ (z) > 0

0 otherwise
.

Assuming that the prior distribution on the vessel velocities
is uniform, based on the KDE scheme, we obtain the estimate of
the probability density function p(u | z) by combining the uni-
form density function KUniform defined over V and the velocity
distribution K(i) of every vessel as follows:

p (u | z) = 1

Z(z)

[
M∑
i=1

K(i) (u | z) +KUniform (u)

]
(7)

where the normalizing factor Z is defined as

Z(z) =

M∑
i=1

∫
R2

K(i) (u | z) du + 1

which is essentially the number of vessels visiting the location
z plus 1. Indeed, when M is substantially large, the effect of the
prior KUniform(u) on computing p(u | z) becomes negligible.

Fig. 5 illustrates the estimated probability density function
p(u | z) at four different locations on a canal segment. At lo-
cation 1 where we observe vessels traveling in two opposite
directions to enter from and exit to a neighboring canal segment,
the probability density function p(u | z) is multimodal. At other
locations, on the other hand, the probability density functions
tend to be unimodal with their modes appearing at different
points in V . In particular, as we can observe from locations 3
and 4, the majority of the vessels passing location 3 travel South
West and those passing location 4 travel North East.

B. Value Iteration

One technical challenge in solving the social trajectory plan-
ning problem is in finding its optimal solution. Since the cost
function (3) is not guaranteed to be convex, especially because

the KL control cost is constructed using a real-world dataset,
many of convex optimization tools are not directly applicable to
find such solution. For this reason, we use the value iteration
method [23] to find the optimal solution, which we briefly
describe below.

The key step in the value iteration method is to find a sequence
{Vn}∞n=1 of value functions for which each value function Vn :
X → R is iteratively updated according to

Vn+1(x) = min
v∈V

[λ − ln p (v | x) + Vn(x + v)] . (8)

When the sequence of value functions converges, say to V∗, (8)
yields

V∗(x) = min
v∈V

[λ − ln p (v | x) + V∗(x + v)] . (9)

According to Bellman’s principle of optimality, we can derive
the optimal control policy μ as

μ(x) = arg minv∈V [λ − ln p (v | x) + V∗(x + v)] .

Computational methods to implement the value iteration (8)
are described in machine learning literature. We adopt a simpli-
fied version of the method described in [24] for our implemen-
tation.

V. ANALYSIS ON SOCIAL TRAJECTORY PLANNING

In this section, we explain key aspects of the formulation used
to define our social trajectory planning in connection with IRL,
one of learning-from-demonstration approaches. A key idea of
IRL approaches on trajectory planning is to derive a cost function
using demonstrated trajectories by experts and use it to compute
optimal trajectories that presumably resemble important features
of the experts’ demonstrations.

In the social trajectory planning, considering that human-
operated vessels are the experts and AIS trajectory data are
their demonstrations, our approach is closely related to IRL
approaches. In what follows, we analytically show that our
formulation on the social trajectory planning, as described in
Section III-B, can be cast into the form used in MaxEntIRL [25].
The analysis suggests that our social trajectory planning is
related to IRL approaches, but uses different bases to construct
the cost function in its optimal control formulation (3).

1) Trajectory Planning With MaxEntIRL: For our discus-
sion, we adopt the following formulation for trajectory planning



458 IEEE TRANSACTIONS ON ROBOTICS, VOL. 37, NO. 2, APRIL 2021

based on MaxEntIRL: Consider the reward function R and
constraints given by

R (x0, . . . , xTf
)

subject to xt+1 = xt + vt

vt = μ (xt)

Tf ≤ Tmax

x0 = xo, xTf
= xd

xt ∈ X, vt ∈ V ∀t ∈ {0, . . . , Tf}.

(10)

We note that the MaxEntIRL formulation seeks the policy μ
that derives a trajectory (x0, . . . , xTf

) from the origin xo to the
destination xd based on the reward R and subject to the travel-
time constraint Tf ≤ Tmax.

In the MaxEntIRL formulation, provided that a so-called
feature vector f : X → Rk is given, the reward R is defined
as R(x0, . . . , xTf

) = θT f(x0, . . . , xTf
), where X is the set of

trajectories (x0, . . . , xTf
) between xo and xd and the parameter

θ ∈ Rk is referred to as the feature weight. According to the
MaxEntIRL principle, the reward R defines the probability
density function p : X → R+ as

p (x0, . . . , xTf
)

=
exp (R(x0, . . . , xTf

))∫
X exp (R(x0, . . . , xTf

)) dx

=
exp

(
θT f(x0, . . . , xTf

)
)∫

X exp (θT f(x0, . . . , xTf
)) dx

. (11)

One of key aspects in MaxEntIRL is to select the feature
weight θ using a set of demonstrated trajectories, which we
denote byD ⊂ X , based on the maximum likelihood estimation:
Given the set D, using (11), we select θ as

θ = arg maxθ∈Rk

∏
(x0,...,xTf

)∈D
p (x0, . . . , xTf

) . (12)

2) Social Trajectory Planning as IRL: Now, we explain how
our social trajectory planning formulation is related to (10). Let
us begin by recalling the social trajectory planning problem.
Find a control policy μ : X → V that minimizes

J (μ) = λTf −
Tf−1∑
t=0

ln p (vt | xt)

subject to xt+1 = xt + vt

vt = μ (xt)

x0 = xo, xTf
= xd

xt ∈ X, vt ∈ V ∀t ∈ {0, . . . , Tf}

(13)

where Tf is the total travel time.
Recall that we construct the probability density function

p(vt | xt) used in (13) from a dataset on human-operated vessel
trajectories, as described in Section IV-A. Assume that the
(human-operated) vessels adopt state-dependent control policies
of the form μ : X → V in which case the probability density

function p(vt | xt) satisfies

p (vt | xt) = p (vt | x0, . . . , xt) . (14)

Using (14), we can express the second term in (13) as follows:

Tf−1∑
t=0

ln p (vt | xt) = ln

Tf−1∏
t=0

p (vt | xt)

= ln

Tf−1∏
t=0

p (vt | x0, . . . , xt)

= ln

Tf−1∏
t=0

p (xt+1 | x0, . . . , xt)

= ln p (x1, . . . , xTf
| x0) . (15)

Note that, as x0 is fixed to xo, the last equation in (15) is
equivalent to ln p(x0, . . . , xTf

) up to the constant term ln p(x0).
By noting that the denominator in (11) is constant, comparing

(11) and (15), we can rewrite the cost function (13) as follows:

J (μ) = λTf −R (x0, . . . , xTf
) + α (16)

where α is a constant that does not depend on the choice of the
policy μ.

In light of (16), the optimization (13) is identical to (10),
except we represent the travel time constraint in (10) as a penalty
term in the cost function of (13). Therefore, our social trajectory
planning finds the optimal control policy μ that maximizes a
rewardR satisfying (11) subject to the total travel time constraint
Tf ≤ Tmax, where the value of Tmax depends on the selection of
λ in (13).

On the other hand, our social trajectory approach is different
from the MaxEntIRL approach in that it does not require any
predefined feature vector f as in (11), but it rather estimates the
movement model p(u | z) of human-operated vessels and uses
the model to build the cost function. Indeed, since we adopt the
KDE method, which is a nonparametric estimation scheme, our
approach would, in general, require a larger dataset than feature-
based IRL approaches, such as MaxEntIRL. However, because
our method accepts all vessel trajectory data regardless of their
origins and destinations, we can collect vast vessel trajectory
datasets through AIS.

VI. EXPERIMENTAL RESULTS

We perform experiments using the AIS trajectory dataset
to evaluate the benefits of the social trajectory planning in
the following two aspects: First, improving the predictability
of the autonomous vessel’s navigation behavior and second,
reducing head-on encounters against other autonomous and
human-operated vessels. For the purpose of the evaluation,
we compare the performance of the social trajectory plan-
ning, where we select λ = 1 for its cost function (3), with
those of the MinTravelTime—a nonlearning-based approach—
and MaxEntIRL—an existing learning-from-demonstration ap-
proach, which we discussed in Section V—trajectory planning.
The implementation details of both approaches are explained in
Section VI-A2.
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1) Predictability of autonomous vessel’s navigation behav-
ior: In [26], the predictability of robot motion is defined
as how well an (human) observer can predict the robot’s
trajectory given that the observer knows the destination
of the robot. Adapting this concept in our context, we
evaluate whether the social trajectory planning enables
autonomous vessels to adopt trajectories that are more
likely to be chosen by human-operated vessels and, hence,
those trajectories would be more “predictable” by human
operators.
To this end, in the first experiment, we begin by evaluating
how much social trajectories resemble those of human-
operated vessels. Using all three trajectory planning ap-
proaches, we compute trajectories between the origin and
destination of each trajectory data from the AIS dataset.
We then assess the Euclidean distances between computed
trajectories and associated trajectory data.3 Outcomes of
this experiment, as presented in Section VI-B, suggest that
our social trajectory planning attains the smallest mean
value of the Euclidean distances, and this confirms that
our social trajectory planning is capable of generating
trajectories that resemble those of human-operated vessels
better than the two other approaches.

2) Frequency and location of head-on encounters: To assess
the benefits of adopting the social trajectory planning, we
perform extensive experiments—total 9× 106 different
cases—to evaluate the frequency and location of head-
on encounters among autonomous vessels and between
autonomous and human-operated vessels in which the
autonomous vessels are navigating along one of MinTrav-
elTime, MaxEntIRL, and social trajectories. Using out-
comes of the experiment, we carry out statistical analysis
and draw the conclusion that the vessels navigating along
social trajectories experience less head-on encounters and
the encounters occur further away from the canal boundary
than those navigating along MinTravelTime and MaxEn-
tIRL trajectories. These results support our claim that,
compared to the two other approaches, our social trajec-
tory planning would reduce the chances of vessel-to-vessel
collisions, especially under low visibility conditions in
which head-on collisions are empirically dominant [27].

A. Experiment Settings

Below, we explain the dataset we used to conduct the ex-
periments on three canal segments, as illustrated in Fig. 3.
We also provide the descriptions on the implementation of
the MinTravelTime and MaxEntIRL trajectory planning—two
planning approaches used as baselines—and the definitions of
the head-on encounter and vessel dimension.

1) Dataset and Selection of Canal Segments for Evalua-
tion: The AIS dataset we used for the experiments was col-
lected during 2017/8/12 13 : 00–2017/8/12 17 : 00 (CEST)
and contains 182, 312, and 173 trajectories for Segments 1,

3The Euclidean distance between two trajectories is defined as the average
distance between every point on one trajectory and its closest point on the other
trajectory.

TABLE II
DIMENSION OF THE CANAL SEGMENTS USED IN THE EXPERIMENTS (SEE FIG. 3

FOR THEIR LOCATIONS ON THE CANAL MAP)

2, and 3, respectively.4 We select 4/5 of the data uniformly
randomly to compute the probability density function p(u | z)
using the method described in Section IV-A. We use the rest as
the validation dataset to assess the performance of our method
in the experiments.

The admissible velocity set V contains all the velocity vectors
that are below the maximum vessel speed observed in the dataset,
which is approximately 3 m/s. We select three canal segments,
as indicated in Fig. 3, that are of different size and each has
multiple regions where vessels enter the segment and exit to
neighboring segments. The dimension of the three segments is
summarized in Table II.

2) MinTravelTime and MaxEntIRL Trajectory Planning: We
compare the performance of our social trajectory planning with
those of the MinTravelTime and MaxEntIRL trajectory plan-
ning. We provide the descriptions of both of the approaches in
the following.

1) MinTravelTime: Consider the cost function JMinTravelTime

and constraints given by

JMinTravelTime (μ) = Tf

subject to xt+1 = xt + vt

vt = μ(xt)

x0 = xo, xTf = xd

xt ∈ X, vt ∈ V ∀t ∈ {0, . . . , Tf}

(17)

where xo, xd is a given pair of origin and destination
points, and Tf denotes the total travel time. The MinTrav-
elTime trajectory planning aims at finding a control policy
μ : X → V that minimizes (17). We adopt a similar stan-
dard value iteration method, as described in Section IV-B,
to find the optimal policy μ.

2) MaxEntIRL: Consider the cost function JMaxEntIRL and
constraints given by

JMaxEntIRL (μ) = −
Tf−1∑
t=0

θT f(xt, vt)

subject to xt+1 = xt + vt

vt = μ(xt)

x0 = xo, xTf = xd

xt ∈ X, vt ∈ V ∀t ∈ {0, . . . , Tf}.

(18)

By making a similar selection of the feature vector f
as in [13], we adopt five features f = (f1, . . . , f5): the

4We demonstrate that a single-day dataset is enough to observe the benefits
of the social trajectory planning in improving canal navigation safety.
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Fig. 6. Three different types of vessel-to-vessel encounters.

first feature f1 takes a (negative) constant value across
the canal map and the second feature f2 is defined by
(the negative of) the squared Euclidean norm ‖vt‖2 of
the vessel velocity vt. These two features represent the
rewards associated with the travel time and velocity of the
autonomous vessel. The rest of the features f3, f4, f5 are
defined using blurred images of the canal map, obtained
by applying Gaussian filters with all different standard
deviations. These features are used to quantify the position
of the vessel with respect to the boundary of (or other
obstacles on) the canal map. Applying MaxEntIRL as
in [13], we compute the feature weight θ = (θ1, . . . , θ5)
using trajectory data from the AIS dataset.5 We adopt the
“softened” value iteration, as in [13], to compute a value
function for (18) and using it, we find a (deterministic)
policy μ that derives vessel trajectories that most likely
occur under the MaxEntIRL approach.

3) Head-On Encounter and Vessel Dimension: We define the
head-on encounter as an event in which two vessels contact
each other at the relative degree (heading angle) between 0◦

and 30◦ (see Fig. 6 for an illustration of the head-on encounter).
Based on the statistics reported in [27], this is the most fre-
quently occurring vessel-to-vessel encounter in waterways that
would potentially lead to a collision under restricted visibility
conditions. Also, our analysis on the frequency of all types of
encounters—overtaking, crossing, and head-on counters (see
Fig. 6 for an illustration)—suggested that the head-on encounter
is the most frequently occurred one.

In order to assess vessel-to-vessel encounters in the experi-
ments, we need to define the dimension of vessels. We approx-
imate the shape of every vessel as a rectangle and determine
its width and length as follows. For the human-operated vessels
recorded in the AIS dataset, their width and length are given in
the dataset. For autonomous vessels, we assume that their dimen-
sion is equal to the average dimension of the human-operated
vessels, which is 5 m wide and 20 m long.

B. Predictability of Autonomous Vessel’s Navigation Behavior

We assess the predictability of the autonomous vessel’s tra-
jectory under the MinTravelTime, MaxEntIRL, and social tra-
jectory planning. For this purpose, we compute vessel trajec-
tories using all three planning approaches between the origin

5To allow the feature weight θ to vary depending on the destination point xd,
we categorize trajectory data based on their destinations and compute the feature
weight using the data in each category. This enables the MaxEntIRL trajectory
planning to use different cost functions depending on the destinations of the
vessels.

and destination of each trajectory data from the validation
dataset, and we evaluate the Euclidean distances between the
computed trajectories and associated trajectory data. Adapting
the definition of the predictability of robot motion from Dragan
et al. [26], the assessment will be used to draw the conclusion
that the trajectories computed by the social trajectory planning
are closest to those adopted by the human-operated vessels and,
hence, would be more predictable by human operators than the
other planning approaches.

Fig. 7 depicts the comparison between the trajectories com-
puted by the three planning approaches and their associated
trajectory data from the validation dataset, and Fig. 8 summa-
rizes the statistics on their Euclidean distances. We observe that
the social trajectories are closer to the trajectory data than the
MinTravelTime trajectories (p = 0.0176, one-sided t-test) and
MaxEntIRL trajectories (p = 0.0022, one-sided t-test). Surpris-
ingly, the MaxEntIRL trajectories recorded the largest Euclidean
distance among the three approaches.

This outcome suggests that our social trajectory approach
improves the predictability of the autonomous vessel’s naviga-
tion behavior compared to the MinTravelTime and MaxEntIRL
trajectory planning. On the other hand, despite the analogy
between our social trajectory planning and the MaxEntIRL tra-
jectory planning, as established in Section V, the latter approach
does not perform similarly to the social trajectory planning. In
fact, the MinTravelTime approach outperforms the MaxEntIRL
approach. This observation emphasizes the importance of the
feature selection in the MaxEntIRL approach.

Moreover, we notice that the social trajectories attain the mean
Euclidean distance of 7.4 m from their associated trajectory data.
It appears that this is because human-operated vessels, traveling
between same origin and destination points, would select dif-
ferent trajectories based on their vessel type, dimension, traffic
volume, etc., whereas our social trajectory planning assumes
that the origin and destination are the only factors that affect the
trajectory selection. Also, unlike the control policy μ adopted in
our approach that depends only on the current vessel position,
a human operator would steer his/her vessel depending on the
past trajectory it traveled. Hence, the resulting human-operated
vessel’s trajectory would differ from one determined by the
social trajectory planning.

C. Frequency and Location of Head-On Encounters

We assess the benefits of the social trajectory planning in
improving canal navigation safety. For this purpose, using the
three trajectory planning approaches, we compute trajectories
between preselected origin and destination points in the three
canal segments, as depicted in Fig. 9. In each segment, origin
and destination points are randomly selected from the regions
where vessels can enter the segment and exit to neighboring
segments. Then, we count and record the frequency and location
of head-on encounters between every pair of trajectories.

Our analysis involves the following two different scenarios:
head-on encounters among autonomous vessels and head-on
encounters between autonomous and human-operated vessels,
where the autonomous vessels are assigned with the computed
trajectories of the same type. Outcomes of both the scenarios are
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Fig. 7. Select figures depicting the comparison of MinTravelTime (red), MaxEntIRL (green), and social (blue) trajectories with respect to associated trajectory
data (gray). In each figure, the four trajectories span between a same pair of origin and destination points where the destination is marked with a gray circle. (a)
Segment 1. (b) Segment 2. (c) Segment 3.

Fig. 8. Graph depicting the mean value of the Euclidean distances between
the trajectories computed by the MinTravelTime (red), MaxEntIRL (green), and
social (blue) trajectory planning and associated trajectory data.

used to conclude that, in comparison with the MinTravelTime
and MaxEntIRL trajectory planning, the autonomous vessels
navigating along social trajectories experience substantially less
frequent head-on encounters with other autonomous and human-
operated vessels. Furthermore, our analysis suggests that the
encounters take place further away from the canal boundary
under the social trajectory planning.

1) Analysis on Head-On Encounters Among Autonomous
Vessels: To assess head-on encounters among autonomous ves-
sels, we consider that two vessels are navigating along the
computed trajectories of the same type where the vessels are
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Fig. 9. Trajectories between predefined pairs of origin and destination points computed using the MinTravelTime, MaxEntIRL, and social trajectory planning
in the three canal segments. We depict the destination points as colored circles and computed trajectories leading to each destination point as curves of the same
color as their destination points. (a) Segment 1. (b) Segment 2. (c) Segment 3.

allowed to depart from their respective origins at different time
instants, and we examine whether the vessels encounter each
other at the relative orientation between 0◦ and 30◦.

We examine approximately 6× 106 different cases in all three
segments using the MinTravelTime, MaxEntIRL, and social
trajectory planning. Table III specifies the reduction (in percent-
age) in the head-on encounter frequency for the MaxEntIRL
and social trajectory planning with respect to the MinTravel-
Time trajectory planning. As can be observed in Table III, the
social trajectory planning results in significantly less head-on

encounters than the MinTravelTime and MaxEntIRL trajectory
planning in all three segments (p < 0.001, chi-square test).
Moreover, in Segment 2, we have observed that the MaxEntIRL
trajectory planning attains higher head-on encounter frequency
than the MinTravelTime trajectory planning.

Fig. 10(a) depicts the frequency of the head-on encounters
with respect to their distances from the canal boundary. From
the histograms in Fig. 10(a), we can see that the encounters on
MinTravelTime and MaxEntIRL trajectories take place more
frequently near the canal boundary. On the other hand, the
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Fig. 10. Histograms depicting the head-on encounter frequency (a) among autonomous vessels and (b) between autonomous and human-operated vessels with
respect to the distance to the canal boundary for the MinTravelTime (red), MaxEntIRL (green), and social (blue) trajectory planning. The dotted vertical lines
represent the medians of the frequency data and the histograms are rescaled such a way that the largest value of the frequency is equal to unity. (a) Head-on encounter
frequency among autonomous vessels in Segments 1–3. (b) Head-on encounter frequency between autonomous and human-operated vessels in Segments 1–3.

TABLE III
COMPARISONS ON THE HEAD-ON ENCOUNTER FREQUENCY: EACH

PERCENTAGE SPECIFIES THE REDUCTION IN THE HEAD-ON ENCOUNTER

FREQUENCY ATTAINED BY THE MAXENTIRL AND SOCIAL TRAJECTORY

PLANNING WITH RESPECT TO THE MINTRAVELTIME TRAJECTORY PLANNING

TABLE IV
COMPARISONS ON THE MEDIAN DISTANCES OF HEAD-ON ENCOUNTER

LOCATIONS FROM THE CANAL BOUNDARY: EACH ENTRY SPECIFIES THE

DIFFERENCE (SUBTRACTION) BETWEEN THE MEDIAN DISTANCES FOR THE

MAXENTIRL OR SOCIAL TRAJECTORY PLANNING AND THOSE FOR THE

MINTRAVELTIME TRAJECTORY PLANNING

encounters on social trajectories occur more frequently away
from the canal boundary (Segment 1) or approximately uni-
formly across the entire range of observed distances (Segments 2
and 3). Also, from the statistics on the median distance of the
head-on encounter locations from the canal boundary summa-
rized in Table IV, we observe that the social trajectory planning
attains the largest median value, which suggests that the au-
tonomous vessels adopting the social trajectory planning tend
to encounter one another further away from the canal boundary.

The outcomes of the analysis suggest that the autonomous
vessels navigating along social trajectories experience head-on
encounters with other autonomous vessels (also adopting social

trajectories) less frequently. When they occur, the encounters
take place further away from the canal boundary, which implies
that the vessels would have more room to avoid vessel-to-vessel
collisions.

2) Analysis on Head-On Encounters Between Autonomous
and Human-Operated Vessels: We repeat a similar analysis as
in Section VI-C1 between autonomous and human-operated ves-
sels to validate our assertion that the social trajectory planning
incurs less head-on encounters between the two different kinds
of vessels and when they occur, the encounters take place further
away from the canal boundary. As a result, in conjunction with
the results from Section VI-C1, we conclude that our approach
improves canal navigation safety.

We examine approximately 3× 106 different cases in all three
segments to assess head-on encounters between autonomous and
human-operated vessels. For the analysis, we use the same tra-
jectories as in Section VI-C1, as depicted in Fig. 9, to assign tra-
jectories to the autonomous vessels and trajectory data from the
validation dataset to assign trajectories to the human-operated
vessels. We assess the head-on encounter frequency and location
by following the same method as in Section VI-C1.

From the statistics summarized in Table III, as in the first
scenario, we can observe that the social trajectory planning
results in significantly less head-on encounters than the two other
approaches in all three segments (p < 0.001, chi-square test).
Moreover, surprisingly in the case of the MaxEntIRL trajectory
planning, the autonomous vessels undergo more frequent head-
on encounters with the human-operated vessels in Segments 2
and 3 than the MinTravelTime trajectory planning.

In addition, according to the statistics summarized in Table IV
and the histograms depicted in Fig. 10(b), we observe that the
encounters on the social trajectories tend to occur further away
from the canal boundary than those on MinTravelTime trajecto-
ries. Unlike the first scenario, the encounters on the MaxEntIRL
trajectories occur at similar distances or further away from the
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canal boundary than the social trajectories in Segments 2 and 3;
however, they attain the highest encounter frequency among the
three types of trajectories.

Based on the analysis, in conjunction with the results from
Section VI-B, we assert that our approach finds trajectories
that resemble those of human-operated vessels, but at the same
time avoids traveling areas where human-operated vessels are
navigating in opposite directions, which leads to the signifi-
cant reduction on head-on encounters with them. On the other
hand, the observation that the MaxEntIRL trajectory planning
approach attains the highest encounter frequency, especially
in Segments 2 and 3, reiterates the importance of the feature
selection in this approach for improving canal navigation safety.

D. Discussions and Remarks

The experimental results for both of the scenarios, as pre-
sented in Sections VI-C1 and VI-C2, suggest that the social
trajectory planning would reduce the frequency of head-on en-
counters. To explain a possible reason behind these observations,
recall that our approach finds the trajectories that tend to cross the
locations where the value of p(u | z) is high and avoid traversing
the locations where the value of p(u | z) is low. Hence, the
autonomous vessels navigating along social trajectories tend
to align more with the movements of human-operated vessels
and avoid entering areas where human-operated vessels are
frequently navigating in different directions. Consequently, our
approach enables the autonomous vessels to experience less
head-on encounters with other vessels.

Notably, in the second scenario, the improvement on the
frequency of the encounters and the median distance of the
encounter locations from the canal boundary are less substantial
than those attained in the first scenario. Based on the analysis
given in Section VI-B, we note that some trajectory data from the
validation dataset are dissimilar from the trajectories computed
by the social trajectory planning, which incurred the mean
Euclidean distance of 7.4 m. Such dissimilarity would contribute
to the smaller improvement.

As we have discussed in Section VI-B, we hypothesize that
such noticeable Euclidean distance occurred because the so-
cial trajectory planning uses state-dependent control policies
to generate trajectories, which would not be the case when
human operators select trajectories to maneuver their vessels
toward destinations. One way to generalize the class of control
policies used in the social trajectory planning and to further
improve its predictability performance, which we set as a future
direction of this work, is to use control policies μ that assign
the vessel velocity vt based on the vessel’s past trajectory
(xt−d+1, . . . , xt) of length d, i.e., vt = μ(xt−d+1, . . . , xt). It
will be straight-forward to extend the formulation (3) to accom-
modate such class of control policies by replacing the probability
density function p(vt | xt) used to define the KL control cost
with p(vt | xt−d+1, . . . , xt). In this case, a larger vessel trajec-
tory dataset would be required to estimate the new function
p(vt | xt−d+1, . . . , xt), and the computational complexity of the
value iteration will increase exponentially with respect to the
parameter d. Hence, the future research direction will involve

seeking a new solution that mitigates both the sample and
computational complexity.

In Section VI, we have partitioned the canal map into seg-
ments and computed social trajectories within individual seg-
ments. This was not only to conduct the experiments over
segments of different lengths and sizes but also to reduce the
computational complexity in solving the value iteration. One
possible way to find a trajectory for a given pair of origin and
destination points, lying in different canal segments, is first to
identify all sequences of segments that connect the origin and
destination, and to define intermediate points that lie at the
intersection of every pair of neighboring segments. Then, by
computing social trajectories between every suitable pair of the
intermediate points and by connecting the computed trajectories,
we can obtain a longer trajectory that traverses from the origin
to the destination.

VII. CONCLUSION

In this article, we proposed the social trajectory planning
that enables autonomous vessels to perform safe navigation
in canal environments. The key idea is to adopt the optimal
control formulation in which the cost function is designed to
find trajectories that resemble those of human-operated vessels.
Through the experiments using the AIS trajectory dataset, we
validated the effectiveness of the proposed approach in improv-
ing safety in canal navigation. Important future directions of this
article include improving the predictability performance of the
social trajectory planning and incorporating obstacle avoidance
algorithms to perform real-world canal navigation experiments.
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