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Artificial Perception and Semiautonomous Control
in Myoelectric Hand Prostheses Increases

Performance and Decreases Effort
Jeremy Mouchoux, Stefano Carisi , Strahinja Dosen , Member, IEEE, Dario Farina , Fellow, IEEE,

Arndt F. Schilling , and Marko Markovic

Abstract—Dexterous control of upper limb prostheses with mul-
tiarticulated wrists/hands is still a challenge due to the limitations
of myoelectric man–machine interfaces. Multiple factors limit the
overall performance and usability of these interfaces, such as the
need to control degrees of freedom sequentially and not concur-
rently, and the inaccuracies in decoding the user intent from weak
or fatigued muscles. In this article, we developed a novel man–
machine interface that endows a myoelectric prosthesis (MYO)
with artificial perception, estimation of user intention, and intel-
ligent control (MYO–PACE) to continuously support the user with
automation while preparing the prosthesis for grasping. We com-
pared the MYO–PACE against state-of-the-art myoelectric control
(pattern recognition) in laboratory and clinical tests. For this pur-
pose, eight able-bodied and two amputee individuals performed a
standard clinical test consisting of a series of manipulation tasks
(portion of the SHAP test), as well as a more complex sequence of
transfer tasks in a cluttered scene. In all tests, the subjects not only
completed the trials faster using the MYO–PACE but also achieved
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more efficient myoelectric control. These results demonstrate that
the implementation of advanced perception, context interpretation,
and autonomous decision-making into active prostheses improves
control dexterity. Moreover, it also effectively supports the user by
speeding up the preshaping phase of the movement and decreasing
muscle use.

Index Terms—Computer vision, feedback, man–machine
interfaces, myocontrol, semiautonomous systems, upper limb
prosthetics.

I. INTRODUCTION

WHEN we grasp an object, we usually do not think
about how we do it. The type of grasp, tuning of the

wrist posture, and movement of the fingers seem to happen
automatically. Years of training have led to highly dexterous
brain/hand interaction that mainly happens subconsciously and
includes the use of a variety of touch and proprioceptive sensors
as well as stereovision through our eyes. Sudden loss of a hand
dramatically changes this situation with an impact on a person’s
ability to perform work-related, social, and daily life activities.
Current myoelectric prostheses are advanced robotic systems
that aim to mechanically mimic their biological counterparts
[1]. Indeed, modern models have as many as 24 actuated degrees
of freedom, allowing individual finger movements [2], and an
almost complete range of wrist movements [3]. However, in
a relatively short time, the user must learn how to control
these functions with interfaces that currently do not allow large
information transfer rates and without feedback from touch or
proprioception.

The current human–machine interfaces (HMIs) are inade-
quate because their control bandwidth is limited, i.e., the number
and rate of user commands transmitted to the prosthesis are not
high enough to fully exploit the advanced mechatronic capa-
bilities of modern-day upper limb prostheses. As discussed by
Ning et al. [4], the HMIs for prosthesis control are developing at a
slower pace than the mechatronic technologies, and are therefore
unable to efficiently accommodate the increasing complexity of
prosthetic hands [5], [6]. Myoelectric HMIs based on two control
signals have been developed in the early 1960s and are still the
state-of-the-art control systems in commercial active prostheses
[4]. These interfaces provide control over a single degree of free-
dom (DoF). Additional DoFs can be controlled by a switching
command of the user (e.g., muscle cocontraction). This solution
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is cognitively demanding and slow, especially when controlling
more than two DoFs [7]. To extend the number of controllable
DoFs, the pattern classification of multichannel EMG signals
has been investigated for decades [8]. In this approach, the user
can activate the desired function among several possible ones.
However, functions are still controlled sequentially (one at a
time) (e.g., wrist rotation followed by hand closing). Conversely,
simultaneous control of multiple functions can be achieved by
regression control algorithms, although for a limited number of
DoFs [9].

A characteristic common to all myocontrol methods is that
the user needs to provide the commands for all the phases of
the movement. This may lead to muscle and/or cognitive fatigue
because such control is tedious, unintuitive, and unnatural [7].
Achieving effective myocontrol, therefore, requires a high level
of physical and mental fitness. This contrasts with the natural
symbiotic link between the brain and the hand, which allows the
hand to move effortlessly to perform a target task.

In this study, we implement and evaluate a system based on
sensor fusion that supports the user in controlling a prosthetic
hand by automatizing its functions during reach and grasp
interactions. This approach counterbalances the shortcomings
of conventional myocontrol by sharing control with the user.
Recently, multimodal sensor-fusion techniques [10], [11] have
been applied in several HMIs for assistive systems to improve
control capabilities while reducing the cognitive burden of
myocontrol. By relying on multiple sensor modalities, sensor
fusion can be employed to interpret the user’s behavior as well
as the state of the prosthesis and the environment, thereby
providing context information. The context data can then
be used by the prosthesis controller to implement a certain
degree of automation. This approach can improve ease of use,
robustness, and/or performance compared to the conventional
HMIs, which rely only on the explicit command input generated
by the user [12], [13]. Sensing and interpretation of the context
have been widely used for wheelchair control [14]–[17], and
have recently gained popularity in prosthetics as well [18]–[20].

Prosthetic control is a challenging scenario for cooperative
automation since some DoFs are under direct control of the
artificial controller, while others are controlled solely by the
user. For example, a transradial amputee controls the position
and orientation of the prosthesis by moving the residual limb
in space, while the controller adjusts the wrist and preshapes
the hand [21]. In previous approaches, myoelectric interfaces
have been supplemented by systems for automatic reduction of
users’ compensatory movements during reaching using inertial
data [22], prevention of object slippage by interpreting mea-
sured forces [23]–[25], or automatic grasp estimation through
computer vision [21], [26]–[28]. However, in all these cases,
the automatic assistance was limited to specific functions and
integrated with the most basic myoelectric control (two channels
with switching). The user was also required to perform explicit
actions to activate the assistance, such as centering the gaze at
the target object [21], issuing a predefined myoelectric command
[28], or performing a specific arm movement [21].

The present article describes a system that integrates a
classification-based myoelectric control [MYO; implementing

the linear discriminant analysis algorithm (LDA) [29]] with a
novel interface for comprehensive artificial extero- and propri-
oception and autonomous, adaptive prosthesis control (PACE).
The resulting system, which we will refer to as MYO–PACE,
enables simultaneous control of four prosthesis DoFs and con-
tinuously reacts to a change in user intention or environment
without the need to be explicitly triggered. This results in a
level of control dexterity of prosthetic hands and wrists that
has never been achieved before. The MYO–PACE interface
mimics the dexterity of the human motor control by replacing
the biological sensors involved in hand preshaping with their
mechatronic counterparts: The human eyes, proprioceptors, and
somatosensory receptors are replaced by a variety of sensors,
placed externally and/or embedded in the prosthesis, including
cameras, inertial units, motor encoders, and force sensors. More-
over, the system provides an intuitive augmented reality (AR)
feedback to the user. Therefore, the proposed multimodal inter-
face is the first system in which advanced myocontrol (LDA)
and advanced scene perception are combined to implement
continuous decoding of user’s intentions and reactive control of
a dexterous hand prosthesis with actuated hand and wrist (four
degrees of freedom).

In this study, we also present an extensive validation of the
proposed system and comparison with state-of-the-art methods
for experimental tasks involving manipulation in cluttered scene
(multiple simple objects) with both able-body and amputee
participants and complex manipulation tasks (single complex
object) with end users. The first task was selected to challenge
the MYO–PACE with a complicated scene that includes multiple
modeling and interaction possibilities, whereas the second task
was a standard clinical test for assessing the quality of prosthe-
sis control. We postulate three hypotheses. First hypothesis is
that the MYO–PACE increases the overall performance in both
tests (cluttered scene and a clinical test). Since the system is
active only during the preparation of the grasp (wrist orienta-
tion and hand preshape are automatically regulated before the
grasp occurs), our second hypothesis is that the performance
improvement can be explained in terms of decrease in duration
of this particular phase. Finally, our third hypothesis is that
the autonomous support provided by the system decreases the
overall myoelectric activity of those muscles that are involved
in the prosthesis control.

II. HARDWARE SETUP

The system integrates the following components: artificial
perception of the environment and user intention (PACE), myo-
electric (MYO) interface, AR feedback, and multi-DOF prosthe-
sis. These components include the following elements (Fig. 1):
1) an MTw Awinda Inertial Measurement Unit (IMU) (XSens,
Technologies B.V., Enschede, NL), 2) Creative SR300 camera
(Creative Technology Ltd, SG), 3) three retroreflective markers
(19-mm diameter), 4) eight 13E200 dry EMG electrodes with
integrated amplifiers (Otto Bock Healthcare GmbH, Vienna,
AT), 5) Meta Glasses Development Kit 1 (Meta Company, San
Mateo, CA), 6) Michelangelo left-hand prosthesis with active
wrist rotator and flexor module (Otto Bock Healthcare GmbH,
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Fig. 1. System comprises (1) an inertial measurement unit, (2) a color and
depth camera, (3) three retroreflective markers, (4) eight dry surface EMG
electrodes, (5) augmented reality glasses, (6) a prosthesis with two grip types,
active wrist and flexor, and a standard PC (not illustrated in the figure).

Vienna, AT) mounted on a custom-made support (i.e., socket),
and 7) the main processing unit (i.e., a standard desktop PC with
16GB RAM and 8-core i7@4.0 GHz CPU).

The myoelectric interface comprises an array of eight dry
active electrodes with adjustable gains. They acquire the EMG
data and provide linear envelopes required to implement myo-
electric prosthesis control. The linear envelopes are sampled at
100 Hz by an embedded prosthesis controller, and the data are
transferred to the host PC via a Bluetooth connection.

The IMU is attached to the custom-made socket via a 3D
printed connector. The IMU measures the absolute orientation
of the prosthetic hand with respect to the local coordinate system
(i.e., yaw, roll, and pitch angles). The information on prosthesis
orientation was necessary to adjust the wrist according to the
orientation of the participant’s forearm. Data were streamed
wirelessly to the host PC at a sampling rate of 30 Hz.

The Creative SR300 replaces the low-resolution camera em-
bedded in the glasses, which are worn by the user. It is mounted
on the glasses by using a 3D printed support. This ensures that
the camera is facing the same scene that the user is looking at. It
simultaneously acquires both color and depth (RGB-D) images
at a resolution of 1920 × 1080 pixels and 640 × 480 pixels,
respectively. The camera is a central component of the system
operation. The RGB-D data are streamed through a USB port at
a rate of 30 Hz. The depth data is employed for scene modeling,
whereas the RGB-D data is used for ego-motion estimation (i.e.,
camera’s motion relative to a rigid scene [30]).

The three retro-reflective markers are placed on the custom-
made forearm splint in positions that are unlikely to be occluded
while performing the task. The relative position of the markers
is captured at 30 Hz by the infrared sensor of the SR300 camera.
The marker position is fed into the proprioception module to
provide the position of the prosthetic hand, relative to the object.

The AR Meta Glasses, connected to the computer through an
HDMI interface, superimpose digital holographic images to the
real world, allowing the user to receive visual feedback directly

overlaying the observed scene she/he is interacting with. The
holographic images are generated by projecting 960×540 pixels
screens on two semitransparent glasses located in front of the
user’s eyes. The refresh rate of the AR feedback is 30 Hz.

The Michelangelo hand prosthesis provides simultaneous
opening and closing of all fingers with two grip types (palmar and
lateral), as well as an actuated wrist with pronation/supination
and flexion/extension. The prosthesis is mounted on a custom-
made ergonomic socket, which was connected to the left forearm
of able-bodied subjects, positioning the prosthesis below the
hand, as shown in Fig. 1. The prosthetic hand weights 600 g and
is, in the case of able-bodied subjects, positioned 12 cm distal
from the subject’s hand. The custom adaptor weights 700 g and
this weight is distributed around the forearm of the participant.
The four-position encoders (thumb, fingers, wrist rotator, and
wrist flexor) measure fingers aperture and hand orientation rel-
ative to the socket. They are required to reach specific positions
for each DoF of the prosthesis. A single force transducer placed
at the base of the thumb measures the grasping force, used
to detect when the hand is holding an object. A bidirectional
communication protocol, running over a Bluetooth interface at
100 Hz, allows for sensory and control data transmission.

The host PC 1) receives data from the sensors of the prosthesis,
the myoelectric interface, the inertial unit, and the camera; 2)
processes these data to obtain context information and to make
decisions on the prosthesis control; 3) sends control commands
to the prosthesis; and 4) visualizes the feedback to the user
through the AR glasses. In addition, the host PC also implements
a user interface for the execution of the experimental protocol
(e.g., starting and stopping), system setup, and monitoring. The
algorithms were implemented using C++ for scene genera-
tion, Unity 3D (Unity Technologies, San Francisco, US) for
scene management, prosthesis preshaping and AR feedback, and
MATLAB 2017a and Simulink (MathWorks, Natick, US-MA)
for myoelectric inputs decoding and prosthesis communication
(CLS Toolbox [31]).

The unique functions of the MYO–PACE system, as described
below, are achieved through the integration of inputs from all
the system components. As shown in Fig. 2, the PACE sys-
tem comprises a pipeline of processing modules leading into
the autonomous preshape control block. When the information
from all components has been fused into a complete model of
the scene, including the objects and the prosthesis, the PACE
commands can be computed and transmitted to the prosthesis.

III. CONTROL SYSTEM

The MYO–PACE interface relies on the control commands
generated by the MYO (Fig. 2(a)) and the PACE (Fig. 2(b))
control interfaces in order to control the multiple DoF pros-
thesis. The two interfaces operate simultaneously to generate
myoelectric (volitional) and automatic control commands for the
prosthesis, respectively. These two command streams are then
multiplexed (Fig. 2(c)) to select the one that will be transmitted to
the prosthesis. In the end, the AR feedback interface (Fig. 2(d))
provides visual feedback to the user based on the information
received from the system.
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Fig. 2. Overview of the novel MYO–PACE system. The system integrates (a) the PACE interface, (b) the myoelectric (MYO) interface, (c) the control commands
multiplexer, and (d) the augmented reality feedback interface. The novel PACE interface (a) continuously perceives the user and the environment, estimates user’s
intentions and reactively, autonomously and simultaneously adjusts the four DoFs of the prosthesis. The manual control unit (b) interprets the myoelectric inputs of
the user and proportionally controls the corresponding DoF of the prosthesis. The control commands multiplexer (c) defines which signal (manual or automatic) will
control the prosthesis. The augmented reality feedback unit (d) provides the user with intuitive information regarding the state of the system and the environmental
perception, allowing him/her to supervise its operation and, if necessary, intervene.

A. PACE Interface

The PACE interface (Fig. 2(a)) comprises three modules:
artificial perception, user intent estimation, and autonomous
control. The artificial perception module [see Fig. 2(a-1)] tracks
the prosthesis (and the user) movements and models the user’s
environment. The user intent estimation module [see Fig. 2(a-2)]
predicts the object that the user wants to grasp. The autonomous
preshape control module [see Fig. 2(a-3)] determines the optimal
strategy to preshape the prosthesis for grasping and generates a
continuous stream of commands to the prosthesis to configure
the hand and wrist.

1) Artificial Perception Module: The artificial perception
module [see Fig. 2(a-1)] has three submodules: artificial pro-
prioception, artificial exteroception, and scene generation. They
acquire proprioceptive and exteroceptive data from the sensors

and combine them in order to track the user-actions (e.g., the
prosthesis position and movement) and detect the changes in
the environment (e.g., an object that is reallocated).

The artificial proprioception submodule acquires information
about the user (i.e., hand tracking and ego-motion) and the
prosthesis (joint angles configuration and grasping force). The
camera is used to track the three retro-reflective markers located
on the prosthesis, thereby defining the coordinate frame of the
prosthesis with respect to that of the camera. The IMU sensor is
then initialized based on this reference frame and used to track
the prosthesis orientation. Ego-motion is estimated using the
RealSense proprietary APIs [32] distributed with the camera,
providing the information about the movement of the camera
(user’s head) and, therefore, the part of the scene that the user
presently observes. The sensor data assessing the current state
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of the prosthesis (i.e., wrist angles, hand aperture, grip type, and
grasping force) are collected through the AxonBus interface of
the Michelangelo hand. Overall, the errors for the estimation of
the prosthesis position and orientation in space are <2 cm and
<5° , respectively, as determined in pilot tests.

The artificial exteroception submodule acquires depth im-
ages of the environment through the RGB-D camera and uses
computer-vision algorithms to model the objects present in the
scene (i.e., estimate shape, size, position, and orientation relative
to the camera reference frame). In the first step, the algorithm
filters each acquired point cloud to remove all the points which
are not part of the objects (prosthesis, table, wall, and artifacts)
and then fits primitive geometrical shapes to the remaining points
to model the objects in the scene. Specifically, the points of
the point cloud belonging to the prosthesis are removed based
on the artificial proprioception information, while the table
and the wall are identified by employing the random sample
consensus method (RANSAC, [33]). Then, the algorithm based
on RANSAC fits a horizontal plane to the point cloud; if found,
this plane is considered as the table surface on which the objects
are lying, and its points are filtered out. For the wall, if the
RANSAC-algorithm identifies a second perpendicular plane
with more than 40% of the point cloud points, these points are
also removed. In the next step, the locally convex-connected
patches algorithm (LCCP, [34]) is used on the filtered point
cloud in order to cluster and segment the remaining points. In the
last step, very small clusters (less than ten points) are directly
removed, whereas the others are modeled through RANSAC,
selecting the best fit between basic geometrical shapes (spheres,
boxes, and cylinders). No a priori knowledge about the objects’
properties (e.g., color features and size) is required. The result
is a robust system that can handle unknown objects.

To obtain a reliable and consistent set of objects in the
scene, newly modeled shapes are not immediately accepted and
rendered in the scene. The algorithm first detects the possible
collision between the new object models and the current scene
model. If the collision is detected, it is assumed that the group
of colliding models represents the same real object. Using the
Mahalanobis distance, the center of the group is computed, and
the object model closest to the center is selected to represent
the real object. This object is then rendered and analyzed by the
autonomous control system. The object model is removed from
the virtual scene if it is not detected for more than ten consecutive
frames, while it is in the camera’s field of view.

The scene generating submodule is responsible for fusing the
artificial proprio- and exteroception data and for generating and
updating the real-time 3D representation of the scene in front of
the user. When an object is grasped, it is temporarily removed
from the scene, just to be immediately remodeled in its new
position when the user releases it. To be able to track the objects
even when they come out of the user’s sight, simultaneous lo-
calization and mapping (SLAM, [35]) techniques are employed.
The scene is not updated when the user moves his head faster
than 0.1 m/sec or 0.17 rad/sec. The dynamic model of the scene
provides the system with comprehensive information about the
environment, which is the basis for the robust and predictive

Fig. 3. Projections of the object selection volumes on the objects plane. The
objects are selected depending on the distance between the prosthesis (P) and the
objects. Additionally, the selection can only happen inside the selection volumes
of the objects. The projections on the table of such selection volumes are shown
in the figure (blue for the unselected objects, and yellow for the selected one).

estimation of user intention and automatic configuration of the
prosthesis.

By modeling the object using geometric primitives, the ar-
tificial exteroception module filters out sensor artifacts (i.e.,
spatially and temporally unstable clusters of points) coming
from the vision system due to the movement of the camera, for
instance. Moreover, since small and temporally unstable object
parts would inevitably lead to large perturbations in preshape se-
lection, this approach effectively stabilizes the system decisions
and increases its robustness. On the other hand, this also makes
the system less sensitive to objects (or object parts) having any
dimension smaller than 2 cm, since these might be sometimes
discarded already in the modeling phase.

2) User Intention Estimation Module: The user intention
estimation module [see Fig. 2(a-2)] relies on estimated prosthe-
sis position and orientation (from the artificial proprioception
submodule) and the scene model (from the scene generating
submodule) to interpret the user intention to grasp an object. For
this purpose, each object in the scene is assigned a semispherical
selection volume. The right part of the selection sphere is “cut”
for quick deselection when the prosthesis moves from the object,
preventing thereby unnatural pronation movements (i.e., trying
to grasp an object from the right-hand side using a left-hand pros-
thesis). When the prosthesis approaches the object, a proximity
value is computed according to the following formula:

proximity =

(
1− DH−O

minD

)
× hyst (1)

where DH-O is the distance between the hand (H) and the object
(O), minD is the minimal distance to select an object, and hyst
the hysteresis coefficient (equals to 1.16 if the object is selected,
1 otherwise). The higher the proximity value, the deeper is the
prosthesis in the semispherical area. The object with the highest
proximity value is then selected. The hysteresis coefficient (hyst)
automatically increases from 1 to 1.16, and ensures the stability
of the selection (Fig. 3).

3) Autonomous Preshape Control Module: The autonomous
preshape control module [see Fig. 2-a3] determines the
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Fig. 4. Illustration of the wrist preshape for the different grasps. The dark green and dark blue lines represent, respectively, the rotation and flexion axes of the
wrist at rest. During a palmar side grasp (first row), the wrist rotation angle (R) is calculated as the sum of three elements: (a) the rotation to bring the palm parallel to
the table, (b) a 40° degrees counter-clockwise rotation (adjusted to each subject by maximum±10°), and (c) a small additional rotation to compensate the missing
wrist abduction DoF (proportional to the angle (d) between the wrist rotation at rest (dark green) and the hand-object vector (e)). The flexion (F) is computed as
the angle to bring the palm perpendicular to the object (f), slightly adjusted based on the prosthesis specific shape and user preferences. For the palmar top grasp,
the wrist rotation (R) is the angle necessary to orient the palm perpendicular to the hand-object vector (g), slightly adjusted based on user preferences. The wrist
flexion (F) is computed as the angle necessary to keep the prosthesis rotation axis perpendicular to the table vertical vector (h), corrected by a user-specific factor
(±10°).

prosthesis preshape and orientation in order to facilitate the
optimal grasp. The system decides on the grip type, amount
of wrist flexion/extension, pronation/supination, and the size of
the hand aperture. Three different scenarios are possible. If the
object or at least the side of the object that the user wants to
grasp is smaller than 3 cm, then the lateral grasp is selected. If
the hand is above the object (hand height> 1.5× object height),
the palmar top grasp is selected. Otherwise, the hand will select
palmar side grasp. For both lateral and palmar top grasps, the
hand flexion axis is maintained horizontal while the palm is
oriented toward the object by rotating the wrist, as illustrated in
Fig. 4 and defined in equations (2) and (3):

θrot =

∣∣∣∣θ(←−−−
Oup ,

←−−−−−
P right

)
∣∣∣∣ − 90◦ + θCorrtop−rot

(2)

θflex = 90◦ −
∣∣∣∣θ(←−−−

Oup,
←−−−−
P forw

)
∣∣∣∣+ θCorrtop−flex

(3)

where θ
(
←−−−
Oup ,

←−−−−−
P right)

and θ
(
←−−−
Oup,

←−−−−
P forw)

are the angles between
the vertical vector of the coordinate system of the object and
the right and forward vectors of the forearm. The variables
θCorrtop−rot

and θCorrtop−flex
, respectively, are the offsets for

correction of rotation and flexion. These are adjusted for each
subject individually and are in the range of (−10°, 10°).

In the case of the palmar side grasp, the hand is positioned
to an angle of 40° from the horizontal, which is additionally
adjusted proportionally to the angle between the forearm and
the hand-to-object vector, in order to compensate for the lack of
wrist abduction. The prosthesis flexion is continuously updated
so that the palm maintains perpendicular orientation to the
object, adjusted by the constant offset of 20° and an additional

correction factor that is determined for each subject individually

θrot = |θ←−−−Oup,
←−−−−−
P right

|−90◦ + 40◦ + θCorrside−rot

+ 0.12× |θ(←−−−−
P forw,

←−−−−−−−
V ecH−O

)
∣∣∣∣ (4)

θflex = 0.8× |θ(←−−−−
P forw,

←−−−−−−−
VecH−O

)| − 90◦ + 20◦ + θCorrside−flex

(5)

where θ
(
←−−−−
Pforw,

←−−−−−−
VecH−O)

is the angle between the forward vector
of the forearm and the vector going from the hand to the object.
The variables θCorrside−rot and θCorrside−flex are the offsets for
correction of the rotation and the flexion, which are adjusted for
each subject individually (−10°,10°). The proportional gains of
0.12 and 0.8 in (4) and (5) were determined heuristically.

The hand aperture is set to be 2 cm larger than the thickness
of the object along the trajectory that the fingers follow while
closing. The generated set of multi-DOFs adjustments is con-
tinuously converted into smooth velocity trajectories and sent
to the control commands multiplexer. Since the calculations are
continuously performed, the system reacts instantaneously to
changes in both prosthesis position and external environment.

B. Myoelectric Interface

The myoelectric interface (Fig. 2b, MYO) acquires linear
envelopes from the array of eight EMG electrodes located on
the ipsilateral side of the subject, extracts amplitude features
(RMS), and classifies them into proportional single-DoF ve-
locity commands for the prosthesis using LDA. Six classes
have been implemented to control the DOFs of the prosthesis:
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close/open hand, flex/extend, and pronate/supinate the wrist.
The user can cycle between the two available grasp types (i.e.,
palmar or lateral) through a short, strong activation of the hand
extensor muscles. This approach reduced the number of classes
that the user needed to generate (from seven to six) and made
the myocontrol easier and more robust. Even after extensive
training, the amputee subjects were unable to reliably generate
six distinguishable muscle activation patterns. For this reason,
a four-class control mode has also been implemented. In this
mode, the control of the wrist is separated from that of the
hand. The user can switch between wrist control and hand
control by generating a short contraction (<0.3 s) of the flexor
muscles.

C. Control Commands Multiplexer

In the terminology of shared control [36], the PACE and MYO
controllers implement traded autonomy, where the multiplexer
block (Fig. 2) switches the control from fully automatic to fully
volitional depending on the system state. The control commands
multiplexer (Fig. 2c) sends to the prosthesis the commands
produced by the myoelectric interface when an object is grasped,
or the user generates myoelectric inputs. In all the other cases,
the multiplexer transmits the commands generated by the PACE
interface (i.e., autonomous control). When the user stops produc-
ing myoelectric activity and no force is detected by the fingers
(the hand is not holding any object), the control transitions from
the manual to the automatic mode after a small delay of 0.75 s.

D. Augmented Reality Feedback Interface

The augmented reality feedback interface (Fig. 2d) employs
the AR glasses to provide the user with visual feedback regarding
the system operation. Icons are displayed in the top corners of the
glasses to indicate to the user if the scene is being updated (blue
cube), if an object is selected (yellow target) and if myoelectric
inputs are detected (green hand). Additionally, all the detected
objects in the scene are presented to the user through holograms,
overlaying the real objects, with intuitively coded colors: De-
tected objects are blue, whereas selected objects are yellow with
green faces to indicate the estimated approach side. The selected
objects become green when the user sends myoelectric inputs.
Fig. 2d shows the augmented reality feedback interface and the
sets of icons and object holograms that are visualized on the
glasses.

Fig. 5 illustrates the operation of the MYO–PACE system
during the interaction with a single object. The snapshots were
recorded during an experiment and show the subject’s view of the
scene through the AR glasses. They illustrate the interaction with
one representative object, with scene modeling and updating (a),
user intention detection, and automatic control of the prosthesis
(b), (c), and (d) and manual control and manipulation (e), (f),
(g), and (h).

IV. EXPERIMENTS

Amputee subjects and able-body subjects performed a
custom-designed relocalization task to assess the MYO–PACE

in a scene with cluttered objects (cluttered scene interaction
test—CSI). In addition, the two amputees were also tested in
manipulation tasks mimicking activities of daily living (SHAP).

In all tests, the performance of the MYO–PACE interface was
compared to state-of-the-art myocontrol (LDA classifier). Each
control scheme was trained and evaluated in two separate ses-
sions. The order of the systems was randomized across subjects.
The subjects trained the pattern recognition algorithm first, and
then they received instructions regarding the tasks.

A. Subjects

Two amputee subjects (59 and 61 years old) and eight male
right-handed able-bodied participants (from 23 to 30 years old)
volunteered for this study. All subjects signed a written consent
form that was approved by the Ethical Committee of the Uni-
versity Medical Center Göttingen (22/04/16). Three able-bodied
subjects had previous experience in myoelectric control. Both
amputees regularly used transradial myoelectric prostheses.

B. Experimental Tasks: Cluttered Scene Interaction
Test (CSI) and SHAP

A CSI task has been designed by taking inspiration from the
Southampton Hand Assessment Procedure (SHAP) test [37].
The “abstract object” part of the SHAP test requires the partici-
pants to grasp one of the six abstract objects and to place it in the
corresponding place holder. Our test extended this concept by 1)
placing six objects simultaneously on the table [L 200×W 105
× H (60—90 cm, adjusted individually)] (increasing the scene
modeling and intention detection complexity), including two cd
boxes (130 × 20 × 130 mm), two tea boxes (130 × 65 × 80
mm), one can (117 mm height, 65 mm diameter), and one plastic
peach (around 75 mm diameter) (Fig. 6), and 2) by asking the
subject to manipulate and relocate each object in one continuous,
uninterrupted trial (altering the prosthesis pose after each ma-
nipulation). Fig. 6a shows the setup. Unlike in the SHAP test, the
participants performed the CSI test while standing, which gave
them the ability to utilize a wider variety of motions and body
postures. The participants were also encouraged to grasp the
objects as they preferred, which required the autonomous control
to react to the possibly inconsistent behavior of each participant.
For able-body subjects, the prosthesis was fixed to a splint, which
immobilizes the hand, resulting in isometric muscle contractions
during EMG signals generation. The amputee subjects were
fitted with sockets that integrated eight EMG electrodes.

In order to extend the assessment to more complex objects
used in daily living, 17 out of the 24 tasks of the SHAP test were
included in the assessment. The remaining seven tasks were
excluded since they were not compatible with the current setup.
The daily life activities “Jar Lid,” “Glass Jug Pouring,” “Carton
Pouring,” “Lifting a Heavy Object,” and “Lifting a Light Object”
were included in the test. The combination of abstract objects
and the activities of daily living (ADLs) covers a large variety of
objects, rendering the evaluation more clinically relevant. Two
amputee subjects participated in this experiment.
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Fig. 5. Example interaction with an object using MYO–PACE showing the view from the user perspective (AR glasses). (a) Real objects in the scene are modeled
and blue holograms are superimposed over the objects. The top-left blue icon indicates that the system actively updates the scene. The time encompassed from
now until the object grasp counts as the time to prepare for grasp (a–d; preparation time). (b) Based on the scene model and prosthesis motion, the system infers
user intention to grasp the central object from the front-left side. The object assumes a yellow–green texture, the prosthesis is automatically preshaped, and the
yellow icon is displayed. (c) User changes his mind and moves the prosthesis toward another object. The system responds by indicating the new selection and
reshaping the prosthesis to grasp the object from above. (d) However, the user moves the prosthesis toward the table and the system detects the intention to grasp
the object from the side. The object texture is updated, and the prosthesis automatically changes the wrist orientation. (e) User approaches the object and generates
muscle activity for closing the prosthetic hand. The hologram of the target object becomes green and the icon for myoelectric inputs is visualized (manual control
mode). The time spent by the user to prepare the prosthesis for grasp and to close the hand counts as the myoelectric control time. (f) User has grasped the object
and transports it without generating myoelectric signals. The system is in the manipulation phase even if the user does not generate myoelectric commands. (g)
User manipulates the object (changes its orientation) by generating myoelectric commands to control the wrist degrees of freedom. The time spent performing this
action counts both the time spent to generate myoelectric control signals and the time to control the wrist. (h) User releases the object in the new position where it
will be automatically remodeled by the system as soon as the user stops generating myoelectric commands.

C. System Initialization and Calibration

The system was initialized as soon as the camera was turned
ON, and the first frame was acquired. The system used this frame
as a reference point for the computer-vision based tracking.
Three components required calibration before the system could
be adequately used: the AR glasses, the IMU, and the myoelec-
tric interface. The calibration of the AR projection was done
manually based on user feedback. To calibrate the IMU, the user
held the prosthesis in front of the RGB-D camera to compute
the relation between the camera coordinate system and the three
markers of the prosthesis.

The myoelectric interface was calibrated before each test
session in two different arm positions (shoulder 20° extended
and elbow 70° flexed, shoulder 75° extended, and elbow fully
extended). The myoelectric control was then calibrated in three
steps: 1) the isometric maximal voluntary contractions (MVC)
for each LDA class were measured; 2) the data for the classifier
training were collected by asking the subject to perform the
movement at two contraction levels (40% and 80% of the MVC);
and 3) the thresholds and gains that regulate the class detection
and proportional control of the prosthesis were fine tuned.
Amputee subjects were first tested on their ability to produce

six different muscle patterns. If they were not satisfied with the
prosthesis controllability, they tested the four-class control.

D. Procedure

Each control scheme was trained and evaluated in two sepa-
rate sessions. The order of the systems was randomized across
subjects. Fig. 6 illustrates 1) the setup and initial positions of the
objects for the CSI test, 2) the first three object relocations, 3)
the next three relocations, and 4) the objects in their destination
positions.

A training session (approximately 2.5 hours) preceded each
evaluation session, which was performed on a separate day.
During the training session, the participants practiced and cali-
brated either LDA or MYO–PACE. The training session allowed
the subjects to understand both control schemes, as well as to
practice in grasping objects by generating appropriate muscle
activations. While practicing, the subjects also received expla-
nations about the movements generated by each of the systems
(MYO–PACE and LDA). The goal of the training session was for
the subjects to feel confident in their ability to skillfully interact
with the prosthesis during the subsequent evaluation session,
with both control systems.
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Fig. 6. Experimental task overview. The figure illustrates the experimental
setup and task sequence (annotations 1–6). (a) Initial position of the user,
prosthesis, and objects at the start of the trial. These positions were the same
for every trial. The destination of each object was marked by a label. The
elastic compensated for the weight of the prosthesis, reducing the fatigue. (b)
Repositioning of the two CD boxes (1, 2) and of the objects-set (3) {tin can,
peach}. (c) Rotation of the first tee box (4), translation of the peach from the top
of the tin can to the top of the tee box (5), and transfer of the second tee box (6).
(d) Final position of the objects at the end of the trial.

During each experiment, the subjects had to interact with a
set of objects using either the MYO–PACE or LDA control. The
interaction included grasping, lifting, reorienting, transporting,
and releasing the objects. During the CSI test, the subjects
interacted with every object once, except for the peach, which
they relocated again after the first manipulation. The scene was
designed to assess the performance of the MYO–PACE in the
situation where it was critical to update the scene constantly. As
the subjects replaced the grasped objects, the system needed to
remodel the moved objects and cope with a cluttered scene that
included multiple and composite objects, such as the peach on
the tin can.

The CSI test consisted of 10 trials (per condition; MYO–
PACE and LDA). The reduced SHAP test was not repeated
(i.e., one trial per condition), as instructed in the SHAP manual,
and the tasks were performed according to the protocol in the
manual. There was no time limit for performing the trial, but the
subjects were instructed to perform it as fast as possible while at
the same time avoiding excessive compensatory movements. No
instructions were given regarding how to grasp or manipulate the
objects. During the CSI test, the subjects only needed to follow
the specified order of interactions with the objects (Fig. 6b and
c). The experimenter observed the task execution and the trial
were repeated in the following cases: 1) while using MYO–
PACE, the subject continuously provided manual commands,
preventing the automatic unit from preshaping the prosthesis; 2)
the user performed excessive compensatory movements; 3) the
subject dropped an object while performing the trial; 4) hardware
stopped functioning (e.g., the camera froze; < 5% trials). The
trial was deemed finished when all the objects had been relocated

to the destination positions and oriented correctly, Fig. 6d. The
scene model by the MYO–PACE interface was cleared between
each trial (no previous knowledge about the scene configuration
was passed on to the next trial), and the prosthesis was reset to
its neutral position.

E. Data Analysis and Hypotheses

The main hypothesis was that MYO–PACE system substan-
tially increases subjects’ performance in accomplishing the tasks
compared to LDA. This hypothesis was tested by comparing
the time required to complete the experimental tasks (primary
outcome measure in SHAP and CSI test) between the two
conditions (MYO–PACE vs. LDA).

To test the further hypothesis that the MYO–PACE system
decreases the overall use of myocontrol, the time during which
the user generated myoelectric inputs to control the prosthesis
was also logged (myocontrol time—secondary outcome mea-
sure). The total time was therefore measured from the start
of the trial until its completion, whereas the myocontrol time
consisted of all those intervals in which the user generated
myoelectric control inputs in any phase of the trial. In addition,
the myocontrol time was divided into hand (i.e., aperture) and
wrist control (flexion and rotation).

The two outcome measures were further examined separately
between grasp preparation (preparation time) and object ma-
nipulation (manipulation time). The preparation time accounted
for the time before the grasp, which corresponded to the total
time the user needed to preshape and position the prosthesis and
grasp the object. The manipulation time was the time interval
between the object grasp and the subsequent object release.
Because the autonomous system supports the preshaping of the
prosthesis before the grasp, we expected a decrease in grasp
preparation time with an unchanged manipulation time when
using the proposed system.

For the CSI test, the averaged values of each outcome
measure have been compared between the interfaces (MYO–
PACE vs. LDA). For the SHAP test, task durations passed the
Kolmogorov–Smirnov normality test and have been therefore
compared using a paired t-test. The rest of the variables did not
pass the Kolmogorov–Smirnov normality test. Therefore, the
nonparametric Wilcoxon signed-ranks test was used to evaluate
statistically significant differences. The results of the CSI test are
reported as median (interquartile range); those of the SHAPs
tests are reported as cumulative duration of the tasks. The
significance level was set at p < 0.05.

V. RESULTS

A. Experimental Task 1—Cluttered Scene Interaction Test

In the CSI test, 160 trials (2 control methods × 10 trials × 8
subjects) were performed by able-bodied and 32 (2 control meth-
ods × 8 trials × 2 subjects) by amputee subjects. To minimize
the influence of training on the performance outcomes, only the
last six trials were used for analysis. All subjects successfully
performed the tasks in both MYO–PACE and LDA conditions.



MOUCHOUX et al.: ARTIFICIAL PERCEPTION AND SEMIAUTONOMOUS CONTROL IN MYOELECTRIC HAND PROSTHESES 1307

Fig. 7. Trial time decomposition for the cluttered scene interaction (CSI) test
performed by able-bodied subjects. The trial execution time and the total time
spent using myocontrol are decomposed in preparation and manipulation phases.
The indications above the asterisks stand respectively for a significant difference
(p < 0.05) in the total amount of time (Tot), the time spent controlling the
prosthesis manually (hand and wrist; Myo), and time spent controlling the wrist
manually (Wrist) for each phase of the task.

1) Able-Bodied Subjects: Fig. 7 depicts the summary results
for the performance. The total trial time was significantly longer
for LDA [63.3(23.4) s] than for MYO–PACE [50.5 (7.2) s],
indicating a better overall task performance with MYO–PACE.
The decrease in overall time was mostly due to the improved
preparation phase, which decreased significantly from 38 (16.8)
s for LDA to 32.9 (4.2) s for the MYO–PACE system.

The subjects generated substantially more myoelectric ac-
tivity with the LDA interface compared to the MYO–PACE
interface [34.6 (18.3) s vs. 20.6 (6.7) s]. Specifically, a significant
difference was observed during the preparation phase, where
subjects reduced myocontrol time from 17.9 (13.2) s with LDA
to 9.1 (2.9) s with MYO–PACE. The time spent for the wrist
control was significantly smaller for the MYO–PACE during
both grasp preparation time and total trial time.

2) Amputee Subjects: The first amputee was significantly
faster with MYO–PACE [from 66.8 (9.1) s to 57.0 (6.7) s], while
no significant difference has been observed for the total trial time
for the second amputee (Fig. 8).

Both amputees significantly reduced the time spent generating
myoelectric activity to control the prosthesis. Specifically, they
reduced the time to control the wrist during the preparation
phase and the total duration of the trial. Interestingly, when
using the MYO–PACE system, the second amputee significantly
decreased the overall manipulation time, as well as the manipu-
lation myocontrol time, including the wrist manipulation control
time.

B. Experimental Task 2—SHAP Tests

The SHAP test was executed for a total of four repetitions (two
control methods × two subjects). Both subjects successfully
performed the tasks in both MYO–PACE and LDA conditions.

Fig. 8. Trial time decomposition for the cluttered scene interaction (CSI) test
performed by amputee subjects. The trial execution time and the total time spent
using myocontrol are decomposed in preparation and manipulation phases. The
indications above the asterisks stand respectively for a significant difference
(p < 0.05) in the total amount of time (Tot), the time spent controlling the
prosthesis manually (hand and wrist; Myo), and time spent controlling the wrist
manually (Wrist) for each phase of the task.

Fig. 9. Performance of the two amputee subjects during the SHAP tests.
The cumulative duration of the test and the total time spent using myocontrol
are divided in preparation and manipulation phase. The indications above the
asterisks stand respectively for a significant difference (p < 0.05) in the total
amount of time (Tot), the time spent controlling the prosthesis manually (hand
and wrist; Myo), and time spent controlling the wrist manually (Wrist) for each
phase of the task.
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Fig. 9 shows the results of the SHAP tests. The total trial
duration, the time spent using myocontrol to control the pros-
thesis as well as the time spent in controlling the wrist were
significantly reduced when using MYO–PACE. No difference
was observed in the manipulation phase between the control
systems, whereas in the preparation phase, the total myoelectric
control time, as well as the wrist manipulation time, were all
significantly reduced when using the MYO–PACE.

VI. DISCUSSION

We presented a novel semiautonomous system based on
sensor fusion (MYO-PACE) for the control of an advanced
prosthesis (i.e., Michelangelo hand with wrist rotation and flex-
ion/extension unit). By design, the automatic control is only
active during the preparation phase of the grasp, whereas the con-
trol during the manipulation phase is based on the user volitional
myoelectric input (LDA). Therefore, the system configures the
prosthesis in anticipation of the grasp on behalf of the user,
relieving him/her of the tedious manual adjustments that are
characteristic of this phase.

The MYO–PACE interface and the state-of-the-art LDA my-
oelectric control interface have been compared by asking the
subjects to interact with several simple objects in a custom-
designed cluttered scene (CSI) as well as a variety of daily-
life objects in the clinically validated SHAP test. The overall
setup, as well as the different manipulation scenarios, aimed
at assessing the usability of the system in realistic and clinical
conditions.

Semiautonomous control has been used in prosthetics before
but in a very limited context. The scene analysis was based
mostly on simple computer vision algorithms, where the subject
needed to target the object (e.g., marking it with a laser [38],
aiming with the prosthesis [26], or centering it with the camera
[21], [39], [40]). Moreover, in contrast to our system, which con-
tinuously updates and fuses new information with every acquired
frame (SLAM), the previous solutions could assess only a simple
scene by acquiring and processing a single snapshot (picture). In
addition, since these systems were unable to perceive the user’s
location in the environment, they could not estimate his/her
intention to grasp the object and they thus needed to be triggered
by an external signal [28], [38]–[40]. Conversely, the system
described here utilizes sensor information from several sources
(including depth sensing, inertial units, marker tracking, and sen-
sors embedded in the prosthesis) to assess multiple objects, the
user, and his/her surroundings, continuously and dynamically.
The scene is analyzed by building a model in the background,
which is populated and refreshed online as the subject looks
freely around the scene.

The LCCP algorithm has been selected since it can segment
the objects into parts. This can be applied to detect objects that
are stacked together or to break-down larger objects (or objects
with more complicated geometry) into graspable segments. This
feature has been exploited in the present experiment several
times. For example, in Fig. 5, the peach is modeled as a separate
object from the can on top of which it sits, and in a similar

fashion, the system is able to differentiate between the water
container and its handle in the SHAP test (not shown in the
picture). None of the previous solutions [21], [28], [38] is
capable of this functionality.

By integrating proprioception, exteroception, and a real-time
computation, MYO–PACE can configure the prosthesis accord-
ing to the user intention in a cluttered scene without any explicit
triggering by the user. The real-time tracking of the prosthesis
and of the object allows computing the relative orientation of
the prosthesis and therefore actuating multiple DoFs of the wrist
and hand. As human movements are performed by simultane-
ous, synergistic motions of multiple joints, this simultaneous
preshaping of the multiple DoFs of the prosthetic device gener-
ates more naturally appearing motion compared to conventional
control (LDA). Furthermore, by controlling multiple actuators
simultaneously instead of sequentially, a significant reduction in
the duration of the preparation phase is achieved. Consequently,
MYO–PACE reaches a level of interaction dexterity that sub-
stantially surpasses the state-of-the-art systems in upper limb
prosthetics.

A. Semiautonomous Control Improves Performance

To validate the hypothesis that performance improves when
acting on a cluttered scene, the system was tested using the CSI
test, which included a sequence of tasks that constantly varied
the pose of the prosthesis and therefore left very little room for
mental preparation between manipulations. The results showed a
significant reduction of the total time needed to perform the test,
confirming that the novel man–machine interface significantly
outperformed the state-of-the-art myocontrol for able-bodied
subjects. One of the amputee participants also performed sig-
nificantly better with MYO–PACE, which is consistent with
our hypothesis, whereas the second only showed a trend in
improving his performance. Importantly, the results obtained
in this experimental context also demonstrate that the LCCP
algorithm enabled the MYO–PACE to efficiently control the
prosthesis in a cluttered environment (CSI test) or even in those
cases when the objects were geometrically complex (SHAP test),
which would not have been possible with other systems [28].

We also hypothesized an improvement in performance dur-
ing a single manipulation of a complex object in a clinically
relevant setting, which has been investigated using a SHAP
test. The SHAP test consists of daily-life objects that require
a series of complex manipulations. Interestingly, most of the
manipulations can be successfully completed without exten-
sive wrist usage in the grasp preparation phase, and there-
fore, an initial assumption was that the support provided by
the MYO–PACE system could have only a limited impact.
Nonetheless, the use of MYO–PACE significantly improved
the overall performance of both amputee subjects also in these
conditions.

We separated our analysis for the different phases of each task.
The time for the preparation phase decreased significantly both
in the CSI and in the SHAP tests, thus confirming our second
hypothesis that the most significant effect of MYO–PACE would
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involve grasp preparation. The only exception to this obser-
vation was the decrease in object manipulation time, but not
preparation time, in the CSI test by Amputee 2. An explanation
for this counterintuitive finding is that the subjects could freely
decide the strategy to accomplish each task. Using LDA control,
they could perform a fast but nonoptimal grasp using fewer
DoFs than with the proposed system. However, a suboptimal
grasp could have slowed down the subsequent manipulation
phase.

The usage of the MYO–PACE interface also reduced the time
spent on myoelectric control for both able-bodied and amputee
subjects in both tasks, which confirms our third hypothesis.
Prolonged muscle contractions could lead to the development
of muscle fatigue and worsen pattern classification performance
[41]. Therefore, by reducing the total muscle contraction time,
the MYO–PACE shows the potential of limiting the impact of
muscle fatigue on myoelectric control and increasing the overall
control efficiency.

In conclusion, it has been demonstrated that the semiau-
tonomous control system MYO–PACE improves the perfor-
mance of prosthesis control in comparison with the state of the
art (LDA) in both complicated sequences of object relocalization
for able-bodied participants and single standard manipulation of
complex objects in a clinically established protocol for the two
amputees. The increase in performance is directly associated
with the decrease in the duration of the preparation phase of the
movement. Finally, as anticipated, the usage of the MYO–PACE
system leads to a significant reduction of muscle usage.

The experimental assessment in the present study focused on
directly evaluating functional performance instead of assessing
the accuracy of individual system components (e.g., correct
object recognition and/or grasp identification). This was a delib-
erate choice since functional scores are more relevant for clinical
applications, as discussed in [42].

B. Semiautonomous Prosthesis Overcomes Some Limitations
of Myocontrol

Pattern classification and regression represent the state of the
art in prosthesis control [43], and commercial systems have
appeared on the market [44], [45]. However, their applications
for amputees are still limited by several factors [4], [46], [47].
After an amputation, only some of the muscles remain in the
residual limb. This can reduce the number of discriminable
muscle patterns that can be produced by an amputee, which
directly limits the number of prosthesis DoFs that he/she can
control. And indeed, this limitation has been encountered in
the present study, since the two amputee subjects were not able
to produce six different muscle patterns even after extensive
training. Therefore, unlike able-bodied subjects, the amputees
were not able to directly address each prosthesis DoF: The
number of pattern recognition classes had to be reduced to four,
and a myoelectric switch was introduced to change between hand
and wrist function. An additional limitation of pattern recogni-
tion implemented using surface electrodes is that the muscle
patterns associated with a specific movement can change due to
several factors, such as repositioning of the limb, sweating, shift

in electrode locations, and muscle fatigue, ultimately leading
to misclassifications and hence unwanted movements of the
prosthesis [4], [46], [47]. The novel semiautonomous system
(MYO–PACE) overcomes these limitations by operating all the
DoFs of the prosthesis without the use of muscle activations
in the preparation phase of the grasp (unless the user explicitly
indicates that he/she wishes to take over the prosthesis control).
And indeed, the performance during the CSI test was less vari-
able across subjects with MYO–PACE (i.e., interquartile range
for the total duration time of 7.2 s for MYO–PACE vs. 23.5 s for
LDA). The difference in performance between the two amputees
in the LDA condition is also reduced when using MYO–PACE
because the system reduces the level of myocontrol skill required
to handle the prosthesis complexity.

C. Limitation and Future Development

Although the MYO–PACE significantly outperforms the clin-
ical state of the art myoelectric control, it is also substantially
more complex in terms of required computational power and
additional hardware. Moreover, some of the system components,
such as the augmented reality glasses, are cumbersome and not
particularly comfortable to wear. These limitations could be
solved in the future iterations of the system. This technology is
fast-developing and miniaturized components (e.g., depth cam-
eras [48], augmented reality glasses [49]) with improved char-
acteristics are being constantly developed. The computational
resources that the computer vision requires can also be reduced
by modifying the software to analyze only the parts of the scene
of interest (e.g., around the prosthesis), or by delegating these
to cloud computing as proposed in [50] and [51]. The technical
limitations of the SR300 camera led to occasional modeling
errors for the small objects (thinner than 2 cm). Importantly, the
hardware component with the biggest influence on ergonomics is
the AR interface, which is not essential for the system operation.
The AR feedback assists the user in recognizing the system
errors, but the same can be achieved by looking at the prosthesis
(e.g., noticing that the hand preshaped in a wrong grasp) once
the system working principles are clear to the user. Therefore,
this component could be removed if the vision sensors would
be embedded in the prosthesis, as done in [52] and if the overall
system robustness would not require the user to monitor the
system operation.

In the present study, the MYO–PACE system controlled two
DoFs of the wrist and a hand aperture in a two grasp types
(palmar and lateral). Nevertheless, the approach could be easily
extended to include automatic selection among several grasp
types in a dexterous prosthesis based on the object properties es-
timated by the artificial exteroception module. Finally, it would
be interesting to explore the possibility of combining the MYO–
PACE system with an underactuated prosthesis [53]–[55], [56],
where the control complexity during grasping is already reduced
intrinsically by the mechanical design.

VII. CONCLUSION

In conclusion, the proposed control approach enables a
smooth and natural prosthesis motion, as well as a level of
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dexterity that substantially surpasses the state-of-the-art pattern
recognition myocontrol.

APPENDIX

The dataset(s) supporting the conclusions of this article is
(are) available upon request.
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