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PoseRBPF: A Rao–Blackwellized Particle Filter for
6-D Object Pose Tracking
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Abstract—Tracking 6-D poses of objects from videos provides
rich information to a robot in performing different tasks such
as manipulation and navigation. In this article, we formulate
the 6-D object pose tracking problem in the Rao–Blackwellized
particle filtering framework, where the 3-D rotation and the 3-D
translation of an object are decoupled. This factorization allows
our approach, called PoseRBPF, to efficiently estimate the 3-D
translation of an object along with the full distribution over the
3-D rotation. This is achieved by discretizing the rotation space
in a fine-grained manner and training an autoencoder network
to construct a codebook of feature embeddings for the discretized
rotations. As a result, PoseRBPF can track objects with arbitrary
symmetries while still maintaining adequate posterior distribu-
tions. Our approach achieves state-of-the-art results on two 6-D
pose estimation benchmarks. We open-source our implementation
at https://github.com/NVlabs/PoseRBPF.

Index Terms—Computer vision, state estimation, 6-D object pose
tracking.

I. INTRODUCTION

E STIMATING the 6-D pose of objects from camera images,
i.e., 3-D rotation and 3-D translation of an object with

respect to the camera, is an important problem in robotic applica-
tions. For instance, in robotic manipulation, 6-D pose estimation
of objects provides critical information to the robot for planning
and executing grasps. In robotic navigation tasks, localizing
objects in 3-D provides useful information for planning and
obstacle avoidance. Due to its significance, various efforts have
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been devoted to tackling the 6-D pose estimation problem from
both the robotics community [5], [9], [67], [75] and the computer
vision community [21], [37], [53].

Traditionally, the 6-D pose of an object is estimated using
local feature or template matching techniques, where features
extracted from an image are matched against features or view-
point templates generated for the 3-D model of the object.
Then, the 6-D object pose can be recovered using 2-D–3-D
correspondences of these local features or by selecting the best
matching viewpoint [9], [20], [21]. More recently, machine
learning techniques have been employed to detect key points or
learn better image features for matching [3], [32]. Thanks to the
advances in deep learning, convolutional neural networks have
recently been shown to significantly boost the pose estimation
accuracy and robustness [27], [48], [62], [75], [76], So far,
the focus of image-based 6-D pose estimation has been on
the accuracy of single image estimates; most techniques ignore
temporal information and provide only a single hypothesis for an
object pose. In robotics, however, temporal data and information
about the uncertainty of estimates can also be very important for
tasks such as grasp planning or active sensing. Temporal tracking
in video data can improve pose estimation [7], [10], [31], [46].
In the context of point-cloud-based pose estimation, Kalman
filtering has also been used to track 6-D poses, where Bingham
distributions have been shown to be well suited for orientation
estimation [59]. However, unimodal estimates are not sufficient
to adequately represent the complex uncertainties arising from
occlusions and possible object symmetries.

In this article, we introduce a particle-filter-based approach
to estimate full posteriors over 6-D object poses. Our approach,
called PoseRBPF, factorizes the posterior into the 3-D
translation and the 3-D rotation of the object and uses a
Rao–Blackwellized particle filter that samples object poses
and estimates discretized distributions over rotations for
each particle. To achieve accurate estimates, the 3-D rotation
is discretized at 5◦ resolution, resulting in a distribution over
72× 37× 72 = 191 808 bins for each particle (elevation ranges
only from −90◦ to 90◦). To achieve real-time performance, we
precompute a codebook over embeddings for all discretized
rotations, where embeddings come from an autoencoder
network trained to encode the visual appearance of an object
from arbitrary viewpoints at a certain scale (inspired by [60]).
For each particle, PoseRBPF first uses the 3-D translation to
determine the center and size of the object bounding box in
the image, then computes the embedding for that bounding box
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Fig. 1. Overview of our PoseRBPF framework for 6-D object pose tracking.
Our method leverages a Rao–Blackwellized particle filter and an autoencoder
network to estimate the 3-D translation and a full distribution of the 3-D rotation
of a target object from a video sequence.

using the autoencoder, and finally updates the rotation
distribution by comparing the embedding vector with the
precomputed entries in the codebook using cosine distances. The
weight of each particle is given by the normalization factor of the
rotation distribution. Motion updates are performed efficiently
by sampling from a motion model over poses and a convolution
over the rotations. Fig. 1 illustrates our PoseRBPF framework
for 6-D object pose tracking. Experiments on the YCB-Video
dataset [75] and the T-Less dataset [24] show that PoseRBPF
is able to represent uncertainties arising from various types of
object symmetries and can provide more accurate 6-D pose
estimation.

Our work makes the following main contributions.
1) We introduce a novel and versatile 6-D object pose es-

timation framework that combines a Rao–Blackwellized
particle filtering with a learned autoencoder network in an
efficient and principled way.

2) Our framework is able to track full distributions over 6-D
object poses based on RGB or RGB-D inputs. It can also do
so for objects with arbitrary kinds of symmetries, without
the need for any manual symmetry labeling.

Compared to the previous version of PoseRBPF [12], we
introduce the following improvements in this article.

1) We propose an efficient modification inspired by [17],
where we apply region of interest (RoI) pooling to speed
up particle evaluation. Experiments show that the RGB-D
tracking speed can be improved by more than 68% without
sacrificing tracking accuracy.

2) Apart from encoding RGB measurements using autoen-
coders, we propose to encode depth measurements using
separate autoencoders and show that the tracking perfor-
mance can be significantly improved.

3) We show that our pose estimation framework can be com-
bined with a signed distance function (SDF)-based pose
refinement module to further improve the pose estimation
accuracy.

4) We show that, when object detection is not available,
PoseRBPF can be initialized by uniformly sampling par-
ticles over the first video frame and then refining this
estimate over consecutive frames.

The rest of this article is organized as follows. After discussing
the related work, we present our Rao–Blackwellized particle
filtering framework for 6-D object pose tracking, followed by
experimental evaluations and a conclusion.

II. RELATED WORK

A. Six-Dimensional Object Pose Estimation

Our work is closely related to recent advances in 6-D object
pose estimation using deep neural networks. The current trend
is to augment state-of-the-art 2-D object detection networks
with the ability to estimate 6-D object pose. For instance, Kehl
et al. [27] extend the SSD detection network [40] to 6-D pose
estimation by adding viewpoint classification to the network.
Tekin et al. [62] utilize the YOLO architecture [51] to detect
3-D bounding box corners of objects in the images and then
recover the 6-D pose by solving the perspective-n-point problem.
Detecting 3-D bounding box corners or object key points for
6-D object pose estimation is also explored in [42], [49], [58],
and [67]. PoseCNN [75] designs an end-to-end network for 6-D
object pose estimation based on the VGG architecture [57].
Although these methods significantly improve the 6-D pose
estimation accuracy over the traditional methods [3], [21], [32],
they still face difficulty in dealing with symmetric objects, where
most methods manually specify the symmetry axis for each such
object. To handle symmetric objects, Tian et al. [64] propose to
uniformly sample rotation anchors and estimate deviations of
the anchors to the target. In addition, Sundermeyer et al. [60],
[61] introduce an implicit way of representing 3-D rotations by
training an autoencoder for image reconstruction, which does
not need to predefine the symmetry axes for symmetric objects.
We leverage this implicit 3-D rotation representation in our work
and show how to combine it with particle filtering for 6-D object
pose tracking.

B. Six-Dimensional Object Pose Tracking

Another set of related work is on object tracking from videos.
Early works [6], [18], [68] track objects with image features
such as edges and key points. However, these methods cannot
handle environments with complex texture and occlusions. They
are limited in real robotic tasks. The introduction of RGB-D
sensors greatly simplifies the 6-D pose tracking problem, since
the structure of the scene can be directly perceived in compliment
to the color information. Object tracking using RGB-D data
receives more attention [7], [16], [28], [52], [55], [71], [72].
Although significant progress has been made, these methods still
cannot work robustly in large-scale or outdoor environments,
neither for small or thin objects due to the limitation of depth
sensors. Recent progress on 6-D pose tracking with RGB data
includes [41], [50], [65], and [66]. In [50], the pose of object
is updated by optimizing the projected contour from the 3-D
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model. The approach is improved in [65] with a new optimiza-
tion scheme and through GPU parallelization. Tjaden et al. [66]
improve pose tracking with a temporally consistent local color
histogram. Meanwhile, deep neural networks are explored for
6-D object pose tracking. Very recently, deep neural networks
have been used to predict the pose difference between consec-
utive frames and track the 6-D object pose accordingly [36],
[41], [72]. These methods significantly improve the robustness
and accuracy of tracking compared to methods that use hand-
crafted features [50], [65], [66]. However, object symmetries
are either ignored or manually specified in these works, and
6-D object pose estimation is required to initialize the tracking
pipelines. We show that our framework can deal with symmetries
automatically, and object pose tracking can be initialized with
only 2-D information, i.e., center of the object in the first video
frame, or even initialized without any prior spatial information
by sampling particles uniformly in the image.

C. Particle Filtering

The particle filtering framework has been widely applied
to different tracking applications in the literature [29], [45],
[54], [56], thanks to its flexibility in incorporating different
observation models and motion priors. Meanwhile, it offers a
rigorous probabilistic formulation to estimate uncertainty in the
tracking results. Different approaches have also been proposed to
track the poses of objects using particle filters [2], [8], [35], [47],
[74]. However, in order to achieve good tracking performance,
a particle filter requires a strong observation model. In addition,
the tracking frame rate is limited by the particle sampling and
evaluation efficiency. In this article, we factorize the 6-D object
pose tracking problem and deploy Rao–Blackwellized particle
filters [15], which have been shown to scale to complex estima-
tion problems such as simultaneous localization and mapping
problem [44], [63] and multimodel target tracking [34], [54].
We also employ a deep neural network as an observation model
that provides robust estimates for object orientations even under
occlusions and symmetries. Our design allows us to evaluate all
possible orientations in parallel using an efficient GPU imple-
mentation. As a result, our method can track the distribution of
the 6-D pose of an object at 20 frames/s.

III. SIX-DIMENSIONAL OBJECT POSE TRACKING

WITH POSERBPF

In this section, we first state the problem of 6-D object pose
tracking and provide a high-level overview of PoseRBPF. After
formulating the problem in a particle filtering framework, we
describe in detail how to utilize a deep neural network to com-
pute the likelihoods of the particles and to achieve an efficient
sampling strategy for tracking.

A. Problem Formulation

Given a sequence of input images Z1:k up to time k, the goal
of 6-D object pose tracking of an object is to estimate the rigid
body transformation between the camera coordinate frame C
and the object coordinate frame O for every image in the image

stream. We assume that the 2-D center (u, v) of the object in
the first image is provided by an object detector, such as in [17]
and [51] for pose tracking initialization, and the 3-D computer-
aided design (CAD) model of the object is known. The rigid
body transformation consists of a 3-D rotation Rk and a 3-D
translation Tk of the object at time k. In this article, instead of
providing a single estimation {Rk,Tk}, our primary goal is to
estimate the posterior distribution of the 6-D pose of an object
P (Rk,Tk|Z1:k).

B. Overview of PoseRBPF

Fig. 2 illustrates the architecture of our 6-D object pose
tracking framework. Each particle in PoseRBPF is represented
by a translation hypothesis and a rotation distribution condi-
tioned on the translation hypothesis. In each step, the particles
are first propagated according to a motion model described in
Section III-E. Each particle determines a unique RoI according
to its translation, and the RoI is fed into an autoencoder network
to compute a feature embedding. The observation likelihood is
computed by matching the embedding with the embeddings in
a precomputed codebook, which is detailed in Section III-D.
Finally, the weights of the particles can be computed with the
observation likelihoods, and the particles are resampled accord-
ingly.

C. Rao–Blackwellized Particle Filter Formulation

To estimate posterior distribution P (Rk,Tk|Z1:k) using a
standard particle filter [11], [63] to sample over this 6-D space
is not feasible, especially when there is large uncertainty over
the rotation of the object. Such uncertainties occur frequently
when objects are heavily occluded or have symmetries that
result in multiple valid rotation hypotheses. We thus propose
to factorize the 6-D pose estimation problem into 3-D rotation
estimation and 3-D translation estimation. This idea is based on
the observation that the 3-D translation can be estimated from the
location and the size of the object in the image. The translation
estimation provides the center and scale of the object in the
image, based on which the 3-D rotation can be estimated from the
appearance of the object inside the bounding box. Specifically,
we decompose the posterior into

P (Rk,Tk|Z1:k) = P (Tk|Z1:k)P (Rk|Tk,Z1:k) (1)

where P (Tk|Z1:k) encodes the location and scale of the object,
and P (Rk|Tk,Z1:k) models the rotation distribution condi-
tioned on the translation and the images.

This factorization directly leads to an efficient sampling
scheme for a Rao–Blackwellized particle filter [15], [63], where
the posterior at time k is approximated by a set of N weighted
samples Xk = {Ti

k, P (Rk|Ti
k,Z1:k), w

i
k}Ni=1. Here, Ti

k de-
notes the translation of the ith particle,P (Rk|Ti

k,Z1:k) denotes
the discrete distribution of the particle over the object rotation
conditioned on the translation and the images, and wi

k is the
importance weight. To achieve accurate pose estimation, the 3-D
object rotation consisting of azimuth, elevation, and in-plane ro-
tation is discretized into bins of size 5◦, resulting in a distribution
over 72× 37× 72 = 191 808 bins for each particle (elevation
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Fig. 2. Architecture of PoseRBPF. For each particle, the rotation distribution is estimated conditioned on translation estimation, while the translation estimation
is evaluated with the corresponding RoIs.

ranges only from−90◦ to 90◦). At every time step k, the particles
are propagated through a motion model to generate a new set
of particles Xk+1, from which we can estimate the 6-D pose
distribution.

According to the particle filter formulation, P (Tk|Z1:k) =∑
i w

i
kδ(Tk −Ti

k), where δ(·) represents a Dirac delta function
at zero. The weights wi

k can be computed as

wi
k ∝ P (Zk|Ti

k) (2)

=

∫
P (Zk|Ti

k,Rk)P (Rk)dRk (3)

≈
∑
j

P (Zk|Ti
k,R

j
k)P (Rj

k) (4)

where Rj
k denotes discretized rotations.

D. Observation Likelihoods

The observation likelihood P (Zk|Tk,Rk) measures the
compatibility of the observation Zk with the object pose at the
3-D rotation Rk and the 3-D translation Tk.

Intuitively, a 6-D object pose estimation method, such as
in [27], [62], and [75], can be employed to estimate the observa-
tion likelihoods. However, these methods only provide a single
estimation of the 6-D pose instead of estimating a probability
distribution, i.e., there is no uncertainty in their estimation. In
addition, these methods are computationally expensive if we
would like to evaluate a large number of samples in the particle
filtering.

Ideally, if we can synthetically generate an image of the object
with the pose (Rk,Tk) into the same scene as the observation
Zk, we can compare the synthetic image with the input image
Zk to measure the likelihoods. However, this is not feasible since
it is very difficult to synthesize the same lighting, background,
or even occlusions between objects as in the input video frame.
In contrast, it is straightforward to render a synthetic image of
the object using constant lighting, blank background, and no
occlusion, given the 3-D model of the object. Therefore, inspired
by [60], we apply an autoencoder to transform the observation
Zk into the same domain as the synthetic rendering of the object.

Fig. 3. Inputs and outputs of the autoencoder. Images with different lighting,
background, and occlusion are feed into the network to reconstruct synthetic
images of the objects from the same 6-D poses. The encoder generates a feature
embedding (code) of the input image.

Then, we can compare image features in the synthetic domain
to measure the likelihoods of 6-D poses efficiently.

1) Autoencoder: An autoencoder is trained to map an image
Z of the target object with pose (R,T) to a synthetic image Z′

of the object rendered from the same pose, where the synthetic
image Z′ is rendered using constant lighting, and there is no
background and occlusion in the synthetic image. In this way,
the autoencoder is forced to map images with different lighting,
background, and occlusion to the common synthetic domain.
Fig. 3 illustrates the input and output of the autoencoder during
training. In addition, the autoencoder learns a feature embedding
f(Z) of the input image.

Instead of training the autoencoder to reconstruct images with
arbitrary 6-D poses, which makes the training challenging, we
fix the 3-D translation to a canonical oneT0 = (0, 0, z)T , where
z is a constant distance. The canonical translation indicates
that the target object is in front of the camera with distance
z. z can be computed by optimizing the distance of the 3-D
model to the camera, which makes sure renderings from all
the rotations well fitted to the training image size (128×128 in
our experiments). The 3-D rotation R is uniformly sampled
during training. After training, for each discretized 3-D rotation
Ri, a feature embedding f(Z(Ri,T0)) is computed using the
encoder, where Z(Ri,T0) denotes a rendered image of the
target object from pose (Ri,T0). We consider the set of all
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Fig. 4. Computation for the conditional rotation likelihood by codebook matching. (Left) Each particle crops the image based on its translation hypothesis. The
RoI for each particle is resized, and the corresponding code is computed using the encoder. (Right) Rotation distribution P (R|Z,T) is computed from the distance
between the code for each hypothesis and those in the codebook.

the feature embeddings of the discretized 3-D rotations to be
the codebook of the target, and we show how to compute the
likelihoods using the codebook next.

2) Codebook Matching: Given a 3-D translation hypothesis
Tk, we can crop an RoI from the image Zk and then feed the
RoI into the encoder to compute a feature embedding of the RoI.
Specifically, the 3-D translationTk = (xk, yk, zk)

T is projected
to the image to find the center (uk, vk) of the RoI[

uk

vk

]
=

[
fx

xk

zk
+ px

fy
yk

zk
+ py

]
, (5)

where fx and fy indicate the focal lengths of the camera, and
(px, py)

T is the principal point. The size of the RoI is determined
by zk

z s, where z and s are the canonical distance and the RoI
size in training the autoencoder, respectively. Note that each RoI
is a square region in our case, which makes the RoI independent
of the rotation of the object.

The RoI is feed into the encoder to compute the feature
embedding c = f(Zk(Tk)). Finally, we compute the cosine
distance, which is also referred as a similarity score, between
the feature embedding of the RoI and a code in the codebook to
measure the observation likelihood:

P (Zk|Tk,R
j
c) = φ

(
c · f(Z(Rj

c,T0))

‖c‖ · ‖f(Z(Rj
c,T0))‖

)
(6)

whereRj
c is one of the discretized rotations in the codebook, and

φ(·) is a Gaussian probability density function centered at the
maximum cosine distance among all the codes in the codebook
for all the particles. Fig. 4 illustrates the computation of the
rotation likelihoods by the codebook matching. In this way, we
can also obtain a probabilistic likelihood distribution of all the
rotations in the codebook given a translation according to Bayes
rule as

P (Rj
c|Tk,Zk) ∝ P (Zk|Tk,R

j
c). (7)

Fig. 5. Visualization of reconstruction of the RoIs from autoencoder. Left
is the ground truth RoI. The other two columns show the reconstruction with
shifting and scale change. As shown, the reconstruction quality degrades with
deviations from the ground truth RoI. In this example, the similarity score drops
from 0.91 to 0.62 and 0.72 with the deviations, respectively. This property makes
the autoencoder a suitable choice for computing the observation likelihood.

Since the autoencoder is trained with the object being at the
center of the image and at a certain scale, i.e., with the canonical
translation T0, any change in scale or deviation of the object
from the image center results in poor reconstructions (see Fig. 5).
Particles with incorrect translations would generate RoIs where
the object is not in the center of the RoI or with the wrong scale.
Then, we can check the reconstruction quality of the RoI to
measure the likelihood of the translation hypothesis. Intuitively,
if the translation Tk is correct, the similarity scores in (6) for
rotation Ri that is close to the ground truth rotation would
be high. Finally, the translation likelihood P (Zk|Tk) can be
computed as in (4).

E. Motion Priors

Motion prior is used to propagate the distribution of the poses
from the previous time step k − 1 to the current time step k.
We use a constant velocity model to propagate the probability
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distribution of the 3-D translation

P (Tk|Tk−1,Tk−2) = N (Tk−1 + α(Tk−1 −Tk−2),ΣT)
(8)

where N (µ,Σ) denotes the multivariate normal distribution
with meanµ and covariance matrixΣ, andα is a hyperparameter
of the constant velocity model. The rotation prior is defined as a
normal distribution with mean Rk−1 and fixed covariance ΣR:

P (Rk|Rk−1) = N (Rk−1,ΣR) (9)

where we represent the rotation R using Euler angles. Then,
the rotation prior can be implemented by a convolution on the
previous rotation distribution with a 3-D Gaussian kernel.

F. 6-D Object Pose Tracking Framework

The tracking process can be initialized from any 2-D object
detector that outputs a 2-D bounding box of the target object.
Given the first frame Z1, we backproject the center of the
2-D bounding box to compute the (x, y) components of the
3-D translation and sample different zs uniformly to generate
a set of translation hypotheses. The translation T1 with the
highest likelihood P (Z1|T) is used as the initial hypothesis and
P (R|T1,Z1) as the initial rotation distribution.

At each following frame, we first propagate the N particles
with the motion priors. Then, the particles are updated with the
latest observation Zk. Specifically, for each particle, the trans-
lation estimation Ti

k is used to compute the RoI of the object in
imageZk. The resulting RoI is passed through the autoencoder to
compute the corresponding code. For each particle, the rotation
distribution is updated with

P (Rk|Ti
k,Z1:k) = ηP (Rk|Ti

k,Zk)P (Rk|Rk−1)P (Rk−1)

where P (Rk|Ti
k,Zk) is the rotation distribution defined in (7),

P (Rk|Rk−1) is the motion prior, and η is a constant normalizer.
Finally, we compute the posterior of the translation P (Ti

k|Z1:k)
with the weight wi of this particle according to (4). The system-
atic resampling method [14] is used to resample the particles
according to the weights w1:N .

Some robotic tasks require the expectation of the 6-D pose of
the object (TE

k ,R
E
k ) from the particle filter for decision making.

The translation expectation TE
k can be computed with

TE
k =

N∑
i=1

wi
kT

i
k (10)

for all the N particles due to the unimodal nature of translation
in the object tracking task. Computing the rotation expectation
RE

k is less obvious since the distribution P (Rk) might be
multimodal and simply performing weighted averaging over
all the discrete rotations is not meaningful. To compute the
rotation expectation, we first compute the expectation of rotation
distribution P (RE

k ) with

P (RE
k ) =

N∑
i=1

wi
kP (Rk|Ti

k,Z1:k). (11)

The rotation expectation RE
k is then computed by weighted av-

eraging the discrete egocentric rotations within a neighborhood

of the previous rotation expectation RE
k−1 using the quaternion

averaging method proposed in [43]. The difference between
egocentric orientation and allocentric orientation is described
in [33].

Performing codebook matching with the estimated RoIs also
provides a way to detect tracking failures. We can first find
the maximum similarity score among all the particles. Then,
if the maximal score is lower than a predefined threshold, we
determine it as a tracking failure. Algorithm 1 summarizes our
Rao–Blackwellized particle filter for 6-D object pose tracking.

G. RGB-D Extension of PoseRBPF

PoseRBPF is a versatile framework and can be extended with
additional depth measurements in the observation likelihood.
With the RGB input ZC

k and the additional depth measurements
ZD

k , the observation likelihood P (Zk|Tk,Rk) can be rewritten
as

P (Zk|Tk,Rk) = P (ZC
k ,Z

D
k |Tk,Rk)

= P (ZC
k |Tk,Rk)P (ZD

k |Tk,Rk). (12)

We propose two ways to compute the observation likelihood
for depth measurements P (ZD

k |Tk,Rk). In the first method,
a depth map can be rendered according to the translation Ti

k

and the most likely rotation R∗
k from the rotation distribution

P (Rk|Ti
k,Z

i
k) of each particle. The observation likelihood

of depth can be computed by comparing the rendered depth
map and the depth measurements. In the second method, depth
measurements can also be encoded with an autoencoder, and
the observation likelihood of depth can be computed similar to
RGB images. In addition to filtering with PoseRBPF, depth can
be used to further refine the estimated pose with the SDF of the
3-D object model.

1) Render and Compare: To compute the likelihood
P (ZD

k |Ti
k,Rk) for the ith particle, we can render the object with

the pose (Ti
k,R

∗
k), where R∗

k = argmaxRk
P (Rk|Ti

k,Zk).
For comparing the rendered depth map ẐDi

k with the depth
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measurements ZD
k , we estimate the visibility mask V̂ i

k =

{∀p, ˆ|ZDi

k (p)− ZD
k (p)| < m}, where p indicates a pixel in the

image and m is a small positive constant margin to account
for sensor noises. Therefore, a rendered pixel p with depth
within ZD

k (p)±m is determined as visible. With the estimated
visibility mask, the visible depth discrepancy between the two
depth maps is computed as

Δi
k(Ẑ

Di
k ,ZD

k , V̂ i
k , τ) = avg

p∈V̂ i
k

(
min

(
|ZD

k (p)− ẐDi
k (p)|

τ
, 1

))

(13)
where τ is a predefined threshold. For every particle, we compute
its depth score as sid = vik(1−Δi

k), where vik is the visibility
ratio of the object, i.e., the number of visible pixels according
to the visibility mask divided by the total number of pixels
rendered. Finally, we compute P (ZD

k |Ti
k,Rk) as φ′(sid), where

φ′(·) is a Gaussian probability density function centered at the
maximum depth score among all the particles.

2) Encode Depth Measurements: Another way to exploit
depth measurements is computing the observation likelihood
P (ZD

k |Tk,Rk) with a separate autoencoder network. For each
particle {Ti

k, P (Rk|Ti
k,Z1:k)}, we first normalize the depth

measurements with

Z̄D
k = fc

(
ZD

k − zik
d

+ 0.5

)
(14)

where d is the diameter of the object, zik represents the depth of
the object, and fc(x) is a clamping function defined as fc(x) =
max(0,min(1, x)). Essentially, (14) normalizes depth measure-
ments to [0, 1] according to the particles. Our experiments in
Section IV show that the normalization significantly improves
the tracking accuracy compared to encoding the original depth
values. We train a separate autoencoder for the normalized depth,
and estimate P (ZD

k |Tk,Rk) in the same way as estimating the
likelihood for the RGB imagesP (ZC

k |Tk,Rk). The observation
likelihoods are fused in the particle filter framework according
to (12).

3) Pose Refinement With SDFs: The estimated object pose
from PoseRBPF can be further refined by matching the 3-D
points from the depth measurements against the SDF of the
target object. We first estimate the segmentation mask V̄ of the
object by rendering the object according to the pose expectation
(TE

k ,R
E
k ) and comparing with the depth measurements, as

described in Section III-G1. The point cloud of the object Pobj

can be computed by back-projecting the pixels in V̄

Pobj =
{
ZD

k (p)K−1p̄T , p ∈ V̄
}

(15)

where K represents the intrinsic matrix of the camera, and p̄
represents the homogeneous coordinates of the pixel p.

After computing the 3-D points on the object, we optimize
the pose by matching these points against the SDF of the object
model as in [55]. The optimization problem we solve is

(T∗,R∗) = argmin
T,R

∑
pi∈Pobj

|SDFobj(pi,T,R)| (16)

Fig. 6. Comparison between the autoencoders in the original PoseRBPF and
Fast PoseRBPF. (a) In the original PoseRBPF, each particle crops its RoI directly
on the input image and pass through the encoder individually. (b) In Fast
PoseRBPF, each particle crops on the shared feature maps, so that the early
convolutions can be shared among particles.

where pi is a 3-D point in the point cloud Pobj, and
SDFobj(pi,T,R) denotes the signed distance value by trans-
forming the point pi from the camera coordinate into the ob-
ject model coordinate using pose (T,R). The optimization
problem can be solved in an iterative manner with gradient-
based methods. In our approach, the solution is initialized with
the pose expectation (TE

k ,R
E
k ) and optimized with the Adam

optimizer [30].

H. Fast PoseRBPF

Inspired by [17], we propose a modification on PoseRBPF
to accelerate the evaluation of the particles. It is observed that
there are significant overlaps among the RoIs of the particles
during tracking. As shown in Fig. 6, instead of cropping the
RoIs directly on the input image and passing them through the
encoder individually for each particle, we propose to crop the
feature map from the encoder according to the RoIs, so that the
early convolutions can be shared among particles. We call this
efficient variant as Fast PoseRBPF.

Specifically, denoting the mean translation of the particles as
T̄ = (x̄, ȳ, z̄)T , its projection on the 2-D image (ū, v̄)T can be
computed with (5). We first crop the input image with center
(ū, v̄)T and size β z̄

z s, where z and s are the canonical distance
and size in training the autoencoder, respectively, and β is a
scaling factor to ensure that the cropped image is big enough to
cover all the RoIs for the particles. The cropped image is passed
through the first three convolution layers to compute the feature
map. For each particle with translation Tk = (xk, yk, zk)

T and
projected 2-D center (uk, vk)

T , the size of the corresponding
RoI on the feature map can be computed as z̄

βzk
so, where so

represents the size of the feature map after the shared convolution
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layers. The center (uc, vc) can be computed as

(uc, vc) =

(
(uk − ū)z̄

z
· so
βs

+
so
2
,
(vk − v̄)z̄

z
· so
βs

+
so
2

)
.

The feature map is cropped with the RoI align operation pro-
posed in [19], and the cropped features are fed into the following
network layers separately to generate the codes of the particles.

IV. EXPERIMENTS

A. Implementation Details

1) Networks Architecture: The autoencoder for RGB inputs
is the same as the one in [60]. It takes in images of size 128× 128
and consists of four 5× 5 convolutional layers and four 5× 5
deconvolutional layers for the encoder and the decoder, respec-
tively. After the convolutional layers, a fully connected layer is
used to produce 128-D embeddings. We use a similar architec-
ture but reduce the number of channels in the convolution layers
by half for the depth autoencoder to avoid overfitting. For Fast
PoseRBPF, the scaling factor β is set to 2. Therefore, the size of
the input images for generating the feature map is 256× 256.
Particles share the first three layers of convolution operations;
therefore, so is 32.

2) Training: The RGB-D training data are purely synthetic
and generated by rendering an object at random rotations ac-
cording to the given CAD models. The rendered images are
superimposed at random crops of the MS-COCO dataset [38] at
a resolution of 128× 128. The depth data are first normalized
according to (14) with d = 0.4. The background data for nor-
malized depth are generated by averaging the RGB channels at
random crops in the MS-COCO dataset. In addition to the target
object, three additional objects are sampled at random locations
and scales to generate training data with occlusions. The target
object is positioned at the center of the image and jittered with
5 pixels. The object is sampled uniformly at scales between
0.975 and 1.025 with random lighting. Color is randomized in
hue, saturation, value (HSV) space. We also add Gaussian noises
with standard deviation 0.1 and 0.5 to RGB and normalized
depth, respectively, to reduce the gap between the real and
synthetic data. The images are rendered online for each training
step to provide a more diverse set of training data.

The autoencoders are trained for each object separately for
150 000 iterations with batch size of 64 using the Adam op-
timizer with the learning rate of 0.0002. The autoencoder is
optimized with the L2 loss on the N pixels with largest recon-
struction errors. LargerNs are more suitable for textured objects
to capture more details. We use N = 2000 for textured objects
and N = 1000 for nontextured objects.

3) Testing: During test time, the standard deviation used to
compute observation likelihoods in (6) is 0.05. The codebook
for each object is precomputed offline and loaded during test
time. Computation of observation likelihoods is performed effi-
ciently on a GPU. With depth input, for the render and compare
approach described in Section III-G, the margin m is chosen as
2 cm and the threshold τ is set to 3 cm in our implementation.
The standard deviation of φ′(·) is set to 0.05. Since rendering an
individual depth map for each particle can be expensive and the

primary goal for the render and compare approach is to improve
the translation estimation, in our implementation, we render
the depth map with the most likely pose for all the particles
during tracking; then, the rendered depth map is adjusted by
compensating the difference between the translation used for
rendering and the translation for each particle. For initialization,
the depth maps are rendered individually for each particle. For
refining pose estimation with SDFs, we set the learning rate for
the Adam optimizer to 0.01 and run the optimizer for 100 steps.
We conduct experiments on a desktop computer with a Intel i7
CPU and a NVIDIA TitanXp GPU.

B. Datasets

We evaluate our method on two datasets for 6-D object
pose estimation: the T-LESS dataset [24] and the YCB Video
dataset [75]. The T-LESS dataset contains RGB-D sequences
of 30 nontextured industrial objects. Evaluation is performed
on 20 test scenes. The T-LESS dataset is challenging because
the objects do not have texture and they have various forms of
symmetries and occlusions. The YCB Video dataset contains
RGB-D video sequences of 21 objects from the YCB Object
and Model Set [4]. It contains textured and textureless household
objects in different arrangements. In both datasets, objects are
annotated with 6-D poses.

C. Evaluation Metrics

For the T-LESS dataset, we use visible surface discrepancy
errvsd [23] to evaluate the quality of the pose estimation. It is
computed as

errvsd = avg
p∈V̂ ∪Vgt

c(p, D̂,Dgt, τ)

c(p, D̂,Dgt, τ) =

{
d/τ, if p ∈ V̂ ∩ Vgt ∧ d < τ

1, otherwise

where V̂ , D̂ andVgt,Dgt represent the mask and depth map of the
object computed by rendering the object according to estimated
pose and ground truth pose, respectively; p represents a pixel
in the image; d is the depth error and can be computed with
d = |D̂(p)−Dgt(p)|; and τ is a constant tolerance. We report
the recall of correct 6-D poses, where errvsd < 0.3with τ = 2 cm
and visibility of more than 10% following [22].

For the YCB Video dataset, we use ADD and ADD-S [21],
[75] as evaluation metrics. The two metrics can be computed as

ADD =
1

m

∑
x∈M

‖(Rx+T)− (R̃x+ T̃)‖

ADD-S =
1

m

∑
x1∈M

min
x2∈M

‖(Rx1 +T)− (R̃x2 + T̃)‖

where M denotes the set of 3-D model points and m is the
number of points. (R,T) and (R̃, T̃) are the ground truth pose
and estimated pose, respectively.
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TABLE I
ABLATION STUDIES ON POSERBPF ARCHITECTURES AND DEPTH UTILIZATION

D. Ablation Studies

We conduct ablation studies on the T-LESS dataset to justify
our design choices. The particle filter is initialized with the
detection outputs from RetinaNet [39] and has 100 particles.
Table I shows the results of ablation studies.

1) Original PoseRBPF Versus Fast PoseRBPF: Rows 1–4
show the comparison between the original PoseRBPF and the
Fast PoseRBPF. It is shown that the Fast PoseRBPF architecture
significantly improves the tracking speed by 70% for RGB and
93% for RGB-D. For 6-D object pose tracking accuracy with
RGB inputs, the original PoseRBPF significantly outperforms
the Fast PoseRBPF (rows 1 and 2). This performance gap is
unsurprising since the spatial resolution decreases after convo-
lution operations, and cropping on the feature space will result in
less accurate translation estimation. However, the performance
gap is bridged with depth measurements (rows 3 and 4) since
translation is more accurately estimated by rendering the ob-
ject according to the particles and comparing with the depth
measurements. Therefore, we only use the fast architecture for
RGB-D tracking to retain the accuracy in RGB tracking.

2) Render and Compare: The benefits of utilizing depth
measurements and the effectiveness of the proposed Render and
Compare strategy can be shown by comparing rows 1 and 3.
By including depth inputs, the observation likelihood can be
better estimated and more accurate 6-D pose estimation can be
achieved.

3) Depth Embeddings: We first investigate if encoding depth
measurements helps improve the tracking accuracy. Rows 2 and
5 show that encoding depth measurements improves the tracking
accuracy by more than 100%. Although the improvement of
encoding depth measurements is less significant than the Render
and Compare strategy (row 4), the two methods can be utilized
together to further improve the tracking accuracy (row 7). The
depth autoencoder can be naively trained to encode the raw depth
measurements which are metric. However, by comparing rows
6 and 7, the tracking performance is significantly deteriorated
by including the autoencoder for raw depth. This negative effect
results from the large variance of the raw depth, and it justifies
the normalization of the depth with (14) before feeding depth
into the autoencoder.

4) RGB and Depth Fusion: In addition to depth represen-
tations, we also investigate different ways to fuse RGB and

TABLE II
T-LESS RESULTS: OBJECT RECALL FOR errVSD < 0.3 ON ALL

PRIMESENSE TEST SCENES

depth measurements. A straightforward approach is augmenting
the autoencoder for RGB inputs with an additional channel
for depth. In the case, the depth measurements are fused with
RGB inputs in the autoencoder, which is referred as early fusion
opposite to fusing the observation likelihoods in particle filter
(late fusion) proposed in Section III-G. We can see that the
architecture with late fusion achieves better accuracy than the
one with early fusion by comparing rows 7 and 8. This is
because the particle filter balances the different modalities in
the Bayesian estimation framework, while it is difficult to learn
the relative importance from the synthetic data. By comparing
rows 7 and 10, it can be shown that fusing RGB and depth inputs
together can result in significantly more accurate pose tracking
than using depth information alone.

5) Pose Refinement: It can also be seen from rows 7 and 9
that the pose estimation can be further refined by optimizing the
SDF, as described in Section III-G.

E. Results on the T-LESS Dataset

Table II compares our approach with several other methods
on the T-LESS dataset. We use 100 particles to track the objects.
For pose estimation with RGB inputs, we compared our method
with [60], which uses a similar autoencoder. However, the trans-
lation and orientation are estimated separately, and temporal
consistency is not exploited in [60]. We perform evaluation with
the detection output from RetinaNet [39] that is used in [60] as
well. When multiple instances of the sample object are detected,
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TABLE III
RESULTS ON THE YCB VIDEO DATASET: COMPARISON WITH SINGLE-VIEW BASED 6-D OBJECT POSE ESTIMATION METHODS

Fig. 7. Visualization of estimated poses on the T-LESS dataset (first two rows)
and the YCB Video dataset (last two rows). Ground truth bounding boxes are red,
green bounding boxes are particle RoIs, and the object models are superimposed
on the images at the pose estimated by PoseRBPF.

we use the first instance in the list for initialization. The results
show that the recall for the correct object poses doubles by esti-
mating translation and orientation jointly in the particle filter and
considering temporal consistency. With additional depth images,
the recall can be further improved by around 98%. We use Fast
PoseRBPF with encoding depth for comparison here. Without
refinement, our approach outperforms [60] with iterative closest
points (ICPs) by 41%, [26] by 124%, and [69] by 21%. With
refinement, our approach outperforms refining [60] with ICP
by 45%, [26] by 130%, and [69] by 25%. For the experiments
with ground truth bounding boxes, rotation is tracked using

the particle filter and translation is inferred from the scale of
the ground truth bounding box. This experiment highlights the
viewpoint accuracy. In this setting, the particle filter significantly
outperforms [60] and [1], which shows the importance of tem-
poral tracking for object pose estimation. Fig. 7 shows the 6-D
pose estimation of PoseRBPF on several T-LESS images.

F. Results on the YCB Video Dataset

Tables III and IV show the pose estimation results on the YCB
Video dataset. In Table III, we compare with the state-of-the-art
single-view-based methods for 6-D object pose estimation using
RGB images [36], [75] and RGB-D images [36], [70], [75].
Fig. 7 illustrates some examples of the estimated 6-D poses on
the YCB Video dataset. We initialize PoseRBPF using PoseCNN
detection [75] at the first frame or after the object is heavily oc-
cluded. On average, this happened only 1.03 times per sequence.
In the experiments, 100 particles are used to track the 6-D pose.
For tracking with RGB inputs, our method handles symmetric
objects such as 024_bowl, 061_foam_brick much better than the
methods directly regressing the orientations [75]. By performing
further image-based refinement upon the pose from PoseCNN,
DeepIM [36] achieves more accurate 6-D pose estimation than
our method.

It has been shown in the context of robot localization that
adding samples drawn according to the most recent observation
can improve the localization performance [63]. Here, we applied
such a technique by sampling 50% of the particles around
PoseCNN translation predictions and the other 50% with the mo-
tion model. Our results show that such a hybrid version (Ours++)
improves the pose estimation accuracy of our approach, thanks
to the more accurate proposal distributions. One of the objects on
which PoseRBPF performs poorly is the wooden block, which
is caused by the difference in texture of the 3-D model of the
wooden block and the texture of the wooden block used in the
real images. In addition, the physical dimensions of the wooden
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TABLE IV
RESULTS ON THE YCB VIDEO DATASET: COMPARISON WITH 6-D OBJECT POSE TRACKING METHODS

block are different between real images and the model contained
in this dataset.

As shown in the results on the T-LESS dataset, depth measure-
ments contain useful information to improve the pose estimation
accuracy. This improvement is consistent on the YCB Video
dataset. It is also worth to note that depth measurements also
help bridge the gap between synthetic training data and real
testing data, which result in much better tracking performance
on objects such as the wooden block. By comparing the depth of
the rendered object with the depth measurements and encoding
depth measurements, our filtering approach achieves better accu-
racy than [75] with ICPs and fusion approach [70]. By refining
with the SDF, the accuracy can be further improved, and our
approach achieves the state-of-the-art performance.

In Table IV, we compare our method with 6-D object pose
tracking methods. We first compare PoseRBPF with a baseline
using standard particle filters for 6-D object pose tracking. In
this baseline, each particle is represented with a translation
hypothesis Ti

k and a rotation hypothesis Ri
k, and we render

the RGB image ẐCi
k , the depth image ẐDi

k , and the mask for the
object M̂i

k accordingly. Assume that the segmentation mask of
the objectMk is given. We can compute the average photometric
error ΔCi

k and depth error ΔDi
k as

ΔCi
k = avg

p∈(M̂i
k∩Mk)

(|ẐCi
k (p)− ZC

k (p)|)

ΔDi
k = avg

p∈(M̂i
k∩Mk)

(|ẐDi
k (p)− ZD

k (p)|).

We can also compute the ratio between the intersection and the
union between the estimated segmentation mask M̂i

k and the
measured segmentation mask Mk and denote it as mi

k. The
observation likelihood for RGB and RGB-D tracking can be
computed as

PRGB(Zk|Ti
k,R

i
k) = φc(Δ

Ci
k )φm(mi

k)

PRGBD(Zk|Ti
k,R

i
k) = φc(Δ

Ci
k )φd(Δ

Di
k )φm(mi

k)

TABLE V
EFFECT OF THE NUMBER OF PARTICLES ON TRACKING SPEED AND

ACCURACY ON THE YCB VIDEO DATASET

where φc(·) and φd(·) are Gaussian functions centered at 0, and
φm(·) is a Gaussion function centered at 1. In the experiments,
we use the ground truth segmentation masks and 100 particles in
the baselines. As shown in Table IV, PoseRBPF performs signif-
icantly better than the baselines using standard particle filters in
both RGB and RGB-D scenarios. The comparisons demonstrate
the superior sample efficiency of PoseRBPF over the standard
particle filter in 6-D pose tracking and the robustness provided by
the learned autoencoder networks in handling lighting variance
and noise in the input images.

In addition, we compare our method with other 6-D ob-
ject pose tracking methods [25], [36], [72], [73]. Our method
achieves comparable accuracy to the recent state-of-the-art
method [72] for RGB-D tracking. For RGB-based tracking, our
method is less accurate than refinement-based methods such
as [36]. In comparison to the existing 6-D object pose tracking
systems, our method still provides an useful alternative since our
method tracks the full 6-D pose distribution and only requires
2-D detection centers for initialization in contrast to initial 6-D
pose estimation required as in DeepIM [36].

Table V shows how the number of particles affects the tracking
speed and accuracy. When the number of particles is small, with
the increase in the number of particles, the accuracy improves
because with more samples, the variations in scale and transla-
tion of an object are covered much better. However, it can also
be observed that the tracking performance saturates after 100
particles, and the performance for 100 particles is similar to that
of 200 particles.
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Fig. 8. Visualization of rotation distributions. For each image, the distribution
over the rotation is visualized. The lines represent the probability for rotations
that are higher than a threshold. The length of each line is proportional to the
probability of that viewpoint. As can be seen, PoseRBPF naturally represents
uncertainties due to various kinds of symmetries, including rotational symmetry
of the bowl and mirror symmetry of the T-LESS object 12.

G. Analysis of Rotation Distribution

Unlike other 6-D pose estimation methods that output a single
estimate for the 3-D rotation of an object, PoseRBPF tracks
full distributions over object rotations. Fig. 8 shows example
distributions of the rotation. There are two types of uncertainties
in these distributions. The first source is the symmetry of the
objects resulting in multiple poses with similar appearances.
As expected, each cluster of the viewpoints corresponds to
one of the similarity modes. The variance for each cluster
corresponds to the true uncertainty of the pose. For example,
for the bowl, each ring of rotations corresponds to the uncer-
tainty around the azimuth because the bowl is a rotationally
symmetric object. Different rings show the uncertainty on the
elevation.

To measure how well PoseRBPF can capture rotation uncer-
tainty, we compared PoseRBPF estimates to those of PoseCNN
assuming a Gaussian uncertainty with mean at the PoseCNN
estimate. Fig. 9 shows this comparison for the scissors and the
foam brick in the YCB Video dataset. Here, the x-axis ranges
over percentiles of the rotation distributions, and the y-axis
shows how often the ground truth pose is within 0◦, 10◦, or 20◦ of
one of the rotations contained in the corresponding percentile.
For instance, for the scissors, the red solid line indicates that
80% of the time, the ground truth rotation is within 20◦ of
an rotation taken from the top 20% of the PoseRBPF distri-
bution. If we take the top 20% rotations estimated by PoseCNN
assuming a Gaussian uncertainty, this number drops to about
60%, as indicated by the lower dashed, red line. The importance
of maintaining multimodal uncertainties becomes even more
prominent for the foam brick, which has a 180◦ symmetry. Here,
PoseRBPF achieves high coverage, whereas PoseCNN fails to
generate good rotation estimates even when moving further from
the generated estimate.

Fig. 9. Rotation coverage percentile comparison between PoseRBPF and
PoseCNN for scissors and foam brick. Foam brick has 180◦ planar rotation
and scissors is an asymmetric object.

H. Global Localization

In the previous discussion, we focused on object pose
tracking, where PoseRBPF was initialized by 2-D detection
frameworks such as in [39] and [75]. However, there is no
conceptual reason why PoseRBPF could not be deployed for
global pose estimation, overcoming the need for a detection
framework. Here, we propose a global-sampling-based approach
to initialize the system. We first sample translation by sampling
2-D center of the object in the image p uniformly; the distance of
the object is sampled uniformly in [ZD

k (p)− 0.1,ZD
k (p) + 0.2].

We evaluate 2400 samples, find the most likely one, and sample
100 particles around it in a fine-grained manner: for object center
in the image and distance, we sample with Gaussian functions
with standard deviation 5 pixels and 0.015 m, respectively. When
the maximum similarity score among all the particles is greater
than a threshold (0.6), we start to tracking the object; otherwise,
we repeat the global localization process. We visualize the global
localization process, successful initialization examples, and fail-
ure cases in Fig. 10. We evaluate the global localization strategy
on the YCB Video dataset. With the proposed global localization
strategy, our tracking system can be initialized successfully in
49 out 55 testing sequences for all the objects in the YCB Video
dataset and result in ADD as 83.45 and ADD-S as 89.06. In our
experiments, we observe that initialization failures happen when
the depth measurements on the object are missing (tuna fish can),
or the object is heavily occluded (pudding box), or the texture
of the object is significantly different to the model (wooden
block).
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Fig. 10. Visualization of global localization on the YCB Video dataset. (a)
Global localization process. We sample particles uniformly in the translation
space. After evaluating all the particles, we perform fine-grained sampling
around the particle with the max weight. The tracking process is triggered when
the maximum similarity score among all the particles is above a threshold. (b)
Successful initialization. (c) Failures cases.

V. CONCLUSION

In this article, we introduced PoseRBPF, a Rao–
Blackwellized particle filter for tracking 6-D object poses.
Each particle sampled 3-D translation and estimated the
distribution over 3-D rotations conditioned on the image
bonding box corresponding to the sampled translation.
PoseRBPF compared each bounding box embedding to
learned viewpoint embeddings so as to efficiently update
distributions over time. We demonstrated that the tracked
distributions capture both the uncertainties from the symmetry
of objects and the uncertainty from object pose. Experiments
on two benchmark datasets showed that PoseRBPF effectively
estimates the 6-D pose of household objects and symmetric
textureless industrial objects.

PoseRBPF has several limitations that remain to be addressed.
PoseRBPF can fail when the object is heavily occluded or
the measurements are significantly different from the synthetic
training data. Fig. 11 illustrates a tracking failure in the YCB
Video Dataset due to occlusion. We showed the ratio of the object
being occluded and the maximum similarity score of all the
particles. It can be seen that the maximum similarity decreases
with increasing occlusion. In this example, the system deter-
mines failure when the maximum similarity is below 0.6, which
corresponds to 65% of the object being occluded. One potential
approach to deal with occlusion is more accurately estimating
the camera motion with visual odometry so that the particle filter
depends less on the observation update. Fine-tuning the neural
networks with real annotated data can be effective in bridging
the domain gap between synthetic training data and real testing
measurements, and it motivates our work [13] on annotating real
data in a self-supervised fashion. Another limitation is that every
object requires its own autoencoder. Training an autoencoder
for multiple different objects is worth exploring. Moreover,
improving orientation estimation by representing the rotation
distribution with continuous functions is worth investigating.

Fig. 11. Example of tracking failure due to occlusion. The plot shows that
the maximum similarity (blue curve) decreases with increasing occlusion (red
curve). In our implementation, the system determines tracking failure when the
maximum similarity is lower than 0.6. Therefore, our system can handle about
65% occlusion before failure in this example.
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