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A Two-Stage Optimization-based Motion Planner
for Safe Urban Driving

Francisco Eiras1,2, Majd Hawasly1, Stefano V. Albrecht1,3, Subramanian Ramamoorthy1,3

Abstract—Recent road trials have shown that guaranteeing the
safety of driving decisions is essential for the wider adoption of
autonomous vehicle technology. One promising direction is to
pose safety requirements as planning constraints in nonlinear,
non-convex optimization problems of motion synthesis. However,
many implementations of this approach are limited by uncertain
convergence and local optimality of the solutions achieved,
affecting overall robustness. To improve upon these issues, we
propose a novel two-stage optimization framework: in the first
stage, we find a solution to a Mixed-Integer Linear Programming
(MILP) formulation of the motion synthesis problem, the output
of which initializes a second Nonlinear Programming (NLP)
stage. The MILP stage enforces hard constraints of safety and
road rule compliance generating a solution in the right subspace,
while the NLP stage refines the solution within the safety bounds
for feasibility and smoothness. We demonstrate the effectiveness
of our framework via simulated experiments of complex urban
driving scenarios, outperforming a state-of-the-art baseline in
metrics of convergence, comfort and progress.

Index Terms—Motion planning, optimization, model predictive
control (MPC), autonomous urban driving

I. INTRODUCTION

W ITH the rapid advancement of autonomous driving,
it is becoming increasingly clear that guaranteeing

safety across diverse driving scenarios is essential to the wider
adoption of the technology [1], [2]. Performing safe, real-
time planning in systems that must robustly achieve tight
integration with scene perception and behavior prediction has
continued to be an open challenge for the community [3], [4].
This challenge is enhanced by the complex environments and
decision-making that arises in an urban, residential driving
setting [5]. Fig. 1 shows an example of such environments.

An enticing approach to this problem, motivated by the
ability to collect driving data from millions of miles driven by
sensorized vehicles, is to exploit machine learning methods,
such as in a deep imitation learning paradigm [6], [7]. While
these methods have been shown to be successful in contained
environments, it has been difficult to provide safety guarantees
when policies are learned in this fashion, particularly with
noisy training data and fault-susceptible real-time perception.
Initial works aimed at providing robustness guarantees of
neural networks, while encouraging, remain limited in scope
in light of the scale of the models required in practical
systems [8], [9].

The multi-dimensional requirements associated with plan-
ning in autonomous vehicles are inherently hierarchical in

1FiveAI Ltd, United Kingdom, {first.last}@five.ai
2Dept. of Engineering Science, University of Oxford, United Kingdom
3School of Informatics, University of Edinburgh, United Kingdom

Fig. 1: Urban driving: simulation view of our planner over-
taking static vehicles while handling an oncoming vehicle,
with the planner’s view in the inset. A video of this and other
planning situations are available in the supplementary material.

nature. The core concern of avoiding collisions with other road
users and obstacles, in the interest of passenger safety, is a hard
requirement. Other secondary concerns – such as continued
progress towards a destination, comfort or power manage-
ment – imply softer requirements. Some planning methods,
including many reinforcement learning formulations and some
forms of unconstrained trajectory optimization, expect the
hierarchy to be resolved implicitly through the design of the
optimization objective [10], [11]. However, such approaches
tend to be brittle in enforcing the aforementioned safety-first
hierarchy [12].

A promising approach to such prioritization is seen in the
formal methods literature, where logical specifications cap-
ture safety guarantees explicitly. Examples include optimizing
the robustness signal of Signal Temporal Logic formulas in
a receding horizon framework [13], [14], and synthesis of
policies that maximize the probability of satisfying objectives
given as Linear Temporal Logic predicates [15]. Despite their
high quality output (and recent runtime improvements [16])
many of these tools lead to performance bottlenecks that are
prohibitive in real-time settings [17], [18].

A more scalable technique to achieve prioritization is to
adopt a constrained optimization approach, in which invio-
lable rules of the road [19] are encoded as hard (in)equality
constraints, while secondary objectives are satisfied in a soft
manner as dictated by weights in a cost function [20]–[23]. In
one approach, Schwarting et al. [24] formulated planning as a
nonlinear constrained optimization problem in a Model Predic-
tive Control (MPC) scheme. While this formulation efficiently
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(a) (d)(c) Initialized Nonlinear (NLP)(b) Linearized (MILP)
(

Fig. 2: A Two-Stage Optimization Planner Architecture: (a) from an initial scene - comprising driveable surface limits, static
vehicles (yellow), moving vehicles with predicted trajectories (red), and a reference path to follow (light blue) - a transform T
yields the input to the planner in the reference path-based coordinate frame. The MILP stage (b) solves a linearized version of
the planning problem, which initializes (c) the nonlinear, kinematically-feasible NLP stage. Then, T −1 transforms the output
back to a trajectory in the world coordinate frame (d).

produces safe and smooth trajectories when it converges, the
authors note some challenges with this approach including the
uncertain convergence and/or locally-optimal solutions, even
when using state-of-the-art solvers [24]. Due to the fact that
nonlinear, non-convex constrained optimization methods are
not guaranteed to converge even if feasible solutions exist [20],
[25], [26], their safe deployment necessitates the implemen-
tation of an additional fallback mechanism (e.g. emergency
braking [24]), which might fall short in achieving the standard
set by the safety hard constraints.

Our goal is to improve the convergence and solution qual-
ity of existing nonlinear constrained optimization methods,
thus reducing the reliance on the potentially unsafe fallback
mechanism and hence improving the safety of the overall
system, while yielding lower-cost plans. We achieve this via an
informed initialization step. Specifically, we pose the planning
problem in terms of a first stage modeled as a Mixed-Integer
Linear Program (MILP), whose linearized, non-kinematically
feasible output initializes a Nonlinear Programming (NLP)
problem, as shown in Fig. 2. The informed initialization
offered by the first stage is an approximate solution that, the-
oretically, is globally ε-optimal1 up to a user-defined receding
horizon [28]. This initialization better enables the subsequent
nonlinear, non-convex constrained optimization stage to con-
verge to a safe, smooth and feasible trajectory of higher quality
in terms of satisfying soft constraints. While this way of
improving convergence and achieving higher quality solutions
might compromise runtime efficiency, it suits applications that
can tolerate longer planning times in return for higher-quality
plans — such as in applications of high-fidelity simulation or
urban driving.

Contributions Our contributions are twofold:

1) we formulate motion planning for urban driving in a
novel two-stage constrained optimization framework,
and

2) we evaluate the framework thoroughly in a range of
simulated complex urban driving situations to demon-
strate empirically that our approach leads to a higher
convergence rate and to lower cost solutions when
compared with the alternative methods considered.

1In practice, modern solver implementations might introduce further limi-
tations to the theoretical guarantee [27].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation and Definitions

We use the shorthand k ≡ tk = t0 + k∆t, where t0 is
current time and ∆t is the timestep. We assume the planning
temporal horizon to be τ = N∆t, defined over N discrete
steps. For any variable rj with j ∈ N+, we use the shorthand
notation ri:e ≡ (ri, ..., re). Vectors are in boldface.

We refer to the vehicle we are planning for as the ego-
vehicle and consider its state at time k to be given by Zk =
(Xk, Yk,Φk, Vk) ∈ WZ , where (Xk, Yk) is position, Φk is
heading, and Vk is speed, all in a global coordinate frame
W . The initial ego state at time 0 is the input Z0, while the
output of planning is the vector of discrete ego states over the
planning horizon, Z1:N ∈ WN

Z .
Each other traffic participant (such as other vehicles, pedes-

trians and cyclists) is represented by a mean pose at time k,
Oi
k = (Xi

k, Y
i
k ,Φ

i
k) ∈ WO, i ∈ {1, ..., n}, and a Gaussian

distribution for position uncertainty with mean (Xi
k, Y

i
k ) and

covariance Γik. The predicted poses and covariances of all
traffic participants over the planning horizon (O1:n

0:N , Γ1:n
0:N )

are also inputs to the planning problem.
We define the planning objective to be continuous progress

along a differentiable and bounded two-dimensional reference
path Pref. The reference path, of length |Pref|, is parameterized
by the longitudinal distance from its start λ ∈ [0, |Pref|], with
the points (XPref(λ), Y Pref(λ)).

To simplify the planning problem, we transform the global
coordinate frame W to a Pref-based representation Wr under
the invertible transform T , as presented in the next section.
Fig. 2 illustrates the steps to transform a problem input
(Z0,O

1:n
0:N ,Γ

1:n
0:N ,Pref) to the desired planning output Z1:N

using T , T −1 and our planner.

B. Reference Path Representation

Given a reference path Pref, we can define its tangential and
normal vectors in the global coordinate frame as:

tλ =

∂XPref (λ)
∂λ

∂Y Pref (λ)
∂λ

 , nλ =

−∂Y Pref (λ)
∂λ

∂XPref (λ)
∂λ

 (1)

The invertible transform T operates on the input poses,
velocities and covariance matrices as follows.2

2The derivation of T −1 is similar to T , and thus is omitted for brevity.
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<latexit sha1_base64="PYOFhEl09zoOOsT1oVFQlCItyD0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQZdFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6WNza3tnfJuZW//4PDIPj7pqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3ud+d0alYpFo6XlMvRCPBQsYwdpIQ9sehFhPCOZpK3tKr9xsaFedmrMAWiduQapQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56SJ5hi6MMkJBJM0TGi3U3xspDpWah76ZzHOqVS8X//P6iQ5uvZSJONFUkOWhIOFIRyivAY2YpETzuSGYSGayIjLBEhNtyqqYEtzVL6+TznXNdWruY73auCvqKMMZnMMluHADDXiAJrSBwAye4RXerNR6sd6tj+VoySp2TuEPrM8fbPeTgQ==</latexit><latexit sha1_base64="PYOFhEl09zoOOsT1oVFQlCItyD0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQZdFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6WNza3tnfJuZW//4PDIPj7pqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3ud+d0alYpFo6XlMvRCPBQsYwdpIQ9sehFhPCOZpK3tKr9xsaFedmrMAWiduQapQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56SJ5hi6MMkJBJM0TGi3U3xspDpWah76ZzHOqVS8X//P6iQ5uvZSJONFUkOWhIOFIRyivAY2YpETzuSGYSGayIjLBEhNtyqqYEtzVL6+TznXNdWruY73auCvqKMMZnMMluHADDXiAJrSBwAye4RXerNR6sd6tj+VoySp2TuEPrM8fbPeTgQ==</latexit><latexit sha1_base64="PYOFhEl09zoOOsT1oVFQlCItyD0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQZdFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6WNza3tnfJuZW//4PDIPj7pqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3ud+d0alYpFo6XlMvRCPBQsYwdpIQ9sehFhPCOZpK3tKr9xsaFedmrMAWiduQapQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56SJ5hi6MMkJBJM0TGi3U3xspDpWah76ZzHOqVS8X//P6iQ5uvZSJONFUkOWhIOFIRyivAY2YpETzuSGYSGayIjLBEhNtyqqYEtzVL6+TznXNdWruY73auCvqKMMZnMMluHADDXiAJrSBwAye4RXerNR6sd6tj+VoySp2TuEPrM8fbPeTgQ==</latexit><latexit sha1_base64="PYOFhEl09zoOOsT1oVFQlCItyD0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQZdFNy4r9AVtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6WNza3tnfJuZW//4PDIPj7pqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3ud+d0alYpFo6XlMvRCPBQsYwdpIQ9sehFhPCOZpK3tKr9xsaFedmrMAWiduQapQoDm0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56SJ5hi6MMkJBJM0TGi3U3xspDpWah76ZzHOqVS8X//P6iQ5uvZSJONFUkOWhIOFIRyivAY2YpETzuSGYSGayIjLBEhNtyqqYEtzVL6+TznXNdWruY73auCvqKMMZnMMluHADDXiAJrSBwAye4RXerNR6sd6tj+VoySp2TuEPrM8fbPeTgQ==</latexit>

(x, y, �)
<latexit sha1_base64="6o7S/NAPlGs9XJzk22SPuTiO0kQ=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsB3aVk02wbms2GJCuWpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2rjut1NYW9/Y3Cpul3Z29/YPyodHbZ2kitAWSXiiuiHWlDNBW4YZTrtSURyHnHbC8e3M7zxSpVkiHsxE0iDGQ8EiRrCxkl99qqFJDflyxM775Ypbd+dAq8TLSQVyNPvlL3+QkDSmwhCOte55rjRBhpVhhNNpyU81lZiM8ZD2LBU4pjrI5jdP0ZlVBihKlC1h0Fz9PZHhWOtJHNrOGJuRXvZm4n9eLzXRdZAxIVNDBVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oe27du7+sNG7yOIpwAqdQBQ+uoAF30IQWEJDwDK/w5qTOi/PufCxaC04+cwx/4Hz+ABk8kGk=</latexit><latexit sha1_base64="6o7S/NAPlGs9XJzk22SPuTiO0kQ=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsB3aVk02wbms2GJCuWpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2rjut1NYW9/Y3Cpul3Z29/YPyodHbZ2kitAWSXiiuiHWlDNBW4YZTrtSURyHnHbC8e3M7zxSpVkiHsxE0iDGQ8EiRrCxkl99qqFJDflyxM775Ypbd+dAq8TLSQVyNPvlL3+QkDSmwhCOte55rjRBhpVhhNNpyU81lZiM8ZD2LBU4pjrI5jdP0ZlVBihKlC1h0Fz9PZHhWOtJHNrOGJuRXvZm4n9eLzXRdZAxIVNDBVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oe27du7+sNG7yOIpwAqdQBQ+uoAF30IQWEJDwDK/w5qTOi/PufCxaC04+cwx/4Hz+ABk8kGk=</latexit><latexit sha1_base64="6o7S/NAPlGs9XJzk22SPuTiO0kQ=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsB3aVk02wbms2GJCuWpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2rjut1NYW9/Y3Cpul3Z29/YPyodHbZ2kitAWSXiiuiHWlDNBW4YZTrtSURyHnHbC8e3M7zxSpVkiHsxE0iDGQ8EiRrCxkl99qqFJDflyxM775Ypbd+dAq8TLSQVyNPvlL3+QkDSmwhCOte55rjRBhpVhhNNpyU81lZiM8ZD2LBU4pjrI5jdP0ZlVBihKlC1h0Fz9PZHhWOtJHNrOGJuRXvZm4n9eLzXRdZAxIVNDBVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oe27du7+sNG7yOIpwAqdQBQ+uoAF30IQWEJDwDK/w5qTOi/PufCxaC04+cwx/4Hz+ABk8kGk=</latexit><latexit sha1_base64="6o7S/NAPlGs9XJzk22SPuTiO0kQ=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsB3aVk02wbms2GJCuWpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCyVn2rjut1NYW9/Y3Cpul3Z29/YPyodHbZ2kitAWSXiiuiHWlDNBW4YZTrtSURyHnHbC8e3M7zxSpVkiHsxE0iDGQ8EiRrCxkl99qqFJDflyxM775Ypbd+dAq8TLSQVyNPvlL3+QkDSmwhCOte55rjRBhpVhhNNpyU81lZiM8ZD2LBU4pjrI5jdP0ZlVBihKlC1h0Fz9PZHhWOtJHNrOGJuRXvZm4n9eLzXRdZAxIVNDBVksilKOTIJmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0r6oe27du7+sNG7yOIpwAqdQBQ+uoAF30IQWEJDwDK/w5qTOi/PufCxaC04+cwx/4Hz+ABk8kGk=</latexit>

�
<latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit><latexit sha1_base64="vMCmCBvrQqvMkcZe5c78yK19qu0=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoMeiF48VbC20S8mm2W5okl2SrFCW/gUvHhTx6h/y5r8x2+5BWx8MPN6bYWZemApurOd9o8ra+sbmVnW7trO7t39QPzzqmiTTlHVoIhLdC4lhgivWsdwK1ks1IzIU7DGc3Bb+4xPThifqwU5TFkgyVjzilNhCGqQxH9YbXtObA68SvyQNKNEe1r8Go4RmkilLBTGm73upDXKiLaeCzWqDzLCU0AkZs76jikhmgnx+6wyfOWWEo0S7UhbP1d8TOZHGTGXoOiWxsVn2CvE/r5/Z6DrIuUozyxRdLIoygW2Ci8fxiGtGrZg6Qqjm7lZMY6IJtS6emgvBX355lXQvmr7X9O8vG62bMo4qnMApnIMPV9CCO2hDByjE8Ayv8IYkekHv6GPRWkHlzDH8Afr8AROIjj8=</latexit>

Pref
<latexit sha1_base64="3mV3lKkI57eZeUlhgnTZidE4qIM=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieCqJCHosevFYwbZCE8pmO2mXbj7YnYglxIt/xYsHRbz6L7z5b9y0OWjrg4HHezPMzPMTwRXa9rdRWVpeWV2rrtc2Nre2d8zdvY6KU8mgzWIRyzufKhA8gjZyFHCXSKChL6Drj68Kv3sPUvE4usVJAl5IhxEPOKOopb554IYUR4yKrJX3MxfhATMJQZ73zbrdsKewFolTkjop0eqbX+4gZmkIETJBleo5doJeRiVyJiCvuamChLIxHUJP04iGoLxs+kFuHWtlYAWx1BWhNVV/T2Q0VGoS+rqzuFfNe4X4n9dLMbjwMh4lKULEZouCVFgYW0Uc1oBLYCgmmlAmub7VYiMqKUMdWk2H4My/vEg6pw3Hbjg3Z/XmZRlHlRySI3JCHHJOmuSatEibMPJInskreTOejBfj3fiYtVaMcmaf/IHx+QPXkJfG</latexit><latexit sha1_base64="3mV3lKkI57eZeUlhgnTZidE4qIM=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieCqJCHosevFYwbZCE8pmO2mXbj7YnYglxIt/xYsHRbz6L7z5b9y0OWjrg4HHezPMzPMTwRXa9rdRWVpeWV2rrtc2Nre2d8zdvY6KU8mgzWIRyzufKhA8gjZyFHCXSKChL6Drj68Kv3sPUvE4usVJAl5IhxEPOKOopb554IYUR4yKrJX3MxfhATMJQZ73zbrdsKewFolTkjop0eqbX+4gZmkIETJBleo5doJeRiVyJiCvuamChLIxHUJP04iGoLxs+kFuHWtlYAWx1BWhNVV/T2Q0VGoS+rqzuFfNe4X4n9dLMbjwMh4lKULEZouCVFgYW0Uc1oBLYCgmmlAmub7VYiMqKUMdWk2H4My/vEg6pw3Hbjg3Z/XmZRlHlRySI3JCHHJOmuSatEibMPJInskreTOejBfj3fiYtVaMcmaf/IHx+QPXkJfG</latexit><latexit sha1_base64="3mV3lKkI57eZeUlhgnTZidE4qIM=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieCqJCHosevFYwbZCE8pmO2mXbj7YnYglxIt/xYsHRbz6L7z5b9y0OWjrg4HHezPMzPMTwRXa9rdRWVpeWV2rrtc2Nre2d8zdvY6KU8mgzWIRyzufKhA8gjZyFHCXSKChL6Drj68Kv3sPUvE4usVJAl5IhxEPOKOopb554IYUR4yKrJX3MxfhATMJQZ73zbrdsKewFolTkjop0eqbX+4gZmkIETJBleo5doJeRiVyJiCvuamChLIxHUJP04iGoLxs+kFuHWtlYAWx1BWhNVV/T2Q0VGoS+rqzuFfNe4X4n9dLMbjwMh4lKULEZouCVFgYW0Uc1oBLYCgmmlAmub7VYiMqKUMdWk2H4My/vEg6pw3Hbjg3Z/XmZRlHlRySI3JCHHJOmuSatEibMPJInskreTOejBfj3fiYtVaMcmaf/IHx+QPXkJfG</latexit><latexit sha1_base64="3mV3lKkI57eZeUlhgnTZidE4qIM=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8EieCqJCHosevFYwbZCE8pmO2mXbj7YnYglxIt/xYsHRbz6L7z5b9y0OWjrg4HHezPMzPMTwRXa9rdRWVpeWV2rrtc2Nre2d8zdvY6KU8mgzWIRyzufKhA8gjZyFHCXSKChL6Drj68Kv3sPUvE4usVJAl5IhxEPOKOopb554IYUR4yKrJX3MxfhATMJQZ73zbrdsKewFolTkjop0eqbX+4gZmkIETJBleo5doJeRiVyJiCvuamChLIxHUJP04iGoLxs+kFuHWtlYAWx1BWhNVV/T2Q0VGoS+rqzuFfNe4X4n9dLMbjwMh4lKULEZouCVFgYW0Uc1oBLYCgmmlAmub7VYiMqKUMdWk2H4My/vEg6pw3Hbjg3Z/XmZRlHlRySI3JCHHJOmuSatEibMPJInskreTOejBfj3fiYtVaMcmaf/IHx+QPXkJfG</latexit>

x
<latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit><latexit sha1_base64="f2yzimwbR/Dgjzp6tZ360fHRqNI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N2IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3H1FpHst7M0nQj+hQ8pAzaqzUeOqXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB5jmM/A==</latexit>

|y|
<latexit sha1_base64="B3aQD5SfPDMjDpBgGEuNH4C+gUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6Gk/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3nlBpHstHM07Qj+hA8pAzaqz0MBlPeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/NTp+TMKn0SxsqWNGSu/p7IaKT1OApsZ0TNUC97M/E/r5Oa8NrPuExSg5ItFoWpICYms79JnytkRowtoUxxeythQ6ooMzadkg3BW355lTQvqp5b9e4vK7WbPI4inMApnIMHV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gCq9o4J</latexit><latexit sha1_base64="B3aQD5SfPDMjDpBgGEuNH4C+gUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6Gk/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3nlBpHstHM07Qj+hA8pAzaqz0MBlPeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/NTp+TMKn0SxsqWNGSu/p7IaKT1OApsZ0TNUC97M/E/r5Oa8NrPuExSg5ItFoWpICYms79JnytkRowtoUxxeythQ6ooMzadkg3BW355lTQvqp5b9e4vK7WbPI4inMApnIMHV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gCq9o4J</latexit><latexit sha1_base64="B3aQD5SfPDMjDpBgGEuNH4C+gUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6Gk/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3nlBpHstHM07Qj+hA8pAzaqz0MBlPeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/NTp+TMKn0SxsqWNGSu/p7IaKT1OApsZ0TNUC97M/E/r5Oa8NrPuExSg5ItFoWpICYms79JnytkRowtoUxxeythQ6ooMzadkg3BW355lTQvqp5b9e4vK7WbPI4inMApnIMHV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gCq9o4J</latexit><latexit sha1_base64="B3aQD5SfPDMjDpBgGEuNH4C+gUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8eK9gPaUDbbSbt0swm7G6Gk/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hodua3nlBpHstHM07Qj+hA8pAzaqz0MBlPeuWKW3XnIKvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nAaambakwoG9EBdiyVNELtZ/NTp+TMKn0SxsqWNGSu/p7IaKT1OApsZ0TNUC97M/E/r5Oa8NrPuExSg5ItFoWpICYms79JnytkRowtoUxxeythQ6ooMzadkg3BW355lTQvqp5b9e4vK7WbPI4inMApnIMHV1CDO6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gCq9o4J</latexit>

tx
<latexit sha1_base64="m8vrU1a0E8Vi3/2+UQImL1rp6CM=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJrwfkRHSoSCUbSS70cUx0GY4WzwNKjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTD634mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/qnlv37i9rjZuijjKcwCmcgwdX0IA7aEILGCTwDK/w5qTOi/PufCxGS06xcwx/4Hz+AI/gkgM=</latexit><latexit sha1_base64="m8vrU1a0E8Vi3/2+UQImL1rp6CM=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJrwfkRHSoSCUbSS70cUx0GY4WzwNKjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTD634mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/qnlv37i9rjZuijjKcwCmcgwdX0IA7aEILGCTwDK/w5qTOi/PufCxGS06xcwx/4Hz+AI/gkgM=</latexit><latexit sha1_base64="m8vrU1a0E8Vi3/2+UQImL1rp6CM=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJrwfkRHSoSCUbSS70cUx0GY4WzwNKjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTD634mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/qnlv37i9rjZuijjKcwCmcgwdX0IA7aEILGCTwDK/w5qTOi/PufCxGS06xcwx/4Hz+AI/gkgM=</latexit><latexit sha1_base64="m8vrU1a0E8Vi3/2+UQImL1rp6CM=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHJtRKwecJrwfkRHSoSCUbSS70cUx0GY4WzwNKjW3Lo7B1klXkFqUKA5qH75w5ilEVfIJDWm57kJ9jOqUTDJZxU/NTyhbEJHvGepohE3/WyeeUbOrDIkYaztU0jm6u+NjEbGTKPATuYZzbKXi/95vRTD634mVJIiV2xxKEwlwZjkBZCh0JyhnFpCmRY2K2FjqilDW1PFluAtf3mVtC/qnlv37i9rjZuijjKcwCmcgwdX0IA7aEILGCTwDK/w5qTOi/PufCxGS06xcwx/4Hz+AI/gkgM=</latexit>

(X, Y,�)
<latexit sha1_base64="jY2/ok43AIUCsjtsnIQN88125E0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsh3aVk02wbmk2WJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lqmitAWkVyqbog15UzQlmGG026iKI5DTjvh+Hbmd56o0kyKBzNJaBDjoWARI9hYya92a+ixhvzmiJ33yxW37s6BVomXkwrkaPbLX/5AkjSmwhCOte55bmKCDCvDCKfTkp9qmmAyxkPas1TgmOogm988RWdWGaBIKlvCoLn6eyLDsdaTOLSdMTYjvezNxP+8Xmqi6yBjIkkNFWSxKEo5MhLNAkADpigxfGIJJorZWxEZYYWJsTGVbAje8surpH1R99y6d39ZadzkcRThBE6hCh5cQQPuoAktIJDAM7zCm5M6L86787FoLTj5zDH8gfP5A4UtkAk=</latexit><latexit sha1_base64="jY2/ok43AIUCsjtsnIQN88125E0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsh3aVk02wbmk2WJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lqmitAWkVyqbog15UzQlmGG026iKI5DTjvh+Hbmd56o0kyKBzNJaBDjoWARI9hYya92a+ixhvzmiJ33yxW37s6BVomXkwrkaPbLX/5AkjSmwhCOte55bmKCDCvDCKfTkp9qmmAyxkPas1TgmOogm988RWdWGaBIKlvCoLn6eyLDsdaTOLSdMTYjvezNxP+8Xmqi6yBjIkkNFWSxKEo5MhLNAkADpigxfGIJJorZWxEZYYWJsTGVbAje8surpH1R99y6d39ZadzkcRThBE6hCh5cQQPuoAktIJDAM7zCm5M6L86787FoLTj5zDH8gfP5A4UtkAk=</latexit><latexit sha1_base64="jY2/ok43AIUCsjtsnIQN88125E0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsh3aVk02wbmk2WJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lqmitAWkVyqbog15UzQlmGG026iKI5DTjvh+Hbmd56o0kyKBzNJaBDjoWARI9hYya92a+ixhvzmiJ33yxW37s6BVomXkwrkaPbLX/5AkjSmwhCOte55bmKCDCvDCKfTkp9qmmAyxkPas1TgmOogm988RWdWGaBIKlvCoLn6eyLDsdaTOLSdMTYjvezNxP+8Xmqi6yBjIkkNFWSxKEo5MhLNAkADpigxfGIJJorZWxEZYYWJsTGVbAje8surpH1R99y6d39ZadzkcRThBE6hCh5cQQPuoAktIJDAM7zCm5M6L86787FoLTj5zDH8gfP5A4UtkAk=</latexit><latexit sha1_base64="jY2/ok43AIUCsjtsnIQN88125E0=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRahQim7Iuix6MVjBfsh3aVk02wbmk2WJCuUpX/DiwdFvPpnvPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lqmitAWkVyqbog15UzQlmGG026iKI5DTjvh+Hbmd56o0kyKBzNJaBDjoWARI9hYya92a+ixhvzmiJ33yxW37s6BVomXkwrkaPbLX/5AkjSmwhCOte55bmKCDCvDCKfTkp9qmmAyxkPas1TgmOogm988RWdWGaBIKlvCoLn6eyLDsdaTOLSdMTYjvezNxP+8Xmqi6yBjIkkNFWSxKEo5MhLNAkADpigxfGIJJorZWxEZYYWJsTGVbAje8surpH1R99y6d39ZadzkcRThBE6hCh5cQQPuoAktIJDAM7zCm5M6L86787FoLTj5zDH8gfP5A4UtkAk=</latexit>

�<latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit><latexit sha1_base64="S2XWeZLfl/DBcqkmC18adcutedA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cKthbaUDbbTbN0P8LuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMyLUs6M9f1vr7K2vrG5Vd2u7ezu7R/UD4+6RmWa0A5RXOlehA3lTNKOZZbTXqopFhGnj9HktvAfn6g2TMkHO01pKPBYspgRbAtp0E7YsN7wm/4caJUEJWlAifaw/jUYKZIJKi3h2Jh+4Kc2zLG2jHA6qw0yQ1NMJnhM+45KLKgJ8/mtM3TmlBGKlXYlLZqrvydyLIyZish1CmwTs+wV4n9eP7PxdZgzmWaWSrJYFGccWYWKx9GIaUosnzqCiWbuVkQSrDGxLp6aCyFYfnmVdC+agd8M7i8brZsyjiqcwCmcQwBX0II7aEMHCCTwDK/w5gnvxXv3PhatFa+cOYY/8D5/AOK5jh8=</latexit>

X
<latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit><latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit><latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit><latexit sha1_base64="hf6hOeTjseL13iz+i/MO/ptaY5E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqt3kcRTiDc7gED2pQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AtbmM3A==</latexit>

Y
<latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit><latexit sha1_base64="T3f5yAtJWEWlpP50X1BS1VdMuC0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ie0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOiXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBtz2M3Q==</latexit>

Pref
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Fig. 3: Visual representation of the pose transform of T from
the global coordinate frame (left) to the reference path based
coordinate frame (right), and the inverse transform T −1.

1) Pose transform: T maps the pose (X,Y,Φ) in the global
coordinate frame W to a pose (x, y, φ) in the reference path
frame Wr, see Fig. 3.
• x = projPref

[
X Y

]
is the distance λ from the beginning

of Pref to the projection of
[
X Y

]
into it, defined as:

x = argmin
λ

(X −XPref(λ))2 + (Y − Y Pref(λ))2.

Due to the nature of the optimization, no closed-form
solution can be obtained for x.

• y = 1
||nx|| n

>
x ·ŷ, where nx is the normal vector of the ref-

erence path at λ = x as in (1), and ŷ =

[
X −XPref(x)
Y − Y Pref(x)

]
.

• φ = ∠tx − Φ, where:

∠tx = arctan
(
∂Y Pref(λ)

∂XPref(λ)

∣∣∣∣
λ=x

)
. (2)

2) Speed transform: T is a spatial transformation, so
speeds are invariant: v = T (V ) = V .

3) Covariance transform: for a traffic participant with pose
O, covariance Γ, and transformed pose T (O) =

[
x y φ

]>
,

the transformed covariance matrix is given by:

Σ = T (Γ) = R(∠tx − φ)ΓR(∠tx − φ)> (3)

where ∠tx is as defined in (2), and R(ϕ) ∈ SO(2) is the
rotation matrix for angle ϕ.

C. Problem Statement

The planning problem is defined in the reference path
coordinate frameWr. The state of the ego-vehicle at time k is
given by zk = (xk, yk, φk, vk) ∈ Z where (xk, yk) ∈ R2 is the
position, φk ∈ R is its heading, and vk ∈ R is its speed. The
evolution of the state is given by a discrete general dynamical
system:

zk+1 = f∆t(zk,uk), (4)

where f∆t is a discrete, nonlinear function parameterized by
∆t, and uk = (ak, δk) ∈ U is the acceleration and steering
angle controls applied at time k. We consider the ego-vehicle
to be a rigid body occupying an area Se ⊂ R2 relative to
its center, and denote the area occupied by the ego-vehicle at
state zk by S(zk) ⊂ R2.

For other traffic participants i ∈ {1, ..., n}, pose at time k
is given by oik = (xik, y

i
k, φ

i
k) ∈ O and position covariance by

Σi
k. Following the definition from [24], we denote the area

each traffic participant occupies with probability higher than
pε by Si(oik,Σi

k, pε) ⊂ R2.
We define the driveable surface area B ⊂ R2 to be the area

in which it is safe for the ego-vehicle to drive in the reference
path coordinate frame, and the unsafe area Bout = R2 \ B.
With a cost function J(z0:N ,u0:N−1) defined over the ego-
vehicle’s positions and controls, we can now pose the planning
problem.

Problem 1 (Motion Synthesis). Given an initial ego state z0,
and trajectories of other traffic participants (o1:n

0:N ,Σ
1:n
0:N ) over

the horizon N , compute:

argmin
z1:N ,u0:N−1

J(z0:N ,u0:N−1)

s.t. ∀k ∈ {0, ..., N} :

zk+1 = f∆t(zk,uk)

S(zk) ∩ Bout = ∅

S(zk) ∩

 ⋃
i∈{1,...,n}

Si(oik,Σi
k, pε)

 = ∅

III. NONLINEAR PROGRAMMING FORMULATION

In this section, we describe a specific solution method to
Problem 1, posing it as an NLP problem comprising: (1)
kinematic vehicle model constraints on the model transitions
and allowed controls; (2) driveable area collision avoidance
constraints; (3) traffic participants’ collision avoidance con-
straints; and (4) a multi-objective cost function over soft
constraints. We will discuss these in order.

1) Vehicle Model: We consider a discrete kinematic bicycle
model based on the center of the vehicle. Modeling the ego-
vehicle as a rectangle with an inter-axle distance L, we write:

xk+1

yk+1

φk+1

vk+1

 =


xk
yk
φk
vk

+


vk cos(φk + δk)
vk sin(φk + δk)

2vk
L sin(δk)

ak

∆t (5)

We additionally limit the maximum allowed steering |δk| ≤
δmax and acceleration amin ≤ ak ≤ amax, as well as
maximum jerk |ak+1 − ak| ≤ ȧmax∆t and angular jerk
|δk+1 − δk| ≤ δ̇max∆t, to stay within the operational do-
main and for passenger comfort3. We also constrain speed,
0 ≤ vmin ≤ vk ≤ vmax, to maintain forward motion below
the set speed limit.

2) Collision Avoidance with driveable surface boundaries:
The limits of the driveable surface can include both road limits
and roadworks. The driveable surface constraint can be written
as S(zk) ∩ Bout = ∅. To define an adequate representation
of the area of the ego-vehicle S(zk) at state zk, we relax
the definition of the boundary of the ego-vehicle to only
considering its corners. For a rectangular vehicle of width w
and length l, the positions of the corners at zk are:

cα(zk) =

[
xαk
yαk

]
= R(φk)

(
α> ◦

[
w/2
l/2

])
+

[
xk
yk

]
(6)

3The use of the same positive and negative jerk magnitude mirrors that of
previous works [24], [29] and was observed to work in practice, however the
framework can be trivially extended to use different jerk bounds.
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steps receding 
horizon

Fig. 4: Detailed architecture: the first stage (left) solves a
receding horizon formulation of the MILP problem; the second
stage (right) uses the solution of the first stage as initialization
to solve the full nonlinear, non-convex, constrained optimiza-
tion problem.

where α ∈ A = {
[
1 1

]
,
[
−1 1

]
,
[
−1 −1

]
,
[
1 −1

]
},

R(φk) ∈ SO(2) is the rotation matrix for heading φk, and ◦
is the element-wise product.

With this, the constraint can be reduced to:

∀α ∈ A : cα(zk) ∈ B. (7)

We assume the driveable surface B is described by two
continuous and smooth functions of x; the left border bl(x)
and the right border br(x), such that ∀x : bl(x) > br(x). These
boundaries impose a constraint on y, the lateral path deviation
at position x. Then, (7) can be reduced to the set of constraints

∀α ∈ A : bl(x
α
k ) ≥ yαk ≥ br(xαk ), (8)

with
[
xαk yαk

]>
defined as in (6).

3) Collision Avoidance with other traffic participants: We
will refer to the traffic participants as vehicles in this section,
but other participants (like cyclists and pedestrians) could
be handled similarly. We model the area of other vehicles
Si(oik,Σi

k, pε) in a similar fashion to [24]. Assuming ashape,
bshape to be the parameters of an ellipse L that conservatively
inscribes the vehicle’s shape with Σi

k axis-aligned to the
vehicle’s axis, we write:

Si ⊂ L(aΣi
k

+ ashape, bΣi
k

+ bshape) = L(aik, b
i
k) (9)

where L(aik, b
i
k) inscribes vehicle i at time k up to an

uncertainty pε, see [24] for more details. Thus, we write the
constraints:

gi,α(zk) > 1, ∀α ∈ A, (10)

g
i,α

(zk) =

xαk − xik
yαk − yik

> R(φik)>
(aik)−2 0

0 (bik)−2

R(φik)
xαk − xik
yαk − yik


4) Cost function: A multi-objective cost function to be

minimized is defined over the set of soft constraints I on the
ego-vehicle’s states and controls. For a soft constraint function
θι(z,u) and weight ωι ∈ R+ reflecting its relative importance,
the cost function can be defined as:

J(z0:N ,u0:N−1) =

N∑
k=0

∑
ι∈I

ωιθι(zk,uk) (11)

Soft constraints target various objectives, including:

• Progress towards a longitudinal goal xg: θx = (x−xg)2,
a target speed vg: θv = (v − vg)2, or minimizing lateral
deviation from the reference path, θy = y2.

• Passenger comfort defined as minimization of the norm
of acceleration, θa = a2, and steering, θδ = δ2.

With the constraints and the cost function defined, we can
now formulate the optimization as a constrained nonlinear
program.

Problem 2 (Nonlinear Programming Problem). Given an
initial ego-vehicle state z0, trajectories of traffic participants
(o1:n

0:N ,Σ
1:n
0:N ) and soft constraints I, compute:

argmin
z1:N ,u0:N−1

J(z0:N ,u0:N−1)

s.t. ∀k ∈ {0, ..., N} :

zk+1 = f∆t(zk,uk)

|δk| ≤ δmax

amin ≤ ak ≤ amax

|ak+1 − ak| ≤ ȧmax∆t

|δk+1 − δk| ≤ δ̇max∆t

vmin ≤ vk ≤ vmax

bl(x
α
k ) ≥ yαk ≥ br(xαk ), α ∈ A

gi,α(zk) > 1, i ∈ {1, ...n}, α ∈ A
Due to the nonlinearity of J , f∆t, bl, br and gi,α, this

is a nonlinear, non-convex, constrained optimization problem
with equality and inequality constraints. While it is appealing
to attempt to solve the problem directly or using a receding
horizon formulation as in [24], there are two major challenges:
• Uncertain convergence: solvers for this type of prob-

lems are generally slow for large instances, especially
when initialization is not carefully considered [25]. While
advances in efficient primal-dual interior point solvers
have mitigated this issue to a certain degree [30]–[32],
the convergence to a solution is uncertain [24]–[26].

• Local optima: nonlinear constrained optimization solvers
tend to be local in nature, finding solutions that are close
to the initial point and, possibly, far from the desired
global optimum [24], [25], [28].

IV. TWO-STAGE OPTIMIZATION

To mitigate the aforementioned issues of NLP, we propose
the two-stage optimization framework presented in Fig. 4.
The main motivation behind the architecture is to improve
the quality of the initial solution provided to the NLP solver,
leading to faster and more reliable convergence overall. The
informed initial solution is generated through a precursory
optimization procedure.

In our two-stage framework, the first stage solves a lin-
earized version of Problem 2 formulated as a Mixed-Integer
Linear Program (details in Sec. IV-A) in a finite, receding
horizon manner. Even though this only gives MILP optimality
guarantees for each individual step of the receding horizon (see



the discussion in Sec. IV-A5), it does act as a proxy toward
reaching the global optimum of the full linearized problem.
The receding horizon process avoids the high runtime that
would otherwise be incurred if the MILP problem is attempted
with the full N steps directly.

With the output of the MILP optimization taken as informed
initialization, the second stage solves Problem 2. If the repre-
sentations in the linearized and nonlinear problems are similar,
this initialization should improve convergence, speed and the
quality of the final solution.

A. Mixed-Integer Linear Programming Formulation

To reformulate Problem 2 as a MILP problem we (1) con-
sider a linear vehicle model with kinematic feasibility con-
straints; (2) devise an approach to collision avoidance which
maintains the mixed-integer linearity of the model; and
(3) adapt the soft constraints to a MILP cost function. We
make use of the nonlinear operators | · | and max(·) which
we enforce through auxiliary binary variables under the big-
M formulation [33], [34].

1) Linear Vehicle Model and Kinematic Feasibility: The
nonlinear kinematic bicycle model presented in Sec. III-1 can
be linearized around a point using a series expansion, but this
approximation is only valid around the point and yields higher
errors as the distance to the point increases. To avoid this issue,
we consider a linear, nonholonomic vehicle model instead.
We define the state of this linear vehicle model at time k as
zk =

[
xk yk vxk vyk

]
∈ ZM, where

vxk = vk cos(φk) , vyk = vk sin(φk) (12)

with controls uk =
[
axk ayk

]
∈ UM, and consider a linear

vehicle dynamics model defined as:

zk+1 = F∆t(zk,uk) = Adzk +Bduk (13)

where F∆t corresponds to a zero-order hold discretization of
the continous state-space system:

ż =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 z> +


0 0
0 0
1 0
0 1

u> (14)

This nonholonomic model is quite simplistic when com-
pared with the kinematic bicycle model in (5), so in order to
approximate kinematic feasibility4, we add the constraint:

vx ≥ ρ|vy| (15)

for a constant ρ ∈ R+. Assuming forward motion, that is
φk ∈ [−π2 , π2 ], this constraint dictates that any movement in
the y direction requires motion in the x direction as well.

We also enforce the same constraints as in the nonlinear
model, in particular input bound constraints, axmin ≤ axk ≤
axmax and aymin ≤ ayk ≤ aymax; jerk constraints, |axk+1 − axk| <
∆axmax∆t and |ayk+1−a

y
k| < ∆aymax∆t; and speed constraints

vxmin ≤ vxk ≤ vxmax and vymin ≤ vyk ≤ vymax, with vxmin ≥ 0 to
guarantee forward motion.

4It should be noted that this model is not kinematically feasible with regard
to the bicycle model, only approximately so.

2) Collision Avoidance: A key difference of the linear
formulation to the nonlinear case with respect to collision
avoidance constraints is the lack of explicit representation of
orientation in the linearized state z. A linear approximation of
the ego-vehicle’s corners would thus induce large errors in the
model. We instead consider the ego-vehicle to be a point mass
and augment the area it occupies to linearized approximations
of the limits of the driveable surface and traffic participants.

For the driveable surface, we formulate the constraint:

d+ bMl (xk) ≥ yk ≥ bMr (xk)− d (16)

where d : Se → R is a function of the shape of the ego-vehicle,
and bMl (x) and bMr (x) are piecewise-linear functions for the
left and right road boundaries such that ∀x : bMl (x) > bMr (x).
For a rectangular vehicle with width w and length l, the most
restrictive approximation of the shape of the ego-vehicle is
given by d =

√
(w2 + l2)/2, limiting the driveable surface to

B = R2\(Bout⊕Se) where ⊕ is the Minkowski-sum operator.
For practical purposes, we consider d = w/2, which is exact
when φ = 0.

For traffic participants, we inscribe the ellipses L(aik, b
i
k)

defined in (9) with axis-aligned rectangles, augmented with
the shape of the ego-vehicle. With dx and dy being functions
of the size of the ego-vehicle with respect to its center in the
x and y direction, respectively, we define rectangles Rik with
the limits:

xik,min =
[
min
x
L(aik, b

i
k)
]
− dx

xik,max =
[
max
x
L(aik, b

i
k)
]

+ dx

yik,min =

[
min
y
L(aik, b

i
k)

]
− dy

yik,max =

[
max
y
L(aik, b

i
k)

]
+ dy.

(17)

It should be noted that xik,min, x
i
k,max, y

i
k,min, y

i
k,max can be

computed from L(aik, b
i
k), dx and dy in closed form. Then,

the collision avoidance constraint is the logical implication:

(xik,min ≤ x ≤ xik,max ∧ y ≥ yik,min) ⇒ y ≥ yik,max (18)

which reads if the ego’s position is aligned with a vehicle
along x, then it must be outside the vehicle’s borders in y.
Using the big-M formulation [33], [34] with a sufficiently large
M ∈ R+, we get the corresponding mixed-integer constraint:

yik,max −Mµik ≤ yk where

µik = max(xik,min − xk, 0) + max(xk − xik,max, 0)

+ max(yik,min − yk, 0) (19)

3) Mixed-Integer Linear Cost Function: It is imperative
that the MILP cost function be similar to the one from the
nonlinear stage in order to minimize the gap between the op-
tima of the two stages. With the receding horizon formulation,
the cost over each state is also defined independently in time,
as, for k ∈ {0, ..., N}:

JM,k
C (z,u) =

∑
ι∈C

ΩιΘι(z,u), (20)



for the set of soft constraints C, where each constraint ι defines
a function to minimize, Θι(z,u), and a weight Ωι ∈ R+ to
determine relative importance.Similar to the nonlinear stage,
soft constraints target various objectives:
• Progress towards a longitudinal goal xg , Θx = |x−xg|;

a target speed vg , Θv = |v − vg|; and lateral deviation
from the reference path, Θy = |y|.

• Passenger comfort as a minimization of the norm of
lateral acceleration, Θa = |ay|.

4) MILP Problem Definition: With constraints C and cost
function JM,k, we can now formulate the planning problem
as a K-step receding horizon, Mixed-Integer Linear Program.
That is, we obtain z∗1:N by solving N − K consecutive
problems.

Problem 3 (Receding Horizon MILP). Given an initial
ego-vehicle state z0, trajectories of other traffic participants
(o1:n

0:N ,Σ
1:n
0:N ), a set of soft constraints C, compute for planning

iteration 0 ≤ m ≤ N −K of the receding horizon:

argmin
zm+1:m+K ,um:m+K−1

m+K∑
k=m

JM,k
C (zk,uk)

s.t. ∀k ∈ {m, ...,m+K} :

zk+1 = F∆t(zk,uk)

vx ≥ ρ|vy|
axmin ≤ axk ≤ axmax

aymin ≤ ayk ≤ aymax

|axk+1 − axk| < ∆axmax∆t

|ayk+1 − a
y
k| < ∆aymax∆t

vxmin ≤ vxk ≤ vxmax

vymin ≤ vyk ≤ vymax

d+ bMl (xk) ≥ yk ≥ bMr (xk)− d
yik,max −Mµik ≤ yk, i ∈ {1, ..., n}

5) On the optimality of the MILP stage: The optimal
solution z∗1:N of Problem 3 is used as an initialization to warm-
start Problem 2 in order to mitigate the convergence and local
optimality challenges discussed above.

A solution to this MILP problem can be obtained using
Branch and Bound, a divide and conquer algorithm first
introduced and applied to MILP by Land and Doig [35],
proven to return the global ε-optimal solution [27], [28]. In
practice, however, modern solvers (e.g. Gurobi or CPLEX)
may fail to find that optimal solution due to rounding errors
and built-in tolerances [27]. Moreover, the receding horizon
formulation of Problem 3, introduced for the sake of com-
putational tractability, results in suboptimality [36], [37]. Due
to these factors, no strong theoretical guarantee can be given
regarding the optimality of the MILP stage.

Our hypothesis, nevertheless, is that partial solutions that are
close enough to the global optimum for each receding horizon
iteration act as proxies towards a final, agglomerated solution
that is, when compared with the global optimum, close enough
to be useful in initializing the NLP stage in order to improve
the quality of the final solution. Our experiments corroborate
this hypothesis.

(SO) (SO+OV) (DO) (DO+OV)

… … … …

Fig. 5: Urban Driving Scenario Classes: with static vehicles
in yellow and dynamic vehicles in red, two examples each
of: (SO) static overtaking of parked vehicles; (SO+OV) static
overtaking with an oncoming vehicle in the other lane; (DO)
dynamic overtaking of a slow moving vehicle; (DO+OV) dy-
namic overtaking of a slow moving vehicle with an oncoming
vehicle in the other lane. Parameters, such as the map layout
and number of vehicles in an example, are randomly generated.

V. EXPERIMENTAL RESULTS

In the following subsections, we show that:
1) for the NLP stage, our MILP formulation provides

a better inititalization when compared with simpler
heuristics and ablations of Problem 3, leading to higher
convergence (i.e., percentage of solved cases), faster
NLP solving times, and lower-cost solutions, when com-
pared with the NLP stage initialized by those methods
(Sec. V-C); and

2) our two-stage method outperforms, in metrics of
progress and passenger comfort, an alternative approach
based on a Nonlinear Model Predictive Control (NMPC)
scheme similar to [24] (Sec. V-D).

In our experiments, we used state-of-the-art off-the-shelf
solvers for the two types of optimization problems, implement-
ing the first stage (MILP; Problem 3) using Gurobi [38] and
the second stage (NLP; Problem 2) using IPOPT [39]. Both
solvers have a timeout of 25s, after which the optimization
is stopped. We use N = 40 and ∆t = 0.2s for an output
trajectory horizon of 8 seconds. Other parameters of the two
problems are listed in Appendix A.

A. Simulation Environment

Without loss of generality, we assumed left-hand traffic
where drivers are expected to be on the left-hand side of the
road. We use a proprietary simulator to run the experiments
presented in this paper. It uses a fixed simulation frequency of
100Hz, and all agents are simulated using a kinematic bicycle
model as described in Eq. 5. Perfect localization and full state
observability at simulation time are assumed as sensor data
for all agents. Agents also have access to a high definition
map with road and lane boundary information, as well as
markings, all represented as smooth piecewise linear functions.
All non-ego agents implement an Intelligent Driver Model
[40]-based decision-making process, allowing them to follow
a lane, and perform adaptive cruise control [41] assuming a
forward vehicle as well as basic overtaking maneuvers.



(a) t = 0.0s (b) t = 3.2s (c) Simulator view (t = 3.6s) (d) t = 5.2s

Fig. 6: Residential driving example: (a), (b) and (d) showing the planner’s view of a residential driving problem, with the
ego-vehicle (blue), static obstacles (orange), oncoming vehicle (red) and ego’s plan (dark blue trace) at different times t; (c)
shows our simulator’s rendering of the situation at t = 3.6s.

(a) Converged (%)
(b) Per instance comparison (c) Overall runtime

∆NLP
OURSCost (%) ∆NLP

OURS Runtime (%) Init (s) NLP (s) Total (s)

Heuristics

ZEROS 95.95 11.62 85.36 0.0 0.71±0.56 0.71±0.56

CT. DEC 93.61 9.64 21.47 0.0 0.44±0.37 0.44±0.37

CT. VEL 63.88 4.11 37.97 0.0 0.63±0.89 0.63±0.89

CT. ACC 39.89 −0.65 29.73 0.0 0.68±0.64 0.68±0.64

MILP-based

NOCOL + NOVEL 37.49 0.27 37.66 0.14±0.08 0.70±0.66 0.84±0.67

NOCOL 42.08 −1.18 43.33 0.17±0.08 0.65±0.48 0.83±0.49

NOVEL 93.22 3.60 15.70 0.71±0.35 0.42±0.46 1.14±0.66

OURS 97.76 — — 0.55±0.37 0.38±0.42 0.93±0.60

TABLE I: Initialization Ablation: (a) percentage of problems the NLP stage solves when initialized with the different methods;
(b) average percent change in NLP cost and runtime in examples solved by our method and the alternative initialization
(positive and higher is worse for the alternative method, better for our method); (c) running time per initialization method, and
corresponding NLP stage and total runtime, in the respective subset of examples solved in the dataset by the method (mean
± standard deviation).

The ego-vehicle has access to a route planner, which given a
goal yields a reference path in the world coordinate frame, and
a deterministic constant velocity and lane following predictor
for other agents5. It plans synchronously at a frequency of
1Hz.

B. Urban Driving Scenario Classes

Fig. 5 shows examples of the four classes of urban, two-lane
driving scenarios we consider for the quantitative experiments
in subsections V-C and V-D. Each of the classes presents a
set of planning challenges associated with residential driving,
among which: smooth overtaking of parked vehicles, negoti-
ating an oncoming vehicle in the other lane, and the decision
to overtake a slow-moving front vehicle.

Fig. 6 shows the solution to an example in which the
ego-vehicle overtakes vehicles parked at the sides of a two-
lane road while taking into account an oncoming vehicle that
also has to overtake static vehicles on the other lane. These
planning challenges are reflected in many driving situations.
For example, we show in Appendix B another example of
urban driving that requires a similar level of negotiation with
other vehicles: an unprotected junction right turn. Videos of
both situations are available in the supplementary material.

To showcase robustness, we perform our analysis over a
procedurally generated dataset obtained by randomizing over
relevant parameters in each class (e.g., lane widths, initial

5While this is the case for the simulation environment in our experiments,
we note that our method can include uncertainty-aware predictions following
the modeling from [24].

speeds or number of vehicles). More details about the pro-
cedural generation process are presented in Appendix C.

C. NLP Initialization Ablation

We considered four NLP stage heuristic initializations as
alternatives to our MILP stage:
• ZEROS, in which all states and controls are initialized to

zero;
• CT. VEL, in which the ego-vehicle is assumed to maintain

a constant velocity throughout the solution;
• CT. ACC, in which the ego-vehicle maintains a con-

stant acceleration of 1ms−2 until the maximum speed
is reached; and

• CT. DEC, in which the ego-vehicle maintains a constant
negative acceleration of −1ms−2 until it stops.

For a more thorough analysis, we also considered three
ablations of the MILP formulation presented in Problem 3:
• NOCOL + NOVEL, a similar initialization to the MILP

formulation of Problem 3, excluding collision avoidance,
speed limit and target speed constraints;

• NOCOL, a similar initialization to the MILP formulation
of Problem 3, excluding the collision avoidance con-
straints with other road users;

• NOVEL, a similar initialization to the MILP formulation
of Problem 3, excluding the speed limit and target speed
constraints.

We generated a dataset of 4000 examples, 1000 examples
per driving scenario class, and solved them using our method
as well as with the NLP solver initialized by each of the
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Fig. 7: Initialization Ablation: box plots of the percent change
in NLP cost (left) and runtime (right) for each method when
compared to ours, in examples where both converged but to
different optima. Other methods having percent change values
larger than zero, ∆ > 0 (indicated by the green color), means
better performance by our method.

alternative methods. All the NLP problems optimized the same
constraints and cost function.

From Table I (a) we observe our MILP initialization leads to
a higher percentage of solved examples than any other method
considered. Table I (b) shows a case-by-case comparison
between our MILP initialization and the other methods in
terms of the average final NLP cost and runtime for the
subset of examples solved by both, showing that our MILP
initialization achieves better NLP runtimes compared to all
the considered alternatives and better costs in most of the
cases. To analyze that further, in Fig. 7 we present boxplots
of the distribution of the per instance change in NLP cost and
runtime of a method compared to ours in examples where both
converged to different optima. In most cases, our MILP stage
leads to NLP solutions that outperform the alternatives in terms
of cost, and that converge faster in the second stage. While
CT. ACC, NOCOL + NOVEL and NOCOL appear to find better
solutions in terms of cost in a non-negligible percentage of the
considered examples in Fig. 7, these approaches only converge
to a valid solution in less than 43% of the dataset examples
as Table I (a) shows and they are slower in general. In Fig. 8,
we show a qualitative example from the dataset in which
all initializations are successful and our MILP initialization
outperforms the alternative heuristics in terms of NLP cost.

Table I (c) presents the running times of the initialization
stage and the total runtime for the different methods we con-
sider. Heuristic initializations have a negligible initialization
time due to their simple closed-form formulations. Our MILP
initialization leads to a lower NLP runtime than all other
heuristic and ablation alternatives, indicating a higher-quality
starting point that leads to quicker convergence. However, it
does incur a higher total runtime than most due to the solving
time in the first stage.

D. NMPC Baseline Comparison

We compared our method to an NMPC baseline which
optimizes Problem 2 but in a receding horizon fashion similar
to [24]. This baseline uses the same interior-point optimizer

(a) ZEROS

(b) CT. VEL

(c) CT. ACC

(d) CT. DEC

(e) NOCOL + NOVEL

(f) NOCOL

(g) NOVEL

(h) OURS (MILP)

Fig. 8: Initialization Ablation: a qualitative example in the
reference path coordinate frame of static overtaking from our
dataset. The subfigures show the NLP output when initialized
with (a)-(d) simple heuristics, (e)-(g) ablations of our MILP
stage with subsets of constraints, and (h) our full MILP stage.
The initialization trajectory is shown in green and the NLP
stage output in dark blue.

as our NLP stage for each of the receding horizon iterations,
initializing each iteration with the previous result shifted by
one step.

To compare the merits of the two methods, we measured:

• Solved: percentage of dataset examples each method
solved successfully (higher is better)

• Progress at 8s (P@8s): longitudinal distance covered
along the reference path by the ego-vehicle within the
first 8s of the example, computed over the set of solved
examples (higher is better)

• Speed tracking (v): average instantaneous speed in an
example, computed over the set of solved examples
(closer to the desired target of 8m/s is better)

• Absolute jerk value (|ȧ|): average absolute value of lon-
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Fig. 9: NMPC Comparison: distributions of metric values for the subset of examples solved by both the NMPC (in blue) and
our method (in orange). The metrics are: progress in meters after 8s (higher is better); average speed in an example (closer to
the target of 8m/s is better); and average absolute value of jerk in an example (lower is better).

NMPC OURS

Solved (%) 87.79 98.32

Runtime (s) 0.56 0.92

Progress (P@8s in m) 46.24±11.52 53.18±12.87

Speed (v in m/s) 6.00±1.49 6.88±1.65

Jerk (|ȧ| in m/s3) 0.47±0.03 0.43±0.05

TABLE II: NMPC Comparison: percentage of dataset exam-
ples solved, planning runtime, and metrics measured over the
set of examples solved by both methods (mean ± standard
deviation) of progress after 8s (higher is better), average speed
in an example (closer to 8m/s target is better), and average
absolute value of jerk in an example (lower is better).

gitudinal jerk in an example, computed over the set of
solved examples (lower is better)

Absolute value of lateral jerk was not considered as part of
our comparison since it can be misleading within the residen-
tial driving setup due to the fact that any overtaking maneuver
will naturally incur higher lateral jerk values compared with
situations when the planner does not perform an overtake, and
thus it does not always reflect comfort. Longitudinal jerk, on
the other hand, is invariant to the maneuver the planner is
implementing, and can be considered a comfort metric.

We generated a new dataset of 4000 examples, 1000 per
driving scenario class, and solved them using our method and
the NMPC baseline.

Table II shows the percentage of examples solved by the
methods, as well as the aforementioned metrics for the subset
of examples solved by both. Our method outperforms the
baseline in terms of the number of solved examples by over
10% (over 400 examples in total). On average, our method
achieves significantly higher progress, better speed tracking
across scenarios, and smaller longitudinal jerk values. This can
also be seen from the distributions of the metric values over the
set of examples solved by both methods presented in Fig. 9.
With respect to runtime, our implementation of the NMPC
baseline using IPOPT took on average 0.56s to generate a
solution to each problem, making it nearly 64% faster than
our method.

VI. RELATED WORK

In this section we analyze works related to our method in
the literature in terms of definitions of safety, vehicle dynamics

modeling, and other applications of constrained optimization.

A. Safety in Planning for Autonomous Driving

Within the autonomous vehicles motion planning literature,
an accepted definition of safety has been through the concept
of the inevitable collision set (ICS): the set of states which
will inevitably lead to a collision (sometimes also referred
to as regions of inevitable collision or target set), where
guaranteeing safety can be translated into computing and
avoiding the ICS [42]–[47]. However, the computation of the
ICS is intractable without some simplifying assumptions [48],
which might lead to (i) undesirably-reactive behavior when
the system approaches the boundary of the set and (ii) overly-
conservative plans in interactive cases [24]. Similarly, reacha-
bility analysis methods, which compute the forward reachable
set instead of the ICS for the sake of tractability, typically
suffer from the same issues [49]–[51].

We follow the approach from [24], in which safe regions
are defined by probabilistic constraints on the ego states in
the plan. While the chance constraints introduce a conservative
factor in the planner when compared to assuming deterministic
future positions, the departure from the strict ICS analysis
creates an important gap between the executed future states
of other agents and the uncertainty-aware predictions. In [24]
the authors address this through a high re-planning rate: the
frequent update of the planned trajectory as the true states
of other agents are observed induces a low uncertainty at the
level of the implemented actions at a certain time.

It should be noted that the notions of safety mentioned
above are based on the fundamental assumption that the
vehicle dynamics model used is representative of the full set
of differential constraints of the system, and thus the generated
plans are both safe and feasible in the real world [24], [52].
This is not always the case for low-fidelity formulations that
use approximate dynamics and operate under model mismatch
in which a high frequency feedback controller tracks the
generated plan [53]. Several works have shown that high-
fidelity closed-form dynamics models can be used reliably in
realistic simulation setups [24], [54] and in the real world [55],
[56]. For all the experiments in this paper we used a kinematic
bicycle model within the NLP problem (including in the
NMPC implementation for Sec. V-D), yet the framework
can be extended to higher fidelity models such as the one



considered in [24], possibly by considering a different linear
vehicle model at the MILP stage (e.g. a first-order hold
discretization as in [56]).

B. Motion Planning via Constrained Optimization

Our framework fits within the constrained optimization
literature [52] using a receding horizon [29], [57]. While
some related work tackles restricted settings of the problem
using linear, mixed-integer linear, or convex program formu-
lations [58]–[60], we directly solve a warm-started, nonlinear
problem, handling nearly arbitrary scenarios with complex
combinations of dynamic and static vehicles over a long
horizon (8s in the reported experiments). Rick et al. [20]
formulate an NLP problem similar to ours, but with no
uncertainty over the predicted positions of road users at the
optimization level, and solve it within an NMPC loop initial-
ized with the shifted previous solution. While our planning
formulation accounts for state uncertainty, the task of state
estimation/filtering [61] is outside the scope of this work.

The approach we take is closest to [24] in terms of the
formulation of constraints (following from [21]–[23]), despite
the fact that the problem in [24] refers to a corrective system in
a semi-autonomous setting as opposed to the fully autonomous
driving setting we tackle. Our work can be seen as a receding
horizon approach, yet it differs from [24] in that the latter uses
the shifted previous solution as the initialization for the NLP
problem at each stage within an NMPC framework, whereas
ours warm-starts each stage with a fresh MILP solution. Other
works have used mixed-integer linear formulations for path
planning [60], but, to the best of our knowledge, this is the
first work within the autonomous driving literature that uses
mixed-integer linear formulations to warm-start an NLP solver.

VII. DISCUSSION

Safety is paramount for autonomous driving. At deployment
time, optimization-based planners require fallback mecha-
nisms to deal with infeasible problems so that a plan is gen-
erated at each planning step. This is exacerbated for nonlinear
non-convex problem settings as convergence is uncertain, even
for feasible problems [24], [25]. As such, a proxy for the
deployed system safety could be seen in the percentage of
solved problems. Our two-stage planner solves over 10% more
examples than the NMPC baseline in our scenario classes,
implying that the fallback mechanism would have to be called
significantly less frequently than in the case of that baseline.

Furthermore, the presented results validate the claim that our
framework with its informed initialization produces solutions
of a higher quality than the ones produced by methods
that rely on solving the NLP problem directly with simpler
initializations or through an NMPC formulation that initializes
it with a previous shifted solution.

The analysis of the initialization ablation presented in
Table I and Fig. 7 might suggest only marginal improvements
by our method in some cases when looked at with the runtime
increase (e.g., our solution outperforms ZEROS by a margin of
2% in terms of convergence and 11.62% in terms of cost, but it
runs on average 31% slower). However, taking the sequential

nature of the decision making problem into account – i.e., the
fact that the planning problems need to be solved continually
instead of the one-shot planning reported in Table I – means
that these small differences will accumulate over longer runs.
This phenomenon is highlighted, for example, by the receding
horizon compounding in the NMPC comparison, as observed
by the significant overall improvements in convergence and
metrics in Table II and Fig. 9.

Generally, the non-convex nature of the NLP problem
induces local optima that are highly influenced by the ini-
tialization, which, in the case of NMPC, is biased towards
following a similar plan to the ones previously computed, and
in the case of ZEROS, is biased towards plans closer to the
origin in the solution space. The MILP initialization we use,
on the other hand, enables the subsequent NLP to explore
different parts of the solution space when needed.

Finally, the initialization ablation over the formulation of
Problem 3 strongly justifies the inclusion of collision avoid-
ance and speed related constraints in our method, the effects
of which can be observed by the increased convergence. As
expected, removing these constraints reduces the complexity of
the problem, resulting in better initialization runtime. However,
the deterioration in the quality of the initialization is also clear
from the increased NLP runtime, yielding a comparable total
runtime to our method.

VIII. CONCLUSION

In this paper we introduce a two-stage optimization frame-
work for autonomous driving which first solves a linearized
version of the planning problem (formulated as a Mixed-
Integer Linear Program in a receding horizon fashion) to
warm-start the second nonlinear optimization stage. We show
that our MILP initialization leads on average to a higher
percentage of solved examples, lower costs, and better solving
time for the NLP stage when compared with alternative initial-
izations. Additionally, we show that the two-stage formulation
solves more examples than an NMPC baseline, outperforming
it in terms of progress and passenger comfort metrics.

By using generic, off-the-shelf solvers, our method trades
off runtime for solution quality. One possible direction of
future work is to investigate methods that can accelerate the
solving time of the first stage, e.g. [62]–[64], in order to to
achieve faster runtime for real-world planning. This would
also have the advantage of allowing for faster re-planning;
bridging the safety gap between the uncertainty-aware predic-
tions we use and the actual behavior of the other road users.
Nonetheless, we have shown through our experiments that the
current framework is still suitable for deployment in complex
environments where the quality of the solution is extremely
important.

APPENDIX A
OPTIMIZATION PARAMETERS

The parameters of Problem 2 and Problem 3 in the context
of the results in Sec. V are defined in Table 1.



(a) t = 0.0s (b) Simulator view (t = 0.47s) (c) t = 6.47s (d) t = 13.47s

Fig. 10: Junction unprotected right turn example: (a), (c) and (d) showing the planner’s view of a junction handling problem,
with the ego-vehicle (blue), dynamic vehicles (red) and ego’s plan (dark blue trace) at different times t; (b) shows our simulator’s
rendering of the situation at t = 0.47s.

Parameter Stage Value Parameter Stage Value

L NLP 4.8 axmin MILP −3

δmax NLP 0.45 axmax MILP 3

amin NLP −3 aymin MILP −0.5

amax NLP 3 aymax MILP 0.5

ȧmax NLP 0.5 ∆axmax MILP 0.5

δ̇max NLP 0.18 ∆aymax MILP 0.1

ȧmax NLP 0.5 vxmin MILP 0

vmin NLP 0 vxmax MILP 3

vmax NLP 10 vymin MILP −1

ωx NLP 0.1 vymax MILP 1

ωv NLP 2.5 Ωx MILP 0.9

ωy NLP 0.05 Ωv MILP 0.5

ωa NLP 1.0 Ωy MILP 0.05

ωδ NLP 2.0 Ωa MILP 0.4

ρ MILP 1.5 M MILP 104

d MILP 0.9

TABLE 1: Parameters used in the MILP and NLP optimization
stages

APPENDIX B
JUNCTION SCENARIO

Fig. 10 shows the ego-vehicle navigating a junction and
performing an unprotected right turn.

APPENDIX C
GENERATION OF DATASET EXAMPLES

Here we give details of the procedural generation of sce-
narios presented in Sec. V-B.

Parameter Min Max

Number of lanes 2 2

Lane width (m) 3.5 4.3

Ego initial x (m) 0 0

initial y (m) bl(x) + 0.55 ∗ 1.9 br(x)− 0.55 ∗ 1.9

initial v (ms−1) 0 9.5

initial φ (rad) −π/12 +π/12

TABLE 1: Common parameters

We assume the ego-vehicle has length 4.8m and width
1.9m, and that the scenario parameters are uniformly sampled
from the ranges defined in Tables 1-5.

Parameter Min Max

Number of static vehicles 2 6

Static vehicle x (m) 0 80

y (m) bl(x) br(x)

width (m) 1.7 2.5

length (m) 4.0 8.0

TABLE 2: Parameters of scenario SO

Parameter Min Max

Number of static vehicles 2 6

Static vehicle x (m) 0 80

y (m) bl(x) 0
width (m) 1.7 2.5

length (m) 4.0 8.0

Oncoming vehicle initial x (m) 20 80

initial y (m) br(x)/2 br(x)/2

initial v (ms−1) 1.0 8.5

width (m) 1.7 2.5

length (m) 4.0 8.0

TABLE 3: Parameters of scenario SO+OV

Parameter Min Max

Dynamic vehicle initial x (m) 20 80

initial y (m) bl(x)/2 bl(x)/2

initial v (ms−1) 0.5 3.5

width (m) 1.7 2.5

length (m) 4.0 8.0

TABLE 4: Parameters of scenario DO

Parameter Min Max

Oncoming vehicle initial x (m) 20 80

initial y (m) br(x)/2 br(x)/2

initial v (ms−1) 1.0 8.5

width (m) 1.7 2.5

length (m) 4.0 8.0

Dynamic vehicle initial x (m) 20 80

initial y (m) bl(x)/2 bl(x)/2

initial v (ms−1) 0.5 3.5

width (m) 1.7 2.5

length (m) 4.0 8.0

TABLE 5: Parameters of scenario DO+OV
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[58] P. F. Lima, M. Trincavelli, J. Mårtensson, and B. Wahlberg, “Clothoid-
based model predictive control for autonomous driving,” in 2015 Euro-
pean Control Conference (ECC). IEEE, 2015, pp. 2983–2990.

[59] M. Babu, Y. Oza, A. K. Singh, K. M. Krishna, and S. Medasani, “Model
predictive control for autonomous driving based on time scaled collision
cone,” in 2018 European Control Conference (ECC). IEEE, 2018, pp.
641–648.

[60] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in 2001 European control
conference (ECC). IEEE, 2001, pp. 2603–2608.

[61] S. V. Albrecht and S. Ramamoorthy, “Exploiting causality for selective
belief filtering in dynamic Bayesian networks,” Journal of Artificial
Intelligence Research, vol. 55, pp. 1135–1178, 2016.

[62] D. Bertsimas and B. Stellato, “Online mixed-integer optimization in
milliseconds,” Journal of Optimization Theory and Applications, vol.
183, no. 2, pp. 490–519, 2019.

[63] P. Gupta, M. Gasse, E. Khalil, P. Mudigonda, A. Lodi, and Y. Bengio,
“Hybrid models for learning to branch,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[64] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang et al.,
“Solving mixed integer programs using neural networks,” arXiv preprint
arXiv:2012.13349, 2020.

Francisco Eiras received a BSc in Electrical and
Computer Engineering from Tecnico Lisbon in 2016,
and an MSc in Computer Science from the Univer-
sity of Oxford in 2018. He worked as a Research
Engineer within the Motion Planning and Prediction
Applied Research team at Five for 2 years following
his MSc, and is currently pursuing a PhD in Engi-
neering Science at the Optimization for Vision and
Learning (OVAL) group at the University of Oxford.

Majd Hawasly is a Senior Research Scientist in the
Motion Planning and Prediction Applied Research
team at Five. He received his PhD from the School
of Informatics at the University of Edinburgh in
2014. Prior to his role at Five, he was a postdoctoral
research fellow at the University of Leeds.

Stefano V. Albrecht is Assistant Professor
in Artificial Intelligence in the School of In-
formatics, University of Edinburgh, where he
leads the Autonomous Agents Research Group
(https://agents.inf.ed.ac.uk). He is a Royal Society
Industry Fellow working with UK-based company
Five to develop AI technologies for autonomous
vehicles. His research interests are in the areas of
autonomous agents, multi-agent interaction, rein-
forcement learning, and game theory, with a focus
on sequential decision making under uncertainty.

Previously, he was a postdoctoral fellow at the University of Texas at Austin.
He obtained PhD/MSc degrees from the University of Edinburgh and a BSc
degree from Technical University of Darmstadt.

Subramanian Ramamoorthy is a Professor in the
School of Informatics at the University of Edin-
burgh, where he holds the Personal Chair of Robot
Learning and Autonomy. He is a Turing Fellow
at the Alan Turing Institute, Executive Committee
Member for the Edinburgh Centre for Robotics,
and a Member of the UK Computing Research
Committee. He received his PhD in Electrical and
Computer Engineering from The University of Texas
at Austin in 2007. He has been a Member of the
Young Academy of Scotland at the Royal Society

of Edinburgh, and has held Visiting Professor positions at the University of
Rome “La Sapienza” and at Stanford University. His research investigates
learning, adaptation, and control mechanisms that enable autonomous robots
to cope with significant uncertainty and changes in tasks and environments.
Between 2017-2020, he served as Vice-President – Prediction and Planning –
at Five. He continues to be involved with the company as a Scientific Advisor.


	I Introduction
	II Preliminaries and Problem Statement
	II-A Notation and Definitions
	II-B Reference Path Representation
	II-B1 Pose transform
	II-B2 Speed transform
	II-B3 Covariance transform

	II-C Problem Statement

	III Nonlinear Programming Formulation
	III-1 Vehicle Model
	III-2 Collision Avoidance with driveable surface boundaries
	III-3 Collision Avoidance with other traffic participants
	III-4 Cost function


	IV Two-Stage Optimization
	IV-A Mixed-Integer Linear Programming Formulation
	IV-A1 Linear Vehicle Model and Kinematic Feasibility
	IV-A2 Collision Avoidance
	IV-A3 Mixed-Integer Linear Cost Function
	IV-A4 MILP Problem Definition
	IV-A5 On the optimality of the MILP stage


	V Experimental Results
	V-A Simulation Environment
	V-B Urban Driving Scenario Classes
	V-C NLP Initialization Ablation
	V-D NMPC Baseline Comparison

	VI Related Work
	VI-A Safety in Planning for Autonomous Driving
	VI-B Motion Planning via Constrained Optimization

	VII Discussion
	VIII Conclusion
	Appendix A: Optimization parameters
	Appendix B: Junction Scenario
	Appendix C: Generation of dataset examples
	References
	Biographies
	Francisco Eiras
	Majd Hawasly
	Stefano V. Albrecht
	Subramanian Ramamoorthy


